usecortex-ai 0.2.1__py3-none-any.whl → 0.3.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- usecortex_ai/__init__.py +18 -3
- usecortex_ai/client.py +3 -0
- usecortex_ai/document/__init__.py +4 -0
- usecortex_ai/document/client.py +139 -0
- usecortex_ai/document/raw_client.py +312 -0
- usecortex_ai/embeddings/client.py +48 -78
- usecortex_ai/embeddings/raw_client.py +44 -74
- usecortex_ai/fetch/client.py +2 -2
- usecortex_ai/search/client.py +88 -84
- usecortex_ai/search/raw_client.py +82 -78
- usecortex_ai/sources/client.py +26 -157
- usecortex_ai/sources/raw_client.py +22 -501
- usecortex_ai/tenant/client.py +154 -6
- usecortex_ai/tenant/raw_client.py +502 -4
- usecortex_ai/types/__init__.py +16 -2
- usecortex_ai/types/add_user_memory_response.py +36 -0
- usecortex_ai/types/app_sources_upload_data.py +10 -2
- usecortex_ai/types/attachment_model.py +34 -7
- usecortex_ai/types/batch_upload_data.py +10 -2
- usecortex_ai/types/body_scrape_webpage_upload_scrape_webpage_post.py +0 -2
- usecortex_ai/types/body_update_scrape_job_upload_update_webpage_patch.py +0 -2
- usecortex_ai/types/content_model.py +33 -6
- usecortex_ai/types/delete_memory_request.py +14 -3
- usecortex_ai/types/delete_sources.py +20 -0
- usecortex_ai/types/delete_sub_tenant_data.py +42 -0
- usecortex_ai/types/delete_user_memory_response.py +31 -0
- usecortex_ai/types/embeddings_create_collection_data.py +19 -4
- usecortex_ai/types/embeddings_delete_data.py +19 -4
- usecortex_ai/types/embeddings_get_data.py +19 -4
- usecortex_ai/types/embeddings_search_data.py +19 -4
- usecortex_ai/types/error_response.py +0 -1
- usecortex_ai/types/fetch_content_data.py +19 -5
- usecortex_ai/types/file_upload_result.py +9 -2
- usecortex_ai/types/generate_user_memory_response.py +32 -0
- usecortex_ai/types/list_sources_response.py +14 -3
- usecortex_ai/types/list_user_memories_response.py +32 -0
- usecortex_ai/types/markdown_upload_request.py +23 -5
- usecortex_ai/types/processing_status.py +14 -3
- usecortex_ai/types/relations.py +9 -2
- usecortex_ai/types/retrieve_user_memory_response.py +32 -0
- usecortex_ai/types/search_chunk.py +54 -17
- usecortex_ai/types/single_upload_data.py +10 -2
- usecortex_ai/types/source.py +34 -15
- usecortex_ai/types/source_model.py +63 -14
- usecortex_ai/types/sub_tenant_ids_data.py +29 -5
- usecortex_ai/types/tenant_create_data.py +19 -4
- usecortex_ai/types/tenant_stats.py +24 -5
- usecortex_ai/types/user_memory.py +31 -0
- usecortex_ai/upload/client.py +486 -111
- usecortex_ai/upload/raw_client.py +458 -103
- usecortex_ai/user/client.py +30 -10
- usecortex_ai/user/raw_client.py +22 -6
- usecortex_ai/user_memory/client.py +200 -56
- usecortex_ai/user_memory/raw_client.py +921 -94
- {usecortex_ai-0.2.1.dist-info → usecortex_ai-0.3.0.dist-info}/METADATA +1 -1
- usecortex_ai-0.3.0.dist-info/RECORD +101 -0
- usecortex_ai/types/source_content.py +0 -26
- usecortex_ai-0.2.1.dist-info/RECORD +0 -91
- {usecortex_ai-0.2.1.dist-info → usecortex_ai-0.3.0.dist-info}/WHEEL +0 -0
- {usecortex_ai-0.2.1.dist-info → usecortex_ai-0.3.0.dist-info}/licenses/LICENSE +0 -0
- {usecortex_ai-0.2.1.dist-info → usecortex_ai-0.3.0.dist-info}/top_level.txt +0 -0
|
@@ -52,41 +52,60 @@ class RawSearchClient:
|
|
|
52
52
|
request_options: typing.Optional[RequestOptions] = None,
|
|
53
53
|
) -> HttpResponse[typing.Optional[typing.Any]]:
|
|
54
54
|
"""
|
|
55
|
+
Ask a question to your uploaded knowledge base and let Cortex AI answer it.
