validmind 2.3.1__py3-none-any.whl → 2.3.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- validmind/__init__.py +2 -1
- validmind/__version__.py +1 -1
- validmind/datasets/regression/fred_timeseries.py +272 -0
- validmind/test_suites/__init__.py +0 -2
- validmind/tests/__init__.py +7 -7
- validmind/tests/__types__.py +180 -0
- validmind/tests/data_validation/SeasonalDecompose.py +68 -40
- validmind/tests/data_validation/TimeSeriesDescription.py +74 -0
- validmind/tests/data_validation/TimeSeriesDescriptiveStatistics.py +76 -0
- validmind/tests/data_validation/TimeSeriesHistogram.py +29 -45
- validmind/tests/data_validation/TimeSeriesOutliers.py +30 -41
- validmind/tests/decorator.py +12 -0
- validmind/tests/model_validation/ModelMetadataComparison.py +59 -0
- validmind/tests/model_validation/ModelPredictionResiduals.py +103 -0
- validmind/tests/model_validation/TimeSeriesPredictionWithCI.py +131 -0
- validmind/tests/model_validation/TimeSeriesPredictionsPlot.py +76 -0
- validmind/tests/model_validation/TimeSeriesR2SquareBySegments.py +103 -0
- validmind/tests/model_validation/sklearn/FeatureImportanceComparison.py +83 -0
- validmind/tests/model_validation/sklearn/PermutationFeatureImportance.py +1 -1
- validmind/tests/model_validation/sklearn/RegressionErrorsComparison.py +76 -0
- validmind/tests/model_validation/sklearn/RegressionR2SquareComparison.py +63 -0
- validmind/utils.py +34 -0
- {validmind-2.3.1.dist-info → validmind-2.3.5.dist-info}/METADATA +70 -36
- {validmind-2.3.1.dist-info → validmind-2.3.5.dist-info}/RECORD +28 -16
- /validmind/datasets/regression/datasets/{lending_club_loan_rates.csv → leanding_club_loan_rates.csv} +0 -0
- {validmind-2.3.1.dist-info → validmind-2.3.5.dist-info}/LICENSE +0 -0
- {validmind-2.3.1.dist-info → validmind-2.3.5.dist-info}/WHEEL +0 -0
- {validmind-2.3.1.dist-info → validmind-2.3.5.dist-info}/entry_points.txt +0 -0
validmind/__init__.py
CHANGED
@@ -60,7 +60,7 @@ from .client import ( # noqa: E402
|
|
60
60
|
run_documentation_tests,
|
61
61
|
run_test_suite,
|
62
62
|
)
