umap-project 2.7.0__py3-none-any.whl → 2.7.0b0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of umap-project might be problematic. Click here for more details.
- umap/__init__.py +1 -1
- umap/locale/es/LC_MESSAGES/django.mo +0 -0
- umap/locale/es/LC_MESSAGES/django.po +128 -134
- umap/settings/base.py +1 -1
- umap/static/umap/css/contextmenu.css +1 -1
- umap/static/umap/css/importers.css +0 -4
- umap/static/umap/img/16.svg +184 -1
- umap/static/umap/img/24-white.svg +0 -1
- umap/static/umap/img/24.svg +0 -1
- umap/static/umap/img/source/16.svg +200 -753
- umap/static/umap/img/source/24-white.svg +2 -3
- umap/static/umap/img/source/24.svg +2 -3
- umap/static/umap/js/modules/browser.js +0 -47
- umap/static/umap/js/modules/caption.js +4 -10
- umap/static/umap/js/modules/data/layer.js +14 -26
- umap/static/umap/js/modules/importer.js +0 -3
- umap/static/umap/js/modules/importers/communesfr.js +2 -2
- umap/static/umap/js/modules/rendering/layers/classified.js +0 -2
- umap/static/umap/js/modules/rendering/ui.js +6 -28
- umap/static/umap/js/modules/share.js +3 -1
- umap/static/umap/js/modules/slideshow.js +1 -1
- umap/static/umap/js/modules/sync/engine.js +8 -14
- umap/static/umap/js/modules/sync/hlc.js +3 -3
- umap/static/umap/js/modules/sync/updaters.js +2 -14
- umap/static/umap/js/modules/tableeditor.js +1 -1
- umap/static/umap/js/modules/ui/contextmenu.js +2 -18
- umap/static/umap/js/modules/utils.js +4 -24
- umap/static/umap/js/umap.controls.js +10 -31
- umap/static/umap/js/umap.core.js +1 -1
- umap/static/umap/js/umap.js +23 -31
- umap/static/umap/locale/ca.js +4 -8
- umap/static/umap/locale/ca.json +4 -8
- umap/static/umap/locale/en.js +1 -5
- umap/static/umap/locale/en.json +1 -5
- umap/static/umap/locale/es.js +319 -330
- umap/static/umap/locale/es.json +319 -330
- umap/static/umap/locale/fr.js +1 -5
- umap/static/umap/locale/fr.json +1 -5
- umap/static/umap/map.css +7 -37
- umap/static/umap/unittests/hlc.js +3 -10
- umap/static/umap/unittests/utils.js +0 -24
- umap/static/umap/vars.css +1 -2
- umap/static/umap/vendors/colorbrewer/colorbrewer.js +317 -309
- umap/static/umap/vendors/dompurify/purify.es.js +16 -15
- umap/static/umap/vendors/dompurify/purify.es.mjs.map +1 -1
- umap/static/umap/vendors/locatecontrol/L.Control.Locate.min.js +2 -2
- umap/static/umap/vendors/locatecontrol/L.Control.Locate.min.js.map +1 -1
- umap/static/umap/vendors/simple-statistics/simple-statistics.min.js +1 -1
- umap/static/umap/vendors/simple-statistics/simple-statistics.min.js.map +1 -1
- umap/templates/umap/css.html +2 -0
- umap/templates/umap/js.html +1 -0
- umap/templates/umap/map_detail.html +2 -2
- umap/tests/fixtures/test_upload_data.csv +2 -2
- umap/tests/integration/test_browser.py +7 -69
- umap/tests/integration/test_caption.py +3 -3
- umap/tests/integration/test_datalayer.py +5 -1
- umap/tests/integration/test_edit_datalayer.py +2 -1
- umap/tests/integration/test_edit_map.py +1 -1
- umap/tests/integration/test_edit_marker.py +1 -1
- umap/tests/integration/test_facets_browser.py +3 -3
- umap/tests/integration/test_import.py +4 -0
- umap/tests/integration/test_map.py +4 -0
- umap/tests/integration/test_view_marker.py +0 -63
- umap/tests/test_map_views.py +0 -19
- {umap_project-2.7.0.dist-info → umap_project-2.7.0b0.dist-info}/METADATA +10 -14
- {umap_project-2.7.0.dist-info → umap_project-2.7.0b0.dist-info}/RECORD +69 -72
- umap/asgi.py +0 -15
- umap/static/umap/img/importers/cadastrefr.svg +0 -23
- umap/static/umap/js/modules/importers/cadastrefr.js +0 -62
- {umap_project-2.7.0.dist-info → umap_project-2.7.0b0.dist-info}/WHEEL +0 -0
- {umap_project-2.7.0.dist-info → umap_project-2.7.0b0.dist-info}/entry_points.txt +0 -0
- {umap_project-2.7.0.dist-info → umap_project-2.7.0b0.dist-info}/licenses/LICENSE +0 -0
|
@@ -1 +1 @@
|
|
|
1
|
-
{"version":3,"file":"simple-statistics.min.js","sources":["../src/sum.js","../src/mean.js","../src/sum_nth_power_deviations.js","../src/variance.js","../src/standard_deviation.js","../src/mode_sorted.js","../src/numeric_sort.js","../src/min.js","../src/max.js","../src/sum_simple.js","../src/quantile_sorted.js","../src/quickselect.js","../src/quantile.js","../src/quantile_rank_sorted.js","../src/interquartile_range.js","../src/median.js","../src/median_absolute_deviation.js","../src/shuffle_in_place.js","../src/shuffle.js","../src/sample.js","../src/make_matrix.js","../src/unique_count_sorted.js","../src/ckmeans.js","../src/sample_covariance.js","../src/sample_variance.js","../src/sample_standard_deviation.js","../src/sample_correlation.js","../src/combine_means.js","../src/mean_simple.js","../src/root_mean_square.js","../src/bayesian_classifier.js","../src/perceptron.js","../src/epsilon.js","../src/factorial.js","../src/gammaln.js","../src/chi_squared_distribution_table.js","../src/kernel_density_estimation.js","../src/standard_normal_table.js","../src/error_function.js","../src/inverse_error_function.js","../src/sign.js","../src/euclidean_distance.js","../src/k_means_cluster.js","../src/silhouette.js","../src/relative_error.js","../src/add_to_mean.js","../src/approx_equal.js","../src/bernoulli_distribution.js","../src/binomial_distribution.js","../src/bisect.js","../src/chi_squared_goodness_of_fit.js","../src/chunk.js","../src/coefficient_of_variation.js","../src/combinations.js","../src/combinations_replacement.js","../src/combine_variances.js","../src/cumulative_std_logistic_probability.js","../src/cumulative_std_normal_probability.js","../src/equal_interval_breaks.js","../src/extent.js","../src/extent_sorted.js","../src/gamma.js","../src/geometric_mean.js","../src/harmonic_mean.js","../src/jenks.js","../src/jenks_matrices.js","../src/jenks_breaks.js","../src/linear_regression.js","../src/linear_regression_line.js","../src/log_average.js","../src/logit.js","../src/max_sorted.js","../src/median_sorted.js","../src/min_sorted.js","../src/mode.js","../src/mode_fast.js","../src/permutation_test.js","../src/permutations_heap.js","../src/poisson_distribution.js","../src/probit.js","../src/product.js","../src/quantile_rank.js","../src/r_squared.js","../src/sample_kurtosis.js","../src/sample_rank_correlation.js","../src/sample_skewness.js","../src/sample_with_replacement.js","../src/silhouette_metric.js","../src/subtract_from_mean.js","../src/t_test.js","../src/t_test_two_sample.js","../src/wilcoxon_rank_sum.js","../src/z_score.js"],"sourcesContent":["/**\n * Our default sum is the [Kahan-Babuska algorithm](https://pdfs.semanticscholar.org/1760/7d467cda1d0277ad272deb2113533131dc09.pdf).\n * This method is an improvement over the classical\n * [Kahan summation algorithm](https://en.wikipedia.org/wiki/Kahan_summation_algorithm).\n * It aims at computing the sum of a list of numbers while correcting for\n * floating-point errors. Traditionally, sums are calculated as many\n * successive additions, each one with its own floating-point roundoff. These\n * losses in precision add up as the number of numbers increases. This alternative\n * algorithm is more accurate than the simple way of calculating sums by simple\n * addition.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x input\n * @return {number} sum of all input numbers\n * @example\n * sum([1, 2, 3]); // => 6\n */\nfunction sum(x) {\n // If the array is empty, we needn't bother computing its sum\n if (x.length === 0) {\n return 0;\n }\n\n // Initializing the sum as the first number in the array\n let sum = x[0];\n\n // Keeping track of the floating-point error correction\n let correction = 0;\n\n let transition;\n\n if (typeof sum !== \"number\") {\n return Number.NaN;\n }\n\n for (let i = 1; i < x.length; i++) {\n if (typeof x[i] !== \"number\") {\n return Number.NaN;\n }\n transition = sum + x[i];\n\n // Here we need to update the correction in a different fashion\n // if the new absolute value is greater than the absolute sum\n if (Math.abs(sum) >= Math.abs(x[i])) {\n correction += sum - transition + x[i];\n } else {\n correction += x[i] - transition + sum;\n }\n\n sum = transition;\n }\n\n // Returning the corrected sum\n return sum + correction;\n}\n\nexport default sum;\n","import sum from \"./sum.js\";\n\n/**\n * The mean, _also known as average_,\n * is the sum of all values over the number of values.\n * This is a [measure of central tendency](https://en.wikipedia.org/wiki/Central_tendency):\n * a method of finding a typical or central value of a set of numbers.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x sample of one or more data points\n * @throws {Error} if the length of x is less than one\n * @returns {number} mean\n * @example\n * mean([0, 10]); // => 5\n */\nfunction mean(x) {\n if (x.length === 0) {\n throw new Error(\"mean requires at least one data point\");\n }\n\n return sum(x) / x.length;\n}\n\nexport default mean;\n","import mean from \"./mean.js\";\n\n/**\n * The sum of deviations to the Nth power.\n * When n=2 it's the sum of squared deviations.\n * When n=3 it's the sum of cubed deviations.\n *\n * @param {Array<number>} x\n * @param {number} n power\n * @returns {number} sum of nth power deviations\n *\n * @example\n * var input = [1, 2, 3];\n * // since the variance of a set is the mean squared\n * // deviations, we can calculate that with sumNthPowerDeviations:\n * sumNthPowerDeviations(input, 2) / input.length;\n */\nfunction sumNthPowerDeviations(x, n) {\n const meanValue = mean(x);\n let sum = 0;\n let tempValue;\n let i;\n\n // This is an optimization: when n is 2 (we're computing a number squared),\n // multiplying the number by itself is significantly faster than using\n // the Math.pow method.\n if (n === 2) {\n for (i = 0; i < x.length; i++) {\n tempValue = x[i] - meanValue;\n sum += tempValue * tempValue;\n }\n } else {\n for (i = 0; i < x.length; i++) {\n sum += Math.pow(x[i] - meanValue, n);\n }\n }\n\n return sum;\n}\n\nexport default sumNthPowerDeviations;\n","import sumNthPowerDeviations from \"./sum_nth_power_deviations.js\";\n\n/**\n * The [variance](http://en.wikipedia.org/wiki/Variance)\n * is the sum of squared deviations from the mean.\n *\n * This is an implementation of variance, not sample variance:\n * see the `sampleVariance` method if you want a sample measure.\n *\n * @param {Array<number>} x a population of one or more data points\n * @returns {number} variance: a value greater than or equal to zero.\n * zero indicates that all values are identical.\n * @throws {Error} if x's length is 0\n * @example\n * variance([1, 2, 3, 4, 5, 6]); // => 2.9166666666666665\n */\nfunction variance(x) {\n if (x.length === 0) {\n throw new Error(\"variance requires at least one data point\");\n }\n\n // Find the mean of squared deviations between the\n // mean value and each value.\n return sumNthPowerDeviations(x, 2) / x.length;\n}\n\nexport default variance;\n","import variance from \"./variance.js\";\n\n/**\n * The [standard deviation](http://en.wikipedia.org/wiki/Standard_deviation)\n * is the square root of the variance. This is also known as the population\n * standard deviation. It's useful for measuring the amount\n * of variation or dispersion in a set of values.\n *\n * Standard deviation is only appropriate for full-population knowledge: for\n * samples of a population, {@link sampleStandardDeviation} is\n * more appropriate.\n *\n * @param {Array<number>} x input\n * @returns {number} standard deviation\n * @example\n * variance([2, 4, 4, 4, 5, 5, 7, 9]); // => 4\n * standardDeviation([2, 4, 4, 4, 5, 5, 7, 9]); // => 2\n */\nfunction standardDeviation(x) {\n if (x.length === 1) {\n return 0;\n }\n const v = variance(x);\n return Math.sqrt(v);\n}\n\nexport default standardDeviation;\n","/**\n * The [mode](https://en.wikipedia.org/wiki/Mode_%28statistics%29) is the number\n * that appears in a list the highest number of times.\n * There can be multiple modes in a list: in the event of a tie, this\n * algorithm will return the most recently seen mode.\n *\n * This is a [measure of central tendency](https://en.wikipedia.org/wiki/Central_tendency):\n * a method of finding a typical or central value of a set of numbers.\n *\n * This runs in `O(n)` because the input is sorted.\n *\n * @param {Array<number>} sorted a sample of one or more data points\n * @returns {number} mode\n * @throws {Error} if sorted is empty\n * @example\n * modeSorted([0, 0, 1]); // => 0\n */\nfunction modeSorted(sorted) {\n // Handle edge cases:\n // The mode of an empty list is undefined\n if (sorted.length === 0) {\n throw new Error(\"mode requires at least one data point\");\n }\n if (sorted.length === 1) {\n return sorted[0];\n }\n\n // This assumes it is dealing with an array of size > 1, since size\n // 0 and 1 are handled immediately. Hence it starts at index 1 in the\n // array.\n let last = sorted[0];\n // store the mode as we find new modes\n let value = Number.NaN;\n // store how many times we've seen the mode\n let maxSeen = 0;\n // how many times the current candidate for the mode\n // has been seen\n let seenThis = 1;\n\n // end at sorted.length + 1 to fix the case in which the mode is\n // the highest number that occurs in the sequence. the last iteration\n // compares sorted[i], which is undefined, to the highest number\n // in the series\n for (let i = 1; i < sorted.length + 1; i++) {\n // we're seeing a new number pass by\n if (sorted[i] !== last) {\n // the last number is the new mode since we saw it more\n // often than the old one\n if (seenThis > maxSeen) {\n maxSeen = seenThis;\n value = last;\n }\n seenThis = 1;\n last = sorted[i];\n // if this isn't a new number, it's one more occurrence of\n // the potential mode\n } else {\n seenThis++;\n }\n }\n return value;\n}\n\nexport default modeSorted;\n","/**\n * Sort an array of numbers by their numeric value, ensuring that the\n * array is not changed in place.\n *\n * This is necessary because the default behavior of .sort\n * in JavaScript is to sort arrays as string values\n *\n * [1, 10, 12, 102, 20].sort()\n * // output\n * [1, 10, 102, 12, 20]\n *\n * @param {Array<number>} x input array\n * @return {Array<number>} sorted array\n * @private\n * @example\n * numericSort([3, 2, 1]) // => [1, 2, 3]\n */\nfunction numericSort(x) {\n return (\n x\n // ensure the array is not changed in-place\n .slice()\n // comparator function that treats input as numeric\n .sort(function (a, b) {\n return a - b;\n })\n );\n}\n\nexport default numericSort;\n","/**\n * The min is the lowest number in the array.\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x sample of one or more data points\n * @throws {Error} if the length of x is less than one\n * @returns {number} minimum value\n * @example\n * min([1, 5, -10, 100, 2]); // => -10\n */\nfunction min(x) {\n if (x.length === 0) {\n throw new Error(\"min requires at least one data point\");\n }\n\n let value = x[0];\n for (let i = 1; i < x.length; i++) {\n if (x[i] < value) {\n value = x[i];\n }\n }\n return value;\n}\n\nexport default min;\n","/**\n * This computes the maximum number in an array.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x sample of one or more data points\n * @returns {number} maximum value\n * @throws {Error} if the length of x is less than one\n * @example\n * max([1, 2, 3, 4]);\n * // => 4\n */\nfunction max(x) {\n if (x.length === 0) {\n throw new Error(\"max requires at least one data point\");\n }\n\n let value = x[0];\n for (let i = 1; i < x.length; i++) {\n if (x[i] > value) {\n value = x[i];\n }\n }\n return value;\n}\n\nexport default max;\n","/**\n * The simple [sum](https://en.wikipedia.org/wiki/Summation) of an array\n * is the result of adding all numbers together, starting from zero.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x input\n * @return {number} sum of all input numbers\n * @example\n * sumSimple([1, 2, 3]); // => 6\n */\nfunction sumSimple(x) {\n let value = 0;\n for (let i = 0; i < x.length; i++) {\n if (typeof x[i] !== \"number\") {\n return Number.NaN;\n }\n value += x[i];\n }\n return value;\n}\n\nexport default sumSimple;\n","/**\n * This is the internal implementation of quantiles: when you know\n * that the order is sorted, you don't need to re-sort it, and the computations\n * are faster.