usecortex-ai 0.2.1__py3-none-any.whl → 0.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. usecortex_ai/__init__.py +18 -3
  2. usecortex_ai/client.py +3 -0
  3. usecortex_ai/document/__init__.py +4 -0
  4. usecortex_ai/document/client.py +139 -0
  5. usecortex_ai/document/raw_client.py +312 -0
  6. usecortex_ai/embeddings/client.py +48 -78
  7. usecortex_ai/embeddings/raw_client.py +44 -74
  8. usecortex_ai/fetch/client.py +2 -2
  9. usecortex_ai/search/client.py +88 -84
  10. usecortex_ai/search/raw_client.py +82 -78
  11. usecortex_ai/sources/client.py +26 -157
  12. usecortex_ai/sources/raw_client.py +22 -501
  13. usecortex_ai/tenant/client.py +154 -6
  14. usecortex_ai/tenant/raw_client.py +502 -4
  15. usecortex_ai/types/__init__.py +16 -2
  16. usecortex_ai/types/add_user_memory_response.py +36 -0
  17. usecortex_ai/types/app_sources_upload_data.py +10 -2
  18. usecortex_ai/types/attachment_model.py +34 -7
  19. usecortex_ai/types/batch_upload_data.py +10 -2
  20. usecortex_ai/types/body_scrape_webpage_upload_scrape_webpage_post.py +0 -2
  21. usecortex_ai/types/body_update_scrape_job_upload_update_webpage_patch.py +0 -2
  22. usecortex_ai/types/content_model.py +33 -6
  23. usecortex_ai/types/delete_memory_request.py +14 -3
  24. usecortex_ai/types/delete_sources.py +20 -0
  25. usecortex_ai/types/delete_sub_tenant_data.py +42 -0
  26. usecortex_ai/types/delete_user_memory_response.py +31 -0
  27. usecortex_ai/types/embeddings_create_collection_data.py +19 -4
  28. usecortex_ai/types/embeddings_delete_data.py +19 -4
  29. usecortex_ai/types/embeddings_get_data.py +19 -4
  30. usecortex_ai/types/embeddings_search_data.py +19 -4
  31. usecortex_ai/types/error_response.py +0 -1
  32. usecortex_ai/types/fetch_content_data.py +19 -5
  33. usecortex_ai/types/file_upload_result.py +9 -2
  34. usecortex_ai/types/generate_user_memory_response.py +32 -0
  35. usecortex_ai/types/list_sources_response.py +14 -3
  36. usecortex_ai/types/list_user_memories_response.py +32 -0
  37. usecortex_ai/types/markdown_upload_request.py +23 -5
  38. usecortex_ai/types/processing_status.py +14 -3
  39. usecortex_ai/types/relations.py +9 -2
  40. usecortex_ai/types/retrieve_user_memory_response.py +32 -0
  41. usecortex_ai/types/search_chunk.py +54 -17
  42. usecortex_ai/types/single_upload_data.py +10 -2
  43. usecortex_ai/types/source.py +34 -15
  44. usecortex_ai/types/source_model.py +63 -14
  45. usecortex_ai/types/sub_tenant_ids_data.py +29 -5
  46. usecortex_ai/types/tenant_create_data.py +19 -4
  47. usecortex_ai/types/tenant_stats.py +24 -5
  48. usecortex_ai/types/user_memory.py +31 -0
  49. usecortex_ai/upload/client.py +486 -111
  50. usecortex_ai/upload/raw_client.py +458 -103
  51. usecortex_ai/user/client.py +30 -10
  52. usecortex_ai/user/raw_client.py +22 -6
  53. usecortex_ai/user_memory/client.py +200 -56
  54. usecortex_ai/user_memory/raw_client.py +921 -94
  55. {usecortex_ai-0.2.1.dist-info → usecortex_ai-0.3.0.dist-info}/METADATA +1 -1
  56. usecortex_ai-0.3.0.dist-info/RECORD +101 -0
  57. usecortex_ai/types/source_content.py +0 -26
  58. usecortex_ai-0.2.1.dist-info/RECORD +0 -91
  59. {usecortex_ai-0.2.1.dist-info → usecortex_ai-0.3.0.dist-info}/WHEEL +0 -0
  60. {usecortex_ai-0.2.1.dist-info → usecortex_ai-0.3.0.dist-info}/licenses/LICENSE +0 -0
  61. {usecortex_ai-0.2.1.dist-info → usecortex_ai-0.3.0.dist-info}/top_level.txt +0 -0
@@ -38,28 +38,20 @@ class EmbeddingsClient:
38
38
  request_options: typing.Optional[RequestOptions] = None,
39
39
  ) -> EmbeddingsDeleteData:
40
40
  """
41
- Delete specific embedding chunks from indexed sources.
41
+ Delete embedding chunks by chunk ID.
42
42
 
