unaiverse 0.1.12__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (47) hide show
  1. unaiverse/__init__.py +19 -0
  2. unaiverse/agent.py +2226 -0
  3. unaiverse/agent_basics.py +2389 -0
  4. unaiverse/clock.py +234 -0
  5. unaiverse/dataprops.py +1282 -0
  6. unaiverse/hsm.py +2471 -0
  7. unaiverse/modules/__init__.py +18 -0
  8. unaiverse/modules/cnu/__init__.py +17 -0
  9. unaiverse/modules/cnu/cnus.py +536 -0
  10. unaiverse/modules/cnu/layers.py +261 -0
  11. unaiverse/modules/cnu/psi.py +60 -0
  12. unaiverse/modules/hl/__init__.py +15 -0
  13. unaiverse/modules/hl/hl_utils.py +411 -0
  14. unaiverse/modules/networks.py +1509 -0
  15. unaiverse/modules/utils.py +748 -0
  16. unaiverse/networking/__init__.py +16 -0
  17. unaiverse/networking/node/__init__.py +18 -0
  18. unaiverse/networking/node/connpool.py +1332 -0
  19. unaiverse/networking/node/node.py +2752 -0
  20. unaiverse/networking/node/profile.py +446 -0
  21. unaiverse/networking/node/tokens.py +79 -0
  22. unaiverse/networking/p2p/__init__.py +188 -0
  23. unaiverse/networking/p2p/go.mod +127 -0
  24. unaiverse/networking/p2p/go.sum +548 -0
  25. unaiverse/networking/p2p/golibp2p.py +18 -0
  26. unaiverse/networking/p2p/golibp2p.pyi +136 -0
  27. unaiverse/networking/p2p/lib.go +2765 -0
  28. unaiverse/networking/p2p/lib_types.py +311 -0
  29. unaiverse/networking/p2p/message_pb2.py +50 -0
  30. unaiverse/networking/p2p/messages.py +360 -0
  31. unaiverse/networking/p2p/mylogger.py +78 -0
  32. unaiverse/networking/p2p/p2p.py +900 -0
  33. unaiverse/networking/p2p/proto-go/message.pb.go +846 -0
  34. unaiverse/stats.py +1506 -0
  35. unaiverse/streamlib/__init__.py +15 -0
  36. unaiverse/streamlib/streamlib.py +210 -0
  37. unaiverse/streams.py +804 -0
  38. unaiverse/utils/__init__.py +16 -0
  39. unaiverse/utils/lone_wolf.json +28 -0
  40. unaiverse/utils/misc.py +441 -0
  41. unaiverse/utils/sandbox.py +292 -0
  42. unaiverse/world.py +384 -0
  43. unaiverse-0.1.12.dist-info/METADATA +366 -0
  44. unaiverse-0.1.12.dist-info/RECORD +47 -0
  45. unaiverse-0.1.12.dist-info/WHEEL +5 -0
  46. unaiverse-0.1.12.dist-info/licenses/LICENSE +177 -0
  47. unaiverse-0.1.12.dist-info/top_level.txt +1 -0
@@ -0,0 +1,366 @@
1
+ Metadata-Version: 2.4
2
+ Name: unaiverse
3
+ Version: 0.1.12
4
+ Summary: UNaIVERSE: A Collectionless AI Project. The new web of humans & AI Agents, built on privacy, control, and reduced energy consumption.
5
+ Author-email: Stefano Melacci <stefano.melacci@unisi.it>, Christian Di Maio <christian.dimaio@phd.unipi.it>, Tommaso Guidi <tommaso.guidi.1998@gmail.com>
6
+ Maintainer-email: Stefano Melacci <stefano.melacci@unisi.it>, Christian Di Maio <christian.dimaio@phd.unipi.it>, Tommaso Guidi <tommaso.guidi.1998@gmail.com>
7
+ Project-URL: A-Homepage, https://unaiverse.io
8
+ Project-URL: B-CollectionlessAI, https://collectionless.ai
9
+ Project-URL: C-Source, https://github.com/collectionlessai/unaiverse-src
10
+ Project-URL: D-Starting, https://github.com/collectionlessai/unaiverse-src/blob/main/README.md
11
+ Project-URL: E-Examples, https://github.com/collectionlessai/unaiverse-examples
12
+ Project-URL: F-Documentation, https://github.com/collectionlessai/unaiverse-src/blob/main/README.md
13
+ Keywords: UNaIVERSE,Collectionless AI,AI,Agentic AI,Agents,Machine Learning,Learning Over Time
14
+ Classifier: Development Status :: 4 - Beta
15
+ Classifier: Intended Audience :: Developers
16
+ Classifier: Intended Audience :: End Users/Desktop
17
+ Classifier: Intended Audience :: Science/Research
18
+ Classifier: Programming Language :: Python :: 3.11
19
+ Classifier: Programming Language :: Python :: 3.12
20
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
21
+ Requires-Python: >3.10
22
+ Description-Content-Type: text/markdown
23
+ License-File: LICENSE
24
+ Requires-Dist: opencv-python
25
+ Requires-Dist: Flask
26
+ Requires-Dist: flask_cors
27
+ Requires-Dist: graphviz
28
+ Requires-Dist: ntplib
29
+ Requires-Dist: numpy
30
+ Requires-Dist: Pillow
31
+ Requires-Dist: protobuf
32
+ Requires-Dist: psutil
33
+ Requires-Dist: PyJWT
34
+ Requires-Dist: cryptography
35
+ Requires-Dist: Requests
36
+ Requires-Dist: torch
37
+ Requires-Dist: torchvision
38
+ Requires-Dist: transformers
39
+ Requires-Dist: sortedcontainers
40
+ Requires-Dist: plotly
41
+ Dynamic: license-file
42
+
43
+ <div align="center">
44
+ <h1 style="text-align: center;">Welcome to UNaIVERSE ~ https://unaiverse.io</h1>
45
+ <img src="./assets/caicat_planets.png" alt="UNaIVERSE Logo" style="width:450px;">
46
+ </div>
47
+ <br>
48
+
49
+ <p align="center">
50
+ <em>Welcome to a new "UN(a)IVERSE," where humans and artificial agents coexist, interact, learn from each other, grow together, in a privacy and low-energy oriented reality.</em>
51
+ </p>
52
+ <br>
53
+
54
+ UNaIVERSE is a project framed in the context of [Collectionless AI](https://collectionless.ai), our perspective on Artificial Intelligence rooted in **privacy**, **low energy consumption**, and, more importantly, a **decentralized** model.