|
|
56
|
+
|
|
55
57
|
Parameters
|
|
56
58
|
----------
|
|
57
59
|
question : str
|
|
60
|
+
The question to be answered
|
|
58
61
|
|
|
59
62
|
session_id : str
|
|
63
|
+
Unique identifier for the conversation session. Keep it same when the current question refers to a previous answer or question
|
|
60
64
|
|
|
61
65
|
tenant_id : str
|
|
66
|
+
Identifier for the tenant/organization
|
|
62
67
|
|
|
63
68
|
context_list : typing.Optional[typing.Sequence[str]]
|
|
69
|
+
List of context strings to provide additional information
|
|
64
70
|
|
|
65
71
|
search_modes : typing.Optional[typing.Sequence[str]]
|
|
72
|
+
List of search modes to use for finding relevant information
|
|
66
73
|
|
|
67
74
|
sub_tenant_id : typing.Optional[str]
|
|
75
|
+
Identifier for sub-tenant within the tenant
|
|
68
76
|
|
|
69
77
|
highlight_chunks : typing.Optional[bool]
|
|
78
|
+
Whether to return text chunks in the response along with final LLM generated answer
|
|
70
79
|
|
|
71
80
|
stream : typing.Optional[bool]
|
|
81
|
+
Whether to stream the response
|
|
72
82
|
|
|
73
83
|
search_alpha : typing.Optional[float]
|
|
84
|
+
Closer to 0.0 means a exact keyword search will be performed, closer to 1.0 means semantics of the search will be considered. In most cases, you wont have to toggle it yourself.
|
|
74
85
|
|
|
75
86
|
recency_bias : typing.Optional[float]
|
|
87
|
+
Bias towards more recent information (0.0 to 1.0)
|
|
76
88
|
|
|
77
89
|
ai_generation : typing.Optional[bool]
|
|
90
|
+
Whether to use AI for generating responses
|
|
78
91
|
|
|
79
92
|
top_n : typing.Optional[int]
|
|
93
|
+
Number of top results to return
|
|
80
94
|
|
|
81
95
|
user_name : typing.Optional[str]
|
|
96
|
+
Name of the user making the request. This helps LLM to know the user's name if semantics around the username are involved in query. Its generally a good practice to include it possible.
|
|
82
97
|
|
|
83
98
|
user_instructions : typing.Optional[str]
|
|
99
|
+
Custom instructions for the AI response to add to our proprietary prompt. This can be used to provide additional context or instructions for the LLM to follow so that the answers are tailored towards your application style
|
|
84
100
|
|
|
85
101
|
multi_step_reasoning : typing.Optional[bool]
|
|
102
|
+
Enable advanced multi-step reasoning for complex queries. When enabled, the AI will automatically break down complex questions into multiple research steps to provide more comprehensive and accurate answers.
|
|
86
103
|
|
|
87
104
|
auto_agent_routing : typing.Optional[bool]
|
|
105
|
+
Enable intelligent agent routing to automatically select the most suitable AI agent for your specific query type. Different agents are optimized for various use cases like social media, code, conversations, general knowledge, etc.
|
|
88
106
|
|
|
89
107
|
metadata : typing.Optional[typing.Dict[str, typing.Optional[typing.Any]]]
|
|
108
|
+
Additional metadata for the request
|
|
90
109
|
|
|
91
110
|
request_options : typing.Optional[RequestOptions]
|
|
92
111
|
Request-specific configuration.
|
|
@@ -227,45 +246,37 @@ class RawSearchClient:
|
|
|
227
246
|
max_chunks: typing.Optional[int] = OMIT,
|
|
228
247
|
alpha: typing.Optional[Alpha] = OMIT,
|
|
229
248
|
recency_bias: typing.Optional[float] = OMIT,
|
|
230
|
-
|
|
249
|
+
personalise_search: typing.Optional[bool] = OMIT,
|
|
231
250
|
request_options: typing.Optional[RequestOptions] = None,
|
|
232
251
|
) -> HttpResponse[typing.List[SearchChunk]]:
|
|
233
252
|
"""
|
|
234
|
-
Search for content within indexed sources
|
|
235
|
-
|
|
236
|
-
This
|
|
237
|
-
|
|
238
|
-
with various parameters to control the number of results and search behavior.
|
|
239
|
-
|
|
240
|
-
Args:
|
|
241
|
-
request (SearchRequest): The search request containing:
|
|
242
|
-
- query (str): Search query string to find relevant content
|
|
243
|
-
- tenant_id (str, optional): Tenant identifier for multi-tenancy
|
|
244
|
-
- sub_tenant_id (str, optional): Sub-tenant identifier, defaults to tenant_id
|
|
245
|
-
- max_chunks (int, optional): Maximum number of content chunks to return
|
|
246
|
-
- alpha (Union[float, str], optional): Search algorithm parameter for result ranking (default: 0.8). Can be float-type (0.0-1.0) or 'auto' for dynamic selection
|
|
247
|
-
- recency_bias (float, optional): Bias towards more recent content (default: 0.5)
|
|
248
|
-
- num_related_chunks (int, optional): Number of related chunks to return (default: 0)
|
|
249
|
-
api_details (dict): Authentication details obtained from API key validation
|
|
250
|
-
|
|
251
|
-
Returns:
|
|
252
|
-
SearchData: Success response with search results
|
|
253
|
+
Search for relevant content within your indexed sources.