|
63
|
-
from .tests.decorator import metric, tags, tasks
|
63
|
+
from .tests.decorator import metric, tags, tasks, test
|
64
64
|
from .utils import run_async # noqa: E402
|
65
65
|
|
66
66
|
|
@@ -112,6 +112,7 @@ __all__ = [ # noqa
|
|
112
112
|
"run_test_suite",
|
113
113
|
"tags",
|
114
114
|
"tasks",
|
115
|
+
"test",
|
115
116
|
"tests",
|
116
117
|
"test_suites",
|
117
118
|
"vm_models",
|
validmind/__version__.py
CHANGED
@@ -1 +1 @@
|
|
1
|
-
__version__ = "2.3.
|
1
|
+
__version__ = "2.3.5"
|
@@ -0,0 +1,272 @@
|
|
1
|
+
# Copyright © 2023-2024 ValidMind Inc. All rights reserved.
|
2
|
+
# See the LICENSE file in the root of this repository for details.
|
3
|
+
# SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
|
4
|
+
|
5
|
+
import os
|
6
|
+
|
7
|
+
import pandas as pd
|
8
|
+
|
9
|
+
current_path = os.path.dirname(os.path.abspath(__file__))
|
10
|
+
mortgage30us_path = os.path.join(current_path, "datasets", "fred", "MORTGAGE30US.csv")
|
11
|
+
fedfunds_path = os.path.join(current_path, "datasets", "fred", "FEDFUNDS.csv")
|
12
|
+
gs10_path = os.path.join(current_path, "datasets", "fred", "GS10.csv")
|
13
|
+
unrate_path = os.path.join(current_path, "datasets", "fred", "UNRATE.csv")
|
14
|
+
|
15
|
+
target_column = "MORTGAGE30US"
|
16
|
+
feature_columns = ["FEDFUNDS", "GS10", "UNRATE"]
|
17
|
+
|
18
|
+
|
19
|
+
def get_common_date_range(dfs):
|
20
|
+
start_dates = [df.index.min() for df in dfs]
|
21
|
+
end_dates = [df.index.max() for df in dfs]
|
22
|
+
|
23
|
+
common_start_date = max(start_dates)
|
24
|
+
common_end_date = min(end_dates)
|
25
|
+
|
26
|
+
return common_start_date, common_end_date
|
27
|
+
|
28
|
+
|
29
|
+
def align_date_range(dfs, start_date, end_date):
|
30
|
+
return [df.loc[start_date:end_date] for df in dfs]
|
31
|
+
|
32
|
+
|
33
|
+
def load_data():
|
34
|
+
mortgage30us = pd.read_csv(
|
35
|
+
mortgage30us_path, parse_dates=["DATE"], index_col="DATE"
|
36
|
+
)
|
37
|
+
fedfunds = pd.read_csv(fedfunds_path, parse_dates=["DATE"], index_col="DATE")
|
38
|
+
gs10 = pd.read_csv(gs10_path, parse_dates=["DATE"], index_col="DATE")
|
39
|
+
unrate = pd.read_csv(unrate_path, parse_dates=["DATE"], index_col="DATE")
|
40
|
+
|
41
|
+
# Resample mortgage30us to monthly frequency
|
42
|
+
mortgage30us = mortgage30us.resample("MS").last()
|
43
|
+
|
44
|
+
# Get the common date range
|
45
|
+
common_start_date, common_end_date = get_common_date_range(
|
46
|
+
[mortgage30us, fedfunds, gs10, unrate]
|
47
|
+
)
|
48
|
+
|
49
|
+
# Align the date range for all dataframes
|
50
|
+
mortgage30us, fedfunds, gs10, unrate = align_date_range(
|
51
|
+
[mortgage30us, fedfunds, gs10, unrate], common_start_date, common_end_date
|
52
|
+
)
|
53
|
+
|
54
|
+
# Combine into a single DataFrame
|
55
|
+
df = pd.concat([mortgage30us, fedfunds, gs10, unrate], axis=1, join="inner")
|
56
|
+
df.columns = [target_column] + feature_columns
|
57
|
+
|
58
|
+
return df
|
59
|
+
|
60
|
+
|
61
|
+
# Convert data back to levels
|
62
|
+
def convert_to_levels(diff_df, original_df, target_column):
|
63
|
+
"""
|
64
|
+
Convert differenced data back to original levels.
|
65
|
+
"""
|
66
|
+
previous_values = original_df[target_column].shift(1).dropna()
|
67
|
+
levels_df = diff_df.add(previous_values, axis=0)
|
68
|
+
return levels_df
|
69
|
+
|
70
|
+
|
71
|
+
def get_demo_test_config(test_suite=None):
|
72
|
+
|
73
|
+
default_config = {}
|
74
|
+
|
75
|
+
default_config["validmind.data_validation.TimeSeriesDescription"] = {
|
76
|
+
"inputs": {
|
77
|
+
"dataset": "raw_ds",
|
78
|
+
}
|
79
|
+
}
|
80
|
+
default_config["validmind.data_validation.TimeSeriesLinePlot"] = {
|
81
|
+
"inputs": {
|
82
|
+
"dataset": "raw_ds",
|
83
|
+
}
|