55
+
56
+ UN(a)IVERSE is a **peer-to-peer network**, aiming to become the new incarnation of the Web, combining (in the long run) the principles of Social Networks and AI under a **privacy** lens—a perspective that is crucial given how the Web, especially Social Networks, and AI are used today by both businesses and individual users.
57
+
58
+ - Enter UNaIVERSE: [**UNaIVERSE portal (login/register)**](https://unaiverse.io)
59
+ - Check our preprint of Collectionless AI & UNaIVERSE, to explore [**UNaIVERSE features**](./UNaIVERSE_techrep.pdf)
60
+ - Read more on our ideas: [**Collectionless AI website**](https://collectionless.ai)
61
+
62
+ ---
63
+
64
+ ## 🚀 Features
65
+
66
+ Check our presentation, starting from Collectionless AI and ending up in [**UNaIVERSE and its features**](./UNaIVERSE.pdf).
67
+
68
+ UNaIVERSE is a peer-to-peer network where each node is either a **world** or an **agent**. What can you do?
69
+ - You can create your own **agents**, based on [PyTorch modules](https://pytorch.org/), and, in function of their capabilities, they are ready to join the existing worlds and interact with others. Feel free to join a world, stay there for a while, leave it and join another one! They can also just showcase your technology, hence not join any worlds, becoming what we call **lone wolves**.
70
+ - You can create your own **worlds** as well. Different worlds are about different topics, tasks, whatever (think about a school, a shop, a chat room, an industrial plant, ...), and you don't have to write any code to let your agent participate in a world! It is the world designer that defines the expected **roles** and corresponding agent **behaviors** (special State Machines): join a world, get a role, and you are ready to behave coherently with your role!
71
+ - In UNaIVERSE, you, as **human**, are an agent as the other ones. The browser is your interface to UNaIVERSE, and you are already set up! No need to install anything, just jump into the UNaIVERSE portal, login, and you are a citizen of UNaIVERSE.
72
+
73
+ Remarks:
74
+ - *Are you a researcher?* This is perfect to study models that learn over time (Lifelong/Continual Learning), and social dynamics of different categories of models! Feel free to propose novel ideas to exploit UNaIVERSE in your research!
75
+ - *Are you in the industry or, more generally, business oriented?* **Think about privacy-oriented solutions that we can build over this new UN(a)IVERSE!**
76
+
77
+ ---
78
+
79
+ ## ⚡ Status
80
+
81
+ - Very first version: we think it will always stay alpha/beta/whatever 😎, but right now there are many features we plan to add and several parts to improve, **thanks to your feedback!**
82
+ - Missing features (work-in-progress): mobile agents running on dedicated Web App; build customizable UIs for human agents in the browser; fully decentralized discovery of new Peers; actual social network features (right now it is very preliminary, not really showcasing where we want to go)
83
+
84
+ ---
85
+
86
+ ## 📦 Installation
87
+
88
+ Jump to [https://unaiverse.io](https://unaiverse.io), create a new account (free!) or log in with an existing one. If you did not already do it, click on the top-right icon with "a person" on it:
89
+
90
+ <img src="./assets/unaiverse8443-me.png" alt="UNaIVERSE Logo" style="width:150px;">
91
+
92
+ Then click on "Generate a Token":
93
+
94
+ <img src="./assets/unaiverse8443-token.png" alt="UNaIVERSE Logo" style="width:500px;">
95
+
96
+ **COPY THE TOKEN**, you won't be able to see it twice! Now, let's focus on Python:
97
+
98
+ ```bash
99
+ pip install unaiverse
100
+ ```
101
+
102
+ That's it. Of course, if you want to dive into details, you find the source code here in this repo.