\n *\n * @param {Array<number>} x sample of one or more data points\n * @param {number} p desired quantile: a number between 0 to 1, inclusive\n * @returns {number} quantile value\n * @throws {Error} if p ix outside of the range from 0 to 1\n * @throws {Error} if x is empty\n * @example\n * quantileSorted([3, 6, 7, 8, 8, 9, 10, 13, 15, 16, 20], 0.5); // => 9\n */\nfunction quantileSorted(x, p) {\n const idx = x.length * p;\n if (x.length === 0) {\n throw new Error(\"quantile requires at least one data point.\");\n } else if (p < 0 || p > 1) {\n throw new Error(\"quantiles must be between 0 and 1\");\n } else if (p === 1) {\n // If p is 1, directly return the last element\n return x[x.length - 1];\n } else if (p === 0) {\n // If p is 0, directly return the first element\n return x[0];\n } else if (idx % 1 !== 0) {\n // If p is not integer, return the next element in array\n return x[Math.ceil(idx) - 1];\n } else if (x.length % 2 === 0) {\n // If the list has even-length, we'll take the average of this number\n // and the next value, if there is one\n return (x[idx - 1] + x[idx]) / 2;\n } else {\n // Finally, in the simple case of an integer value\n // with an odd-length list, return the x value at the index.\n return x[idx];\n }\n}\n\nexport default quantileSorted;\n","/**\n * Rearrange items in `arr` so that all items in `[left, k]` range are the smallest.\n * The `k`-th element will have the `(k - left + 1)`-th smallest value in `[left, right]`.\n *\n * Implements Floyd-Rivest selection algorithm https://en.wikipedia.org/wiki/Floyd-Rivest_algorithm\n *\n * @param {Array<number>} arr input array\n * @param {number} k pivot index\n * @param {number} [left] left index\n * @param {number} [right] right index\n * @returns {void} mutates input array\n * @example\n * var arr = [65, 28, 59, 33, 21, 56, 22, 95, 50, 12, 90, 53, 28, 77, 39];\n * quickselect(arr, 8);\n * // = [39, 28, 28, 33, 21, 12, 22, 50, 53, 56, 59, 65, 90, 77, 95]\n */\nfunction quickselect(arr, k, left, right) {\n left = left || 0;\n right = right || arr.length - 1;\n\n while (right > left) {\n // 600 and 0.5 are arbitrary constants chosen in the original paper to minimize execution time\n if (right - left > 600) {\n const n = right - left + 1;\n const m = k - left + 1;\n const z = Math.log(n);\n const s = 0.5 * Math.exp((2 * z) / 3);\n let sd = 0.5 * Math.sqrt((z * s * (n - s)) / n);\n if (m - n / 2 < 0) sd *= -1;\n const newLeft = Math.max(left, Math.floor(k - (m * s) / n + sd));\n const newRight = Math.min(\n right,\n Math.floor(k + ((n - m) * s) / n + sd),\n );\n quickselect(arr, k, newLeft, newRight);\n }\n\n const t = arr[k];\n let i = left;\n let j = right;\n\n swap(arr, left, k);\n if (arr[right] > t) swap(arr, left, right);\n\n while (i < j) {\n swap(arr, i, j);\n i++;\n j--;\n while (arr[i] < t) i++;\n while (arr[j] > t) j--;\n }\n\n if (arr[left] === t) swap(arr, left, j);\n else {\n j++;\n swap(arr, j, right);\n }\n\n if (j <= k) left = j + 1;\n if (k <= j) right = j - 1;\n }\n}\n\nfunction swap(arr, i, j) {\n const tmp = arr[i];\n arr[i] = arr[j];\n arr[j] = tmp;\n}\n\nexport default quickselect;\n","import quantileSorted from \"./quantile_sorted.js\";\nimport quickselect from \"./quickselect.js\";\n\n/**\n * The [quantile](https://en.wikipedia.org/wiki/Quantile):\n * this is a population quantile, since we assume to know the entire\n * dataset in this library. This is an implementation of the\n * [Quantiles of a Population](http://en.wikipedia.org/wiki/Quantile#Quantiles_of_a_population)\n * algorithm from wikipedia.\n *\n * Sample is a one-dimensional array of numbers,\n * and p is either a decimal number from 0 to 1 or an array of decimal\n * numbers from 0 to 1.\n * In terms of a k/q quantile, p = k/q - it's just dealing with fractions or dealing\n * with decimal values.\n * When p is an array, the result of the function is also an array containing the appropriate\n * quantiles in input order\n *\n * @param {Array<number>} x sample of one or more numbers\n * @param {Array<number> | number} p the desired quantile, as a number between 0 and 1\n * @returns {number} quantile\n * @example\n * quantile([3, 6, 7, 8, 8, 9, 10, 13, 15, 16, 20], 0.5); // => 9\n */\nfunction quantile(x, p) {\n const copy = x.slice();\n\n if (Array.isArray(p)) {\n // rearrange elements so that each element corresponding to a requested\n // quantile is on a place it would be if the array was fully sorted\n multiQuantileSelect(copy, p);\n // Initialize the result array\n const results = [];\n // For each requested quantile\n for (let i = 0; i < p.length; i++) {\n results[i] = quantileSorted(copy, p[i]);\n }\n return results;\n } else {\n const idx = quantileIndex(copy.length, p);\n quantileSelect(copy, idx, 0, copy.length - 1);\n return quantileSorted(copy, p);\n }\n}\n\nfunction quantileSelect(arr, k, left, right) {\n if (k % 1 === 0) {\n quickselect(arr, k, left, right);\n } else {\n k = Math.floor(k);\n quickselect(arr, k, left, right);\n quickselect(arr, k + 1, k + 1, right);\n }\n}\n\nfunction multiQuantileSelect(arr, p) {\n const indices = [0];\n for (let i = 0; i < p.length; i++) {\n indices.push(quantileIndex(arr.length, p[i]));\n }\n indices.push(arr.length - 1);\n indices.sort(compare);\n\n const stack = [0, indices.length - 1];\n\n while (stack.length) {\n const r = Math.ceil(stack.pop());\n const l = Math.floor(stack.pop());\n if (r - l <= 1) continue;\n\n const m = Math.floor((l + r) / 2);\n quantileSelect(\n arr,\n indices[m],\n Math.floor(indices[l]),\n Math.ceil(indices[r]),\n );\n\n stack.push(l, m, m, r);\n }\n}\n\nfunction compare(a, b) {\n return a - b;\n}\n\nfunction quantileIndex(len, p) {\n const idx = len * p;\n if (p === 1) {\n // If p is 1, directly return the last index\n return len - 1;\n } else if (p === 0) {\n // If p is 0, directly return the first index\n return 0;\n } else if (idx % 1 !== 0) {\n // If index is not integer, return the next index in array\n return Math.ceil(idx) - 1;\n } else if (len % 2 === 0) {\n // If the list has even-length, we'll return the middle of two indices\n // around quantile to indicate that we need an average value of the two\n return idx - 0.5;\n } else {\n // Finally, in the simple case of an integer index\n // with an odd-length list, return the index\n return idx;\n }\n}\n\nexport default quantile;\n","/* eslint no-bitwise: 0 */\n\n/**\n * This function returns the quantile in which one would find the given value in\n * the given array. With a sorted array, leveraging binary search, we can find\n * this information in logarithmic time.\n *\n * @param {Array<number>} x input\n * @returns {number} value value\n * @example\n * quantileRankSorted([1, 2, 3, 4], 3); // => 0.75\n * quantileRankSorted([1, 2, 3, 3, 4], 3); // => 0.7\n * quantileRankSorted([1, 2, 3, 4], 6); // => 1\n * quantileRankSorted([1, 2, 3, 3, 5], 4); // => 0.8\n */\nfunction quantileRankSorted(x, value) {\n // Value is lesser than any value in the array\n if (value < x[0]) {\n return 0;\n }\n\n // Value is greater than any value in the array\n if (value > x[x.length - 1]) {\n return 1;\n }\n\n let l = lowerBound(x, value);\n\n // Value is not in the array\n if (x[l] !== value) {\n return l / x.length;\n }\n\n l++;\n\n const u = upperBound(x, value);\n\n // The value exists only once in the array\n if (u === l) {\n return l / x.length;\n }\n\n // Here, we are basically computing the mean of the range of indices\n // containing our searched value. But, instead, of initializing an\n // array and looping over it, there is a dedicated math formula that\n // we apply below to get the result.\n const r = u - l + 1;\n const sum = (r * (u + l)) / 2;\n const mean = sum / r;\n\n return mean / x.length;\n}\n\nfunction lowerBound(x, value) {\n let mid = 0;\n let lo = 0;\n let hi = x.length;\n\n while (lo < hi) {\n mid = (lo + hi) >>> 1;\n\n if (value <= x[mid]) {\n hi = mid;\n } else {\n lo = -~mid;\n }\n }\n\n return lo;\n}\n\nfunction upperBound(x, value) {\n let mid = 0;\n let lo = 0;\n let hi = x.length;\n\n while (lo < hi) {\n mid = (lo + hi) >>> 1;\n\n if (value >= x[mid]) {\n lo = -~mid;\n } else {\n hi = mid;\n }\n }\n\n return lo;\n}\n\nexport default quantileRankSorted;\n","import quantile from \"./quantile.js\";\n\n/**\n * The [Interquartile range](http://en.wikipedia.org/wiki/Interquartile_range) is\n * a measure of statistical dispersion, or how scattered, spread, or\n * concentrated a distribution is. It's computed as the difference between\n * the third quartile and first quartile.\n *\n * @param {Array<number>} x sample of one or more numbers\n * @returns {number} interquartile range: the span between lower and upper quartile,\n * 0.25 and 0.75\n * @example\n * interquartileRange([0, 1, 2, 3]); // => 2\n */\nfunction interquartileRange(x) {\n // Interquartile range is the span between the upper quartile,\n // at `0.75`, and lower quartile, `0.25`\n const q1 = quantile(x, 0.75);\n const q2 = quantile(x, 0.25);\n\n if (typeof q1 === \"number\" && typeof q2 === \"number\") {\n return q1 - q2;\n }\n}\n\nexport default interquartileRange;\n","import quantile from \"./quantile.js\";\n\n/**\n * The [median](http://en.wikipedia.org/wiki/Median) is\n * the middle number of a list. This is often a good indicator of 'the middle'\n * when there are outliers that skew the `mean()` value.\n * This is a [measure of central tendency](https://en.wikipedia.org/wiki/Central_tendency):\n * a method of finding a typical or central value of a set of numbers.\n *\n * The median isn't necessarily one of the elements in the list: the value\n * can be the average of two elements if the list has an even length\n * and the two central values are different.\n *\n * @param {Array<number>} x input\n * @returns {number} median value\n * @example\n * median([10, 2, 5, 100, 2, 1]); // => 3.5\n */\nfunction median(x) {\n return +quantile(x, 0.5);\n}\n\nexport default median;\n","import median from \"./median.js\";\n\n/**\n * The [Median Absolute Deviation](http://en.wikipedia.org/wiki/Median_absolute_deviation) is\n * a robust measure of statistical\n * dispersion. It is more resilient to outliers than the standard deviation.\n *\n * @param {Array<number>} x input array\n * @returns {number} median absolute deviation\n * @example\n * medianAbsoluteDeviation([1, 1, 2, 2, 4, 6, 9]); // => 1\n */\nfunction medianAbsoluteDeviation(x) {\n const medianValue = median(x);\n const medianAbsoluteDeviations = [];\n\n // Make a list of absolute deviations from the median\n for (let i = 0; i < x.length; i++) {\n medianAbsoluteDeviations.push(Math.abs(x[i] - medianValue));\n }\n\n // Find the median value of that list\n return median(medianAbsoluteDeviations);\n}\n\nexport default medianAbsoluteDeviation;\n","/**\n * A [Fisher-Yates shuffle](http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle)\n * in-place - which means that it **will change the order of the original\n * array by reference**.\n *\n * This is an algorithm that generates a random [permutation](https://en.wikipedia.org/wiki/Permutation)\n * of a set.\n *\n * @param {Array} x sample of one or more numbers\n * @param {Function} [randomSource=Math.random] an optional entropy source that\n * returns numbers between 0 inclusive and 1 exclusive: the range [0, 1)\n * @returns {Array} x\n * @example\n * var x = [1, 2, 3, 4];\n * shuffleInPlace(x);\n * // x is shuffled to a value like [2, 1, 4, 3]\n */\nfunction shuffleInPlace(x, randomSource) {\n // a custom random number source can be provided if you want to use\n // a fixed seed or another random number generator, like\n // [random-js](https://www.npmjs.org/package/random-js)\n randomSource = randomSource || Math.random;\n\n // store the current length of the x to determine\n // when no elements remain to shuffle.\n let length = x.length;\n\n // temporary is used to hold an item when it is being\n // swapped between indices.\n let temporary;\n\n // The index to swap at each stage.\n let index;\n\n // While there are still items to shuffle\n while (length > 0) {\n // choose a random index within the subset of the array\n // that is not yet shuffled\n index = Math.floor(randomSource() * length--);\n\n // store the value that we'll move temporarily\n temporary = x[length];\n\n // swap the value at `x[length]` with `x[index]`\n x[length] = x[index];\n x[index] = temporary;\n }\n\n return x;\n}\n\nexport default shuffleInPlace;\n","import shuffleInPlace from \"./shuffle_in_place.js\";\n\n/**\n * A [Fisher-Yates shuffle](http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle)\n * is a fast way to create a random permutation of a finite set. This is\n * a function around `shuffle_in_place` that adds the guarantee that\n * it will not modify its input.\n *\n * @param {Array} x sample of 0 or more numbers\n * @param {Function} [randomSource=Math.random] an optional entropy source that\n * returns numbers between 0 inclusive and 1 exclusive: the range [0, 1)\n * @return {Array} shuffled version of input\n * @example\n * var shuffled = shuffle([1, 2, 3, 4]);\n * shuffled; // = [2, 3, 1, 4] or any other random permutation\n */\nfunction shuffle(x, randomSource) {\n // slice the original array so that it is not modified\n const sample = x.slice();\n\n // and then shuffle that shallow-copied array, in place\n return shuffleInPlace(sample, randomSource);\n}\n\nexport default shuffle;\n","import shuffle from \"./shuffle.js\";\n\n/**\n * Create a [simple random sample](http://en.wikipedia.org/wiki/Simple_random_sample)\n * from a given array of `n` elements.\n *\n * The sampled values will be in any order, not necessarily the order\n * they appear in the input.\n *\n * @param {Array<any>} x input array. can contain any type\n * @param {number} n count of how many elements to take\n * @param {Function} [randomSource=Math.random] an optional entropy source that\n * returns numbers between 0 inclusive and 1 exclusive: the range [0, 1)\n * @return {Array} subset of n elements in original array\n *\n * @example\n * var values = [1, 2, 4, 5, 6, 7, 8, 9];\n * sample(values, 3); // returns 3 random values, like [2, 5, 8];\n */\nfunction sample(x, n, randomSource) {\n // shuffle the original array using a fisher-yates shuffle\n const shuffled = shuffle(x, randomSource);\n\n // and then return a subset of it - the first `n` elements.\n return shuffled.slice(0, n);\n}\n\nexport default sample;\n","/**\n * Create a new column x row matrix.\n *\n * @private\n * @param {number} columns\n * @param {number} rows\n * @return {Array<Array<number>>} matrix\n * @example\n * makeMatrix(10, 10);\n */\nfunction makeMatrix(columns, rows) {\n const matrix = [];\n for (let i = 0; i < columns; i++) {\n const column = [];\n for (let j = 0; j < rows; j++) {\n column.push(0);\n }\n matrix.push(column);\n }\n return matrix;\n}\n\nexport default makeMatrix;\n","/**\n * For a sorted input, counting the number of unique values\n * is possible in constant time and constant memory. This is\n * a simple implementation of the algorithm.\n *\n * Values are compared with `===`, so objects and non-primitive objects\n * are not handled in any special way.\n *\n * @param {Array<*>} x an array of any kind of value\n * @returns {number} count of unique values\n * @example\n * uniqueCountSorted([1, 2, 3]); // => 3\n * uniqueCountSorted([1, 1, 1]); // => 1\n */\nfunction uniqueCountSorted(x) {\n let uniqueValueCount = 0;\n let lastSeenValue;\n for (let i = 0; i < x.length; i++) {\n if (i === 0 || x[i] !