|
|
254
|
+
|
|
255
|
+
This API returns the chunks related to the query you make. We use neural (embedding) search to give you the most relevant chunks.
|
|
256
|
+
Results are ranked by relevance and can be customized with parameters like result limits and recency preferences.
|
|
253
257
|
|
|
254
258
|
Parameters
|
|
255
259
|
----------
|
|
256
260
|
query : str
|
|
261
|
+
Search terms to find relevant content
|
|
257
262
|
|
|
258
263
|
tenant_id : str
|
|
264
|
+
Unique identifier for the tenant/organization
|
|
259
265
|
|
|
260
266
|
sub_tenant_id : typing.Optional[str]
|
|
267
|
+
Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
|
|
261
268
|
|
|
262
269
|
max_chunks : typing.Optional[int]
|
|
270
|
+
Maximum number of results to return
|
|
263
271
|
|
|
264
272
|
alpha : typing.Optional[Alpha]
|
|
273
|
+
Search ranking algorithm parameter (0.0-1.0 or 'auto')
|
|
265
274
|
|
|
266
275
|
recency_bias : typing.Optional[float]
|
|
276
|
+
Preference for newer content (0.0 = no bias, 1.0 = strong recency preference)
|
|
267
277
|
|
|
268
|
-
|
|
278
|
+
personalise_search : typing.Optional[bool]
|
|
279
|
+
Enable personalized search results based on user preferences
|
|
269
280
|
|
|
270
281
|
request_options : typing.Optional[RequestOptions]
|
|
271
282
|
Request-specific configuration.
|
|
@@ -285,7 +296,7 @@ class RawSearchClient:
|
|
|
285
296
|
"max_chunks": max_chunks,
|
|
286
297
|
"alpha": convert_and_respect_annotation_metadata(object_=alpha, annotation=Alpha, direction="write"),
|
|
287
298
|
"recency_bias": recency_bias,
|
|
288
|
-
"
|
|
299
|
+
"personalise_search": personalise_search,
|
|
289
300
|
},
|
|
290
301
|
headers={
|
|
291
302
|
"content-type": "application/json",
|
|
@@ -396,36 +407,27 @@ class RawSearchClient:
|
|
|
396
407
|
request_options: typing.Optional[RequestOptions] = None,
|
|
397
408
|
) -> HttpResponse[typing.List[SearchChunk]]:
|
|
398
409
|
"""
|
|
399
|
-
|
|
400
|
-
Performs full text search with configurable operators for precise text matching against the Findr backend.
|
|
401
|
-
|
|
402
|
-
This endpoint performs a full text search query against the Findr backend, allowing users to retrieve
|
|
403
|
-
relevant content chunks from their indexed documents and sources using BM25-based text matching.
|
|
404
|
-
The search can be customized with various operators to control the matching behavior.
|
|
405
|
-
|
|
406
|
-
Args:
|
|
407
|
-
request (FullTextSearchRequest): The full text search request containing:
|
|
408
|
-
- query (str): Search query string to find relevant content
|
|
409
|
-
- tenant_id (str): Tenant identifier for multi-tenancy
|
|
410
|
-
- sub_tenant_id (str, optional): Sub-tenant identifier, defaults to tenant_id
|
|
411
|
-
- operator (BM25OperatorType, optional): Full text search operator type (OR or AND). Defaults to OR
|
|
412
|
-
- max_chunks (int, optional): Maximum number of content chunks to return (1-1001, defaults to 25)
|
|
413
|
-
api_details (dict): Authentication details obtained from API key validation
|
|
410
|
+
Perform full text search for exact matches within your indexed sources.
|
|
414
411
|
|
|
415
|
-
|
|
416
|
-
|
|
412
|
+
Use this endpoint to find content chunks using BM25-based text matching with configurable operators.
|
|
413
|
+
Choose between 'OR' and 'AND' operators to control how search terms are combined for precise text matching.
|
|
417
414
|
|
|
418
415
|
Parameters
|
|
419
416
|
----------
|
|
420
417
|
query : str
|
|
418
|
+
Search terms to find in your content
|
|
421
419
|
|
|
422
420
|
tenant_id : str
|
|
421
|
+
Unique identifier for the tenant/organization
|
|
423
422
|
|
|
424
423
|
sub_tenant_id : typing.Optional[str]
|
|
424
|
+
Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
|
|
425
425
|
|
|
426
426
|
operator : typing.Optional[Bm25OperatorType]
|
|
427
|
+
How to combine search terms (OR or AND)
|
|
427
428
|
|
|
428
429
|
max_chunks : typing.Optional[int]
|
|
430
|
+
Maximum number of results to return
|
|
429
431
|
|
|
430
432
|
request_options : typing.Optional[RequestOptions]
|
|
431
433
|
Request-specific configuration.