103
+
104
+ ---
105
+
106
+ ## 🛠 Mini Tutorial
107
+
108
+ The simplest usage you can think of is the one which does not exploit the real features of UNaIVERSE, but it is so simple that is a good way to put you in touch with UNaIVERSE itself.
109
+
110
+ You can **showcase** your PyTorch networks (actually, it can be every kind of model son of the PyTorch [*torch.nn.Module*](https://docs.pytorch.org/docs/stable/generated/torch.nn.Module.html) class) as follows. Let's focus on ResNet for simplicity.
111
+
112
+ Alright, let's discuss the code in the [assets/tutorial](./assets/tutorial) folder of this repo, composed of numbered scripts.
113
+
114
+ ### Step A1. Do you know how to set up a network in PyTorch?
115
+
116
+ Let us set up a ResNet50 in the most basic PyTorch manner. The code is composed of a **generator of tensors** interpreted as pictures (actually, an ugly tensor with randomly colored pixels) and a pretrained **resnet classifier** which classifies the pictures generating a probability distribution over 1,000 classes. Try to run [script 1](./assets/tutorial/A_move_to_unaiverse/1_generator_and_resnet.py) from the [assets/tutorial](./assets/tutorial) folder. We report it here, carefully read the comments!
117
+
118
+ ```python
119
+ import torch
120
+ import torchvision
121
+
122
+ # Downloading PyTorch module (ResNet)
123
+ net = torchvision.models.resnet50(weights="IMAGENET1K_V1").eval()
124
+
125
+ # Generating a random image (don't care about it, it is just a toy example,
126
+ # think it is a nice image!)
127
+ inp = torch.rand((1, 3, 224, 224), dtype=torch.float32)
128
+
129
+ # Inference: expects as input a tensor of type torch.float32, custom width and
130
+ # height, but 3 channels and batch dimension must be there; the output is a
131
+ # tensor with shape (1, 1000), i.e., a tensor in which batch dimension is
132
+ # present and then 1000 elements.
133
+ out = net(inp)
134
+
135
+ # Print shapes
136
+ print(f"Input shape: {tuple(inp.shape)}, dtype: {inp.dtype}")
137
+ print(f"Output shape: {tuple(out.shape)}, dtype: {out.dtype}")
138
+ ```
139
+
140
+ ### Step A2. Let's create UNaIVERSE agents!
141
+
142
+ We are going to create two agents, **independently running and possibly located in different places/machines**.
143
+ - One is based on the **resnet classifier**, waiting to be asked (by some other agents) for a prediction about a given image.
144
+ - The other is the **generator of tensors**, ready to generate a tensor (representation of a picture) and ask another agent to classify it.
145
+
146
+ Here is the **resnet classifier** agent, running forever and waiting for somebody to ask for a prediction, taken from [script 2](./assets/tutorial/A_move_to_unaiverse/2_agent_resnet.py) in the [assets/tutorial](./assets/tutorial) folder:
147
+
148
+ ```python
149
+ import torch
150
+ import torchvision
151
+ from unaiverse.agent import Agent
152
+ from unaiverse.dataprops import Data4Proc
153
+ from unaiverse.networking.node.node import Node
154
+
155
+ # Downloading PyTorch module (ResNet)
156
+ net = torchvision.models.resnet50(weights="IMAGENET1K_V1").eval()
157
+
158
+ # Agent: we pass the network as "processor".
159
+ # Check the input and output properties of the processor, they are coherent with the
160
+ # input and output shapes of ResNet; here "None" means "whatever, but this axis must be
161
+ # there!". By default, this agent will act as a serving "lone wolf", serving whoever asks for
162
+ # a prediction.
163
+ agent = Agent(proc=net,
164
+ proc_inputs=[Data4Proc(data_type="tensor", tensor_shape=(None, 3, None, None),
165
+ tensor_dtype=torch.float32)],
166
+ proc_outputs=[Data4Proc(data_type="tensor", tensor_shape=(None, 1000),
167
+ tensor_dtype=torch.float32)])
168
+
169
+ # Node hosting agent: a node will be created in your account with this name, if not
170
+ # existing; it is "hidden" meaning that only you can see it in UNaIVERSE (since it is
171
+ # just a test!); the clock speed can be tuned accordingly to your needed and computing
172
+ # power.
173
+ node = Node(node_name="Test0", hosted=agent, hidden=True, clock_delta=1. / 5.)
174
+
175
+ # Running node (forever)
176
+ node.run()
177
+ ```
178
+
179
+ Run it. Now, here is the agent capable of **generating tensors** (let's say images), which is asked to get in touch with the resnet agent, taken from [script 3](./assets/tutorial/A_move_to_unaiverse/3_agent_generator.py) in the [assets/tutorial](./assets/tutorial) folder:
180
+
181
+ ```python
182
+ import torch
183
+ from unaiverse.agent import Agent
184
+ from unaiverse.dataprops import Data4Proc
185
+ from unaiverse.networking.node.node import Node
186
+
187
+
188
+ # Custom generator network: a module that simply generates an image with
189
+ # "random" pixel intensities; we will use this as processor of our new agent.