== lastSeenValue) {\n lastSeenValue = x[i];\n uniqueValueCount++;\n }\n }\n return uniqueValueCount;\n}\n\nexport default uniqueCountSorted;\n","import makeMatrix from \"./make_matrix.js\";\nimport numericSort from \"./numeric_sort.js\";\nimport uniqueCountSorted from \"./unique_count_sorted.js\";\n\n/**\n * Generates incrementally computed values based on the sums and sums of\n * squares for the data array\n *\n * @private\n * @param {number} j\n * @param {number} i\n * @param {Array<number>} sums\n * @param {Array<number>} sumsOfSquares\n * @return {number}\n * @example\n * ssq(0, 1, [-1, 0, 2], [1, 1, 5]);\n */\nfunction ssq(j, i, sums, sumsOfSquares) {\n let sji; // s(j, i)\n if (j > 0) {\n const muji = (sums[i] - sums[j - 1]) / (i - j + 1); // mu(j, i)\n sji =\n sumsOfSquares[i] - sumsOfSquares[j - 1] - (i - j + 1) * muji * muji;\n } else {\n sji = sumsOfSquares[i] - (sums[i] * sums[i]) / (i + 1);\n }\n if (sji < 0) {\n return 0;\n }\n return sji;\n}\n\n/**\n * Function that recursively divides and conquers computations\n * for cluster j\n *\n * @private\n * @param {number} iMin Minimum index in cluster to be computed\n * @param {number} iMax Maximum index in cluster to be computed\n * @param {number} cluster Index of the cluster currently being computed\n * @param {Array<Array<number>>} matrix\n * @param {Array<Array<number>>} backtrackMatrix\n * @param {Array<number>} sums\n * @param {Array<number>} sumsOfSquares\n */\nfunction fillMatrixColumn(\n iMin,\n iMax,\n cluster,\n matrix,\n backtrackMatrix,\n sums,\n sumsOfSquares,\n) {\n if (iMin > iMax) {\n return;\n }\n\n // Start at midpoint between iMin and iMax\n const i = Math.floor((iMin + iMax) / 2);\n\n matrix[cluster][i] = matrix[cluster - 1][i - 1];\n backtrackMatrix[cluster][i] = i;\n\n let jlow = cluster; // the lower end for j\n\n if (iMin > cluster) {\n jlow = Math.max(jlow, backtrackMatrix[cluster][iMin - 1] || 0);\n }\n jlow = Math.max(jlow, backtrackMatrix[cluster - 1][i] || 0);\n\n let jhigh = i - 1; // the upper end for j\n if (iMax < matrix[0].length - 1) {\n /* c8 ignore start */\n jhigh = Math.min(jhigh, backtrackMatrix[cluster][iMax + 1] || 0);\n /* c8 ignore end */\n }\n\n let sji;\n let sjlowi;\n let ssqjlow;\n let ssqj;\n for (let j = jhigh; j >= jlow; --j) {\n sji = ssq(j, i, sums, sumsOfSquares);\n\n if (sji + matrix[cluster - 1][jlow - 1] >= matrix[cluster][i]) {\n break;\n }\n\n // Examine the lower bound of the cluster border\n sjlowi = ssq(jlow, i, sums, sumsOfSquares);\n\n ssqjlow = sjlowi + matrix[cluster - 1][jlow - 1];\n\n if (ssqjlow < matrix[cluster][i]) {\n // Shrink the lower bound\n matrix[cluster][i] = ssqjlow;\n backtrackMatrix[cluster][i] = jlow;\n }\n jlow++;\n\n ssqj = sji + matrix[cluster - 1][j - 1];\n if (ssqj < matrix[cluster][i]) {\n matrix[cluster][i] = ssqj;\n backtrackMatrix[cluster][i] = j;\n }\n }\n\n fillMatrixColumn(\n iMin,\n i - 1,\n cluster,\n matrix,\n backtrackMatrix,\n sums,\n sumsOfSquares,\n );\n fillMatrixColumn(\n i + 1,\n iMax,\n cluster,\n matrix,\n backtrackMatrix,\n sums,\n sumsOfSquares,\n );\n}\n\n/**\n * Initializes the main matrices used in Ckmeans and kicks\n * off the divide and conquer cluster computation strategy\n *\n * @private\n * @param {Array<number>} data sorted array of values\n * @param {Array<Array<number>>} matrix\n * @param {Array<Array<number>>} backtrackMatrix\n */\nfunction fillMatrices(data, matrix, backtrackMatrix) {\n const nValues = matrix[0].length;\n\n // Shift values by the median to improve numeric stability\n const shift = data[Math.floor(nValues / 2)];\n\n // Cumulative sum and cumulative sum of squares for all values in data array\n const sums = [];\n const sumsOfSquares = [];\n\n // Initialize first column in matrix & backtrackMatrix\n for (let i = 0, shiftedValue; i < nValues; ++i) {\n shiftedValue = data[i] - shift;\n if (i === 0) {\n sums.push(shiftedValue);\n sumsOfSquares.push(shiftedValue * shiftedValue);\n } else {\n sums.push(sums[i - 1] + shiftedValue);\n sumsOfSquares.push(\n sumsOfSquares[i - 1] + shiftedValue * shiftedValue,\n );\n }\n\n // Initialize for cluster = 0\n matrix[0][i] = ssq(0, i, sums, sumsOfSquares);\n backtrackMatrix[0][i] = 0;\n }\n\n // Initialize the rest of the columns\n let iMin;\n for (let cluster = 1; cluster < matrix.length; ++cluster) {\n if (cluster < matrix.length - 1) {\n iMin = cluster;\n } else {\n // No need to compute matrix[K-1][0] ... matrix[K-1][N-2]\n iMin = nValues - 1;\n }\n\n fillMatrixColumn(\n iMin,\n nValues - 1,\n cluster,\n matrix,\n backtrackMatrix,\n sums,\n sumsOfSquares,\n );\n }\n}\n\n/**\n * Ckmeans clustering is an improvement on heuristic-based clustering\n * approaches like Jenks. The algorithm was developed in\n * [Haizhou Wang and Mingzhou Song](http://journal.r-project.org/archive/2011-2/RJournal_2011-2_Wang+Song.pdf)\n * as a [dynamic programming](https://en.wikipedia.org/wiki/Dynamic_programming) approach\n * to the problem of clustering numeric data into groups with the least\n * within-group sum-of-squared-deviations.\n *\n * Minimizing the difference within groups - what Wang & Song refer to as\n * `withinss`, or within sum-of-squares, means that groups are optimally\n * homogenous within and the data is split into representative groups.\n * This is very useful for visualization, where you may want to represent\n * a continuous variable in discrete color or style groups. This function\n * can provide groups that emphasize differences between data.\n *\n * Being a dynamic approach, this algorithm is based on two matrices that\n * store incrementally-computed values for squared deviations and backtracking\n * indexes.\n *\n * This implementation is based on Ckmeans 3.4.6, which introduced a new divide\n * and conquer approach that improved runtime from O(kn^2) to O(kn log(n)).\n *\n * Unlike the [original implementation](https://cran.r-project.org/web/packages/Ckmeans.1d.dp/index.html),\n * this implementation does not include any code to automatically determine\n * the optimal number of clusters: this information needs to be explicitly\n * provided.\n *\n * ### References\n * _Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic\n * Programming_ Haizhou Wang and Mingzhou Song ISSN 2073-4859\n *\n * from The R Journal Vol. 3/2, December 2011\n * @param {Array<number>} x input data, as an array of number values\n * @param {number} nClusters number of desired classes. This cannot be\n * greater than the number of values in the data array.\n * @returns {Array<Array<number>>} clustered input\n * @throws {Error} if the number of requested clusters is higher than the size of the data\n * @example\n * ckmeans([-1, 2, -1, 2, 4, 5, 6, -1, 2, -1], 3);\n * // The input, clustered into groups of similar numbers.\n * //= [[-1, -1, -1, -1], [2, 2, 2], [4, 5, 6]]);\n */\nfunction ckmeans(x, nClusters) {\n if (nClusters > x.length) {\n throw new Error(\n \"cannot generate more classes than there are data values\",\n );\n }\n\n const sorted = numericSort(x);\n // we'll use this as the maximum number of clusters\n const uniqueCount = uniqueCountSorted(sorted);\n\n // if all of the input values are identical, there's one cluster\n // with all of the input in it.\n if (uniqueCount === 1) {\n return [sorted];\n }\n\n // named 'S' originally\n const matrix = makeMatrix(nClusters, sorted.length);\n // named 'J' originally\n const backtrackMatrix = makeMatrix(nClusters, sorted.length);\n\n // This is a dynamic programming way to solve the problem of minimizing\n // within-cluster sum of squares. It's similar to linear regression\n // in this way, and this calculation incrementally computes the\n // sum of squares that are later read.\n fillMatrices(sorted, matrix, backtrackMatrix);\n\n // The real work of Ckmeans clustering happens in the matrix generation:\n // the generated matrices encode all possible clustering combinations, and\n // once they're generated we can solve for the best clustering groups\n // very quickly.\n const clusters = [];\n let clusterRight = backtrackMatrix[0].length - 1;\n\n // Backtrack the clusters from the dynamic programming matrix. This\n // starts at the bottom-right corner of the matrix (if the top-left is 0, 0),\n // and moves the cluster target with the loop.\n for (let cluster = backtrackMatrix.length - 1; cluster >= 0; cluster--) {\n const clusterLeft = backtrackMatrix[cluster][clusterRight];\n\n // fill the cluster from the sorted input by taking a slice of the\n // array. the backtrack matrix makes this easy - it stores the\n // indexes where the cluster should start and end.\n clusters[cluster] = sorted.slice(clusterLeft, clusterRight + 1);\n\n if (cluster > 0) {\n clusterRight = clusterLeft - 1;\n }\n }\n\n return clusters;\n}\n\nexport default ckmeans;\n","import mean from \"./mean.js\";\n\n/**\n * [Sample covariance](https://en.wikipedia.org/wiki/Sample_mean_and_covariance) of two datasets:\n * how much do the two datasets move together?\n * x and y are two datasets, represented as arrays of numbers.\n *\n * @param {Array<number>} x a sample of two or more data points\n * @param {Array<number>} y a sample of two or more data points\n * @throws {Error} if x and y do not have equal lengths\n * @throws {Error} if x or y have length of one or less\n * @returns {number} sample covariance\n * @example\n * sampleCovariance([1, 2, 3, 4, 5, 6], [6, 5, 4, 3, 2, 1]); // => -3.5\n */\nfunction sampleCovariance(x, y) {\n // The two datasets must have the same length which must be more than 1\n if (x.length !== y.length) {\n throw new Error(\"sampleCovariance requires samples with equal lengths\");\n }\n\n if (x.length < 2) {\n throw new Error(\n \"sampleCovariance requires at least two data points in each sample\",\n );\n }\n\n // determine the mean of each dataset so that we can judge each\n // value of the dataset fairly as the difference from the mean. this\n // way, if one dataset is [1, 2, 3] and [2, 3, 4], their covariance\n // does not suffer because of the difference in absolute values\n const xmean = mean(x);\n const ymean = mean(y);\n let sum = 0;\n\n // for each pair of values, the covariance increases when their\n // difference from the mean is associated - if both are well above\n // or if both are well below\n // the mean, the covariance increases significantly.\n for (let i = 0; i < x.length; i++) {\n sum += (x[i] - xmean) * (y[i] - ymean);\n }\n\n // this is Bessels' Correction: an adjustment made to sample statistics\n // that allows for the reduced degree of freedom entailed in calculating\n // values from samples rather than complete populations.\n const besselsCorrection = x.length - 1;\n\n // the covariance is weighted by the length of the datasets.\n return sum / besselsCorrection;\n}\n\nexport default sampleCovariance;\n","import sumNthPowerDeviations from \"./sum_nth_power_deviations.js\";\n\n/**\n * The [sample variance](https://en.wikipedia.org/wiki/Variance#Sample_variance)\n * is the sum of squared deviations from the mean. The sample variance\n * is distinguished from the variance by the usage of [Bessel's Correction](https://en.wikipedia.org/wiki/Bessel's_correction):\n * instead of dividing the sum of squared deviations by the length of the input,\n * it is divided by the length minus one. This corrects the bias in estimating\n * a value from a set that you don't know if full.\n *\n * References:\n * * [Wolfram MathWorld on Sample Variance](http://mathworld.wolfram.com/SampleVariance.html)\n *\n * @param {Array<number>} x a sample of two or more data points\n * @throws {Error} if the length of x is less than 2\n * @return {number} sample variance\n * @example\n * sampleVariance([1, 2, 3, 4, 5]); // => 2.5\n */\nfunction sampleVariance(x) {\n if (x.length < 2) {\n throw new Error(\"sampleVariance requires at least two data points\");\n }\n\n const sumSquaredDeviationsValue = sumNthPowerDeviations(x, 2);\n\n // this is Bessels' Correction: an adjustment made to sample statistics\n // that allows for the reduced degree of freedom entailed in calculating\n // values from samples rather than complete populations.\n const besselsCorrection = x.length - 1;\n\n // Find the mean value of that list\n return sumSquaredDeviationsValue / besselsCorrection;\n}\n\nexport default sampleVariance;\n","import sampleVariance from \"./sample_variance.js\";\n\n/**\n * The [sample standard deviation](http://en.wikipedia.org/wiki/Standard_deviation#Sample_standard_deviation)\n * is the square root of the sample variance.\n *\n * @param {Array<number>} x input array\n * @returns {number} sample standard deviation\n * @example\n * sampleStandardDeviation([2, 4, 4, 4, 5, 5, 7, 9]).toFixed(2);\n * // => '2.14'\n */\nfunction sampleStandardDeviation(x) {\n const sampleVarianceX = sampleVariance(x);\n return Math.sqrt(sampleVarianceX);\n}\n\nexport default sampleStandardDeviation;\n","import sampleCovariance from \"./sample_covariance.js\";\nimport sampleStandardDeviation from \"./sample_standard_deviation.js\";\n\n/**\n * The [correlation](http://en.wikipedia.org/wiki/Correlation_and_dependence) is\n * a measure of how correlated two datasets are, between -1 and 1\n *\n * @param {Array<number>} x first input\n * @param {Array<number>} y second input\n * @returns {number} sample correlation\n * @example\n * sampleCorrelation([1, 2, 3, 4, 5, 6], [2, 2, 3, 4, 5, 60]).toFixed(2);\n * // => '0.69'\n */\nfunction sampleCorrelation(x, y) {\n const cov = sampleCovariance(x, y);\n const xstd = sampleStandardDeviation(x);\n const ystd = sampleStandardDeviation(y);\n\n return cov / xstd / ystd;\n}\n\nexport default sampleCorrelation;\n","/**\n * When combining two lists of values for which one already knows the means,\n * one does not have to necessary recompute the mean of the combined lists in\n * linear time. They can instead use this function to compute the combined\n * mean by providing the mean & number of values of the first list and the mean\n * & number of values of the second list.\n *\n * @since 3.0.0\n * @param {number} mean1 mean of the first list\n * @param {number} n1 number of items in the first list\n * @param {number} mean2 mean of the second list\n * @param {number} n2 number of items in the second list\n * @returns {number} the combined mean\n *\n * @example\n * combineMeans(5, 3, 4, 3); // => 4.5\n */\nfunction combineMeans(mean1, n1, mean2, n2) {\n return (mean1 * n1 + mean2 * n2) / (n1 + n2);\n}\n\nexport default combineMeans;\n","import sumSimple from \"./sum_simple.js\";\n\n/**\n * The mean, _also known as average_,\n * is the sum of all values over the number of values.\n * This is a [measure of central tendency](https://en.wikipedia.org/wiki/Central_tendency):\n * a method of finding a typical or central value of a set of numbers.\n *\n * The simple mean uses the successive addition method internally\n * to calculate it's result. Errors in floating-point addition are\n * not accounted for, so if precision is required, the standard {@link mean}\n * method should be used instead.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n *\n * @param {Array<number>} x sample of one or more data points\n * @throws {Error} if the length of x is less than one\n * @returns {number} mean\n * @example\n * mean([0, 10]); // => 5\n */\nfunction meanSimple(x) {\n if (x.length === 0) {\n throw new Error(\"meanSimple requires at least one data point\");\n }\n\n return sumSimple(x) / x.length;\n}\n\nexport default meanSimple;\n","/**\n * The Root Mean Square (RMS) is\n * a mean function used as a measure of the magnitude of a set\n * of numbers, regardless of their sign.\n * This is the square root of the mean of the squares of the\n * input numbers.\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x a sample of one or more data points\n * @returns {number} root mean square\n * @throws {Error} if x is empty\n * @example\n * rootMeanSquare([-1, 1, -1, 1]); // => 1\n */\nfunction rootMeanSquare(x) {\n if (x.length === 0) {\n throw new Error(\"rootMeanSquare requires at least one data point\");\n }\n\n let sumOfSquares = 0;\n for (let i = 0; i < x.length; i++) {\n sumOfSquares += Math.pow(x[i], 2);\n }\n\n return Math.sqrt(sumOfSquares / x.length);\n}\n\nexport default rootMeanSquare;\n","/**\n * [Bayesian Classifier](http://en.wikipedia.org/wiki/Naive_Bayes_classifier)\n *\n * This is a naïve bayesian classifier that takes\n * singly-nested objects.\n *\n * @class\n * @example\n * var bayes = new BayesianClassifier();\n * bayes.train({\n * species: 'Cat'\n * }, 'animal');\n * var result = bayes.score({\n * species: 'Cat'\n * })\n * // result\n * // {\n * // animal: 1\n * // }\n */\nclass BayesianClassifier {\n /*:: totalCount: number */\n /*:: data: Object */\n constructor() {\n // The number of items that are currently\n // classified in the model\n this.totalCount = 0;\n // Every item classified in the model\n this.data = {};\n }\n\n /**\n * Train the classifier with a new item, which has a single\n * dimension of Javascript literal keys and values.\n *\n * @param {Object} item an object with singly-deep properties\n * @param {string} category the category this item belongs to\n * @return {undefined} adds the item to the classifier\n */\n train(item, category) {\n // If the data object doesn't have any values\n // for this category, create a new object for it.\n if (!this.data[category]) {\n this.data[category] = {};\n }\n\n // Iterate through each key in the item.