43
- This endpoint deletes specified embedding chunks from the Findr backend by sending
44
- chunk IDs to the backend delete service.
45
-
46
- Args:
47
- request (EmbeddingsDeleteRequest): The delete request containing:
48
- - chunk_ids (List[str]): List of chunk IDs to delete
49
- - tenant_id (str): Tenant identifier for multi-tenancy
50
- - sub_tenant_id (str, optional): Sub-tenant identifier, defaults to tenant_id
51
- api_details (dict): Authentication details obtained from API key validation
52
-
53
- Returns:
54
- EmbeddingsDeleteData: Success response with deletion details
43
+ Use this to remove specific chunks from your embeddings index when they are no longer valid or should not appear in results.
55
44
 
56
45
  Parameters
57
46
  ----------
58
47
  chunk_ids : typing.Sequence[str]
48
+ The chunk IDs of the source you want to delete
59
49
 
60
50
  tenant_id : str
51
+ Unique identifier for the tenant/organization
61
52
 
62
53
  sub_tenant_id : typing.Optional[str]
54
+ Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
63
55
 
64
56
  request_options : typing.Optional[RequestOptions]
65
57
  Request-specific configuration.
@@ -74,7 +66,7 @@ class EmbeddingsClient:
74
66
  from usecortex-ai import CortexAI
75
67
 
76
68
  client = CortexAI(token="YOUR_TOKEN", )
77
- client.embeddings.delete(chunk_ids=['chunk_ids'], tenant_id='tenant_id', )
69
+ client.embeddings.delete(chunk_ids=['CortexEmbeddings123_0', 'CortexEmbeddings123_1'], tenant_id='tenant_1234', )
78
70
  """
79
71
  _response = self._raw_client.delete(
80
72
  chunk_ids=chunk_ids, tenant_id=tenant_id, sub_tenant_id=sub_tenant_id, request_options=request_options
@@ -91,29 +83,24 @@ class EmbeddingsClient:
91
83
  request_options: typing.Optional[RequestOptions] = None,
92
84
  ) -> EmbeddingsSearchData:
93
85
  """
94
- Search for similar embedding chunks using vector similarity.
86
+ Find similar chunks using an embedding vector.
95
87
 
96
- This endpoint performs semantic search by sending an embedding vector to the Findr backend
97
- and returns a list of the most similar chunk IDs based on vector similarity.
88
+ Use this to retrieve the most similar chunk IDs to a single query embedding.
98
89
 
99
- Args:
100
- request (EmbeddingsSearchRequest): The search request containing:
101
- - embeddings (List[float]): Single embedding vector for similarity search
102
- - tenant_id (str): Tenant identifier for multi-tenancy
103
- - sub_tenant_id (str, optional): Sub-tenant identifier, defaults to tenant_id
104
- - max_chunks (int, optional): Maximum number of chunk IDs to return (default: 10)
105
- api_details (dict): Authentication details obtained from API key validation
106
90
 
107
- Returns:
108
- EmbeddingsSearchData: List of chunk IDs with similarity scores
91
+ Expected outcome
92
+ - You receive the closest chunk IDs with optional similarity scores.
109
93
 
110
94
  Parameters
111
95
  ----------
112
96
  tenant_id : str
97
+ Unique identifier for the tenant/organization
113
98
 
114
99
  embeddings : typing.Optional[typing.Sequence[float]]
100
+ The embedding vector for search
115
101
 