84
|
+
}
|
85
|
+
default_config["validmind.data_validation.TimeSeriesMissingValues"] = {
|
86
|
+
"inputs": {
|
87
|
+
"dataset": "raw_ds",
|
88
|
+
}
|
89
|
+
}
|
90
|
+
default_config["validmind.data_validation.SeasonalDecompose"] = {
|
91
|
+
"inputs": {
|
92
|
+
"dataset": "raw_ds",
|
93
|
+
}
|
94
|
+
}
|
95
|
+
default_config[
|
96
|
+
"validmind.data_validation.TimeSeriesDescriptiveStatistics:train_diff_data"
|
97
|
+
] = {
|
98
|
+
"inputs": {
|
99
|
+
"dataset": "train_diff_ds",
|
100
|
+
}
|
101
|
+
}
|
102
|
+
default_config[
|
103
|
+
"validmind.data_validation.TimeSeriesDescriptiveStatistics:test_diff_data"
|
104
|
+
] = {
|
105
|
+
"inputs": {
|
106
|
+
"dataset": "test_diff_ds",
|
107
|
+
}
|
108
|
+
}
|
109
|
+
default_config["validmind.data_validation.TimeSeriesOutliers:train_diff_data"] = {
|
110
|
+
"inputs": {
|
111
|
+
"dataset": "train_diff_ds",
|
112
|
+
},
|
113
|
+
"params": {"zscore_threshold": 4},
|
114
|
+
}
|
115
|
+
default_config["validmind.data_validation.TimeSeriesOutliers:test_diff_data"] = {
|
116
|
+
"inputs": {
|
117
|
+
"dataset": "test_diff_ds",
|
118
|
+
},
|
119
|
+
"params": {"zscore_threshold": 4},
|
120
|
+
}
|
121
|
+
default_config["validmind.data_validation.TimeSeriesHistogram:train_diff_data"] = {
|
122
|
+
"inputs": {
|
123
|
+
"dataset": "train_diff_ds",
|
124
|
+
},
|
125
|
+
"params": {"nbins": 100},
|
126
|
+
}
|
127
|
+
default_config["validmind.data_validation.TimeSeriesHistogram:test_diff_data"] = {
|
128
|
+
"inputs": {
|
129
|
+
"dataset": "test_diff_ds",
|
130
|
+
},
|
131
|
+
"params": {"nbins": 100},
|
132
|
+
}
|
133
|
+
default_config["validmind.data_validation.DatasetSplit"] = {
|
134
|
+
"inputs": {
|
135
|
+
"datasets": ["train_diff_ds", "test_diff_ds"],
|
136
|
+
}
|
137
|
+
}
|
138
|
+
default_config["validmind.model_validation.ModelMetadataComparison"] = {
|
139
|
+
"inputs": {
|
140
|
+
"models": ["random_forests_model", "gradient_boosting_model"],
|
141
|
+
}
|
142
|
+
}
|
143
|
+
default_config[
|
144
|
+
"validmind.model_validation.sklearn.RegressionErrorsComparison:train_data"
|
145
|
+
] = {
|
146
|
+
"inputs": {
|
147
|
+
"datasets": ["train_ds", "train_ds"],
|
148
|
+
"models": ["random_forests_model", "gradient_boosting_model"],
|
149
|
+
}
|
150
|
+
}
|
151
|
+
default_config[
|
152
|
+
"validmind.model_validation.sklearn.RegressionErrorsComparison:test_data"
|
153
|
+
] = {
|
154
|
+
"inputs": {
|
155
|
+
"datasets": ["test_ds", "test_ds"],
|
156
|
+
"models": ["random_forests_model", "gradient_boosting_model"],
|
157
|
+
}
|
158
|
+
}
|
159
|
+
default_config[
|
160
|
+
"validmind.model_validation.sklearn.RegressionR2SquareComparison:train_data"
|
161
|
+
] = {
|
162
|
+
"inputs": {
|
163
|
+
"datasets": ["train_ds", "train_ds"],
|
164
|
+
"models": ["random_forests_model", "gradient_boosting_model"],
|
165
|
+
}
|
166
|
+
}
|
167
|
+
default_config[
|
168
|
+
"validmind.model_validation.sklearn.RegressionR2SquareComparison:test_data"
|
169
|
+
] = {
|
170
|
+
"inputs": {
|
171
|
+
"datasets": ["test_ds", "test_ds"],
|
172
|
+
"models": ["random_forests_model", "gradient_boosting_model"],
|
173
|
+
}
|
174
|
+
}
|
175
|
+
default_config[
|
176
|
+
"validmind.model_validation.TimeSeriesR2SquareBySegments:train_data"
|
177
|
+
] = {
|
178
|
+
"inputs": {
|
179
|
+
"datasets": ["train_ds", "train_ds"],
|
180
|
+
"models": ["random_forests_model", "gradient_boosting_model"],
|
181
|
+
}
|
182
|
+
}
|
183
|
+
default_config[
|
184
|
+
"validmind.model_validation.TimeSeriesR2SquareBySegments:test_data"
|
185
|
+
] = {
|
186
|
+
"inputs": {
|
187
|
+
"datasets": ["test_ds", "test_ds"],
|
188
|
+
"models": ["random_forests_model", "gradient_boosting_model"],
|
189
|