190
+ class Net(torch.nn.Module):
191
+ def __init__(self):
192
+ super().__init__()
193
+
194
+ # The input will be ignored, and a default None value is needed
195
+ def forward(self, x: torch.Tensor | None = None):
196
+ inp = torch.rand((1, 3, 224, 224), dtype=torch.float32)
197
+ print(f"Generated data shape: {tuple(inp.shape)}, dtype: {inp.dtype}")
198
+ return inp
199
+
200
+
201
+ # Agent: we use the generator as processor.
202
+ agent = Agent(proc=Net(),
203
+ proc_inputs=[Data4Proc(data_type="all")], # Able to get every type of data (since it won't use it :))
204
+ proc_outputs=[Data4Proc(data_type="tensor", tensor_shape=(1, 3, 224, 224),
205
+ tensor_dtype="torch.float32")], # These are the properties of generator output
206
+ )
207
+
208
+ # To retrieve the result we got from the ResNet agent, we define a hook
209
+ # that will be called at the end of every run cycle
210
+ def hook(_node: Node):
211
+ # Printing the last received data from the ResNet agent
212
+ _out = _node.agent.get_last_streamed_data('Test0')[0]
213
+ if _out is not None:
214
+ _node.agent.print(f"Received data shape: {tuple(_out.shape)}, dtype: {_out.dtype}")
215
+
216
+ # Node hosting agent
217
+ node = Node(node_name="Test1", hosted=agent, hidden=True, clock_delta=1. / 5., run_hook=hook)
218
+
219
+ # Running node for 10 seconds
220
+ node.run(get_in_touch="Test0", max_time=10.0)
221
+ ```
222
+
223
+ Run this script as well, and what will happen is that the generator will send its picture through the peer-to-peer network, reaching the resnet agent, and getting back a prediction.
224
+
225
+ ### Step B1. Embellishment
226
+
227
+ We can upgrade the **resnet agent** to take real-world images as input, instead of random tensors, and to output class names (text) instead of a probability distribution. All we need to do is to re-define the properties of the inputs/outputs of the agent processor, and add transformations. Dive into [script 4](./assets/tutorial/B_improve_A_and_use_browser/4_agent_resnet_img_text.py):
228
+
229
+ ```python
230
+ import torchvision
231
+ import urllib.request
232
+ from unaiverse.agent import Agent
233
+ from unaiverse.dataprops import Data4Proc
234
+ from unaiverse.networking.node.node import Node
235
+
236
+ # Downloading PyTorch module (ResNet)
237
+ net = torchvision.models.resnet50(weights="IMAGENET1K_V1").eval()
238
+
239
+ # Getting input transforms from PyTorch model
240
+ transforms = torchvision.transforms.Compose([
241
+ torchvision.transforms.Lambda(lambda x: x.convert("RGB")),
242
+ torchvision.models.ResNet50_Weights.IMAGENET1K_V1.transforms(),
243
+ torchvision.transforms.Lambda(lambda x: x.unsqueeze(0))
244
+ ])
245
+
246
+ # Getting output class names
247
+ with urllib.request.urlopen("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt") as f:
248
+ c_names = [line.strip().decode('utf-8') for line in f.readlines()]
249
+
250
+ # Agent: we change the data type, to be able to handle stream of images (instead of tensors).
251
+ # We can customize the transformations from the streamed format to the processor inference
252
+ # format (every callable function is fine!). Similarly, we can customize the way we go from
253
+ # the actual output of the processor and what will be streamed (here we go from class
254
+ # probabilities to winning class name).
255
+ agent = Agent(proc=net,
256
+ proc_inputs=[Data4Proc(data_type="img", stream_to_proc_transforms=transforms)],
257
+ proc_outputs=[Data4Proc(data_type="text", proc_to_stream_transforms=lambda p: c_names[p.argmax(1)[0]])])
258
+
259
+ # Node hosting agent
260
+ node = Node(node_name="Test0", hosted=agent, hidden=True, clock_delta=1. / 5.)
261
+
262
+ # Running node
263
+ node.run()
264
+ ```
265
+
266
+ Now let us promote the **generator** to an agent that downloads and offers a picture of a cat and expects to get back a text description of it (the class name in this case - this is [script 5](./assets/tutorial/B_improve_A_and_use_browser/5_agent_generator_img.py)):
267
+
268
+ ```python
269
+ import torch
270
+ import urllib.request
271
+ from PIL import Image
272
+ from io import BytesIO
273
+ from unaiverse.agent import Agent
274
+ from unaiverse.dataprops import Data4Proc
275
+ from unaiverse.networking.node.node import Node
276
+
277
+
278
+ # Image offering network: a module that simpy downloads and offers an image as its output
279
+ class Net(torch.nn.Module):
280
+ def __init__(self):
281
+ super().__init__()
282
+
283
+ def forward(self, x: torch.Tensor | None = None):
284
+ with urllib.request.urlopen("https://cataas.com/cat") as response:
285
+ inp = Image.open(BytesIO(response.read()))
286
+ # inp.show() # Let's see the pic (watch out: random pic with a cat somewhere)
287
+ print(f"Downloaded image shape {inp.size}, type: {type(inp)}, expected-content: cat")
288
+ return inp
289
+
290
+
291
+ # Agent
292
+ agent = Agent(proc=Net(),
293
+ proc_inputs=[Data4Proc(data_type="all")],
294
+ proc_outputs=[Data4Proc(data_type="img")], # A PIL image is being "generated" here
295
+ behav_lone_wolf="ask")
296
+
297
+ # To retrieve the result we got from the ResNet agent, we define a hook
298
+ # that will be called at the end of every run cycle
299
+ def hook(_node: Node):
300
+ # Printing the last received data from the ResNet agent
301
+ out = _node.agent.get_last_streamed_data('Test0')[0]
302
+ _node.agent.print(f"Received response: {out}") # Now we expect a textual response
303
+ _node.agent.print("")
304
+ _node.agent.print(f"Notice: instead of using this agent, you can also: search for the ResNet node (ResNetAgent) "
305
+ f"in the UNaIVERSE portal, connect to it using our in-browser agent, select a picture from "
306
+ f"your disk, send it to the agent, get back the text response!")