116
102
  sub_tenant_id : typing.Optional[str]
103
+ Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
117
104
 
118
105
  max_chunks : typing.Optional[int]
119
106
 
@@ -130,7 +117,7 @@ class EmbeddingsClient:
130
117
  from usecortex-ai import CortexAI
131
118
 
132
119
  client = CortexAI(token="YOUR_TOKEN", )
133
- client.embeddings.search(tenant_id='tenant_id', )
120
+ client.embeddings.search(tenant_id='tenant_1234', )
134
121
  """
135
122
  _response = self._raw_client.search(
136
123
  tenant_id=tenant_id,
@@ -150,20 +137,20 @@ class EmbeddingsClient:
150
137
  request_options: typing.Optional[RequestOptions] = None,
151
138
  ) -> EmbeddingsGetData:
152
139
  """
153
- Get embeddings based on chunk IDs.
140
+ Retrieve embeddings for specific chunk IDs.
154
141
 
155
- This endpoint returns embeddings for a list of chunk IDs.
156
-
157
- Returns:
158
- EmbeddingsGetData: Embeddings data for the requested chunk IDs
142
+ Use this when you already know the chunk IDs and need their corresponding embeddings.
159
143
 
160
144
  Parameters
161
145
  ----------
162
146
  chunk_ids : typing.Sequence[str]
147
+ The chunk IDs of the source you want to get embeddings for
163
148
 
164
149
  tenant_id : str
150
+ Unique identifier for the tenant/organization
165
151
 
166
152
  sub_tenant_id : typing.Optional[str]
153
+ Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
167
154
 
168
155
  request_options : typing.Optional[RequestOptions]
169
156
  Request-specific configuration.
@@ -178,7 +165,7 @@ class EmbeddingsClient:
178
165
  from usecortex-ai import CortexAI
179
166
 
180
167
  client = CortexAI(token="YOUR_TOKEN", )
181
- client.embeddings.get_by_chunk_ids(chunk_ids=['chunk_ids'], tenant_id='tenant_id', )
168
+ client.embeddings.get_by_chunk_ids(chunk_ids=['CortexEmbeddings123_0', 'CortexEmbeddings123_1'], tenant_id='tenant_1234', )
182
169
  """
183
170
  _response = self._raw_client.get_by_chunk_ids(
184
171
  chunk_ids=chunk_ids, tenant_id=tenant_id, sub_tenant_id=sub_tenant_id, request_options=request_options
@@ -189,16 +176,14 @@ class EmbeddingsClient:
189
176
  self, *, tenant_id: str, request_options: typing.Optional[RequestOptions] = None
190
177
  ) -> EmbeddingsCreateCollectionData:
191
178
  """
192
- Create an embeddings collection for the given tenant in Findr.
193
-
194
- sub_tenant_id is set to be the same as tenant_id as per requirements.
179
+ Create an embeddings collection for a tenant.
195
180
 
196
- Returns:
197
- EmbeddingsCreateCollectionData: Success response with collection details
181
+ Use this to initialize storage so you can index and query embeddings for the tenant.
198
182
 
199
183
  Parameters
200
184
  ----------
201
185
  tenant_id : str
186
+ Unique identifier for the tenant/organization
202
187
 
203
188
  request_options : typing.Optional[RequestOptions]
204
189
  Request-specific configuration.
@@ -213,7 +198,7 @@ class EmbeddingsClient:
213
198
  from usecortex-ai import CortexAI
214
199
 
215
200
  client = CortexAI(token="YOUR_TOKEN", )
216
- client.embeddings.create_collection(tenant_id='tenant_id', )
201
+ client.embeddings.create_collection(tenant_id='tenant_1234', )
217
202
  """
218
203
  _response = self._raw_client.create_collection(tenant_id=tenant_id, request_options=request_options)
219
204
  return _response.data
@@ -243,28 +228,20 @@ class AsyncEmbeddingsClient:
243
228
  request_options: typing.Optional[RequestOptions] = None,
244
229
  ) -> EmbeddingsDeleteData:
245
230
  """
246
- Delete specific embedding chunks from indexed sources.
231
+ Delete embedding chunks by chunk ID.
247
232
 