+
},
|
190
|
+
"params": {
|
191
|
+
"segments": {
|
192
|
+
"start_date": ["2012-11-01", "2018-02-01"],
|
193
|
+
"end_date": ["2018-01-01", "2023-03-01"],
|
194
|
+
}
|
195
|
+
},
|
196
|
+
}
|
197
|
+
default_config[
|
198
|
+
"validmind.model_validation.TimeSeriesPredictionsPlot:train_data"
|
199
|
+
] = {
|
200
|
+
"inputs": {
|
201
|
+
"datasets": ["train_ds", "train_ds"],
|
202
|
+
"models": ["random_forests_model", "gradient_boosting_model"],
|
203
|
+
}
|
204
|
+
}
|
205
|
+
default_config["validmind.model_validation.TimeSeriesPredictionsPlot:test_data"] = {
|
206
|
+
"inputs": {
|
207
|
+
"datasets": ["test_ds", "test_ds"],
|
208
|
+
"models": ["random_forests_model", "gradient_boosting_model"],
|
209
|
+
}
|
210
|
+
}
|
211
|
+
default_config[
|
212
|
+
"validmind.model_validation.TimeSeriesPredictionWithCI:random_forests_model"
|
213
|
+
] = {
|
214
|
+
"inputs": {
|
215
|
+
"dataset": "test_ds",
|
216
|
+
"model": "random_forests_model",
|
217
|
+
}
|
218
|
+
}
|
219
|
+
default_config[
|
220
|
+
"validmind.model_validation.TimeSeriesPredictionWithCI:gradient_boosting_model"
|
221
|
+
] = {
|
222
|
+
"inputs": {
|
223
|
+
"dataset": "test_ds",
|
224
|
+
"model": "gradient_boosting_model",
|
225
|
+
}
|
226
|
+
}
|
227
|
+
default_config["validmind.model_validation.ModelPredictionResiduals:train_data"] = {
|
228
|
+
"inputs": {
|
229
|
+
"datasets": ["train_ds", "train_ds"],
|
230
|
+
"models": ["random_forests_model", "gradient_boosting_model"],
|
231
|
+
}
|
232
|
+
}
|
233
|
+
default_config["validmind.model_validation.ModelPredictionResiduals:test_data"] = {
|
234
|
+
"inputs": {
|
235
|
+
"datasets": ["test_ds", "test_ds"],
|
236
|
+
"models": ["random_forests_model", "gradient_boosting_model"],
|
237
|
+
}
|
238
|
+
}
|
239
|
+
default_config[
|
240
|
+
"validmind.model_validation.sklearn.FeatureImportanceComparison:train_data"
|
241
|
+
] = {
|
242
|
+
"inputs": {
|
243
|
+
"datasets": ["train_ds", "train_ds"],
|
244
|
+
"models": ["random_forests_model", "gradient_boosting_model"],
|
245
|
+
}
|
246
|
+
}
|
247
|
+
default_config[
|
248
|
+
"validmind.model_validation.sklearn.FeatureImportanceComparison:test_data"
|
249
|
+
] = {
|
250
|
+
"inputs": {
|
251
|
+
"datasets": ["test_ds", "test_ds"],
|
252
|
+
"models": ["random_forests_model", "gradient_boosting_model"],
|
253
|
+
}
|
254
|
+
}
|
255
|
+
default_config[
|
256
|
+
"validmind.model_validation.sklearn.PermutationFeatureImportance:random_forests_model"
|
257
|
+
] = {
|
258
|
+
"inputs": {
|
259
|
+
"dataset": "test_ds",
|
260
|
+
"model": "random_forests_model",
|
261
|
+
}
|
262
|
+
}
|
263
|
+
default_config[
|
264
|
+
"validmind.model_validation.sklearn.PermutationFeatureImportance:gradient_boosting_model"
|
265
|
+
] = {
|
266
|
+
"inputs": {
|
267
|
+
"dataset": "test_ds",
|
268
|
+
"model": "gradient_boosting_model",
|
269
|
+
}
|
270
|
+
}
|
271
|
+
|
272
|
+
return default_config
|
@@ -182,7 +182,6 @@ def describe_suite(test_suite_id: str, verbose=False):
|
|
182
182
|
"Test Suite Section": "",
|
183
183
|
"Test ID": item,
|
184
184
|
"Test Name": test.__name__,
|
185
|
-
"Test Type": test.test_type,
|
186
185
|
}
|
187
186
|
)
|
188
187
|
elif isinstance(item, dict):
|
@@ -195,7 +194,6 @@ def describe_suite(test_suite_id: str, verbose=False):
|
|
195
194
|
"Test Suite Section": item["section_id"],
|
196
195
|
"Test ID": test_id,
|
197
196
|
"Test Name": test_id_to_name(test_id),
|
198
|
-
"Test Type": test.test_type,
|
199
197
|
}
|
200
198
|
)
|
201
199
|
else:
|
validmind/tests/__init__.py
CHANGED
@@ -30,7 +30,9 @@ from ..utils import (
|
|
30
30
|
test_id_to_name,
|
31
31
|
)
|
32
32
|
from ..vm_models import TestContext, TestInput
|
33
|
-
from .