|
|
@@ -571,41 +573,60 @@ class AsyncRawSearchClient:
|
|
|
571
573
|
request_options: typing.Optional[RequestOptions] = None,
|
|
572
574
|
) -> AsyncHttpResponse[typing.Optional[typing.Any]]:
|
|
573
575
|
"""
|
|
576
|
+
Ask a question to your uploaded knowledge base and let Cortex AI answer it.
|
|
577
|
+
|
|
574
578
|
Parameters
|
|
575
579
|
----------
|
|
576
580
|
question : str
|
|
581
|
+
The question to be answered
|
|
577
582
|
|
|
578
583
|
session_id : str
|
|
584
|
+
Unique identifier for the conversation session. Keep it same when the current question refers to a previous answer or question
|
|
579
585
|
|
|
580
586
|
tenant_id : str
|
|
587
|
+
Identifier for the tenant/organization
|
|
581
588
|
|
|
582
589
|
context_list : typing.Optional[typing.Sequence[str]]
|
|
590
|
+
List of context strings to provide additional information
|
|
583
591
|
|
|
584
592
|
search_modes : typing.Optional[typing.Sequence[str]]
|
|
593
|
+
List of search modes to use for finding relevant information
|
|
585
594
|
|
|
586
595
|
sub_tenant_id : typing.Optional[str]
|
|
596
|
+
Identifier for sub-tenant within the tenant
|
|
587
597
|
|
|
588
598
|
highlight_chunks : typing.Optional[bool]
|
|
599
|
+
Whether to return text chunks in the response along with final LLM generated answer
|
|
589
600
|
|
|
590
601
|
stream : typing.Optional[bool]
|
|
602
|
+
Whether to stream the response
|
|
591
603
|
|
|
592
604
|
search_alpha : typing.Optional[float]
|
|
605
|
+
Closer to 0.0 means a exact keyword search will be performed, closer to 1.0 means semantics of the search will be considered. In most cases, you wont have to toggle it yourself.
|
|
593
606
|
|
|
594
607
|
recency_bias : typing.Optional[float]
|
|
608
|
+
Bias towards more recent information (0.0 to 1.0)
|
|
595
609
|
|
|
596
610
|
ai_generation : typing.Optional[bool]
|
|
611
|
+
Whether to use AI for generating responses
|
|
597
612
|
|
|
598
613
|
top_n : typing.Optional[int]
|
|
614
|
+
Number of top results to return
|
|
599
615
|
|
|
600
616
|
user_name : typing.Optional[str]
|
|
617
|
+
Name of the user making the request. This helps LLM to know the user's name if semantics around the username are involved in query. Its generally a good practice to include it possible.
|
|
601
618
|
|
|
602
619
|
user_instructions : typing.Optional[str]
|
|
620
|
+
Custom instructions for the AI response to add to our proprietary prompt. This can be used to provide additional context or instructions for the LLM to follow so that the answers are tailored towards your application style
|
|
603
621
|
|
|
604
622
|
multi_step_reasoning : typing.Optional[bool]
|
|
623
|
+
Enable advanced multi-step reasoning for complex queries. When enabled, the AI will automatically break down complex questions into multiple research steps to provide more comprehensive and accurate answers.
|
|
605
624
|
|
|
606
625
|
auto_agent_routing : typing.Optional[bool]
|
|
626
|
+
Enable intelligent agent routing to automatically select the most suitable AI agent for your specific query type. Different agents are optimized for various use cases like social media, code, conversations, general knowledge, etc.
|
|
607
627
|
|
|
608
628
|
metadata : typing.Optional[typing.Dict[str, typing.Optional[typing.Any]]]
|
|
629
|
+
Additional metadata for the request
|
|
609
630
|
|
|
610
631
|
request_options : typing.Optional[RequestOptions]
|
|
611
632
|
Request-specific configuration.
|
|
@@ -746,45 +767,37 @@ class AsyncRawSearchClient:
|
|
|
746
767
|
max_chunks: typing.Optional[int] = OMIT,
|
|
747
768
|
alpha: typing.Optional[Alpha] = OMIT,
|
|
748
769
|
recency_bias: typing.Optional[float] = OMIT,
|
|
749
|
-
|
|
770
|
+
personalise_search: typing.Optional[bool] = OMIT,
|
|
750
771
|
request_options: typing.Optional[RequestOptions] = None,
|
|
751
772
|
) -> AsyncHttpResponse[typing.List[SearchChunk]]:
|
|
752
773
|
"""
|
|
753
|
-
Search for content within indexed sources
|
|
754
|
-
|
|
755
|
-
This
|
|
756
|
-
|
|
757
|
-
with various parameters to control the number of results and search behavior.