248
- This endpoint deletes specified embedding chunks from the Findr backend by sending
249
- chunk IDs to the backend delete service.
250
-
251
- Args:
252
- request (EmbeddingsDeleteRequest): The delete request containing:
253
- - chunk_ids (List[str]): List of chunk IDs to delete
254
- - tenant_id (str): Tenant identifier for multi-tenancy
255
- - sub_tenant_id (str, optional): Sub-tenant identifier, defaults to tenant_id
256
- api_details (dict): Authentication details obtained from API key validation
257
-
258
- Returns:
259
- EmbeddingsDeleteData: Success response with deletion details
233
+ Use this to remove specific chunks from your embeddings index when they are no longer valid or should not appear in results.
260
234
 
261
235
  Parameters
262
236
  ----------
263
237
  chunk_ids : typing.Sequence[str]
238
+ The chunk IDs of the source you want to delete
264
239
 
265
240
  tenant_id : str
241
+ Unique identifier for the tenant/organization
266
242
 
267
243
  sub_tenant_id : typing.Optional[str]
244
+ Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
268
245
 
269
246
  request_options : typing.Optional[RequestOptions]
270
247
  Request-specific configuration.
@@ -282,7 +259,7 @@ class AsyncEmbeddingsClient:
282
259
 
283
260
  client = AsyncCortexAI(token="YOUR_TOKEN", )
284
261
  async def main() -> None:
285
- await client.embeddings.delete(chunk_ids=['chunk_ids'], tenant_id='tenant_id', )
262
+ await client.embeddings.delete(chunk_ids=['CortexEmbeddings123_0', 'CortexEmbeddings123_1'], tenant_id='tenant_1234', )
286
263
  asyncio.run(main())
287
264
  """
288
265
  _response = await self._raw_client.delete(
@@ -300,29 +277,24 @@ class AsyncEmbeddingsClient:
300
277
  request_options: typing.Optional[RequestOptions] = None,
301
278
  ) -> EmbeddingsSearchData:
302
279
  """
303
- Search for similar embedding chunks using vector similarity.
280
+ Find similar chunks using an embedding vector.
304
281
 
305
- This endpoint performs semantic search by sending an embedding vector to the Findr backend
306
- and returns a list of the most similar chunk IDs based on vector similarity.
282
+ Use this to retrieve the most similar chunk IDs to a single query embedding.
307
283
 
308
- Args:
309
- request (EmbeddingsSearchRequest): The search request containing:
310
- - embeddings (List[float]): Single embedding vector for similarity search
311
- - tenant_id (str): Tenant identifier for multi-tenancy
312
- - sub_tenant_id (str, optional): Sub-tenant identifier, defaults to tenant_id
313
- - max_chunks (int, optional): Maximum number of chunk IDs to return (default: 10)
314
- api_details (dict): Authentication details obtained from API key validation
315
284
 
316
- Returns:
317
- EmbeddingsSearchData: List of chunk IDs with similarity scores
285
+ Expected outcome
286
+ - You receive the closest chunk IDs with optional similarity scores.
318
287
 
319
288
  Parameters
320
289
  ----------
321
290
  tenant_id : str
291
+ Unique identifier for the tenant/organization
322
292
 
323
293
  embeddings : typing.Optional[typing.Sequence[float]]
294
+ The embedding vector for search
324
295
 
325
296
  sub_tenant_id : typing.Optional[str]
297
+ Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
326
298
 
327
299
  max_chunks : typing.Optional[int]
328
300
 
@@ -342,7 +314,7 @@ class AsyncEmbeddingsClient:
342
314
 
343
315
  client = AsyncCortexAI(token="YOUR_TOKEN", )
344
316
  async def main() -> None:
345
- await client.embeddings.search(tenant_id='tenant_id', )
317
+ await client.embeddings.search(tenant_id='tenant_1234', )
346
318
  asyncio.run(main())
347
319
  """
348
320
  _response = await self._raw_client.search(
@@ -363,20 +335,20 @@ class AsyncEmbeddingsClient:
363
335
  request_options: typing.Optional[RequestOptions] = None,
364
336
  ) -> EmbeddingsGetData:
365
337
  """
366
- Get embeddings based on chunk IDs.
338
+ Retrieve embeddings for specific chunk IDs.
367
339
 