307
+
308
+ # Node hosting agent
309
+ node = Node(node_name="Test1", hosted=agent, hidden=True, clock_delta=1. / 5., run_hook=hook)
310
+
311
+ # Running node for 45 seconds
312
+ node.run(max_time=45.0, get_in_touch="Test0")
313
+ ```
314
+
315
+ ### Step B2. Connect to your ResNet agent by means of a browser running agent!
316
+
317
+ Instead of using the artificial generator agent, **you can become the generator agent**!
318
+ Search for the ResNet node (ResNetAgent) in the UNaIVERSE portal, connect to it using the in-browser agent, select a picture from your disk, send it to the agent, get back the text response!
319
+
320
+ ### Step C. Unleash UNaIVERSE!
321
+
322
+ What you did so far is just to showcase your model. UNaIVERSE is composed of several **worlds** that you can create and customize. Your agent can enter one world at a time, stay there, leave it, enter another, and so on.
323
+ Agents will behave according to what the world indicates, and you don't have to write any extra code to act in worlds you have never been into!
324
+
325
+ Alright, there are so many things to say, but examples are always a good thing!
326
+ We prepared a repository with examples of many worlds and different lone wolves, go there in order to continue your journey into UNaIVERSE!
327
+
328
+ *THE TUTORIAL CONTINUES:* [https://github.com/collectionlessai/unaiverse-examples](https://github.com/collectionlessai/unaiverse-examples)
329
+
330
+ **See you in our UNaIVERSE!**
331
+
332
+ ---
333
+
334
+ ## 📄 License
335
+
336
+ This project is licensed under the Apache 2.0 License.
337
+ Commercial licenses can be provided.
338
+ See the [LICENSE](./LICENSE) file for details (research, etc.).
339
+ See the Contributor License Agreement [CLA.md](./CLA.md) if you want to contribute.
340
+ This project includes third-party libraries. See [THIRD_PARTY_LICENSES.md](./THIRD_PARTY_LICENSES.md) for details.
341
+
342
+ ---
343
+
344
+ ## 📚 Documentation
345
+
346
+ You can find an API reference in file [docs.html](./docs.html), that you can visualize here:
347
+ - [API Reference](https://collectionlessai.github.io/unaiverse-docs.github.io/)
348
+
349
+ ---
350
+
351
+ ## 🤝 Contributing
352
+
353
+ Contributions are welcome!
354
+
355
+ Please contact us in order to suggest changes, report bugs, and suggest ideas for novel applications based on UNaIVERSE!
356
+
357
+ ---
358
+
359
+ ## 👨‍💻 Main Authors
360
+
361
+ - Stefano Melacci (Project Leader) [stefano.melacci@unisi.it](stefano.melacci@unisi.it)
362
+ - Christian Di Maio [christian.dimaio@phd.unipi.it](christian.dimaio@phd.unipi.it)
363
+ - Tommaso Guidi [tommaso.guidi.1998@gmail.com](tommaso.guidi.1998@gmail.com)
364
+ - Marco Gori (Scientific Advisor) [marco.gori@unisi.it](marco.gori@unisi.it)
365
+
366
+ ---
@@ -0,0 +1,47 @@
1
+ unaiverse/__init__.py,sha256=YYNWMcC8LVmLLVaHYQLTc_BDhEOq3OKeIsvsX4MloSQ,2515
2
+ unaiverse/agent.py,sha256=KIsyfQd_e85w0ljAc3-u8hDia7On7R6JjOkHx6Rsyg0,114439
3
+ unaiverse/agent_basics.py,sha256=T27KnHSavbXLPAZXG7IoVTeq80Ig6p0EP5H-0rLN-6s,122689
4
+ unaiverse/clock.py,sha256=RfJarEnUj2m6H3ky1wIxR34-2J4DjhfXhp_flizfL_M,11377
5
+ unaiverse/dataprops.py,sha256=HOHN2hLJuGOIMZIZnTouQHhJOHY10kQ6aNCO9iiVDZk,57881
6
+ unaiverse/hsm.py,sha256=PXKF_FSgQoApPcYHnzJWFSoE_wQRhd2Vd6KToqULYLE,116287
7
+ unaiverse/stats.py,sha256=RVePMNNbHt-uM3n9uC1iphOAkHRuWUmp0vsHte9Vep0,64970
8
+ unaiverse/streams.py,sha256=wocEQvzN_oh9xkI8fe_bFafPtApb9eSaKtTrxMwJRmQ,32379
9
+ unaiverse/world.py,sha256=7cEc9VIozgiS9UR40CsWjG10CSKXlimRLM1K1SycFSA,18920
10
+ unaiverse/modules/__init__.py,sha256=dqddn8Z5cggyU3ZaIC4cZk69Y0Xe7AquEGa9UFOfiKk,2501
11