|
33
|
+
from .__types__ import TestID
|
34
|
+
from .decorator import tags, tasks
|
35
|
+
from .decorator import test as test_decorator
|
34
36
|
from .test_providers import LocalTestProvider, TestProvider
|
35
37
|
|
36
38
|
logger = get_logger(__name__)
|
@@ -84,7 +86,6 @@ def _pretty_list_tests(tests, truncate=True):
|
|
84
86
|
{
|
85
87
|
"ID": test_id,
|
86
88
|
"Name": test_id_to_name(test_id),
|
87
|
-
"Test Type": __test_classes[test_id].test_type,
|
88
89
|
"Description": _test_description(__test_classes[test_id], truncate),
|
89
90
|
"Required Inputs": __test_classes[test_id].required_inputs,
|
90
91
|
"Params": __test_classes[test_id].default_params or {},
|
@@ -340,7 +341,7 @@ def load_test(test_id: str, reload=False):
|
|
340
341
|
# if its a function, we decorate it and then load the class
|
341
342
|
# TODO: simplify this as we move towards all functional metrics
|
342
343
|
# "_" is used here so it doesn't conflict with other test ids
|
343
|
-
|
344
|
+
test_decorator("_")(test)
|
344
345
|
test = __custom_tests["_"]
|
345
346
|
|
346
347
|
test.test_id = f"{test_id}:{result_id}" if result_id else test_id
|
@@ -348,7 +349,7 @@ def load_test(test_id: str, reload=False):
|
|
348
349
|
return test
|
349
350
|
|
350
351
|
|
351
|
-
def describe_test(test_id:
|
352
|
+
def describe_test(test_id: TestID = None, raw: bool = False, show: bool = True):
|
352
353
|
"""Get or show details about the test
|
353
354
|
|
354
355
|
This function can be used to see test details including the test name, description,
|
@@ -365,7 +366,6 @@ def describe_test(test_id: str = None, raw: bool = False, show: bool = True):
|
|
365
366
|
details = {
|
366
367
|
"ID": test_id,
|
367
368
|
"Name": test_id_to_name(test_id),
|
368
|
-
"Test Type": test.test_type,
|
369
369
|
"Required Inputs": test.required_inputs,
|
370
370
|
"Params": test.default_params or {},
|
371
371
|
"Description": inspect.getdoc(test).strip() or "",
|
@@ -407,7 +407,7 @@ def describe_test(test_id: str = None, raw: bool = False, show: bool = True):
|
|
407
407
|
|
408
408
|
|
409
409
|
def run_test(
|
410
|
-
test_id:
|
410
|
+
test_id: TestID = None,
|
411
411
|
name: str = None,
|
412
412
|
unit_metrics: list = None,
|
413
413
|
params: dict = None,
|
@@ -451,7 +451,7 @@ def run_test(
|
|
451
451
|
|
452
452
|
if unit_metrics:
|
453
453
|
metric_id_name = "".join(word[0].upper() + word[1:] for word in name.split())
|
454
|
-
test_id = f"validmind.
|
454
|
+
test_id = f"validmind.composite_test.{metric_id_name}"
|
455
455
|
|
456
456
|
error, TestClass = load_composite_metric(
|
457
457
|
unit_metrics=unit_metrics, metric_name=metric_id_name
|
@@ -0,0 +1,180 @@
|
|
1
|
+
# Copyright © 2023-2024 ValidMind Inc. All rights reserved.
|
2
|
+
# See the LICENSE file in the root of this repository for details.
|
3
|
+
# SPDX-License-Identifier: AGPL-3.0 AND ValidMind Commercial
|
4
|
+
|
5
|
+
"""Literal types for test IDs.
|
6
|
+
|
7
|
+
This module is auto-generated by running `make generate-test-id-types`.
|
8
|
+
Should not be modified manually.