368
- This endpoint returns embeddings for a list of chunk IDs.
369
-
370
- Returns:
371
- EmbeddingsGetData: Embeddings data for the requested chunk IDs
340
+ Use this when you already know the chunk IDs and need their corresponding embeddings.
372
341
 
373
342
  Parameters
374
343
  ----------
375
344
  chunk_ids : typing.Sequence[str]
345
+ The chunk IDs of the source you want to get embeddings for
376
346
 
377
347
  tenant_id : str
348
+ Unique identifier for the tenant/organization
378
349
 
379
350
  sub_tenant_id : typing.Optional[str]
351
+ Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
380
352
 
381
353
  request_options : typing.Optional[RequestOptions]
382
354
  Request-specific configuration.
@@ -394,7 +366,7 @@ class AsyncEmbeddingsClient:
394
366
 
395
367
  client = AsyncCortexAI(token="YOUR_TOKEN", )
396
368
  async def main() -> None:
397
- await client.embeddings.get_by_chunk_ids(chunk_ids=['chunk_ids'], tenant_id='tenant_id', )
369
+ await client.embeddings.get_by_chunk_ids(chunk_ids=['CortexEmbeddings123_0', 'CortexEmbeddings123_1'], tenant_id='tenant_1234', )
398
370
  asyncio.run(main())
399
371
  """
400
372
  _response = await self._raw_client.get_by_chunk_ids(
@@ -406,16 +378,14 @@ class AsyncEmbeddingsClient:
406
378
  self, *, tenant_id: str, request_options: typing.Optional[RequestOptions] = None
407
379
  ) -> EmbeddingsCreateCollectionData:
408
380
  """
409
- Create an embeddings collection for the given tenant in Findr.
410
-
411
- sub_tenant_id is set to be the same as tenant_id as per requirements.
381
+ Create an embeddings collection for a tenant.
412
382
 
413
- Returns:
414
- EmbeddingsCreateCollectionData: Success response with collection details
383
+ Use this to initialize storage so you can index and query embeddings for the tenant.
415
384
 
416
385
  Parameters
417
386
  ----------
418
387
  tenant_id : str
388
+ Unique identifier for the tenant/organization
419
389
 
420
390
  request_options : typing.Optional[RequestOptions]
421
391
  Request-specific configuration.
@@ -433,7 +403,7 @@ class AsyncEmbeddingsClient:
433
403
 
434
404
  client = AsyncCortexAI(token="YOUR_TOKEN", )
435
405
  async def main() -> None:
436
- await client.embeddings.create_collection(tenant_id='tenant_id', )
406
+ await client.embeddings.create_collection(tenant_id='tenant_1234', )
437
407
  asyncio.run(main())
438
408
  """
439
409
  _response = await self._raw_client.create_collection(tenant_id=tenant_id, request_options=request_options)
@@ -38,28 +38,20 @@ class RawEmbeddingsClient:
38
38
  request_options: typing.Optional[RequestOptions] = None,
39
39
  ) -> HttpResponse[EmbeddingsDeleteData]:
40
40
  """
41
- Delete specific embedding chunks from indexed sources.
41
+ Delete embedding chunks by chunk ID.
42
42
 
43
- This endpoint deletes specified embedding chunks from the Findr backend by sending
44
- chunk IDs to the backend delete service.
45
-
46
- Args:
47
- request (EmbeddingsDeleteRequest): The delete request containing:
48
- - chunk_ids (List[str]): List of chunk IDs to delete
49
- - tenant_id (str): Tenant identifier for multi-tenancy
50
- - sub_tenant_id (str, optional): Sub-tenant identifier, defaults to tenant_id
51
- api_details (dict): Authentication details obtained from API key validation
52
-
53
- Returns:
54
- EmbeddingsDeleteData: Success response with deletion details
43
+ Use this to remove specific chunks from your embeddings index when they are no longer valid or should not appear in results.
55
44
 