\n for (const k in item) {\n const v = item[k];\n // Initialize the nested object `data[category][k][item[k]]`\n // with an object of keys that equal 0.\n if (this.data[category][k] === undefined) {\n this.data[category][k] = {};\n }\n if (this.data[category][k][v] === undefined) {\n this.data[category][k][v] = 0;\n }\n\n // And increment the key for this key/value combination.\n this.data[category][k][v]++;\n }\n\n // Increment the number of items classified\n this.totalCount++;\n }\n\n /**\n * Generate a score of how well this item matches all\n * possible categories based on its attributes\n *\n * @param {Object} item an item in the same format as with train\n * @returns {Object} of probabilities that this item belongs to a\n * given category.\n */\n score(item) {\n // Initialize an empty array of odds per category.\n const odds = {};\n let category;\n // Iterate through each key in the item,\n // then iterate through each category that has been used\n // in previous calls to `.train()`\n for (const k in item) {\n const v = item[k];\n for (category in this.data) {\n // Create an empty object for storing key - value combinations\n // for this category.\n odds[category] = {};\n\n // If this item doesn't even have a property, it counts for nothing,\n // but if it does have the property that we're looking for from\n // the item to categorize, it counts based on how popular it is\n // versus the whole population.\n if (this.data[category][k]) {\n odds[category][k + \"_\" + v] =\n (this.data[category][k][v] || 0) / this.totalCount;\n } else {\n odds[category][k + \"_\" + v] = 0;\n }\n }\n }\n\n // Set up a new object that will contain sums of these odds by category\n const oddsSums = {};\n\n for (category in odds) {\n // Tally all of the odds for each category-combination pair -\n // the non-existence of a category does not add anything to the\n // score.\n oddsSums[category] = 0;\n for (const combination in odds[category]) {\n oddsSums[category] += odds[category][combination];\n }\n }\n\n return oddsSums;\n }\n}\n\nexport default BayesianClassifier;\n","/**\n * This is a single-layer [Perceptron Classifier](http://en.wikipedia.org/wiki/Perceptron) that takes\n * arrays of numbers and predicts whether they should be classified\n * as either 0 or 1 (negative or positive examples).\n * @class\n * @example\n * // Create the model\n * var p = new PerceptronModel();\n * // Train the model with input with a diagonal boundary.\n * for (var i = 0; i < 5; i++) {\n * p.train([1, 1], 1);\n * p.train([0, 1], 0);\n * p.train([1, 0], 0);\n * p.train([0, 0], 0);\n * }\n * p.predict([0, 0]); // 0\n * p.predict([0, 1]); // 0\n * p.predict([1, 0]); // 0\n * p.predict([1, 1]); // 1\n */\nclass PerceptronModel {\n /*:: bias: number */\n /*:: weights: Array<number> */\n constructor() {\n // The weights, or coefficients of the model;\n // weights are only populated when training with data.\n this.weights = [];\n // The bias term, or intercept; it is also a weight but\n // it's stored separately for convenience as it is always\n // multiplied by one.\n this.bias = 0;\n }\n /**\n * **Predict**: Use an array of features with the weight array and bias\n * to predict whether an example is labeled 0 or 1.\n *\n * @param {Array<number>} features an array of features as numbers\n * @returns {number} 1 if the score is over 0, otherwise 0\n */\n predict(features) {\n // Only predict if previously trained\n // on the same size feature array(s).\n if (features.length !== this.weights.length) {\n return null;\n }\n\n // Calculate the sum of features times weights,\n // with the bias added (implicitly times one).\n let score = 0;\n for (let i = 0; i < this.weights.length; i++) {\n score += this.weights[i] * features[i];\n }\n score += this.bias;\n\n // Classify as 1 if the score is over 0, otherwise 0.\n if (score > 0) {\n return 1;\n } else {\n return 0;\n }\n }\n\n /**\n * **Train** the classifier with a new example, which is\n * a numeric array of features and a 0 or 1 label.\n *\n * @param {Array<number>} features an array of features as numbers\n * @param {number} label either 0 or 1\n * @returns {PerceptronModel} this\n */\n train(features, label) {\n // Require that only labels of 0 or 1 are considered.\n if (label !== 0 && label !== 1) {\n return null;\n }\n // The length of the feature array determines\n // the length of the weight array.\n // The perceptron will continue learning as long as\n // it keeps seeing feature arrays of the same length.\n // When it sees a new data shape, it initializes.\n if (features.length !== this.weights.length) {\n this.weights = features;\n this.bias = 1;\n }\n // Make a prediction based on current weights.\n const prediction = this.predict(features);\n // Update the weights if the prediction is wrong.\n if (typeof prediction === \"number\" && prediction !== label) {\n const gradient = label - prediction;\n for (let i = 0; i < this.weights.length; i++) {\n this.weights[i] += gradient * features[i];\n }\n this.bias += gradient;\n }\n return this;\n }\n}\n\nexport default PerceptronModel;\n","/**\n * We use `ε`, epsilon, as a stopping criterion when we want to iterate\n * until we're \"close enough\". Epsilon is a very small number: for\n * simple statistics, that number is **0.0001**\n *\n * This is used in calculations like the binomialDistribution, in which\n * the process of finding a value is [iterative](https://en.wikipedia.org/wiki/Iterative_method):\n * it progresses until it is close enough.\n *\n * Below is an example of using epsilon in [gradient descent](https://en.wikipedia.org/wiki/Gradient_descent),\n * where we're trying to find a local minimum of a function's derivative,\n * given by the `fDerivative` method.\n *\n * @example\n * // From calculation, we expect that the local minimum occurs at x=9/4\n * var x_old = 0;\n * // The algorithm starts at x=6\n * var x_new = 6;\n * var stepSize = 0.01;\n *\n * function fDerivative(x) {\n * return 4 * Math.pow(x, 3) - 9 * Math.pow(x, 2);\n * }\n *\n * // The loop runs until the difference between the previous\n * // value and the current value is smaller than epsilon - a rough\n * // meaure of 'close enough'\n * while (Math.abs(x_new - x_old) > ss.epsilon) {\n * x_old = x_new;\n * x_new = x_old - stepSize * fDerivative(x_old);\n * }\n *\n * console.log('Local minimum occurs at', x_new);\n */\nconst epsilon = 0.0001;\n\nexport default epsilon;\n","/**\n * A [Factorial](https://en.wikipedia.org/wiki/Factorial), usually written n!, is the product of all positive\n * integers less than or equal to n. Often factorial is implemented\n * recursively, but this iterative approach is significantly faster\n * and simpler.\n *\n * @param {number} n input, must be an integer number 1 or greater\n * @returns {number} factorial: n!\n * @throws {Error} if n is less than 0 or not an integer\n * @example\n * factorial(5); // => 120\n */\nfunction factorial(n) {\n // factorial is mathematically undefined for negative numbers\n if (n < 0) {\n throw new Error(\"factorial requires a non-negative value\");\n }\n\n if (Math.floor(n) !== n) {\n throw new Error(\"factorial requires an integer input\");\n }\n\n // typically you'll expand the factorial function going down, like\n // 5! = 5 * 4 * 3 * 2 * 1. This is going in the opposite direction,\n // counting from 2 up to the number in question, and since anything\n // multiplied by 1 is itself, the loop only needs to start at 2.\n let accumulator = 1;\n for (let i = 2; i <= n; i++) {\n // for each number up to and including the number `n`, multiply\n // the accumulator my that number.\n accumulator *= i;\n }\n return accumulator;\n}\n\nexport default factorial;\n","// Define series coefficients\nconst COEFFICIENTS = [\n 0.99999999999999709182, 57.156235665862923517, -59.597960355475491248,\n 14.136097974741747174, -0.49191381609762019978, 0.33994649984811888699e-4,\n 0.46523628927048575665e-4, -0.98374475304879564677e-4,\n 0.15808870322491248884e-3, -0.21026444172410488319e-3,\n 0.2174396181152126432e-3, -0.16431810653676389022e-3,\n 0.84418223983852743293e-4, -0.2619083840158140867e-4,\n 0.36899182659531622704e-5,\n];\n\nconst g = 607 / 128;\nconst LOGSQRT2PI = Math.log(Math.sqrt(2 * Math.PI));\n\n/**\n * Compute the logarithm of the [gamma function](https://en.wikipedia.org/wiki/Gamma_function) of a value using Lanczos' approximation.\n * This function takes as input any real-value n greater than 0.\n * This function is useful for values of n too large for the normal gamma function (n > 165).\n * The code is based on Lanczo's Gamma approximation, defined [here](http://my.fit.edu/~gabdo/gamma.txt).\n *\n * @param {number} n Any real number greater than zero.\n * @returns {number} The logarithm of gamma of the input value.\n *\n * @example\n * gammaln(500); // 2605.1158503617335\n * gammaln(2.4); // 0.21685932244884043\n */\nfunction gammaln(n) {\n // Return infinity if value not in domain\n if (n <= 0) {\n return Number.POSITIVE_INFINITY;\n }\n\n // Decrement n, because approximation is defined for n - 1\n n--;\n\n // Create series approximation\n let a = COEFFICIENTS[0];\n\n for (let i = 1; i < 15; i++) {\n a += COEFFICIENTS[i] / (n + i);\n }\n\n const tmp = g + 0.5 + n;\n\n // Return natural logarithm of gamma(n)\n return LOGSQRT2PI + Math.log(a) - tmp + (n + 0.5) * Math.log(tmp);\n}\n\nexport default gammaln;\n","/**\n * **Percentage Points of the χ2 (Chi-Squared) Distribution**\n *\n * The [χ2 (Chi-Squared) Distribution](http://en.wikipedia.org/wiki/Chi-squared_distribution) is used in the common\n * chi-squared tests for goodness of fit of an observed distribution to a theoretical one, the independence of two\n * criteria of classification of qualitative data, and in confidence interval estimation for a population standard\n * deviation of a normal distribution from a sample standard deviation.\n *\n * Values from Appendix 1, Table III of William W. Hines & Douglas C. Montgomery, \"Probability and Statistics in\n * Engineering and Management Science\", Wiley (1980).\n */\nconst chiSquaredDistributionTable = {\n 1: {\n 0.995: 0,\n 0.99: 0,\n 0.975: 0,\n 0.95: 0,\n 0.9: 0.02,\n 0.5: 0.45,\n 0.1: 2.71,\n 0.05: 3.84,\n 0.025: 5.02,\n 0.01: 6.63,\n 0.005: 7.88,\n },\n 2: {\n 0.995: 0.01,\n 0.99: 0.02,\n 0.975: 0.05,\n 0.95: 0.1,\n 0.9: 0.21,\n 0.5: 1.39,\n 0.1: 4.61,\n 0.05: 5.99,\n 0.025: 7.38,\n 0.01: 9.21,\n 0.005: 10.6,\n },\n 3: {\n 0.995: 0.07,\n 0.99: 0.11,\n 0.975: 0.22,\n 0.95: 0.35,\n 0.9: 0.58,\n 0.5: 2.37,\n 0.1: 6.25,\n 0.05: 7.81,\n 0.025: 9.35,\n 0.01: 11.34,\n 0.005: 12.84,\n },\n 4: {\n 0.995: 0.21,\n 0.99: 0.3,\n 0.975: 0.48,\n 0.95: 0.71,\n 0.9: 1.06,\n 0.5: 3.36,\n 0.1: 7.78,\n 0.05: 9.49,\n 0.025: 11.14,\n 0.01: 13.28,\n 0.005: 14.86,\n },\n 5: {\n 0.995: 0.41,\n 0.99: 0.55,\n 0.975: 0.83,\n 0.95: 1.15,\n 0.9: 1.61,\n 0.5: 4.35,\n 0.1: 9.24,\n 0.05: 11.07,\n 0.025: 12.83,\n 0.01: 15.09,\n 0.005: 16.75,\n },\n 6: {\n 0.995: 0.68,\n 0.99: 0.87,\n 0.975: 1.24,\n 0.95: 1.64,\n 0.9: 2.2,\n 0.5: 5.35,\n 0.1: 10.65,\n 0.05: 12.59,\n 0.025: 14.45,\n 0.01: 16.81,\n 0.005: 18.55,\n },\n 7: {\n 0.995: 0.99,\n 0.99: 1.25,\n 0.975: 1.69,\n 0.95: 2.17,\n 0.9: 2.83,\n 0.5: 6.35,\n 0.1: 12.02,\n 0.05: 14.07,\n 0.025: 16.01,\n 0.01: 18.48,\n 0.005: 20.28,\n },\n 8: {\n 0.995: 1.34,\n 0.99: 1.65,\n 0.975: 2.18,\n 0.95: 2.73,\n 0.9: 3.49,\n 0.5: 7.34,\n 0.1: 13.36,\n 0.05: 15.51,\n 0.025: 17.53,\n 0.01: 20.09,\n 0.005: 21.96,\n },\n 9: {\n 0.995: 1.73,\n 0.99: 2.09,\n 0.975: 2.7,\n 0.95: 3.33,\n 0.9: 4.17,\n 0.5: 8.34,\n 0.1: 14.68,\n 0.05: 16.92,\n 0.025: 19.02,\n 0.01: 21.67,\n 0.005: 23.59,\n },\n 10: {\n 0.995: 2.16,\n 0.99: 2.56,\n 0.975: 3.25,\n 0.95: 3.94,\n 0.9: 4.87,\n 0.5: 9.34,\n 0.1: 15.99,\n 0.05: 18.31,\n 0.025: 20.48,\n 0.01: 23.21,\n 0.005: 25.19,\n },\n 11: {\n 0.995: 2.6,\n 0.99: 3.05,\n 0.975: 3.82,\n 0.95: 4.57,\n 0.9: 5.58,\n 0.5: 10.34,\n 0.1: 17.28,\n 0.05: 19.68,\n 0.025: 21.92,\n 0.01: 24.72,\n 0.005: 26.76,\n },\n 12: {\n 0.995: 3.07,\n 0.99: 3.57,\n 0.975: 4.4,\n 0.95: 5.23,\n 0.9: 6.3,\n 0.5: 11.34,\n 0.1: 18.55,\n 0.05: 21.03,\n 0.025: 23.34,\n 0.01: 26.22,\n 0.005: 28.3,\n },\n 13: {\n 0.995: 3.57,\n 0.99: 4.11,\n 0.975: 5.01,\n 0.95: 5.89,\n 0.9: 7.04,\n 0.5: 12.34,\n 0.1: 19.81,\n 0.05: 22.36,\n 0.025: 24.74,\n 0.01: 27.69,\n 0.005: 29.82,\n },\n 14: {\n 0.995: 4.07,\n 0.99: 4.66,\n 0.975: 5.63,\n 0.95: 6.57,\n 0.9: 7.79,\n 0.5: 13.34,\n 0.1: 21.06,\n 0.05: 23.68,\n 0.025: 26.12,\n 0.01: 29.14,\n 0.005: 31.32,\n },\n 15: {\n 0.995: 4.6,\n 0.99: 5.23,\n 0.975: 6.27,\n 0.95: 7.26,\n 0.9: 8.55,\n 0.5: 14.34,\n 0.1: 22.31,\n 0.05: 25,\n 0.025: 27.49,\n 0.01: 30.58,\n 0.005: 32.8,\n },\n 16: {\n 0.995: 5.14,\n 0.99: 5.81,\n 0.975: 6.91,\n 0.95: 7.96,\n 0.9: 9.31,\n 0.5: 15.34,\n 0.1: 23.54,\n 0.05: 26.3,\n 0.025: 28.85,\n 0.01: 32,\n 0.005: 34.27,\n },\n 17: {\n 0.995: 5.7,\n 0.99: 6.41,\n 0.975: 7.56,\n 0.95: 8.67,\n 0.9: 10.09,\n 0.5: 16.34,\n 0.1: 24.77,\n 0.05: 27.59,\n 0.025: 30.19,\n 0.01: 33.41,\n 0.005: 35.72,\n },\n 18: {\n 0.995: 6.26,\n 0.99: 7.01,\n 0.975: 8.23,\n 0.95: 9.39,\n 0.9: 10.87,\n 0.5: 17.34,\n 0.1: 25.99,\n 0.05: 28.87,\n 0.025: 31.53,\n 0.01: 34.81,\n 0.005: 37.16,\n },\n 19: {\n 0.995: 6.84,\n 0.99: 7.63,\n 0.975: 8.91,\n 0.95: 10.12,\n 0.9: 11.65,\n 0.5: 18.34,\n 0.1: 27.2,\n 0.05: 30.14,\n 0.025: 32.85,\n 0.01: 36.19,\n 0.005: 38.58,\n },\n 20: {\n 0.995: 7.43,\n 0.99: 8.26,\n 0.975: 9.59,\n 0.95: 10.85,\n 0.9: 12.44,\n 0.5: 19.34,\n 0.1: 28.41,\n 0.05: 31.41,\n 0.025: 34.17,\n 0.01: 37.57,\n 0.005: 40,\n },\n 21: {\n 0.995: 8.03,\n 0.99: 8.9,\n 0.975: 10.28,\n 0.95: 11.59,\n 0.9: 13.24,\n 0.5: 20.34,\n 0.1: 29.62,\n 0.05: 32.67,\n 0.025: 35.48,\n 0.01: 38.93,\n 0.005: 41.4,\n },\n 22: {\n 0.995: 8.64,\n 0.99: 9.54,\n 0.975: 10.98,\n 0.95: 12.34,\n 0.9: 14.04,\n 0.5: 21.34,\n 0.1: 30.81,\n 0.05: 33.92,\n 0.025: 36.78,\n 0.01: 40.29,\n 0.005: 42.8,\n },\n 23: {\n 0.995: 9.26,\n 0.99: 10.2,\n 0.975: 11.69,\n 0.95: 13.09,\n 0.9: 14.85,\n 0.5: 22.34,\n 0.1: 32.01,\n 0.05: 35.17,\n 0.025: 38.08,\n 0.01: 41.64,\n 0.005: 44.18,\n },\n 24: {\n 0.995: 9.89,\n 0.99: 10.86,\n 0.975: 12.4,\n 0.95: 13.85,\n 0.9: 15.66,\n 0.5: 23.34,\n 0.1: 33.2,\n 0.05: 36.42,\n 0.025: 39.36,\n 0.01: 42.98,\n 0.005: 45.56,\n },\n 25: {\n 0.995: 10.52,\n 0.99: 11.52,\n 0.975: 13.12,\n 0.95: 14.61,\n 0.9: 16.47,\n 0.5: 24.34,\n 0.1: 34.28,\n 0.05: 37.65,\n 0.025: 40.65,\n 0.01: 44.31,\n 0.005: 46.93,\n },\n 26: {\n 0.995: 11.16,\n 0.99: 12.2,\n 0.975: 13.84,\n 0.95: 15.38,\n 0.9: 17.29,\n 0.5: 25.34,\n 0.1: 35.56,\n 0.05: 38.89,\n 0.025: 41.92,\n 0.01: 45.64,\n 0.005: 48.29,\n },\n 27: {\n 0.995: 11.81,\n 0.99: 12.88,\n 0.975: 14.57,\n 0.95: 16.15,\n 0.9: 18.11,\n 0.5: 26.34,\n 0.1: 36.74,\n 0.05: 40.11,\n 0.025: 43.19,\n 0.01: 46.96,\n 0.005: 49.65,\n },\n 28: {\n 0.995: 12.46,\n 0.99: 13.57,\n 0.975: 15.31,\n 0.95: 16.93,\n 0.9: 18.94,\n 0.5: 27.34,\n 0.1: 37.92,\n 0.05: 41.34,\n 0.025: 44.46,\n 0.01: 48.28,\n 0.005: 50.99,\n },\n 29: {\n 0.995: 13.12,\n 0.99: 14.26,\n 0.975: 16.05,\n 0.95: 17.71,\n 0.9: 19.77,\n 0.5: 28.34,\n 0.1: 39.09,\n 0.05: 42.56,\n 0.025: 45.72,\n 0.01: 49.59,\n 0.005: 52.34,\n },\n 30: {\n 0.995: 13.79,\n 0.99: 14.95,\n 0.975: 16.79,\n 0.95: 18.49,\n 0.9: 20.6,\n 0.5: 29.34,\n 0.1: 40.26,\n 0.05: 43.77,\n 0.025: 46.98,\n 0.01: 50.89,\n 0.005: 53.67,\n },\n 40: {\n 0.995: 20.71,\n 0.99: 22.16,\n 0.975: 24.43,\n 0.95: 26.51,\n 0.9: 29.05,\n 0.5: 39.34,\n 0.1: 51.81,\n 0.05: 55.76,\n 0.025: 59.34,\n 0.01: 63.69,\n 0.005: 66.77,\n },\n 50: {\n 0.995: 27.99,\n 0.99: 29.71,\n 0.975: 32.36,\n 0.95: 34.76,\n 0.9: 37.69,\n 0.5: 49.33,\n 0.1: 63.17,\n 0.05: 67.5,\n 0.025: 71.42,\n 0.01: 76.15,\n 0.005: 79.49,\n },\n 60: {\n 0.995: 35.53,\n 0.99: 37.48,\n 0.975: 40.48,\n 0.95: 43.19,\n 0.9: 46.46,\n 0.5: 59.33,\n 0.1: 74.4,\n 0.05: 79.08,\n 0.025: 83.3,\n 0.01: 88.38,\n 0.005: 91.95,\n },\n 70: {\n 0.995: 43.28,\n 0.99: 45.44,\n 0.975: 48.76,\n 0.95: 51.74,\n 0.9: 55.33,\n 0.5: 69.33,\n 0.1: 85.53,\n 0.05: 90.53,\n 0.025: 95.02,\n 0.01: 100.42,\n 0.005: 104.22,\n },\n 80: {\n 0.995: 51.17,\n 0.99: 53.54,\n 0.975: 57.15,\n 0.95: 60.39,\n 0.9: 64.28,\n 0.5: 79.33,\n 0.1: 96.58,\n 0.05: 101.88,\n 0.025: 106.63,\n 0.01: 112.33,\n 0.005: 116.32,\n },\n 90: {\n 0.995: 59.2,\n 0.99: 61.75,\n 0.975: 65.65,\n 0.95: 69.13,\n 0.9: 73.29,\n 0.5: 89.33,\n 0.1: 107.57,\n 0.05: 113.14,\n 0.025: 118.14,\n 0.01: 124.12,\n 0.005: 128.3,\n },\n 100: {\n 0.995: 67.33,\n 0.99: 70.06,\n 0.975: 74.22,\n 0.95: 77.93,\n 0.9: 82.36,\n 0.5: 99.33,\n 0.1: 118.5,\n 0.05: 124.34,\n 0.025: 129.56,\n 0.01: 135.81,\n 0.005: 140.17,\n },\n};\n\nexport default chiSquaredDistributionTable;\n","import interquartileRange from \"./interquartile_range.js\";\nimport stddev from \"./sample_standard_deviation.js\";\n\nconst SQRT_2PI = Math.sqrt(2 * Math.PI);\n\n/**\n * [Well-known kernels](https://en.wikipedia.org/wiki/Kernel_(statistics)#Kernel_functions_in_common_use)\n * @private\n */\nconst kernels = {\n /**\n * The gaussian kernel.