|
|
758
|
-
|
|
759
|
-
Args:
|
|
760
|
-
request (SearchRequest): The search request containing:
|
|
761
|
-
- query (str): Search query string to find relevant content
|
|
762
|
-
- tenant_id (str, optional): Tenant identifier for multi-tenancy
|
|
763
|
-
- sub_tenant_id (str, optional): Sub-tenant identifier, defaults to tenant_id
|
|
764
|
-
- max_chunks (int, optional): Maximum number of content chunks to return
|
|
765
|
-
- alpha (Union[float, str], optional): Search algorithm parameter for result ranking (default: 0.8). Can be float-type (0.0-1.0) or 'auto' for dynamic selection
|
|
766
|
-
- recency_bias (float, optional): Bias towards more recent content (default: 0.5)
|
|
767
|
-
- num_related_chunks (int, optional): Number of related chunks to return (default: 0)
|
|
768
|
-
api_details (dict): Authentication details obtained from API key validation
|
|
769
|
-
|
|
770
|
-
Returns:
|
|
771
|
-
SearchData: Success response with search results
|
|
774
|
+
Search for relevant content within your indexed sources.
|
|
775
|
+
|
|
776
|
+
This API returns the chunks related to the query you make. We use neural (embedding) search to give you the most relevant chunks.
|
|
777
|
+
Results are ranked by relevance and can be customized with parameters like result limits and recency preferences.
|
|
772
778
|
|
|
773
779
|
Parameters
|
|
774
780
|
----------
|
|
775
781
|
query : str
|
|
782
|
+
Search terms to find relevant content
|
|
776
783
|
|
|
777
784
|
tenant_id : str
|
|
785
|
+
Unique identifier for the tenant/organization
|
|
778
786
|
|
|
779
787
|
sub_tenant_id : typing.Optional[str]
|
|
788
|
+
Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
|
|
780
789
|
|
|
781
790
|
max_chunks : typing.Optional[int]
|
|
791
|
+
Maximum number of results to return
|
|
782
792
|
|
|
783
793
|
alpha : typing.Optional[Alpha]
|
|
794
|
+
Search ranking algorithm parameter (0.0-1.0 or 'auto')
|
|
784
795
|
|
|
785
796
|
recency_bias : typing.Optional[float]
|
|
797
|
+
Preference for newer content (0.0 = no bias, 1.0 = strong recency preference)
|
|
786
798
|
|
|
787
|
-
|
|
799
|
+
personalise_search : typing.Optional[bool]
|
|
800
|
+
Enable personalized search results based on user preferences
|
|
788
801
|
|
|
789
802
|
request_options : typing.Optional[RequestOptions]
|
|
790
803
|
Request-specific configuration.
|
|
@@ -804,7 +817,7 @@ class AsyncRawSearchClient:
|
|
|
804
817
|
"max_chunks": max_chunks,
|
|
805
818
|
"alpha": convert_and_respect_annotation_metadata(object_=alpha, annotation=Alpha, direction="write"),
|
|
806
819
|
"recency_bias": recency_bias,
|
|
807
|
-
"
|
|
820
|
+
"personalise_search": personalise_search,
|
|
808
821
|
},
|
|
809
822
|
headers={
|
|
810
823
|
"content-type": "application/json",
|
|
@@ -915,36 +928,27 @@ class AsyncRawSearchClient:
|
|
|
915
928
|
request_options: typing.Optional[RequestOptions] = None,
|
|
916
929
|
) -> AsyncHttpResponse[typing.List[SearchChunk]]:
|
|
917
930
|
"""
|
|
918
|
-
|
|
919
|
-
Performs full text search with configurable operators for precise text matching against the Findr backend.
|
|
920
|
-
|
|
921
|
-
This endpoint performs a full text search query against the Findr backend, allowing users to retrieve
|
|
922
|
-
relevant content chunks from their indexed documents and sources using BM25-based text matching.
|
|
923
|
-
The search can be customized with various operators to control the matching behavior.
|
|
924
|
-
|
|
925
|
-
Args:
|
|
926
|
-
request (FullTextSearchRequest): The full text search request containing:
|
|
927
|
-
- query (str): Search query string to find relevant content
|
|
928
|
-
- tenant_id (str): Tenant identifier for multi-tenancy
|
|
929
|
-
- sub_tenant_id (str, optional): Sub-tenant identifier, defaults to tenant_id
|
|
930
|
-
- operator (BM25OperatorType, optional): Full text search operator type (OR or AND). Defaults to OR
|
|
931
|
-
- max_chunks (int, optional): Maximum number of content chunks to return (1-1001, defaults to 25)
|
|
932
|
-
api_details (dict): Authentication details obtained from API key validation
|
|
931
|
+
Perform full text search for exact matches within your indexed sources.