56
45
  Parameters
57
46
  ----------
58
47
  chunk_ids : typing.Sequence[str]
48
+ The chunk IDs of the source you want to delete
59
49
 
60
50
  tenant_id : str
51
+ Unique identifier for the tenant/organization
61
52
 
62
53
  sub_tenant_id : typing.Optional[str]
54
+ Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
63
55
 
64
56
  request_options : typing.Optional[RequestOptions]
65
57
  Request-specific configuration.
@@ -185,29 +177,24 @@ class RawEmbeddingsClient:
185
177
  request_options: typing.Optional[RequestOptions] = None,
186
178
  ) -> HttpResponse[EmbeddingsSearchData]:
187
179
  """
188
- Search for similar embedding chunks using vector similarity.
180
+ Find similar chunks using an embedding vector.
189
181
 
190
- This endpoint performs semantic search by sending an embedding vector to the Findr backend
191
- and returns a list of the most similar chunk IDs based on vector similarity.
182
+ Use this to retrieve the most similar chunk IDs to a single query embedding.
192
183
 
193
- Args:
194
- request (EmbeddingsSearchRequest): The search request containing:
195
- - embeddings (List[float]): Single embedding vector for similarity search
196
- - tenant_id (str): Tenant identifier for multi-tenancy
197
- - sub_tenant_id (str, optional): Sub-tenant identifier, defaults to tenant_id
198
- - max_chunks (int, optional): Maximum number of chunk IDs to return (default: 10)
199
- api_details (dict): Authentication details obtained from API key validation
200
184
 
201
- Returns:
202
- EmbeddingsSearchData: List of chunk IDs with similarity scores
185
+ Expected outcome
186
+ - You receive the closest chunk IDs with optional similarity scores.
203
187
 
204
188
  Parameters
205
189
  ----------
206
190
  tenant_id : str
191
+ Unique identifier for the tenant/organization
207
192
 
208
193
  embeddings : typing.Optional[typing.Sequence[float]]
194
+ The embedding vector for search
209
195
 
210
196
  sub_tenant_id : typing.Optional[str]
197
+ Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
211
198
 
212
199
  max_chunks : typing.Optional[int]
213
200
 
@@ -335,20 +322,20 @@ class RawEmbeddingsClient:
335
322
  request_options: typing.Optional[RequestOptions] = None,
336
323
  ) -> HttpResponse[EmbeddingsGetData]:
337
324
  """
338
- Get embeddings based on chunk IDs.
325
+ Retrieve embeddings for specific chunk IDs.
339
326
 
340
- This endpoint returns embeddings for a list of chunk IDs.
341
-
342
- Returns:
343
- EmbeddingsGetData: Embeddings data for the requested chunk IDs
327
+ Use this when you already know the chunk IDs and need their corresponding embeddings.
344
328
 
345
329
  Parameters
346
330
  ----------
347
331
  chunk_ids : typing.Sequence[str]
332
+ The chunk IDs of the source you want to get embeddings for
348
333
 
349
334
  tenant_id : str
335
+ Unique identifier for the tenant/organization
350
336
 
351
337
  sub_tenant_id : typing.Optional[str]
338
+ Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
352
339
 
353
340
  request_options : typing.Optional[RequestOptions]
354
341
  Request-specific configuration.
@@ -359,7 +346,7 @@ class RawEmbeddingsClient:
359
346
  Successful Response
360
347
  """
361
348
  _response = self._client_wrapper.httpx_client.request(
362
- "embeddings/by-chunk-ids",
349
+ "embeddings/retrieve_by_ids",
363
350
  method="POST",
364
351
  json={
365
352
  "chunk_ids": chunk_ids,
@@ -468,16 +455,14 @@ class RawEmbeddingsClient:
468
455
  self, *, tenant_id: str, request_options: typing.Optional[RequestOptions] = None
469
456
  ) -> HttpResponse[EmbeddingsCreateCollectionData]:
470
457
  """
471
- Create an embeddings collection for the given tenant in Findr.
472
-
473
- sub_tenant_id is set to be the same as tenant_id as per requirements.
458
+ Create an embeddings collection for a tenant.
474
459
 