\n * @private\n */\n gaussian: function (u) {\n return Math.exp(-0.5 * u * u) / SQRT_2PI;\n },\n};\n\n/**\n * Well known bandwidth selection methods\n * @private\n */\nconst bandwidthMethods = {\n /**\n * The [\"normal reference distribution\"\n * rule-of-thumb](https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/bandwidth.nrd.html),\n * a commonly used version of [Silverman's\n * rule-of-thumb](https://en.wikipedia.org/wiki/Kernel_density_estimation#A_rule-of-thumb_bandwidth_estimator).\n * @private\n */\n nrd: function (x) {\n let s = stddev(x);\n const iqr = interquartileRange(x);\n if (typeof iqr === \"number\") {\n s = Math.min(s, iqr / 1.34);\n }\n return 1.06 * s * Math.pow(x.length, -0.2);\n },\n};\n\n/**\n * [Kernel density estimation](https://en.wikipedia.org/wiki/Kernel_density_estimation)\n * is a useful tool for, among other things, estimating the shape of the\n * underlying probability distribution from a sample.\n *\n * @name kernelDensityEstimation\n * @param X sample values\n * @param kernel The kernel function to use. If a function is provided, it should return non-negative values and integrate to 1. Defaults to 'gaussian'.\n * @param bandwidthMethod The \"bandwidth selection\" method to use, or a fixed bandwidth value. Defaults to \"nrd\", the commonly-used [\"normal reference distribution\" rule-of-thumb](https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/bandwidth.nrd.html).\n * @returns {Function} An estimated [probability density function](https://en.wikipedia.org/wiki/Probability_density_function) for the given sample. The returned function runs in `O(X.length)`.\n */\nfunction kernelDensityEstimation(X, kernel, bandwidthMethod) {\n let kernelFn;\n if (kernel === undefined) {\n kernelFn = kernels.gaussian;\n } else if (typeof kernel === \"string\") {\n if (!kernels[kernel]) {\n throw new Error('Unknown kernel \"' + kernel + '\"');\n }\n kernelFn = kernels[kernel];\n } else {\n kernelFn = kernel;\n }\n\n let bandwidth;\n if (typeof bandwidthMethod === \"undefined\") {\n bandwidth = bandwidthMethods.nrd(X);\n } else if (typeof bandwidthMethod === \"string\") {\n if (!bandwidthMethods[bandwidthMethod]) {\n throw new Error(\n 'Unknown bandwidth method \"' + bandwidthMethod + '\"',\n );\n }\n bandwidth = bandwidthMethods[bandwidthMethod](X);\n } else {\n bandwidth = bandwidthMethod;\n }\n\n return function (x) {\n let i = 0;\n let sum = 0;\n for (i = 0; i < X.length; i++) {\n sum += kernelFn((x - X[i]) / bandwidth);\n }\n return sum / bandwidth / X.length;\n };\n}\n\nexport default kernelDensityEstimation;\n","const SQRT_2PI = Math.sqrt(2 * Math.PI);\n\nfunction cumulativeDistribution(z) {\n let sum = z;\n let tmp = z;\n\n // 15 iterations are enough for 4-digit precision\n for (let i = 1; i < 15; i++) {\n tmp *= (z * z) / (2 * i + 1);\n sum += tmp;\n }\n return (\n Math.round((0.5 + (sum / SQRT_2PI) * Math.exp((-z * z) / 2)) * 1e4) /\n 1e4\n );\n}\n\n/**\n * A standard normal table, also called the unit normal table or Z table,\n * is a mathematical table for the values of Φ (phi), which are the values of\n * the [cumulative distribution function](https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function)\n * of the normal distribution. It is used to find the probability that a\n * statistic is observed below, above, or between values on the standard\n * normal distribution, and by extension, any normal distribution.\n */\nconst standardNormalTable = [];\n\nfor (let z = 0; z <= 3.09; z += 0.01) {\n standardNormalTable.push(cumulativeDistribution(z));\n}\n\nexport default standardNormalTable;\n","/**\n * **[Gaussian error function](http://en.wikipedia.org/wiki/Error_function)**\n *\n * The `errorFunction(x/(sd * Math.sqrt(2)))` is the probability that a value in a\n * normal distribution with standard deviation sd is within x of the mean.\n *\n * This function returns a numerical approximation to the exact value.\n * It uses Horner's method to evaluate the polynomial of τ (tau).\n *\n * @param {number} x input\n * @return {number} error estimation\n * @example\n * errorFunction(1).toFixed(2); // => '0.84'\n */\nfunction errorFunction(x) {\n const t = 1 / (1 + 0.5 * Math.abs(x));\n const tau =\n t *\n Math.exp(\n -x * x +\n ((((((((0.17087277 * t - 0.82215223) * t + 1.48851587) * t -\n 1.13520398) *\n t +\n 0.27886807) *\n t -\n 0.18628806) *\n t +\n 0.09678418) *\n t +\n 0.37409196) *\n t +\n 1.00002368) *\n t -\n 1.26551223,\n );\n if (x >= 0) {\n return 1 - tau;\n } else {\n return tau - 1;\n }\n}\n\nexport default errorFunction;\n","/**\n * The Inverse [Gaussian error function](http://en.wikipedia.org/wiki/Error_function)\n * returns a numerical approximation to the value that would have caused\n * `errorFunction()` to return x.\n *\n * @param {number} x value of error function\n * @returns {number} estimated inverted value\n */\nfunction inverseErrorFunction(x) {\n const a = (8 * (Math.PI - 3)) / (3 * Math.PI * (4 - Math.PI));\n\n const inv = Math.sqrt(\n Math.sqrt(\n Math.pow(2 / (Math.PI * a) + Math.log(1 - x * x) / 2, 2) -\n Math.log(1 - x * x) / a,\n ) -\n (2 / (Math.PI * a) + Math.log(1 - x * x) / 2),\n );\n\n if (x >= 0) {\n return inv;\n } else {\n return -inv;\n }\n}\n\nexport default inverseErrorFunction;\n","/**\n * [Sign](https://en.wikipedia.org/wiki/Sign_function) is a function\n * that extracts the sign of a real number\n *\n * @param {number} x input value\n * @returns {number} sign value either 1, 0 or -1\n * @throws {TypeError} if the input argument x is not a number\n * @private\n *\n * @example\n * sign(2); // => 1\n */\nfunction sign(x) {\n if (typeof x === \"number\") {\n if (x < 0) {\n return -1;\n } else if (x === 0) {\n return 0;\n } else {\n return 1;\n }\n } else {\n throw new TypeError(\"not a number\");\n }\n}\n\nexport default sign;\n","/**\n * Calculate Euclidean distance between two points.\n * @param {Array<number>} left First N-dimensional point.\n * @param {Array<number>} right Second N-dimensional point.\n * @returns {number} Distance.\n */\nfunction euclideanDistance(left, right) {\n let sum = 0;\n for (let i = 0; i < left.length; i++) {\n const diff = left[i] - right[i];\n sum += diff * diff;\n }\n return Math.sqrt(sum);\n}\n\nexport default euclideanDistance;\n","import euclideanDistance from \"./euclidean_distance.js\";\nimport makeMatrix from \"./make_matrix.js\";\nimport sample from \"./sample.js\";\n\n/**\n * @typedef {Object} kMeansReturn\n * @property {Array<number>} labels The labels.\n * @property {Array<Array<number>>} centroids The cluster centroids.\n */\n\n/**\n * Perform k-means clustering.\n *\n * @param {Array<Array<number>>} points N-dimensional coordinates of points to be clustered.\n * @param {number} numCluster How many clusters to create.\n * @param {Function} randomSource An optional entropy source that generates uniform values in [0, 1).\n * @return {kMeansReturn} Labels (same length as data) and centroids (same length as numCluster).\n * @throws {Error} If any centroids wind up friendless (i.e., without associated points).\n *\n * @example\n * kMeansCluster([[0.0, 0.5], [1.0, 0.5]], 2); // => {labels: [0, 1], centroids: [[0.0, 0.5], [1.0 0.5]]}\n */\nfunction kMeansCluster(points, numCluster, randomSource = Math.random) {\n let oldCentroids = null;\n let newCentroids = sample(points, numCluster, randomSource);\n let labels = null;\n let change = Number.MAX_VALUE;\n while (change !== 0) {\n labels = labelPoints(points, newCentroids);\n oldCentroids = newCentroids;\n newCentroids = calculateCentroids(points, labels, numCluster);\n change = calculateChange(newCentroids, oldCentroids);\n }\n return {\n labels: labels,\n centroids: newCentroids,\n };\n}\n\n/**\n * Label each point according to which centroid it is closest to.\n *\n * @private\n * @param {Array<Array<number>>} points Array of XY coordinates.\n * @param {Array<Array<number>>} centroids Current centroids.\n * @return {Array<number>} Group labels.\n */\nfunction labelPoints(points, centroids) {\n return points.map((p) => {\n let minDist = Number.MAX_VALUE;\n let label = -1;\n for (let i = 0; i < centroids.length; i++) {\n const dist = euclideanDistance(p, centroids[i]);\n if (dist < minDist) {\n minDist = dist;\n label = i;\n }\n }\n return label;\n });\n}\n\n/**\n * Calculate centroids for points given labels.\n *\n * @private\n * @param {Array<Array<number>>} points Array of XY coordinates.\n * @param {Array<number>} labels Which groups points belong to.\n * @param {number} numCluster Number of clusters being created.\n * @return {Array<Array<number>>} Centroid for each group.\n * @throws {Error} If any centroids wind up friendless (i.e., without associated points).\n */\nfunction calculateCentroids(points, labels, numCluster) {\n // Initialize accumulators.\n const dimension = points[0].length;\n const centroids = makeMatrix(numCluster, dimension);\n const counts = Array(numCluster).fill(0);\n\n // Add points to centroids' accumulators and count points per centroid.\n const numPoints = points.length;\n for (let i = 0; i < numPoints; i++) {\n const point = points[i];\n const label = labels[i];\n const current = centroids[label];\n for (let j = 0; j < dimension; j++) {\n current[j] += point[j];\n }\n counts[label] += 1;\n }\n\n // Rescale centroids, checking for any that have no points.\n for (let i = 0; i < numCluster; i++) {\n if (counts[i] === 0) {\n throw new Error(`Centroid ${i} has no friends`);\n }\n const centroid = centroids[i];\n for (let j = 0; j < dimension; j++) {\n centroid[j] /= counts[i];\n }\n }\n\n return centroids;\n}\n\n/**\n * Calculate the difference between old centroids and new centroids.\n *\n * @private\n * @param {Array<Array<number>>} left One list of centroids.\n * @param {Array<Array<number>>} right Another list of centroids.\n * @return {number} Distance between centroids.\n */\nfunction calculateChange(left, right) {\n let total = 0;\n for (let i = 0; i < left.length; i++) {\n total += euclideanDistance(left[i], right[i]);\n }\n return total;\n}\n\nexport default kMeansCluster;\n","import euclideanDistance from \"./euclidean_distance.js\";\nimport makeMatrix from \"./make_matrix.js\";\nimport max from \"./max.js\";\n\n/**\n * Calculate the [silhouette values](https://en.wikipedia.org/wiki/Silhouette_(clustering))\n * for clustered data.\n *\n * @param {Array<Array<number>>} points N-dimensional coordinates of points.\n * @param {Array<number>} labels Labels of points. This must be the same length as `points`,\n * and values must lie in [0..G-1], where G is the number of groups.\n * @return {Array<number>} The silhouette value for each point.\n *\n * @example\n * silhouette([[0.25], [0.75]], [0, 0]); // => [1.0, 1.0]\n */\nfunction silhouette(points, labels) {\n if (points.length !== labels.length) {\n throw new Error(\"must have exactly as many labels as points\");\n }\n const groupings = createGroups(labels);\n const distances = calculateAllDistances(points);\n const result = [];\n for (let i = 0; i < points.length; i++) {\n let s = 0;\n if (groupings[labels[i]].length > 1) {\n const a = meanDistanceFromPointToGroup(\n i,\n groupings[labels[i]],\n distances,\n );\n const b = meanDistanceToNearestGroup(\n i,\n labels,\n groupings,\n distances,\n );\n s = (b - a) / Math.max(a, b);\n }\n result.push(s);\n }\n return result;\n}\n\n/**\n * Create a lookup table mapping group IDs to point IDs.\n *\n * @private\n * @param {Array<number>} labels Labels of points. This must be the same length as `points`,\n * and values must lie in [0..G-1], where G is the number of groups.\n * @return {Array<Array<number>>} An array of length G, each of whose entries is an array\n * containing the indices of the points in that group.\n */\nfunction createGroups(labels) {\n const numGroups = 1 + max(labels);\n const result = Array(numGroups);\n for (let i = 0; i < labels.length; i++) {\n const label = labels[i];\n if (result[label] === undefined) {\n result[label] = [];\n }\n result[label].push(i);\n }\n return result;\n}\n\n/**\n * Create a lookup table of all inter-point distances.\n *\n * @private\n * @param {Array<Array<number>>} points N-dimensional coordinates of points.\n * @return {Array<Array<number>>} A symmetric square array of inter-point distances\n * (zero on the diagonal).\n */\nfunction calculateAllDistances(points) {\n const numPoints = points.length;\n const result = makeMatrix(numPoints, numPoints);\n for (let i = 0; i < numPoints; i++) {\n for (let j = 0; j < i; j++) {\n result[i][j] = euclideanDistance(points[i], points[j]);\n result[j][i] = result[i][j];\n }\n }\n return result;\n}\n\n/**\n * Calculate the mean distance between this point and all the points in the\n * nearest group (as determined by which point in another group is closest).\n *\n * @private\n * @param {number} which The index of this point.\n * @param {Array<number>} labels Labels of points.\n * @param {Array<Array<number>>} groupings An array whose entries are arrays\n * containing the indices of the points in that group.\n * @param {Array<Array<number>>} distances A symmetric square array of inter-point\n * distances.\n * @return {number} The mean distance from this point to others in the nearest\n * group.\n */\nfunction meanDistanceToNearestGroup(which, labels, groupings, distances) {\n const label = labels[which];\n let result = Number.MAX_VALUE;\n for (let i = 0; i < groupings.length; i++) {\n if (i !== label) {\n const d = meanDistanceFromPointToGroup(\n which,\n groupings[i],\n distances,\n );\n if (d < result) {\n result = d;\n }\n }\n }\n return result;\n}\n\n/**\n * Calculate the mean distance between a point and all the points in a group\n * (possibly its own).\n *\n * @private\n * @param {number} which The index of this point.\n * @param {Array<number>} group The indices of all the points in the group in\n * question.\n * @param {Array<Array<number>>} distances A symmetric square array of inter-point\n * distances.\n * @return {number} The mean distance from this point to others in the\n * specified group.\n */\nfunction meanDistanceFromPointToGroup(which, group, distances) {\n let total = 0;\n for (let i = 0; i < group.length; i++) {\n total += distances[which][group[i]];\n }\n return total / group.length;\n}\n\nexport default silhouette;\n","/**\n * Relative error.\n *\n * This is more difficult to calculate than it first appears [1,2]. The usual\n * formula for the relative error between an actual value A and an expected\n * value E is `|(A-E)/E|`, but:\n *\n * 1. If the expected value is 0, any other value has infinite relative error,\n * which is counter-intuitive: if the expected voltage is 0, getting 1/10th\n * of a volt doesn't feel like an infinitely large error.\n *\n * 2. This formula does not satisfy the mathematical definition of a metric [3].\n * [4] solved this problem by defining the relative error as `|ln(|A/E|)|`,\n * but that formula only works if all values are positive: for example, it\n * reports the relative error of -10 and 10 as 0.\n *\n * Our implementation sticks with convention and returns:\n *\n * - 0 if the actual and expected values are both zero\n * - Infinity if the actual value is non-zero and the expected value is zero\n * - `|(A-E)/E|` in all other cases\n *\n * [1] https://math.stackexchange.com/questions/677852/how-to-calculate-relative-error-when-true-value-is-zero\n * [2] https://en.wikipedia.org/wiki/Relative_change_and_difference\n * [3] https://en.wikipedia.org/wiki/Metric_(mathematics)#Definition\n * [4] F.W.J. Olver: \"A New Approach to Error Arithmetic.\" SIAM Journal on\n * Numerical Analysis, 15(2), 1978, 10.1137/0715024.\n *\n * @param {number} actual The actual value.\n * @param {number} expected The expected value.\n * @return {number} The relative error.