|
9
|
+
"""
|
10
|
+
|
11
|
+
from typing import Literal
|
12
|
+
|
13
|
+
TestID = Literal[
|
14
|
+
"validmind.prompt_validation.Bias",
|
15
|
+
"validmind.prompt_validation.Clarity",
|
16
|
+
"validmind.prompt_validation.Specificity",
|
17
|
+
"validmind.prompt_validation.Robustness",
|
18
|
+
"validmind.prompt_validation.NegativeInstruction",
|
19
|
+
"validmind.prompt_validation.Conciseness",
|
20
|
+
"validmind.prompt_validation.Delimitation",
|
21
|
+
"validmind.model_validation.ModelPredictionResiduals",
|
22
|
+
"validmind.model_validation.BertScore",
|
23
|
+
"validmind.model_validation.TimeSeriesPredictionsPlot",
|
24
|
+
"validmind.model_validation.RegardScore",
|
25
|
+
"validmind.model_validation.BleuScore",
|
26
|
+
"validmind.model_validation.TimeSeriesPredictionWithCI",
|
27
|
+
"validmind.model_validation.RegressionResidualsPlot",
|
28
|
+
"validmind.model_validation.FeaturesAUC",
|
29
|
+
"validmind.model_validation.ContextualRecall",
|
30
|
+
"validmind.model_validation.MeteorScore",
|
31
|
+
"validmind.model_validation.RougeScore",
|
32
|
+
"validmind.model_validation.ModelMetadata",
|
33
|
+
"validmind.model_validation.ClusterSizeDistribution",
|
34
|
+
"validmind.model_validation.TokenDisparity",
|
35
|
+
"validmind.model_validation.ToxicityScore",
|
36
|
+
"validmind.model_validation.ModelMetadataComparison",
|
37
|
+
"validmind.model_validation.TimeSeriesR2SquareBySegments",
|
38
|
+
"validmind.model_validation.embeddings.CosineSimilarityComparison",
|
39
|
+
"validmind.model_validation.embeddings.EmbeddingsVisualization2D",
|
40
|
+
"validmind.model_validation.embeddings.StabilityAnalysisRandomNoise",
|
41
|
+
"validmind.model_validation.embeddings.TSNEComponentsPairwisePlots",
|
42
|
+
"validmind.model_validation.embeddings.CosineSimilarityDistribution",
|
43
|
+
"validmind.model_validation.embeddings.PCAComponentsPairwisePlots",
|
44
|
+
"validmind.model_validation.embeddings.CosineSimilarityHeatmap",
|
45
|
+
"validmind.model_validation.embeddings.StabilityAnalysisTranslation",
|
46
|
+
"validmind.model_validation.embeddings.EuclideanDistanceComparison",
|
47
|
+
"validmind.model_validation.embeddings.ClusterDistribution",
|
48
|
+
"validmind.model_validation.embeddings.EuclideanDistanceHeatmap",
|
49
|
+
"validmind.model_validation.embeddings.StabilityAnalysis",
|
50
|
+
"validmind.model_validation.embeddings.StabilityAnalysisKeyword",
|
51
|
+
"validmind.model_validation.embeddings.StabilityAnalysisSynonyms",
|
52
|
+
"validmind.model_validation.embeddings.DescriptiveAnalytics",
|
53
|
+
"validmind.model_validation.ragas.ContextEntityRecall",
|
54
|
+
"validmind.model_validation.ragas.Faithfulness",
|
55
|
+
"validmind.model_validation.ragas.AspectCritique",
|
56
|
+
"validmind.model_validation.ragas.AnswerSimilarity",
|
57
|
+
"validmind.model_validation.ragas.AnswerCorrectness",
|
58
|
+
"validmind.model_validation.ragas.ContextRecall",
|
59
|
+
"validmind.model_validation.ragas.ContextRelevancy",
|
60
|
+
"validmind.model_validation.ragas.ContextPrecision",
|
61
|
+
"validmind.model_validation.ragas.AnswerRelevance",
|
62
|
+
"validmind.model_validation.sklearn.RegressionModelsPerformanceComparison",
|
63
|
+
"validmind.model_validation.sklearn.AdjustedMutualInformation",
|
64
|
+
"validmind.model_validation.sklearn.SilhouettePlot",
|
65
|
+
"validmind.model_validation.sklearn.RobustnessDiagnosis",
|
66
|
+
"validmind.model_validation.sklearn.AdjustedRandIndex",
|
67
|
+
"validmind.model_validation.sklearn.SHAPGlobalImportance",