|
|
933
932
|
|
|
934
|
-
|
|
935
|
-
|
|
933
|
+
Use this endpoint to find content chunks using BM25-based text matching with configurable operators.
|
|
934
|
+
Choose between 'OR' and 'AND' operators to control how search terms are combined for precise text matching.
|
|
936
935
|
|
|
937
936
|
Parameters
|
|
938
937
|
----------
|
|
939
938
|
query : str
|
|
939
|
+
Search terms to find in your content
|
|
940
940
|
|
|
941
941
|
tenant_id : str
|
|
942
|
+
Unique identifier for the tenant/organization
|
|
942
943
|
|
|
943
944
|
sub_tenant_id : typing.Optional[str]
|
|
945
|
+
Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
|
|
944
946
|
|
|
945
947
|
operator : typing.Optional[Bm25OperatorType]
|
|
948
|
+
How to combine search terms (OR or AND)
|
|
946
949
|
|
|
947
950
|
max_chunks : typing.Optional[int]
|
|
951
|
+
Maximum number of results to return
|
|
948
952
|
|
|
949
953
|
request_options : typing.Optional[RequestOptions]
|
|
950
954
|
Request-specific configuration.
|
usecortex_ai/sources/client.py
CHANGED
|
@@ -5,7 +5,6 @@ import typing
|
|
|
5
5
|
from ..core.client_wrapper import AsyncClientWrapper, SyncClientWrapper
|
|
6
6
|
from ..core.request_options import RequestOptions
|
|
7
7
|
from ..types.list_sources_response import ListSourcesResponse
|
|
8
|
-
from ..types.sub_tenant_ids_data import SubTenantIdsData
|
|
9
8
|
from .raw_client import AsyncRawSourcesClient, RawSourcesClient
|
|
10
9
|
|
|
11
10
|
# this is used as the default value for optional parameters
|
|
@@ -31,49 +30,27 @@ class SourcesClient:
|
|
|
31
30
|
self,
|
|
32
31
|
*,
|
|
33
32
|
tenant_id: str,
|
|
34
|
-
|
|
33
|
+
source_ids: typing.Sequence[str],
|
|
34
|
+
sub_tenant_id: typing.Optional[str] = OMIT,
|
|
35
35
|
request_options: typing.Optional[RequestOptions] = None,
|
|
36
36
|
) -> ListSourcesResponse:
|
|
37
37
|
"""
|
|
38
|
-
|
|
39
|
-
----------
|
|
40
|
-
tenant_id : str
|
|
38
|
+
Retrieve specific sources by their IDs.
|
|
41
39
|
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
request_options : typing.Optional[RequestOptions]
|
|
45
|
-
Request-specific configuration.
|
|
46
|
-
|
|
47
|
-
Returns
|
|
48
|
-
-------
|
|
49
|
-
ListSourcesResponse
|
|
50
|
-
Successful Response
|
|
51
|
-
|
|
52
|
-
Examples
|
|
53
|
-
--------
|
|
54
|
-
from usecortex-ai import CortexAI
|
|
40
|
+
Use this endpoint to fetch one or more sources by providing their unique identifiers. This is useful when you need detailed information about specific documents or content you've previously uploaded.
|
|
55
41
|
|
|
56
|
-
|
|
57
|
-
client.sources.get_all(tenant_id='tenant_id', )
|
|
58
|
-
"""
|
|
59
|
-
_response = self._raw_client.get_all(
|
|
60
|
-
tenant_id=tenant_id, sub_tenant_id=sub_tenant_id, request_options=request_options
|
|
61
|
-
)
|
|
62
|
-
return _response.data
|
|
42
|
+
Provide the source IDs in the request body along with your tenant information to get the exact sources you need.
|
|
63
43
|
|
|
64
|
-
def get_by_ids(
|
|
65
|
-
self,
|
|
66
|
-
*,
|
|
67
|
-
tenant_id: str,
|
|
68
|
-
source_ids: typing.Sequence[str],
|
|
69
|
-
request_options: typing.Optional[RequestOptions] = None,
|
|
70
|
-
) -> ListSourcesResponse:
|
|
71
|
-
"""
|
|
72
44
|
Parameters
|
|
73
45
|
----------
|
|
74
46
|
tenant_id : str
|
|
47
|
+
Unique identifier for the tenant/organization
|
|
75
48
|
|
|
76
49
|
source_ids : typing.Sequence[str]
|
|
50
|
+
List of source IDs to fetch
|
|
51
|
+
|
|
52
|
+
sub_tenant_id : typing.Optional[str]
|
|
53
|
+
Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
|
|
77
54
|
|
|
78
55
|
request_options : typing.Optional[RequestOptions]
|
|
79
56
|
Request-specific configuration.