\n */\nfunction relativeError(actual, expected) {\n // These lines are actually covered by tests, but it seems\n // like c8 has a bug that marks them as not covered.\n /* c8 ignore start */\n if (actual === 0 && expected === 0) {\n return 0;\n }\n /* c8 ignore end */\n return Math.abs((actual - expected) / expected);\n}\n\nexport default relativeError;\n","/**\n * When adding a new value to a list, one does not have to necessary\n * recompute the mean of the list in linear time. They can instead use\n * this function to compute the new mean by providing the current mean,\n * the number of elements in the list that produced it and the new\n * value to add.\n *\n * @since 2.5.0\n * @param {number} mean current mean\n * @param {number} n number of items in the list\n * @param {number} newValue the added value\n * @returns {number} the new mean\n *\n * @example\n * addToMean(14, 5, 53); // => 20.5\n */\nfunction addToMean(mean, n, newValue) {\n return mean + (newValue - mean) / (n + 1);\n}\n\nexport default addToMean;\n","import epsilon from \"./epsilon.js\";\nimport relativeError from \"./relative_error.js\";\n\n/**\n * Approximate equality.\n *\n * @param {number} actual The value to be tested.\n * @param {number} expected The reference value.\n * @param {number} tolerance The acceptable relative difference.\n * @return {boolean} Whether numbers are within tolerance.\n */\nfunction approxEqual(actual, expected, tolerance = epsilon) {\n return relativeError(actual, expected) <= tolerance;\n}\n\nexport default approxEqual;\n","/**\n * The [Bernoulli distribution](http://en.wikipedia.org/wiki/Bernoulli_distribution)\n * is the probability discrete\n * distribution of a random variable which takes value 1 with success\n * probability `p` and value 0 with failure\n * probability `q` = 1 - `p`. It can be used, for example, to represent the\n * toss of a coin, where \"1\" is defined to mean \"heads\" and \"0\" is defined\n * to mean \"tails\" (or vice versa). It is\n * a special case of a Binomial Distribution\n * where `n` = 1.\n *\n * @param {number} p input value, between 0 and 1 inclusive\n * @returns {number[]} values of bernoulli distribution at this point\n * @throws {Error} if p is outside 0 and 1\n * @example\n * bernoulliDistribution(0.3); // => [0.7, 0.3]\n */\nfunction bernoulliDistribution(p) /*: number[] */ {\n // Check that `p` is a valid probability (0 ≤ p ≤ 1)\n if (p < 0 || p > 1) {\n throw new Error(\n \"bernoulliDistribution requires probability to be between 0 and 1 inclusive\",\n );\n }\n\n return [1 - p, p];\n}\n\nexport default bernoulliDistribution;\n","import epsilon from \"./epsilon.js\";\n\n/**\n * The [Binomial Distribution](http://en.wikipedia.org/wiki/Binomial_distribution) is the discrete probability\n * distribution of the number of successes in a sequence of n independent yes/no experiments, each of which yields\n * success with probability `probability`. Such a success/failure experiment is also called a Bernoulli experiment or\n * Bernoulli trial; when trials = 1, the Binomial Distribution is a Bernoulli Distribution.\n *\n * @param {number} trials number of trials to simulate\n * @param {number} probability\n * @returns {number[]} output\n */\nfunction binomialDistribution(trials, probability) /*: ?number[] */ {\n // Check that `p` is a valid probability (0 ≤ p ≤ 1),\n // that `n` is an integer, strictly positive.\n if (probability < 0 || probability > 1 || trials <= 0 || trials % 1 !== 0) {\n return undefined;\n }\n\n // We initialize `x`, the random variable, and `accumulator`, an accumulator\n // for the cumulative distribution function to 0. `distribution_functions`\n // is the object we'll return with the `probability_of_x` and the\n // `cumulativeProbability_of_x`, as well as the calculated mean &\n // variance. We iterate until the `cumulativeProbability_of_x` is\n // within `epsilon` of 1.0.\n let x = 0;\n let cumulativeProbability = 0;\n const cells = [];\n let binomialCoefficient = 1;\n\n // This algorithm iterates through each potential outcome,\n // until the `cumulativeProbability` is very close to 1, at\n // which point we've defined the vast majority of outcomes\n do {\n // a [probability mass function](https://en.wikipedia.org/wiki/Probability_mass_function)\n cells[x] =\n binomialCoefficient *\n Math.pow(probability, x) *\n Math.pow(1 - probability, trials - x);\n cumulativeProbability += cells[x];\n x++;\n binomialCoefficient = (binomialCoefficient * (trials - x + 1)) / x;\n // when the cumulativeProbability is nearly 1, we've calculated\n // the useful range of this distribution\n } while (cumulativeProbability < 1 - epsilon);\n\n return cells;\n}\n\nexport default binomialDistribution;\n","import sign from \"./sign.js\";\n\n/**\n * [Bisection method](https://en.wikipedia.org/wiki/Bisection_method) is a root-finding\n * method that repeatedly bisects an interval to find the root.\n *\n * This function returns a numerical approximation to the exact value.\n *\n * @param {Function} func input function\n * @param {number} start - start of interval\n * @param {number} end - end of interval\n * @param {number} maxIterations - the maximum number of iterations\n * @param {number} errorTolerance - the error tolerance\n * @returns {number} estimated root value\n * @throws {TypeError} Argument func must be a function\n *\n * @example\n * bisect(Math.cos,0,4,100,0.003); // => 1.572265625\n */\nfunction bisect(func, start, end, maxIterations, errorTolerance) {\n if (typeof func !== \"function\")\n throw new TypeError(\"func must be a function\");\n\n for (let i = 0; i < maxIterations; i++) {\n const output = (start + end) / 2;\n\n if (\n func(output) === 0 ||\n Math.abs((end - start) / 2) < errorTolerance\n ) {\n return output;\n }\n\n if (sign(func(output)) === sign(func(start))) {\n start = output;\n } else {\n end = output;\n }\n }\n\n throw new Error(\"maximum number of iterations exceeded\");\n}\n\nexport default bisect;\n","import chiSquaredDistributionTable from \"./chi_squared_distribution_table.js\";\nimport mean from \"./mean.js\";\n\n/**\n * The [χ2 (Chi-Squared) Goodness-of-Fit Test](http://en.wikipedia.org/wiki/Goodness_of_fit#Pearson.27s_chi-squared_test)\n * uses a measure of goodness of fit which is the sum of differences between observed and expected outcome frequencies\n * (that is, counts of observations), each squared and divided by the number of observations expected given the\n * hypothesized distribution. The resulting χ2 statistic, `chiSquared`, can be compared to the chi-squared distribution\n * to determine the goodness of fit. In order to determine the degrees of freedom of the chi-squared distribution, one\n * takes the total number of observed frequencies and subtracts the number of estimated parameters. The test statistic\n * follows, approximately, a chi-square distribution with (k − c) degrees of freedom where `k` is the number of non-empty\n * cells and `c` is the number of estimated parameters for the distribution.\n *\n * @param {Array<number>} data\n * @param {Function} distributionType a function that returns a point in a distribution:\n * for instance, binomial, bernoulli, or poisson\n * @param {number} significance\n * @returns {number} chi squared goodness of fit\n * @example\n * // Data from Poisson goodness-of-fit example 10-19 in William W. Hines & Douglas C. Montgomery,\n * // \"Probability and Statistics in Engineering and Management Science\", Wiley (1980).\n * var data1019 = [\n * 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n * 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n * 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n * 2, 2, 2, 2, 2, 2, 2, 2, 2,\n * 3, 3, 3, 3\n * ];\n * ss.chiSquaredGoodnessOfFit(data1019, ss.poissonDistribution, 0.05); //= false\n */\nfunction chiSquaredGoodnessOfFit(data, distributionType, significance) {\n // Estimate from the sample data, a weighted mean.\n const inputMean = mean(data);\n // Calculated value of the χ2 statistic.\n let chiSquared = 0;\n // Number of hypothesized distribution parameters estimated, expected to be supplied in the distribution test.\n // Lose one degree of freedom for estimating `lambda` from the sample data.\n const c = 1;\n // The hypothesized distribution.\n // Generate the hypothesized distribution.\n const hypothesizedDistribution = distributionType(inputMean);\n const observedFrequencies = [];\n const expectedFrequencies = [];\n\n // Create an array holding a histogram from the sample data, of\n // the form `{ value: numberOfOcurrences }`\n for (let i = 0; i < data.length; i++) {\n if (observedFrequencies[data[i]] === undefined) {\n observedFrequencies[data[i]] = 0;\n }\n observedFrequencies[data[i]]++;\n }\n\n // The histogram we created might be sparse - there might be gaps\n // between values. So we iterate through the histogram, making\n // sure that instead of undefined, gaps have 0 values.\n for (let i = 0; i < observedFrequencies.length; i++) {\n if (observedFrequencies[i] === undefined) {\n observedFrequencies[i] = 0;\n }\n }\n\n // Create an array holding a histogram of expected data given the\n // sample size and hypothesized distribution.\n for (const k in hypothesizedDistribution) {\n if (k in observedFrequencies) {\n expectedFrequencies[+k] = hypothesizedDistribution[k] * data.length;\n }\n }\n\n // Working backward through the expected frequencies, collapse classes\n // if less than three observations are expected for a class.\n // This transformation is applied to the observed frequencies as well.\n for (let k = expectedFrequencies.length - 1; k >= 0; k--) {\n if (expectedFrequencies[k] < 3) {\n expectedFrequencies[k - 1] += expectedFrequencies[k];\n expectedFrequencies.pop();\n\n observedFrequencies[k - 1] += observedFrequencies[k];\n observedFrequencies.pop();\n }\n }\n\n // Iterate through the squared differences between observed & expected\n // frequencies, accumulating the `chiSquared` statistic.\n for (let k = 0; k < observedFrequencies.length; k++) {\n chiSquared +=\n Math.pow(observedFrequencies[k] - expectedFrequencies[k], 2) /\n expectedFrequencies[k];\n }\n\n // Calculate degrees of freedom for this test and look it up in the\n // `chiSquaredDistributionTable` in order to\n // accept or reject the goodness-of-fit of the hypothesized distribution.\n // Degrees of freedom, calculated as (number of class intervals -\n // number of hypothesized distribution parameters estimated - 1)\n const degreesOfFreedom = observedFrequencies.length - c - 1;\n return (\n chiSquaredDistributionTable[degreesOfFreedom][significance] < chiSquared\n );\n}\n\nexport default chiSquaredGoodnessOfFit;\n","/**\n * Split an array into chunks of a specified size. This function\n * has the same behavior as [PHP's array_chunk](http://php.net/manual/en/function.array-chunk.php)\n * function, and thus will insert smaller-sized chunks at the end if\n * the input size is not divisible by the chunk size.\n *\n * `x` is expected to be an array, and `chunkSize` a number.\n * The `x` array can contain any kind of data.\n *\n * @param {Array} x a sample\n * @param {number} chunkSize size of each output array. must be a positive integer\n * @returns {Array<Array>} a chunked array\n * @throws {Error} if chunk size is less than 1 or not an integer\n * @example\n * chunk([1, 2, 3, 4, 5, 6], 2);\n * // => [[1, 2], [3, 4], [5, 6]]\n */\nfunction chunk(x, chunkSize) {\n // a list of result chunks, as arrays in an array\n const output = [];\n\n // `chunkSize` must be zero or higher - otherwise the loop below,\n // in which we call `start += chunkSize`, will loop infinitely.\n // So, we'll detect and throw in that case to indicate\n // invalid input.\n if (chunkSize < 1) {\n throw new Error(\"chunk size must be a positive number\");\n }\n\n if (Math.floor(chunkSize) !== chunkSize) {\n throw new Error(\"chunk size must be an integer\");\n }\n\n // `start` is the index at which `.slice` will start selecting\n // new array elements\n for (let start = 0; start < x.length; start += chunkSize) {\n // for each chunk, slice that part of the array and add it\n // to the output. The `.slice` function does not change\n // the original array.\n output.push(x.slice(start, start + chunkSize));\n }\n return output;\n}\n\nexport default chunk;\n","import mean from \"./mean.js\";\nimport sampleStandardDeviation from \"./sample_standard_deviation.js\";\n\n/**\n * The`coefficient of variation`_ is the ratio of the standard deviation to the mean.\n * .._`coefficient of variation`: https://en.wikipedia.org/wiki/Coefficient_of_variation\n *\n *\n * @param {Array} x input\n * @returns {number} coefficient of variation\n * @example\n * coefficientOfVariation([1, 2, 3, 4]).toFixed(3); // => 0.516\n * coefficientOfVariation([1, 2, 3, 4, 5]).toFixed(3); // => 0.527\n * coefficientOfVariation([-1, 0, 1, 2, 3, 4]).toFixed(3); // => 1.247\n */\nfunction coefficientOfVariation(x) {\n return sampleStandardDeviation(x) / mean(x);\n}\n\nexport default coefficientOfVariation;\n","/**\n * Implementation of Combinations\n * Combinations are unique subsets of a collection - in this case, k x from a collection at a time.\n * https://en.wikipedia.org/wiki/Combination\n * @param {Array} x any type of data\n * @param {int} k the number of objects in each group (without replacement)\n * @returns {Array<Array>} array of permutations\n * @example\n * combinations([1, 2, 3], 2); // => [[1,2], [1,3], [2,3]]\n */\n\nfunction combinations(x, k) {\n let i;\n let subI;\n const combinationList = [];\n let subsetCombinations;\n let next;\n\n for (i = 0; i < x.length; i++) {\n if (k === 1) {\n combinationList.push([x[i]]);\n } else {\n subsetCombinations = combinations(x.slice(i + 1, x.length), k - 1);\n for (subI = 0; subI < subsetCombinations.length; subI++) {\n next = subsetCombinations[subI];\n next.unshift(x[i]);\n combinationList.push(next);\n }\n }\n }\n return combinationList;\n}\n\nexport default combinations;\n","/**\n * Implementation of [Combinations](https://en.wikipedia.org/wiki/Combination) with replacement\n * Combinations are unique subsets of a collection - in this case, k x from a collection at a time.\n * 'With replacement' means that a given element can be chosen multiple times.\n * Unlike permutation, order doesn't matter for combinations.\n *\n * @param {Array} x any type of data\n * @param {int} k the number of objects in each group (without replacement)\n * @returns {Array<Array>} array of permutations\n * @example\n * combinationsReplacement([1, 2], 2); // => [[1, 1], [1, 2], [2, 2]]\n */\nfunction combinationsReplacement(x, k) {\n const combinationList = [];\n\n for (let i = 0; i < x.length; i++) {\n if (k === 1) {\n // If we're requested to find only one element, we don't need\n // to recurse: just push `x[i]` onto the list of combinations.\n combinationList.push([x[i]]);\n } else {\n // Otherwise, recursively find combinations, given `k - 1`. Note that\n // we request `k - 1`, so if you were looking for k=3 combinations, we're\n // requesting k=2. This -1 gets reversed in the for loop right after this\n // code, since we concatenate `x[i]` onto the selected combinations,\n // bringing `k` back up to your requested level.\n // This recursion may go many levels deep, since it only stops once\n // k=1.\n const subsetCombinations = combinationsReplacement(\n x.slice(i, x.length),\n k - 1,\n );\n\n for (let j = 0; j < subsetCombinations.length; j++) {\n combinationList.push([x[i]].concat(subsetCombinations[j]));\n }\n }\n }\n\n return combinationList;\n}\n\nexport default combinationsReplacement;\n","import combineMeans from \"./combine_means.js\";\n\n/**\n * When combining two lists of values for which one already knows the variances,\n * one does not have to necessary recompute the variance of the combined lists\n * in linear time. They can instead use this function to compute the combined\n * variance by providing the variance, mean & number of values of the first list\n * and the variance, mean & number of values of the second list.