+ unaiverse/modules/networks.py,sha256=qpOXni5WWZ0RUjk2iym3e12WhgQeBXanx8VLM8K-3a0,65977
12
+ unaiverse/modules/utils.py,sha256=99YUDAjNQnfZgjoj0IODmSrCoOGP3Y5j5cd_8HUAOKM,34969
13
+ unaiverse/modules/cnu/__init__.py,sha256=qOHbNfhk_aJsoCPecPSo5QoWHVEbwaGsyQxXDt2wGho,2481
14
+ unaiverse/modules/cnu/cnus.py,sha256=HjWgeYWCLMowbyRMEPywzewjBEx3OPrThmJQjZkElQA,27614
15
+ unaiverse/modules/cnu/layers.py,sha256=KnZa5_GvAZhCgfB_FpbFj4Ps82mZ1uE_nuKvOIP83gk,13221
16
+ unaiverse/modules/cnu/psi.py,sha256=Kp4sWFtY6howuOdIGWZf0GSyrcr0fQzu3_Jpug7-9ro,3890
17
+ unaiverse/modules/hl/__init__.py,sha256=zG1j2LCuLKOAdOc5csSs52yLSyjHllF96z0hPn-pY1o,2446
18
+ unaiverse/modules/hl/hl_utils.py,sha256=Xt2eWuwak6kDtTy2hQ1Ps8_M_REtte9HA-PzfCovlA8,18292
19
+ unaiverse/networking/__init__.py,sha256=qc3A8KJpTLFM6hefwmqj-wAaUULtzXivaXsr-xKKYGU,2460
20
+ unaiverse/networking/node/__init__.py,sha256=DEXbZzPt7dgall1TZKODuQIXhjq3lr39QCBISGUSWww,2508
21
+ unaiverse/networking/node/connpool.py,sha256=UzaBRjQc-uEcG9xm0N-vZtL1X6gMG4eaQo0WubVMqTk,56786
22
+ unaiverse/networking/node/node.py,sha256=jubFRGugdydsbGKO1NaYF7alcESPFQe0Meo2lAH1o0Y,147211
23
+ unaiverse/networking/node/profile.py,sha256=uRJyd10JQWzqemYUh-sVAfoC0PMVfTn3JbMJXF6BdwY,20245
24
+ unaiverse/networking/node/tokens.py,sha256=Cr_jQVMKlh6rElYaTxH_sYpq-iQ5Tu4syjxCBzTBnzU,5271
25
+ unaiverse/networking/p2p/__init__.py,sha256=qaTT3iUet7j9mVRgJloyXC3nj2t-ELGVb25AcnsJuK0,9499
26
+ unaiverse/networking/p2p/go.mod,sha256=4Ns2-PJmYPg7JWLGZ8QTUoZ9e7zMhrya8OkT8dd9TUo,5846
27
+ unaiverse/networking/p2p/go.sum,sha256=CB9nVc8EeN6-zCBVfPAm5sU4FsoTsYGJ355ed1af0Ro,52011
28
+ unaiverse/networking/p2p/golibp2p.py,sha256=ibVCLERzM2JgPP_A5FTooCoxYW5Zm2HBbzX28aQIFzo,2450
29
+ unaiverse/networking/p2p/golibp2p.pyi,sha256=BwPF8GnMdWy3IwCEhV3hxrvxRK4bSYZObmCCtjpx81s,3912
30
+ unaiverse/networking/p2p/lib.go,sha256=ud105hkf42I9TV4S8BmrVZTri6MWceV8lJX3DfPXPG0,108967
31
+ unaiverse/networking/p2p/lib_types.py,sha256=cHcwbQmLG67UvdXwbQzITQPq7oQGVKgM1rA7OIr2GNI,13759
32
+ unaiverse/networking/p2p/message_pb2.py,sha256=ZhLiyLJOIhbIFDAoVTtZBlCPt-zOmGBULwSVXKM02Yc,4172
33
+ unaiverse/networking/p2p/messages.py,sha256=QIZilzGHB_MSXsab91vjZ3qbyvJnS40AxMH7V7QgTqs,16565
34
+ unaiverse/networking/p2p/mylogger.py,sha256=cgT24kD6zy4iEJyi2eY4cdHEc6Dc9BrjFETUDI2Hl2Y,4774
35
+ unaiverse/networking/p2p/p2p.py,sha256=minbjoQIT8oIhXp-_sZaCN92mVMxClR072ZpeoEbgD4,42076
36
+ unaiverse/networking/p2p/proto-go/message.pb.go,sha256=9XVZ85zGoGlg6qaS0rfhNoKZKZU64bOswzrqHgY79ho,23830
37
+ unaiverse/streamlib/__init__.py,sha256=VpsL7-gwML7nbrMQumtEDpuEH4g7iNqQaCzd-zX49cQ,2447
38
+ unaiverse/streamlib/streamlib.py,sha256=yz6G8eez3VnF_fvA9G3KS-WCoLvPYlk0IdqdB9dDzOI,10366
39
+ unaiverse/utils/__init__.py,sha256=_iomQ_GviAS5c4ZVBrm1h_rLYWH-f-T9SI-b0697gn0,2464
40
+ unaiverse/utils/lone_wolf.json,sha256=c7Qkqm41NUDSomI3SP8aK8tFdrF44p4s_aP1v-qOPps,897
41
+ unaiverse/utils/misc.py,sha256=29bdbrqewn4maflkE1C9yfiIvaASqM8bjdWCDFuJ9vE,18241
42
+ unaiverse/utils/sandbox.py,sha256=SPLXmdRF3sIBy3FZeoIHMsdXnNXK_q_qZ2nilsWFNjw,14395
43
+ unaiverse-0.1.12.dist-info/licenses/LICENSE,sha256=DVQuDIgE45qn836wDaWnYhSdxoLXgpRRKH4RuTjpRZQ,10174
44
+ unaiverse-0.1.12.dist-info/METADATA,sha256=0nDgYn9sJ3C8IoNa0n_nOjJlP3MfzX83q-V2Fuz_zjg,18537
45
+ unaiverse-0.1.12.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
46
+ unaiverse-0.1.12.dist-info/top_level.txt,sha256=0rP09tH9hv17TDQs66OHbJaRSnADpZsDsODy6JVsTtw,10
47
+ unaiverse-0.1.12.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.10.2)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1,177 @@
1
+
2
+ Apache License
3
+ Version 2.0, January 2004
4
+ http://www.apache.org/licenses/
5
+
6
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7