|
|
@@ -88,52 +65,13 @@ class SourcesClient:
|
|
|
88
65
|
from usecortex-ai import CortexAI
|
|
89
66
|
|
|
90
67
|
client = CortexAI(token="YOUR_TOKEN", )
|
|
91
|
-
client.sources.
|
|
68
|
+
client.sources.get_all(tenant_id='tenant_1234', source_ids=['CortexDoc1234', 'CortexDoc4567'], )
|
|
92
69
|
"""
|
|
93
|
-
_response = self._raw_client.
|
|
94
|
-
tenant_id=tenant_id, source_ids=source_ids, request_options=request_options
|
|
70
|
+
_response = self._raw_client.get_all(
|
|
71
|
+
tenant_id=tenant_id, source_ids=source_ids, sub_tenant_id=sub_tenant_id, request_options=request_options
|
|
95
72
|
)
|
|
96
73
|
return _response.data
|
|
97
74
|
|
|
98
|
-
def get_sub_tenant_ids(
|
|
99
|
-
self, *, tenant_id: str, request_options: typing.Optional[RequestOptions] = None
|
|
100
|
-
) -> SubTenantIdsData:
|
|
101
|
-
"""
|
|
102
|
-
Get all sub-tenant IDs (tenant IDs) contained within a specific Weaviate collection.
|
|
103
|
-
Fetches the tenant IDs directly from Weaviate using default cluster credentials.
|
|
104
|
-
|
|
105
|
-
Args:
|
|
106
|
-
tenant_id: The tenant ID to fetch sub-tenant IDs for
|
|
107
|
-
api_details: Authentication dependency
|
|
108
|
-
|
|
109
|
-
Returns:
|
|
110
|
-
SubTenantIdsData: Contains collection_name, sub_tenant_ids list, count, and success message
|
|
111
|
-
|
|
112
|
-
Example:
|
|
113
|
-
GET /list/sub_tenant_ids?tenant_id=my_tenant_123
|
|
114
|
-
|
|
115
|
-
Parameters
|
|
116
|
-
----------
|
|
117
|
-
tenant_id : str
|
|
118
|
-
|
|
119
|
-
request_options : typing.Optional[RequestOptions]
|
|
120
|
-
Request-specific configuration.
|
|
121
|
-
|
|
122
|
-
Returns
|
|
123
|
-
-------
|
|
124
|
-
SubTenantIdsData
|
|
125
|
-
Successful Response
|
|
126
|
-
|
|
127
|
-
Examples
|
|
128
|
-
--------
|
|
129
|
-
from usecortex-ai import CortexAI
|
|
130
|
-
|
|
131
|
-
client = CortexAI(token="YOUR_TOKEN", )
|
|
132
|
-
client.sources.get_sub_tenant_ids(tenant_id='tenant_id', )
|
|
133
|
-
"""
|
|
134
|
-
_response = self._raw_client.get_sub_tenant_ids(tenant_id=tenant_id, request_options=request_options)
|
|
135
|
-
return _response.data
|
|
136
|
-
|
|
137
75
|
|
|
138
76
|
class AsyncSourcesClient:
|
|
139
77
|
def __init__(self, *, client_wrapper: AsyncClientWrapper):
|
|
@@ -154,53 +92,27 @@ class AsyncSourcesClient:
|
|
|
154
92
|
self,
|
|
155
93
|
*,
|
|
156
94
|
tenant_id: str,
|
|
157
|
-
|
|
95
|
+
source_ids: typing.Sequence[str],
|
|
96
|
+
sub_tenant_id: typing.Optional[str] = OMIT,
|
|
158
97
|
request_options: typing.Optional[RequestOptions] = None,
|
|
159
98
|
) -> ListSourcesResponse:
|
|
160
99
|
"""
|
|
161
|
-
|
|
162
|
-
----------
|
|
163
|
-
tenant_id : str
|
|
100
|
+
Retrieve specific sources by their IDs.
|
|
164
101
|
|
|
165
|
-
|
|
166
|
-
|
|
167
|
-
request_options : typing.Optional[RequestOptions]
|
|
168
|
-
Request-specific configuration.
|
|
169
|
-
|
|
170
|
-
Returns
|
|
171
|
-
-------
|
|
172
|
-
ListSourcesResponse
|
|
173
|
-
Successful Response
|
|
174
|
-
|
|
175
|
-
Examples
|
|
176
|
-
--------
|
|
177
|
-
import asyncio
|
|
178
|
-
|
|
179
|
-
from usecortex-ai import AsyncCortexAI
|
|
102
|
+
Use this endpoint to fetch one or more sources by providing their unique identifiers. This is useful when you need detailed information about specific documents or content you've previously uploaded.