\n *\n * @since 3.0.0\n * @param {number} variance1 variance of the first list\n * @param {number} mean1 mean of the first list\n * @param {number} n1 number of items in the first list\n * @param {number} variance2 variance of the second list\n * @param {number} mean2 mean of the second list\n * @param {number} n2 number of items in the second list\n * @returns {number} the combined mean\n *\n * @example\n * combineVariances(14 / 3, 5, 3, 8 / 3, 4, 3); // => 47 / 12\n */\nfunction combineVariances(variance1, mean1, n1, variance2, mean2, n2) {\n const newMean = combineMeans(mean1, n1, mean2, n2);\n\n return (\n (n1 * (variance1 + Math.pow(mean1 - newMean, 2)) +\n n2 * (variance2 + Math.pow(mean2 - newMean, 2))) /\n (n1 + n2)\n );\n}\n\nexport default combineVariances;\n","/**\n * **[Logistic Cumulative Distribution Function](https://en.wikipedia.org/wiki/Logistic_distribution)**\n *\n * @param {number} x\n * @returns {number} cumulative standard logistic probability\n */\nfunction cumulativeStdLogisticProbability(x) {\n return 1 / (Math.exp(-x) + 1);\n}\n\nexport default cumulativeStdLogisticProbability;\n","import standardNormalTable from \"./standard_normal_table.js\";\n\n/**\n * **[Cumulative Standard Normal Probability](http://en.wikipedia.org/wiki/Standard_normal_table)**\n *\n * Since probability tables cannot be\n * printed for every normal distribution, as there are an infinite variety\n * of normal distributions, it is common practice to convert a normal to a\n * standard normal and then use the standard normal table to find probabilities.\n *\n * You can use `.5 + .5 * errorFunction(x / Math.sqrt(2))` to calculate the probability\n * instead of looking it up in a table.\n *\n * @param {number} z\n * @returns {number} cumulative standard normal probability\n */\nfunction cumulativeStdNormalProbability(z) {\n // Calculate the position of this value.\n const absZ = Math.abs(z);\n // Each row begins with a different\n // significant digit: 0.5, 0.6, 0.7, and so on. Each value in the table\n // corresponds to a range of 0.01 in the input values, so the value is\n // multiplied by 100.\n const index = Math.min(\n Math.round(absZ * 100),\n standardNormalTable.length - 1,\n );\n\n // The index we calculate must be in the table as a positive value,\n // but we still pay attention to whether the input is positive\n // or negative, and flip the output value as a last step.\n if (z >= 0) {\n return standardNormalTable[index];\n } else {\n // due to floating-point arithmetic, values in the table with\n // 4 significant figures can nevertheless end up as repeating\n // fractions when they're computed here.\n return Math.round((1 - standardNormalTable[index]) * 1e4) / 1e4;\n }\n}\n\nexport default cumulativeStdNormalProbability;\n","import max from \"./max.js\";\nimport min from \"./min.js\";\n\n/**\n * Given an array of x, this will find the extent of the\n * x and return an array of breaks that can be used\n * to categorize the x into a number of classes. The\n * returned array will always be 1 longer than the number of\n * classes because it includes the minimum value.\n *\n * @param {Array<number>} x an array of number values\n * @param {number} nClasses number of desired classes\n * @returns {Array<number>} array of class break positions\n * @example\n * equalIntervalBreaks([1, 2, 3, 4, 5, 6], 4); // => [1, 2.25, 3.5, 4.75, 6]\n */\nfunction equalIntervalBreaks(x, nClasses) {\n if (x.length < 2) {\n return x;\n }\n\n const theMin = min(x);\n const theMax = max(x);\n\n // the first break will always be the minimum value\n // in the xset\n const breaks = [theMin];\n\n // The size of each break is the full range of the x\n // divided by the number of classes requested\n const breakSize = (theMax - theMin) / nClasses;\n\n // In the case of nClasses = 1, this loop won't run\n // and the returned breaks will be [min, max]\n for (let i = 1; i < nClasses; i++) {\n breaks.push(breaks[0] + breakSize * i);\n }\n\n // the last break will always be the\n // maximum.\n breaks.push(theMax);\n\n return breaks;\n}\n\nexport default equalIntervalBreaks;\n","/**\n * This computes the minimum & maximum number in an array.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x sample of one or more data points\n * @returns {Array<number>} minimum & maximum value\n * @throws {Error} if the length of x is less than one\n * @example\n * extent([1, 2, 3, 4]);\n * // => [1, 4]\n */\nfunction extent(x) {\n if (x.length === 0) {\n throw new Error(\"extent requires at least one data point\");\n }\n\n let min = x[0];\n let max = x[0];\n for (let i = 1; i < x.length; i++) {\n if (x[i] > max) {\n max = x[i];\n }\n if (x[i] < min) {\n min = x[i];\n }\n }\n return [min, max];\n}\n\nexport default extent;\n","/**\n * The extent is the lowest & highest number in the array. With a sorted array,\n * the first element in the array is always the lowest while the last element is always the largest, so this calculation\n * can be done in one step, or constant time.\n *\n * @param {Array<number>} x input\n * @returns {Array<number>} minimum & maximum value\n * @example\n * extentSorted([-100, -10, 1, 2, 5]); // => [-100, 5]\n */\nfunction extentSorted(x) {\n return [x[0], x[x.length - 1]];\n}\n\nexport default extentSorted;\n","import factorial from \"./factorial.js\";\n\n/**\n * Compute the [gamma function](https://en.wikipedia.org/wiki/Gamma_function) of a value using Nemes' approximation.\n * The gamma of n is equivalent to (n-1)!, but unlike the factorial function, gamma is defined for all real n except zero\n * and negative integers (where NaN is returned). Note, the gamma function is also well-defined for complex numbers,\n * though this implementation currently does not handle complex numbers as input values.\n * Nemes' approximation is defined [here](https://arxiv.org/abs/1003.6020) as Theorem 2.2.\n * Negative values use [Euler's reflection formula](https://en.wikipedia.org/wiki/Gamma_function#Properties) for computation.\n *\n * @param {number} n Any real number except for zero and negative integers.\n * @returns {number} The gamma of the input value.\n *\n * @example\n * gamma(11.5); // 11899423.084037038\n * gamma(-11.5); // 2.29575810481609e-8\n * gamma(5); // 24\n */\nfunction gamma(n) {\n if (Number.isInteger(n)) {\n if (n <= 0) {\n // gamma not defined for zero or negative integers\n return Number.NaN;\n } else {\n // use factorial for integer inputs\n return factorial(n - 1);\n }\n }\n\n // Decrement n, because approximation is defined for n - 1\n n--;\n\n if (n < 0) {\n // Use Euler's reflection formula for negative inputs\n // see: https://en.wikipedia.org/wiki/Gamma_function#Properties\n return Math.PI / (Math.sin(Math.PI * -n) * gamma(-n));\n } else {\n // Nemes' expansion approximation\n const seriesCoefficient =\n Math.pow(n / Math.E, n) * Math.sqrt(2 * Math.PI * (n + 1 / 6));\n\n const seriesDenom = n + 1 / 4;\n\n const seriesExpansion =\n 1 +\n 1 / 144 / Math.pow(seriesDenom, 2) -\n 1 / 12960 / Math.pow(seriesDenom, 3) -\n 257 / 207360 / Math.pow(seriesDenom, 4) -\n 52 / 2612736 / Math.pow(seriesDenom, 5) +\n 5741173 / 9405849600 / Math.pow(seriesDenom, 6) +\n 37529 / 18811699200 / Math.pow(seriesDenom, 7);\n\n return seriesCoefficient * seriesExpansion;\n }\n}\n\nexport default gamma;\n","/**\n * The [Geometric Mean](https://en.wikipedia.org/wiki/Geometric_mean) is\n * a mean function that is more useful for numbers in different\n * ranges.\n *\n * This is the nth root of the input numbers multiplied by each other.\n *\n * The geometric mean is often useful for\n * **[proportional growth](https://en.wikipedia.org/wiki/Geometric_mean#Proportional_growth)**: given\n * growth rates for multiple years, like _80%, 16.66% and 42.85%_, a simple\n * mean will incorrectly estimate an average growth rate, whereas a geometric\n * mean will correctly estimate a growth rate that, over those years,\n * will yield the same end value.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x sample of one or more data points\n * @returns {number} geometric mean\n * @throws {Error} if x is empty\n * @throws {Error} if x contains a negative number\n * @example\n * var growthRates = [1.80, 1.166666, 1.428571];\n * var averageGrowth = ss.geometricMean(growthRates);\n * var averageGrowthRates = [averageGrowth, averageGrowth, averageGrowth];\n * var startingValue = 10;\n * var startingValueMean = 10;\n * growthRates.forEach(function(rate) {\n * startingValue *= rate;\n * });\n * averageGrowthRates.forEach(function(rate) {\n * startingValueMean *= rate;\n * });\n * startingValueMean === startingValue;\n */\nfunction geometricMean(x) {\n if (x.length === 0) {\n throw new Error(\"geometricMean requires at least one data point\");\n }\n\n // the starting value.\n let value = 1;\n\n for (let i = 0; i < x.length; i++) {\n // the geometric mean is only valid for positive numbers\n if (x[i] < 0) {\n throw new Error(\n \"geometricMean requires only non-negative numbers as input\",\n );\n }\n\n // repeatedly multiply the value by each number\n value *= x[i];\n }\n\n return Math.pow(value, 1 / x.length);\n}\n\nexport default geometricMean;\n","/**\n * The [Harmonic Mean](https://en.wikipedia.org/wiki/Harmonic_mean) is\n * a mean function typically used to find the average of rates.\n * This mean is calculated by taking the reciprocal of the arithmetic mean\n * of the reciprocals of the input numbers.\n *\n * This is a [measure of central tendency](https://en.wikipedia.org/wiki/Central_tendency):\n * a method of finding a typical or central value of a set of numbers.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x sample of one or more data points\n * @returns {number} harmonic mean\n * @throws {Error} if x is empty\n * @throws {Error} if x contains a negative number\n * @example\n * harmonicMean([2, 3]).toFixed(2) // => '2.40'\n */\nfunction harmonicMean(x) {\n if (x.length === 0) {\n throw new Error(\"harmonicMean requires at least one data point\");\n }\n\n let reciprocalSum = 0;\n\n for (let i = 0; i < x.length; i++) {\n // the harmonic mean is only valid for positive numbers\n if (x[i] <= 0) {\n throw new Error(\n \"harmonicMean requires only positive numbers as input\",\n );\n }\n\n reciprocalSum += 1 / x[i];\n }\n\n // divide n by the reciprocal sum\n return x.length / reciprocalSum;\n}\n\nexport default harmonicMean;\n","import jenksBreaks from \"./jenks_breaks.js\";\nimport jenksMatrices from \"./jenks_matrices.js\";\n\n/**\n * The **[jenks natural breaks optimization](http://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization)**\n * is an algorithm commonly used in cartography and visualization to decide\n * upon groupings of data values that minimize variance within themselves\n * and maximize variation between themselves.\n *\n * For instance, cartographers often use jenks in order to choose which\n * values are assigned to which colors in a [choropleth](https://en.wikipedia.org/wiki/Choropleth_map)\n * map.\n *\n * @param {Array<number>} data input data, as an array of number values\n * @param {number} nClasses number of desired classes\n * @returns {Array<number>} array of class break positions\n * // split data into 3 break points\n * jenks([1, 2, 4, 5, 7, 9, 10, 20], 3) // = [1, 7, 20, 20]\n */\nfunction jenks(data, nClasses) {\n if (nClasses > data.length) {\n return null;\n }\n\n // sort data in numerical order, since this is expected\n // by the matrices function\n data = data.slice().sort(function (a, b) {\n return a - b;\n });\n\n // get our basic matrices\n const matrices = jenksMatrices(data, nClasses);\n // we only need lower class limits here\n const lowerClassLimits = matrices.lowerClassLimits;\n\n // extract nClasses out of the computed matrices\n return jenksBreaks(data, lowerClassLimits, nClasses);\n}\n\nexport default jenks;\n","/*\n * Compute Matrices for Jenks\n *\n * Compute the matrices required for Jenks breaks. These matrices\n * can be used for any classing of data with `classes <= nClasses`\n *\n * @private\n */\nfunction jenksMatrices(data, nClasses) {\n // in the original implementation, these matrices are referred to\n // as `LC` and `OP`\n //\n // * lowerClassLimits (LC): optimal lower class limits\n // * varianceCombinations (OP): optimal variance combinations for all classes\n const lowerClassLimits = [];\n const varianceCombinations = [];\n // loop counters\n let i;\n let j;\n // the variance, as computed at each step in the calculation\n let variance = 0;\n\n // Initialize and fill each matrix with zeroes\n for (i = 0; i < data.length + 1; i++) {\n const tmp1 = [];\n const tmp2 = [];\n // despite these arrays having the same values, we need\n // to keep them separate so that changing one does not change\n // the other\n for (j = 0; j < nClasses + 1; j++) {\n tmp1.push(0);\n tmp2.push(0);\n }\n lowerClassLimits.push(tmp1);\n varianceCombinations.push(tmp2);\n }\n\n for (i = 1; i < nClasses + 1; i++) {\n lowerClassLimits[1][i] = 1;\n varianceCombinations[1][i] = 0;\n // in the original implementation, 9999999 is used but\n // since Javascript has `Infinity`, we use that.\n for (j = 2; j < data.length + 1; j++) {\n varianceCombinations[j][i] = Number.POSITIVE_INFINITY;\n }\n }\n\n for (let l = 2; l < data.length + 1; l++) {\n // `SZ` originally. this is the sum of the values seen thus\n // far when calculating variance.\n let sum = 0;\n // `ZSQ` originally. the sum of squares of values seen\n // thus far\n let sumSquares = 0;\n // `WT` originally. This is the number of\n let w = 0;\n // `IV` originally\n let i4 = 0;\n\n // in several instances, you could say `Math.pow(x, 2)`\n // instead of `x * x`, but this is slower in some browsers\n // introduces an unnecessary concept.\n for (let m = 1; m < l + 1; m++) {\n // `III` originally\n const lowerClassLimit = l - m + 1;\n const val = data[lowerClassLimit - 1];\n\n // here we're estimating variance for each potential classing\n // of the data, for each potential number of classes. `w`\n // is the number of data points considered so far.\n w++;\n\n // increase the current sum and sum-of-squares\n sum += val;\n sumSquares += val * val;\n\n // the variance at this point in the sequence is the difference\n // between the sum of squares and the total x 2, over the number\n // of samples.\n variance = sumSquares - (sum * sum) / w;\n\n i4 = lowerClassLimit - 1;\n\n if (i4 !== 0) {\n for (j = 2; j < nClasses + 1; j++) {\n // if adding this element to an existing class\n // will increase its variance beyond the limit, break\n // the class at this point, setting the `lowerClassLimit`\n // at this point.\n if (\n varianceCombinations[l][j] >=\n variance + varianceCombinations[i4][j - 1]\n ) {\n lowerClassLimits[l][j] = lowerClassLimit;\n varianceCombinations[l][j] =\n variance + varianceCombinations[i4][j - 1];\n }\n }\n }\n }\n\n lowerClassLimits[l][1] = 1;\n varianceCombinations[l][1] = variance;\n }\n\n // return the two matrices. for just providing breaks, only\n // `lowerClassLimits` is needed, but variances can be useful to\n // evaluate goodness of fit.\n return {\n lowerClassLimits: lowerClassLimits,\n varianceCombinations: varianceCombinations,\n };\n}\n\nexport default jenksMatrices;\n","/*\n * Pull Breaks Values for Jenks\n *\n * the second part of the jenks recipe: take the calculated matrices\n * and derive an array of n breaks.\n *\n * @private\n */\nfunction jenksBreaks(data, lowerClassLimits, nClasses) {\n let k = data.length;\n const kclass = [];\n let countNum = nClasses;\n\n // the calculation of classes will never include the upper\n // bound, so we need to explicitly set it\n kclass[nClasses] = data[data.length - 1];\n\n // the lowerClassLimits matrix is used as indices into itself\n // here: the `k` variable is reused in each iteration.\n while (countNum > 0) {\n kclass[countNum - 1] = data[lowerClassLimits[k][countNum] - 1];\n k = lowerClassLimits[k][countNum] - 1;\n countNum--;\n }\n\n return kclass;\n}\n\nexport default jenksBreaks;\n","/**\n * [Simple linear regression](http://en.wikipedia.org/wiki/Simple_linear_regression)\n * is a simple way to find a fitted line\n * between a set of coordinates. This algorithm finds the slope and y-intercept of a regression line\n * using the least sum of squares.\n *\n * @param {Array<Array<number>>} data an array of two-element of arrays,\n * like `[[0, 1], [2, 3]]`\n * @returns {Object} object containing slope and intersect of regression line\n * @example\n * linearRegression([[0, 0], [1, 1]]); // => { m: 1, b: 0 }\n */\nfunction linearRegression(data) {\n let m;\n let b;\n\n // Store data length in a local variable to reduce\n // repeated object property lookups\n const dataLength = data.length;\n\n //if there's only one point, arbitrarily choose a slope of 0\n //and a y-intercept of whatever the y of the initial point is\n if (dataLength === 1) {\n m = 0;\n b = data[0][1];\n } else {\n // Initialize our sums and scope the `m` and `b`\n // variables that define the line.