+
8
+ 1. Definitions.
9
+
10
+ "License" shall mean the terms and conditions for use, reproduction,
11
+ and distribution as defined by Sections 1 through 9 of this document.
12
+
13
+ "Licensor" shall mean the copyright owner or entity authorized by
14
+ the copyright owner that is granting the License.
15
+
16
+ "Legal Entity" shall mean the union of the acting entity and all
17
+ other entities that control, are controlled by, or are under common
18
+ control with that entity. For the purposes of this definition,
19
+ "control" means (i) the power, direct or indirect, to cause the
20
+ direction or management of such entity, whether by contract or
21
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
22
+ outstanding shares, or (iii) beneficial ownership of such entity.
23
+
24
+ "You" (or "Your") shall mean an individual or Legal Entity
25
+ exercising permissions granted by this License.
26
+
27
+ "Source" form shall mean the preferred form for making modifications,
28
+ including but not limited to software source code, documentation
29
+ source, and configuration files.
30
+
31
+ "Object" form shall mean any form resulting from mechanical
32
+ transformation or translation of a Source form, including but
33
+ not limited to compiled object code, generated documentation,
34
+ and conversions to other media types.
35
+
36
+ "Work" shall mean the work of authorship, whether in Source or
37
+ Object form, made available under the License, as indicated by a
38
+ copyright notice that is included in or attached to the work
39
+ (an example is provided in the Appendix below).
40
+
41
+ "Derivative Works" shall mean any work, whether in Source or Object
42
+ form, that is based on (or derived from) the Work and for which the
43
+ editorial revisions, annotations, elaborations, or other modifications
44
+ represent, as a whole, an original work of authorship. For the purposes
45
+ of this License, Derivative Works shall not include works that remain
46
+ separable from, or merely link (or bind by name) to the interfaces of,
47
+ the Work and Derivative Works thereof.
48
+
49
+ "Contribution" shall mean any work of authorship, including
50
+ the original version of the Work and any modifications or additions
51
+ to that Work or Derivative Works thereof, that is intentionally
52
+ submitted to Licensor for inclusion in the Work by the copyright owner
53
+ or by an individual or Legal Entity authorized to submit on behalf of
54
+ the copyright owner. For the purposes of this definition, "submitted"
55
+ means any form of electronic, verbal, or written communication sent
56
+ to the Licensor or its representatives, including but not limited to
57
+ communication on electronic mailing lists, source code control systems,
58
+ and issue tracking systems that are managed by, or on behalf of, the
59
+ Licensor for the purpose of discussing and improving the Work, but
60
+ excluding communication that is conspicuously marked or otherwise
61
+ designated in writing by the copyright owner as "Not a Contribution."
62
+
63
+ "Contributor" shall mean Licensor and any individual or Legal Entity
64
+ on behalf of whom a Contribution has been received by Licensor and
65
+ subsequently incorporated within the Work.
66
+
67
+ 2. Grant of Copyright License. Subject to the terms and conditions of
68
+ this License, each Contributor hereby grants to You a perpetual,
69
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70
+ copyright license to reproduce, prepare Derivative Works of,
71
+ publicly display, publicly perform, sublicense, and distribute the
72
+ Work and such Derivative Works in Source or Object form.