|
68
|
+
"validmind.model_validation.sklearn.ConfusionMatrix",
|
69
|
+
"validmind.model_validation.sklearn.HomogeneityScore",
|
70
|
+
"validmind.model_validation.sklearn.CompletenessScore",
|
71
|
+
"validmind.model_validation.sklearn.OverfitDiagnosis",
|
72
|
+
"validmind.model_validation.sklearn.ClusterPerformanceMetrics",
|
73
|
+
"validmind.model_validation.sklearn.PermutationFeatureImportance",
|
74
|
+
"validmind.model_validation.sklearn.FowlkesMallowsScore",
|
75
|
+
"validmind.model_validation.sklearn.MinimumROCAUCScore",
|
76
|
+
"validmind.model_validation.sklearn.ClusterCosineSimilarity",
|
77
|
+
"validmind.model_validation.sklearn.PrecisionRecallCurve",
|
78
|
+
"validmind.model_validation.sklearn.ClassifierPerformance",
|
79
|
+
"validmind.model_validation.sklearn.VMeasure",
|
80
|
+
"validmind.model_validation.sklearn.MinimumF1Score",
|
81
|
+
"validmind.model_validation.sklearn.ROCCurve",
|
82
|
+
"validmind.model_validation.sklearn.RegressionR2Square",
|
83
|
+
"validmind.model_validation.sklearn.RegressionErrors",
|
84
|
+
"validmind.model_validation.sklearn.ClusterPerformance",
|
85
|
+
"validmind.model_validation.sklearn.FeatureImportanceComparison",
|
86
|
+
"validmind.model_validation.sklearn.TrainingTestDegradation",
|
87
|
+
"validmind.model_validation.sklearn.RegressionErrorsComparison",
|
88
|
+
"validmind.model_validation.sklearn.HyperParametersTuning",
|
89
|
+
"validmind.model_validation.sklearn.KMeansClustersOptimization",
|
90
|
+
"validmind.model_validation.sklearn.ModelsPerformanceComparison",
|
91
|
+
"validmind.model_validation.sklearn.WeakspotsDiagnosis",
|
92
|
+
"validmind.model_validation.sklearn.RegressionR2SquareComparison",
|
93
|
+
"validmind.model_validation.sklearn.PopulationStabilityIndex",
|
94
|
+
"validmind.model_validation.sklearn.MinimumAccuracy",
|
95
|
+
"validmind.model_validation.statsmodels.RegressionModelsCoeffs",
|
96
|
+
"validmind.model_validation.statsmodels.BoxPierce",
|
97
|
+
"validmind.model_validation.statsmodels.RegressionCoeffsPlot",
|
98
|
+
"validmind.model_validation.statsmodels.RegressionModelSensitivityPlot",
|
99
|
+
"validmind.model_validation.statsmodels.RegressionModelForecastPlotLevels",
|
100
|
+
"validmind.model_validation.statsmodels.ScorecardHistogram",
|
101
|
+
"validmind.model_validation.statsmodels.LJungBox",
|
102
|
+
"validmind.model_validation.statsmodels.JarqueBera",
|
103
|
+
"validmind.model_validation.statsmodels.KolmogorovSmirnov",
|
104
|
+
"validmind.model_validation.statsmodels.ShapiroWilk",
|
105
|
+
"validmind.model_validation.statsmodels.CumulativePredictionProbabilities",
|
106
|
+
"validmind.model_validation.statsmodels.RegressionFeatureSignificance",
|
107
|
+
"validmind.model_validation.statsmodels.RegressionModelSummary",
|
108
|
+
"validmind.model_validation.statsmodels.Lilliefors",
|
109
|
+
"validmind.model_validation.statsmodels.RunsTest",
|
110
|
+
"validmind.model_validation.statsmodels.RegressionPermutationFeatureImportance",
|
111
|
+
"validmind.model_validation.statsmodels.PredictionProbabilitiesHistogram",
|
112
|
+
"validmind.model_validation.statsmodels.AutoARIMA",
|
113
|
+
"validmind.model_validation.statsmodels.GINITable",
|
114
|
+
"validmind.model_validation.statsmodels.RegressionModelForecastPlot",
|
115
|
+
"validmind.model_validation.statsmodels.DurbinWatsonTest",
|
116
|
+
"validmind.data_validation.MissingValuesRisk",
|
117
|
+
"validmind.data_validation.IQROutliersTable",
|
118
|
+