475
- Returns:
476
- EmbeddingsCreateCollectionData: Success response with collection details
460
+ Use this to initialize storage so you can index and query embeddings for the tenant.
477
461
 
478
462
  Parameters
479
463
  ----------
480
464
  tenant_id : str
465
+ Unique identifier for the tenant/organization
481
466
 
482
467
  request_options : typing.Optional[RequestOptions]
483
468
  Request-specific configuration.
@@ -488,7 +473,7 @@ class RawEmbeddingsClient:
488
473
  Successful Response
489
474
  """
490
475
  _response = self._client_wrapper.httpx_client.request(
491
- "embeddings/create_embeddings_tenant",
476
+ "embeddings/create_tenant",
492
477
  method="POST",
493
478
  params={
494
479
  "tenant_id": tenant_id,
@@ -601,28 +586,20 @@ class AsyncRawEmbeddingsClient:
601
586
  request_options: typing.Optional[RequestOptions] = None,
602
587
  ) -> AsyncHttpResponse[EmbeddingsDeleteData]:
603
588
  """
604
- Delete specific embedding chunks from indexed sources.
589
+ Delete embedding chunks by chunk ID.
605
590
 
606
- This endpoint deletes specified embedding chunks from the Findr backend by sending
607
- chunk IDs to the backend delete service.
608
-
609
- Args:
610
- request (EmbeddingsDeleteRequest): The delete request containing:
611
- - chunk_ids (List[str]): List of chunk IDs to delete
612
- - tenant_id (str): Tenant identifier for multi-tenancy
613
- - sub_tenant_id (str, optional): Sub-tenant identifier, defaults to tenant_id
614
- api_details (dict): Authentication details obtained from API key validation
615
-
616
- Returns:
617
- EmbeddingsDeleteData: Success response with deletion details
591
+ Use this to remove specific chunks from your embeddings index when they are no longer valid or should not appear in results.
618
592
 
619
593
  Parameters
620
594
  ----------
621
595
  chunk_ids : typing.Sequence[str]
596
+ The chunk IDs of the source you want to delete
622
597
 
623
598
  tenant_id : str
599
+ Unique identifier for the tenant/organization
624
600
 
625
601
  sub_tenant_id : typing.Optional[str]
602
+ Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
626
603
 
627
604
  request_options : typing.Optional[RequestOptions]
628
605
  Request-specific configuration.
@@ -748,29 +725,24 @@ class AsyncRawEmbeddingsClient:
748
725
  request_options: typing.Optional[RequestOptions] = None,
749
726
  ) -> AsyncHttpResponse[EmbeddingsSearchData]:
750
727
  """
751
- Search for similar embedding chunks using vector similarity.
728
+ Find similar chunks using an embedding vector.
752
729
 
753
- This endpoint performs semantic search by sending an embedding vector to the Findr backend
754
- and returns a list of the most similar chunk IDs based on vector similarity.
730
+ Use this to retrieve the most similar chunk IDs to a single query embedding.
755
731
 
756
- Args:
757
- request (EmbeddingsSearchRequest): The search request containing:
758
- - embeddings (List[float]): Single embedding vector for similarity search
759
- - tenant_id (str): Tenant identifier for multi-tenancy
760
- - sub_tenant_id (str, optional): Sub-tenant identifier, defaults to tenant_id
761
- - max_chunks (int, optional): Maximum number of chunk IDs to return (default: 10)
762
- api_details (dict): Authentication details obtained from API key validation
763
732
 
764
- Returns:
765
- EmbeddingsSearchData: List of chunk IDs with similarity scores
733
+ Expected outcome
734
+ - You receive the closest chunk IDs with optional similarity scores.
766
735
 
767
736
  Parameters
768
737
  ----------
769
738
  tenant_id : str
739
+ Unique identifier for the tenant/organization
770
740
 
771
741
  embeddings : typing.Optional[typing.Sequence[float]]
742
+ The embedding vector for search
772
743
 
773
744
  sub_tenant_id : typing.Optional[str]
745
+ Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
774
746
 