73
+
74
+ 3. Grant of Patent License. Subject to the terms and conditions of
75
+ this License, each Contributor hereby grants to You a perpetual,
76
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77
+ (except as stated in this section) patent license to make, have made,
78
+ use, offer to sell, sell, import, and otherwise transfer the Work,
79
+ where such license applies only to those patent claims licensable
80
+ by such Contributor that are necessarily infringed by their
81
+ Contribution(s) alone or by combination of their Contribution(s)
82
+ with the Work to which such Contribution(s) was submitted. If You
83
+ institute patent litigation against any entity (including a
84
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
85
+ or a Contribution incorporated within the Work constitutes direct
86
+ or contributory patent infringement, then any patent licenses
87
+ granted to You under this License for that Work shall terminate
88
+ as of the date such litigation is filed.
89
+
90
+ 4. Redistribution. You may reproduce and distribute copies of the
91
+ Work or Derivative Works thereof in any medium, with or without
92
+ modifications, and in Source or Object form, provided that You
93
+ meet the following conditions:
94
+
95
+ (a) You must give any other recipients of the Work or
96
+ Derivative Works a copy of this License; and
97
+
98
+ (b) You must cause any modified files to carry prominent notices
99
+ stating that You changed the files; and
100
+
101
+ (c) You must retain, in the Source form of any Derivative Works
102
+ that You distribute, all copyright, patent, trademark, and
103
+ attribution notices from the Source form of the Work,
104
+ excluding those notices that do not pertain to any part of
105
+ the Derivative Works; and
106
+
107
+ (d) If the Work includes a "NOTICE" text file as part of its
108
+ distribution, then any Derivative Works that You distribute must
109
+ include a readable copy of the attribution notices contained
110
+ within such NOTICE file, excluding those notices that do not
111
+ pertain to any part of the Derivative Works, in at least one
112
+ of the following places: within a NOTICE text file distributed
113
+ as part of the Derivative Works; within the Source form or
114
+ documentation, if provided along with the Derivative Works; or,
115
+ within a display generated by the Derivative Works, if and
116
+ wherever such third-party notices normally appear. The contents
117
+ of the NOTICE file are for informational purposes only and
118
+ do not modify the License. You may add Your own attribution
119
+ notices within Derivative Works that You distribute, alongside
120
+ or as an addendum to the NOTICE text from the Work, provided
121
+ that such additional attribution notices cannot be construed
122
+ as modifying the License.
123
+
124
+ You may add Your own copyright statement to Your modifications and
125
+ may provide additional or different license terms and conditions
126
+ for use, reproduction, or distribution of Your modifications, or
127
+ for any such Derivative Works as a whole, provided Your use,
128
+ reproduction, and distribution of the Work otherwise complies with
129
+ the conditions stated in this License.
130
+
131
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
132
+ any Contribution intentionally submitted for inclusion in the Work
133
+ by You to the Licensor shall be under the terms and conditions of
134
+ this License, without any additional terms or conditions.
135
+ Notwithstanding the above, nothing herein shall supersede or modify
136
+ the terms of any separate license agreement you may have executed
137
+ with Licensor regarding such Contributions.
138
+
139
+ 6. Trademarks. This License does not grant permission to use the trade
140
+ names, trademarks, service marks, or product names of the Licensor,
141
+ except as required for reasonable and customary use in describing the
142
+ origin of the Work and reproducing the content of the NOTICE file.
143
+
144
+ 7. Disclaimer of Warranty. Unless required by applicable law or
145
+ agreed to in writing, Licensor provides the Work (and each
146
+ Contributor provides its Contributions) on an "AS IS" BASIS,
147
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148
+ implied, including, without limitation, any warranties or conditions
149
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150
+ PARTICULAR PURPOSE. You are solely responsible for determining the
151
+ appropriateness of using or redistributing the Work and assume any
152
+ risks associated with Your exercise of permissions under this License.
153
+
154
+ 8. Limitation of Liability. In no event and under no legal theory,
155
+ whether in tort (including negligence), contract, or otherwise,
156
+ unless required by applicable law (such as deliberate and grossly
157
+ negligent acts) or agreed to in writing, shall any Contributor be
158
+ liable to You for damages, including any direct, indirect, special,
159
+ incidental, or consequential damages of any character arising as a
160
+ result of this License or out of the use or inability to use the
161
+ Work (including but not limited to damages for loss of goodwill,
162
+ work stoppage, computer failure or malfunction, or any and all
163
+ other commercial damages or losses), even if such Contributor
164
+ has been advised of the possibility of such damages.
165
+
166
+ 9. Accepting Warranty or Additional Liability. While redistributing
167
+ the Work or Derivative Works thereof, You may choose to offer,
168
+ and charge a fee for, acceptance of support, warranty, indemnity,
169
+ or other liability obligations and/or rights consistent with this
170
+ License. However, in accepting such obligations, You may act only
171
+ on Your own behalf and on Your sole responsibility, not on behalf
172
+ of any other Contributor, and only if You agree to indemnify,
173
+ defend, and hold each Contributor harmless for any liability
174
+ incurred by, or claims asserted against, such Contributor by reason
175
+ of your accepting any such warranty or additional liability.
176
+
177
+ END OF TERMS AND CONDITIONS
@@ -0,0 +1 @@
1
+ unaiverse