"validmind.data_validation.BivariateFeaturesBarPlots",
|
119
|
+
"validmind.data_validation.Skewness",
|
120
|
+
"validmind.data_validation.Duplicates",
|
121
|
+
"validmind.data_validation.MissingValuesBarPlot",
|
122
|
+
"validmind.data_validation.DatasetDescription",
|
123
|
+
"validmind.data_validation.ZivotAndrewsArch",
|
124
|
+
"validmind.data_validation.ScatterPlot",
|
125
|
+
"validmind.data_validation.TimeSeriesOutliers",
|
126
|
+
"validmind.data_validation.TabularCategoricalBarPlots",
|
127
|
+
"validmind.data_validation.AutoStationarity",
|
128
|
+
"validmind.data_validation.DescriptiveStatistics",
|
129
|
+
"validmind.data_validation.TimeSeriesDescription",
|
130
|
+
"validmind.data_validation.ANOVAOneWayTable",
|
131
|
+
"validmind.data_validation.TargetRateBarPlots",
|
132
|
+
"validmind.data_validation.PearsonCorrelationMatrix",
|
133
|
+
"validmind.data_validation.FeatureTargetCorrelationPlot",
|
134
|
+
"validmind.data_validation.TabularNumericalHistograms",
|
135
|
+
"validmind.data_validation.IsolationForestOutliers",
|
136
|
+
"validmind.data_validation.ChiSquaredFeaturesTable",
|
137
|
+
"validmind.data_validation.HighCardinality",
|
138
|
+
"validmind.data_validation.MissingValues",
|
139
|
+
"validmind.data_validation.PhillipsPerronArch",
|
140
|
+
"validmind.data_validation.RollingStatsPlot",
|
141
|
+
"validmind.data_validation.TabularDescriptionTables",
|
142
|
+
"validmind.data_validation.AutoMA",
|
143
|
+
"validmind.data_validation.UniqueRows",
|
144
|
+
"validmind.data_validation.TooManyZeroValues",
|
145
|
+
"validmind.data_validation.HighPearsonCorrelation",
|
146
|
+
"validmind.data_validation.ACFandPACFPlot",
|
147
|
+
"validmind.data_validation.BivariateHistograms",
|
148
|
+
"validmind.data_validation.WOEBinTable",
|
149
|
+
"validmind.data_validation.HeatmapFeatureCorrelations",
|
150
|
+
"validmind.data_validation.TimeSeriesFrequency",
|
151
|
+
"validmind.data_validation.DatasetSplit",
|
152
|
+
"validmind.data_validation.SpreadPlot",
|
153
|
+
"validmind.data_validation.TimeSeriesLinePlot",
|
154
|
+
"validmind.data_validation.KPSS",
|
155
|
+
"validmind.data_validation.AutoSeasonality",
|
156
|
+
"validmind.data_validation.BivariateScatterPlots",
|
157
|
+
"validmind.data_validation.EngleGrangerCoint",
|
158
|
+
"validmind.data_validation.TimeSeriesMissingValues",
|
159
|
+
"validmind.data_validation.TimeSeriesHistogram",
|
160
|
+
"validmind.data_validation.LaggedCorrelationHeatmap",
|
161
|
+
"validmind.data_validation.SeasonalDecompose",
|
162
|
+
"validmind.data_validation.WOEBinPlots",
|
163
|
+
"validmind.data_validation.ClassImbalance",
|
164
|
+
"validmind.data_validation.IQROutliersBarPlot",
|
165
|
+
"validmind.data_validation.DFGLSArch",
|
166
|
+
"validmind.data_validation.TimeSeriesDescriptiveStatistics",
|
167
|
+
"validmind.data_validation.AutoAR",
|
168
|
+
"validmind.data_validation.TabularDateTimeHistograms",
|
169
|
+
"validmind.data_validation.ADF",
|
170
|
+
"validmind.data_validation.nlp.Toxicity",
|
171
|
+
"validmind.data_validation.nlp.PolarityAndSubjectivity",
|
172
|
+
"validmind.data_validation.nlp.Punctuations",
|
173
|
+
"validmind.data_validation.nlp.Sentiment",
|
174
|
+
"validmind.data_validation.nlp.CommonWords",
|
175
|
+
"validmind.data_validation.nlp.Hashtags",
|
176
|
+
"validmind.data_validation.nlp.LanguageDetection",
|
177
|
+
"validmind.data_validation.nlp.Mentions",
|
178
|
+
"validmind.data_validation.nlp.TextDescription",
|
179
|
+
"validmind.data_validation.nlp.StopWords",
|
180
|
+
]
|