775
747
  max_chunks : typing.Optional[int]
776
748
 
@@ -898,20 +870,20 @@ class AsyncRawEmbeddingsClient:
898
870
  request_options: typing.Optional[RequestOptions] = None,
899
871
  ) -> AsyncHttpResponse[EmbeddingsGetData]:
900
872
  """
901
- Get embeddings based on chunk IDs.
873
+ Retrieve embeddings for specific chunk IDs.
902
874
 
903
- This endpoint returns embeddings for a list of chunk IDs.
904
-
905
- Returns:
906
- EmbeddingsGetData: Embeddings data for the requested chunk IDs
875
+ Use this when you already know the chunk IDs and need their corresponding embeddings.
907
876
 
908
877
  Parameters
909
878
  ----------
910
879
  chunk_ids : typing.Sequence[str]
880
+ The chunk IDs of the source you want to get embeddings for
911
881
 
912
882
  tenant_id : str
883
+ Unique identifier for the tenant/organization
913
884
 
914
885
  sub_tenant_id : typing.Optional[str]
886
+ Optional sub-tenant identifier used to organize data within a tenant. If omitted, the default sub-tenant created during tenant setup will be used.
915
887
 
916
888
  request_options : typing.Optional[RequestOptions]
917
889
  Request-specific configuration.
@@ -922,7 +894,7 @@ class AsyncRawEmbeddingsClient:
922
894
  Successful Response
923
895
  """
924
896
  _response = await self._client_wrapper.httpx_client.request(
925
- "embeddings/by-chunk-ids",
897
+ "embeddings/retrieve_by_ids",
926
898
  method="POST",
927
899
  json={
928
900
  "chunk_ids": chunk_ids,
@@ -1031,16 +1003,14 @@ class AsyncRawEmbeddingsClient:
1031
1003
  self, *, tenant_id: str, request_options: typing.Optional[RequestOptions] = None
1032
1004
  ) -> AsyncHttpResponse[EmbeddingsCreateCollectionData]:
1033
1005
  """
1034
- Create an embeddings collection for the given tenant in Findr.
1035
-
1036
- sub_tenant_id is set to be the same as tenant_id as per requirements.
1006
+ Create an embeddings collection for a tenant.
1037
1007
 
1038
- Returns:
1039
- EmbeddingsCreateCollectionData: Success response with collection details
1008
+ Use this to initialize storage so you can index and query embeddings for the tenant.
1040
1009
 
1041
1010
  Parameters
1042
1011
  ----------
1043
1012
  tenant_id : str
1013
+ Unique identifier for the tenant/organization
1044
1014
 
1045
1015
  request_options : typing.Optional[RequestOptions]
1046
1016
  Request-specific configuration.
@@ -1051,7 +1021,7 @@ class AsyncRawEmbeddingsClient:
1051
1021
  Successful Response
1052
1022
  """
1053
1023
  _response = await self._client_wrapper.httpx_client.request(
1054
- "embeddings/create_embeddings_tenant",
1024
+ "embeddings/create_tenant",
1055
1025
  method="POST",
1056
1026
  params={
1057
1027
  "tenant_id": tenant_id,
@@ -62,7 +62,7 @@ class FetchClient:
62
62
  from usecortex-ai import CortexAI
63
63
 
64
64
  client = CortexAI(token="YOUR_TOKEN", )
65
- client.fetch.fetch_content(file_id='file_id', file_type='file_type', tenant_id='tenant_id', )
65
+ client.fetch.fetch_content(file_id='CortexDoc1234', file_type='<file_type>', tenant_id='tenant_1234', )
66
66
  """
67
67
  _response = self._raw_client.fetch_content(
68
68
  file_id=file_id,
@@ -129,7 +129,7 @@ class AsyncFetchClient:
129
129
 
130
130
  client = AsyncCortexAI(token="YOUR_TOKEN", )
131
131
  async def main() -> None:
132
- await client.fetch.fetch_content(file_id='file_id', file_type='file_type', tenant_id='tenant_id', )
132
+ await client.fetch.fetch_content(file_id='CortexDoc1234', file_type='<file_type>', tenant_id='tenant_1234', )
133
133
  asyncio.run(main())
134
134
  """
135
135
  _response = await self._raw_client.fetch_content(