|
|
180
103
|
|
|
181
|
-
|
|
182
|
-
async def main() -> None:
|
|
183
|
-
await client.sources.get_all(tenant_id='tenant_id', )
|
|
184
|
-
asyncio.run(main())
|
|
185
|
-
"""
|
|
186
|
-
_response = await self._raw_client.get_all(
|
|
187
|
-
tenant_id=tenant_id, sub_tenant_id=sub_tenant_id, request_options=request_options
|
|
188
|
-
)
|
|
189
|
-
return _response.data
|
|
104
|
+
Provide the source IDs in the request body along with your tenant information to get the exact sources you need.
|
|
190
105
|
|
|
191
|
-
async def get_by_ids(
|
|
192
|
-
self,
|
|
193
|
-
*,
|
|
194
|
-
tenant_id: str,
|
|
195
|
-
source_ids: typing.Sequence[str],
|
|
196
|
-
request_options: typing.Optional[RequestOptions] = None,
|
|
197
|
-
) -> ListSourcesResponse:
|
|
198
|
-
"""
|
|
199
106
|
Parameters
|
|
200
107
|
----------
|
|
201
108
|
tenant_id : str
|
|
109
|
+
Unique identifier for the tenant/organization
|
|
202
110
|
|
|
203
111
|
source_ids : typing.Sequence[str]
|
|
112
|
+
List of source IDs to fetch
|
|
113
|
+
|
|
114
|
+
sub_tenant_id : typing.Optional[str]
|
|
115
|
+
Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
|
|
204
116
|
|
|
205
117
|
request_options : typing.Optional[RequestOptions]
|
|
206
118
|
Request-specific configuration.
|
|
@@ -218,53 +130,10 @@ class AsyncSourcesClient:
|
|
|
218
130
|
|
|
219
131
|
client = AsyncCortexAI(token="YOUR_TOKEN", )
|
|
220
132
|
async def main() -> None:
|
|
221
|
-
await client.sources.
|
|
133
|
+
await client.sources.get_all(tenant_id='tenant_1234', source_ids=['CortexDoc1234', 'CortexDoc4567'], )
|
|
222
134
|
asyncio.run(main())
|
|
223
135
|
"""
|
|
224
|
-
_response = await self._raw_client.
|
|
225
|
-
tenant_id=tenant_id, source_ids=source_ids, request_options=request_options
|
|
136
|
+
_response = await self._raw_client.get_all(
|
|
137
|
+
tenant_id=tenant_id, source_ids=source_ids, sub_tenant_id=sub_tenant_id, request_options=request_options
|
|
226
138
|
)
|
|
227
139
|
return _response.data
|
|
228
|
-
|
|
229
|
-
async def get_sub_tenant_ids(
|
|
230
|
-
self, *, tenant_id: str, request_options: typing.Optional[RequestOptions] = None
|
|
231
|
-
) -> SubTenantIdsData:
|
|
232
|
-
"""
|
|
233
|
-
Get all sub-tenant IDs (tenant IDs) contained within a specific Weaviate collection.
|
|
234
|
-
Fetches the tenant IDs directly from Weaviate using default cluster credentials.
|
|
235
|
-
|
|
236
|
-
Args:
|
|
237
|
-
tenant_id: The tenant ID to fetch sub-tenant IDs for
|
|
238
|
-
api_details: Authentication dependency
|
|
239
|
-
|
|
240
|
-
Returns:
|
|
241
|
-
SubTenantIdsData: Contains collection_name, sub_tenant_ids list, count, and success message
|
|
242
|
-
|
|
243
|
-
Example:
|
|
244
|
-
GET /list/sub_tenant_ids?tenant_id=my_tenant_123
|
|
245
|
-
|
|
246
|
-
Parameters
|
|
247
|
-
----------
|
|
248
|
-
tenant_id : str
|
|
249
|
-
|
|
250
|
-
request_options : typing.Optional[RequestOptions]
|
|
251
|
-
Request-specific configuration.
|
|
252
|
-
|
|
253
|
-
Returns
|
|
254
|
-
-------
|
|
255
|
-
SubTenantIdsData
|
|
256
|
-
Successful Response
|
|
257
|
-
|
|
258
|
-
Examples
|
|
259
|
-
--------
|
|
260
|
-
import asyncio
|
|
261
|
-
|
|
262
|
-
from usecortex-ai import AsyncCortexAI
|
|
263
|
-
|
|
264
|
-
client = AsyncCortexAI(token="YOUR_TOKEN", )
|
|
265
|
-
async def main() -> None:
|
|
266
|
-
await client.sources.get_sub_tenant_ids(tenant_id='tenant_id', )
|
|
267
|
-
asyncio.run(main())
|
|
268
|
-
"""
|
|
269
|
-
_response = await self._raw_client.get_sub_tenant_ids(tenant_id=tenant_id, request_options=request_options)
|
|
270
|
-
return _response.data
|