\n let sumX = 0;\n let sumY = 0;\n let sumXX = 0;\n let sumXY = 0;\n\n // Use local variables to grab point values\n // with minimal object property lookups\n let point;\n let x;\n let y;\n\n // Gather the sum of all x values, the sum of all\n // y values, and the sum of x^2 and (x*y) for each\n // value.\n //\n // In math notation, these would be SS_x, SS_y, SS_xx, and SS_xy\n for (let i = 0; i < dataLength; i++) {\n point = data[i];\n x = point[0];\n y = point[1];\n\n sumX += x;\n sumY += y;\n\n sumXX += x * x;\n sumXY += x * y;\n }\n\n // `m` is the slope of the regression line\n m =\n (dataLength * sumXY - sumX * sumY) /\n (dataLength * sumXX - sumX * sumX);\n\n // `b` is the y-intercept of the line.\n b = sumY / dataLength - (m * sumX) / dataLength;\n }\n\n // Return both values as an object.\n return {\n m: m,\n b: b,\n };\n}\n\nexport default linearRegression;\n","/**\n * Given the output of `linearRegression`: an object\n * with `m` and `b` values indicating slope and intercept,\n * respectively, generate a line function that translates\n * x values into y values.\n *\n * @param {Object} mb object with `m` and `b` members, representing\n * slope and intersect of desired line\n * @returns {Function} method that computes y-value at any given\n * x-value on the line.\n * @example\n * var l = linearRegressionLine(linearRegression([[0, 0], [1, 1]]));\n * l(0) // = 0\n * l(2) // = 2\n * linearRegressionLine({ b: 0, m: 1 })(1); // => 1\n * linearRegressionLine({ b: 1, m: 1 })(1); // => 2\n */\nfunction linearRegressionLine(mb /*: { b: number, m: number }*/) {\n // Return a function that computes a `y` value for each\n // x value it is given, based on the values of `b` and `a`\n // that we just computed.\n return function (x) {\n return mb.b + mb.m * x;\n };\n}\n\nexport default linearRegressionLine;\n","/**\n * The [log average](https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/Geometric_mean#Relationship_with_logarithms)\n * is an equivalent way of computing the geometric mean of an array suitable for large or small products.\n *\n * It's found by calculating the average logarithm of the elements and exponentiating.\n *\n * @param {Array<number>} x sample of one or more data points\n * @returns {number} geometric mean\n * @throws {Error} if x is empty\n * @throws {Error} if x contains a negative number\n */\nfunction logAverage(x) {\n if (x.length === 0) {\n throw new Error(\"logAverage requires at least one data point\");\n }\n\n let value = 0;\n for (let i = 0; i < x.length; i++) {\n if (x[i] < 0) {\n throw new Error(\n \"logAverage requires only non-negative numbers as input\",\n );\n }\n value += Math.log(x[i]);\n }\n\n return Math.exp(value / x.length);\n}\n\nexport default logAverage;\n","/**\n * The [Logit](https://en.wikipedia.org/wiki/Logit)\n * is the inverse of cumulativeStdLogisticProbability,\n * and is also known as the logistic quantile function.\n *\n * @param {number} p\n * @returns {number} logit\n */\nfunction logit(p) {\n if (p <= 0 || p >= 1) {\n throw new Error(\"p must be strictly between zero and one\");\n }\n return Math.log(p / (1 - p));\n}\n\nexport default logit;\n","/**\n * The maximum is the highest number in the array. With a sorted array,\n * the last element in the array is always the largest, so this calculation\n * can be done in one step, or constant time.\n *\n * @param {Array<number>} x input\n * @returns {number} maximum value\n * @example\n * maxSorted([-100, -10, 1, 2, 5]); // => 5\n */\nfunction maxSorted(x) {\n return x[x.length - 1];\n}\n\nexport default maxSorted;\n","import quantileSorted from \"./quantile_sorted.js\";\n\n/**\n * The [median](http://en.wikipedia.org/wiki/Median) is\n * the middle number of a list. This is often a good indicator of 'the middle'\n * when there are outliers that skew the `mean()` value.\n * This is a [measure of central tendency](https://en.wikipedia.org/wiki/Central_tendency):\n * a method of finding a typical or central value of a set of numbers.\n *\n * The median isn't necessarily one of the elements in the list: the value\n * can be the average of two elements if the list has an even length\n * and the two central values are different.\n *\n * @param {Array<number>} sorted input\n * @returns {number} median value\n * @example\n * medianSorted([10, 2, 5, 100, 2, 1]); // => 52.5\n */\nfunction medianSorted(sorted) {\n return quantileSorted(sorted, 0.5);\n}\n\nexport default medianSorted;\n","/**\n * The minimum is the lowest number in the array. With a sorted array,\n * the first element in the array is always the smallest, so this calculation\n * can be done in one step, or constant time.\n *\n * @param {Array<number>} x input\n * @returns {number} minimum value\n * @example\n * minSorted([-100, -10, 1, 2, 5]); // => -100\n */\nfunction minSorted(x) {\n return x[0];\n}\n\nexport default minSorted;\n","import modeSorted from \"./mode_sorted.js\";\nimport numericSort from \"./numeric_sort.js\";\n\n/**\n * The [mode](https://en.wikipedia.org/wiki/Mode_%28statistics%29) is the number\n * that appears in a list the highest number of times.\n * There can be multiple modes in a list: in the event of a tie, this\n * algorithm will return the most recently seen mode.\n *\n * This is a [measure of central tendency](https://en.wikipedia.org/wiki/Central_tendency):\n * a method of finding a typical or central value of a set of numbers.\n *\n * This runs in `O(n log(n))` because it needs to sort the array internally\n * before running an `O(n)` search to find the mode.\n *\n * @param {Array<number>} x input\n * @returns {number} mode\n * @example\n * mode([0, 0, 1]); // => 0\n */\nfunction mode(x) {\n // Sorting the array lets us iterate through it below and be sure\n // that every time we see a new number it's new and we'll never\n // see the same number twice\n return modeSorted(numericSort(x));\n}\n\nexport default mode;\n","/* globals Map: false */\n\n/**\n * The [mode](https://en.wikipedia.org/wiki/Mode_%28statistics%29) is the number\n * that appears in a list the highest number of times.\n * There can be multiple modes in a list: in the event of a tie, this\n * algorithm will return the most recently seen mode.\n *\n * modeFast uses a Map object to keep track of the mode, instead of the approach\n * used with `mode`, a sorted array. As a result, it is faster\n * than `mode` and supports any data type that can be compared with `==`.\n * It also requires a\n * [JavaScript environment with support for Map](https://kangax.github.io/compat-table/es6/#test-Map),\n * and will throw an error if Map is not available.\n *\n * This is a [measure of central tendency](https://en.wikipedia.org/wiki/Central_tendency):\n * a method of finding a typical or central value of a set of numbers.\n *\n * @param {Array<*>} x a sample of one or more data points\n * @returns {?*} mode\n * @throws {ReferenceError} if the JavaScript environment doesn't support Map\n * @throws {Error} if x is empty\n * @example\n * modeFast(['rabbits', 'rabbits', 'squirrels']); // => 'rabbits'\n */\nfunction modeFast(x) {\n // This index will reflect the incidence of different values, indexing\n // them like\n // { value: count }\n const index = new Map();\n\n // A running `mode` and the number of times it has been encountered.\n let mode;\n let modeCount = 0;\n\n for (let i = 0; i < x.length; i++) {\n let newCount = index.get(x[i]);\n if (newCount === undefined) {\n newCount = 1;\n } else {\n newCount++;\n }\n if (newCount > modeCount) {\n mode = x[i];\n modeCount = newCount;\n }\n index.set(x[i], newCount);\n }\n\n if (modeCount === 0) {\n throw new Error(\"mode requires at last one data point\");\n }\n\n return mode;\n}\n\nexport default modeFast;\n","import mean from \"./mean.js\";\nimport shuffleInPlace from \"./shuffle_in_place.js\";\n\n/**\n * Conducts a [permutation test](https://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests)\n * to determine if two data sets are *significantly* different from each other, using\n * the difference of means between the groups as the test statistic.\n * The function allows for the following hypotheses:\n * - two_tail = Null hypothesis: the two distributions are equal.\n * - greater = Null hypothesis: observations from sampleX tend to be smaller than those from sampleY.\n * - less = Null hypothesis: observations from sampleX tend to be greater than those from sampleY.\n * [Learn more about one-tail vs two-tail tests.](https://en.wikipedia.org/wiki/One-_and_two-tailed_tests)\n *\n * @param {Array<number>} sampleX first dataset (e.g. treatment data)\n * @param {Array<number>} sampleY second dataset (e.g. control data)\n * @param {string} alternative alternative hypothesis, either 'two_sided' (default), 'greater', or 'less'\n * @param {number} k number of values in permutation distribution.\n * @param {Function} [randomSource=Math.random] an optional entropy source\n * @returns {number} p-value The probability of observing the difference between groups (as or more extreme than what we did), assuming the null hypothesis.\n *\n * @example\n * var control = [2, 5, 3, 6, 7, 2, 5];\n * var treatment = [20, 5, 13, 12, 7, 2, 2];\n * permutationTest(control, treatment); // ~0.1324\n */\nfunction permutationTest(sampleX, sampleY, alternative, k, randomSource) {\n // Set default arguments\n if (k === undefined) {\n k = 10000;\n }\n if (alternative === undefined) {\n alternative = \"two_side\";\n }\n if (\n alternative !== \"two_side\" &&\n alternative !== \"greater\" &&\n alternative !== \"less\"\n ) {\n throw new Error(\n \"`alternative` must be either 'two_side', 'greater', or 'less'.\",\n );\n }\n\n // get means for each sample\n const meanX = mean(sampleX);\n const meanY = mean(sampleY);\n\n // calculate initial test statistic. This will be our point of comparison with\n // the generated test statistics.\n const testStatistic = meanX - meanY;\n\n // create test-statistic distribution\n const testStatDsn = new Array(k);\n\n // combine datsets so we can easily shuffle later\n const allData = sampleX.concat(sampleY);\n const midIndex = Math.floor(allData.length / 2);\n\n for (let i = 0; i < k; i++) {\n // 1. shuffle data assignments\n shuffleInPlace(allData, randomSource);\n const permLeft = allData.slice(0, midIndex);\n const permRight = allData.slice(midIndex, allData.length);\n\n // 2.re-calculate test statistic\n const permTestStatistic = mean(permLeft) - mean(permRight);\n\n // 3. store test statistic to build test statistic distribution\n testStatDsn[i] = permTestStatistic;\n }\n\n // Calculate p-value depending on alternative\n // For this test, we calculate the percentage of 'extreme' test statistics (subject to our hypothesis)\n // more info on permutation test p-value calculations: https://onlinecourses.science.psu.edu/stat464/node/35\n let numExtremeTStats = 0;\n if (alternative === \"two_side\") {\n for (let i = 0; i <= k; i++) {\n if (Math.abs(testStatDsn[i]) >= Math.abs(testStatistic)) {\n numExtremeTStats += 1;\n }\n }\n } else if (alternative === \"greater\") {\n for (let i = 0; i <= k; i++) {\n if (testStatDsn[i] >= testStatistic) {\n numExtremeTStats += 1;\n }\n }\n } else {\n // alternative === 'less'\n for (let i = 0; i <= k; i++) {\n /* c8 ignore start */\n if (testStatDsn[i] <= testStatistic) {\n numExtremeTStats += 1;\n }\n /* c8 ignore end */\n }\n }\n\n return numExtremeTStats / k;\n}\n\nexport default permutationTest;\n","/**\n * Implementation of [Heap's Algorithm](https://en.wikipedia.org/wiki/Heap%27s_algorithm)\n * for generating permutations.\n *\n * @param {Array} elements any type of data\n * @returns {Array<Array>} array of permutations\n */\nfunction permutationsHeap(elements) {\n const indexes = new Array(elements.length);\n const permutations = [elements.slice()];\n\n for (let i = 0; i < elements.length; i++) {\n indexes[i] = 0;\n }\n\n for (let i = 0; i < elements.length; ) {\n if (indexes[i] < i) {\n // At odd indexes, swap from indexes[i] instead\n // of from the beginning of the array\n let swapFrom = 0;\n if (i % 2 !== 0) {\n swapFrom = indexes[i];\n }\n\n // swap between swapFrom and i, using\n // a temporary variable as storage.\n const temp = elements[swapFrom];\n elements[swapFrom] = elements[i];\n elements[i] = temp;\n\n permutations.push(elements.slice());\n indexes[i]++;\n i = 0;\n } else {\n indexes[i] = 0;\n i++;\n }\n }\n\n return permutations;\n}\n\nexport default permutationsHeap;\n","import epsilon from \"./epsilon.js\";\n\n/**\n * The [Poisson Distribution](http://en.wikipedia.org/wiki/Poisson_distribution)\n * is a discrete probability distribution that expresses the probability\n * of a given number of events occurring in a fixed interval of time\n * and/or space if these events occur with a known average rate and\n * independently of the time since the last event.\n *\n * The Poisson Distribution is characterized by the strictly positive\n * mean arrival or occurrence rate, `λ`.\n *\n * @param {number} lambda location poisson distribution\n * @returns {number[]} values of poisson distribution at that point\n */\nfunction poissonDistribution(lambda) /*: ?number[] */ {\n // Check that lambda is strictly positive\n if (lambda <= 0) {\n return undefined;\n }\n\n // our current place in the distribution\n let x = 0;\n // and we keep track of the current cumulative probability, in\n // order to know when to stop calculating chances.\n let cumulativeProbability = 0;\n // the calculated cells to be returned\n const cells = [];\n let factorialX = 1;\n\n // This algorithm iterates through each potential outcome,\n // until the `cumulativeProbability` is very close to 1, at\n // which point we've defined the vast majority of outcomes\n do {\n // a [probability mass function](https://en.wikipedia.org/wiki/Probability_mass_function)\n cells[x] = (Math.exp(-lambda) * Math.pow(lambda, x)) / factorialX;\n cumulativeProbability += cells[x];\n x++;\n factorialX *= x;\n // when the cumulativeProbability is nearly 1, we've calculated\n // the useful range of this distribution\n } while (cumulativeProbability < 1 - epsilon);\n\n return cells;\n}\n\nexport default poissonDistribution;\n","import epsilon from \"./epsilon.js\";\nimport inverseErrorFunction from \"./inverse_error_function.js\";\n\n/**\n * The [Probit](http://en.wikipedia.org/wiki/Probit)\n * is the inverse of cumulativeStdNormalProbability(),\n * and is also known as the normal quantile function.\n *\n * It returns the number of standard deviations from the mean\n * where the p'th quantile of values can be found in a normal distribution.\n * So, for example, probit(0.5 + 0.6827/2) ≈ 1 because 68.27% of values are\n * normally found within 1 standard deviation above or below the mean.\n *\n * @param {number} p\n * @returns {number} probit\n */\nfunction probit(p) {\n if (p === 0) {\n p = epsilon;\n } else if (p >= 1) {\n p = 1 - epsilon;\n }\n return Math.sqrt(2) * inverseErrorFunction(2 * p - 1);\n}\n\nexport default probit;\n","/**\n * The [product](https://en.wikipedia.org/wiki/Product_(mathematics)) of an array\n * is the result of multiplying all numbers together, starting using one as the multiplicative identity.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x input\n * @return {number} product of all input numbers\n * @example\n * product([1, 2, 3, 4]); // => 24\n */\nfunction product(x) {\n let value = 1;\n for (let i = 0; i < x.length; i++) {\n value *= x[i];\n }\n return value;\n}\n\nexport default product;\n","import numericSort from \"./numeric_sort.js\";\nimport quantileRankSorted from \"./quantile_rank_sorted.js\";\n\n/**\n * This function returns the quantile in which one would find the given value in\n * the given array. It will copy and sort your array before each run, so\n * if you know your array is already sorted, you should use `quantileRankSorted`\n * instead.\n *\n * @param {Array<number>} x input\n * @returns {number} value value\n * @example\n * quantileRank([4, 3, 1, 2], 3); // => 0.75\n * quantileRank([4, 3, 2, 3, 1], 3); // => 0.7\n * quantileRank([2, 4, 1, 3], 6); // => 1\n * quantileRank([5, 3, 1, 2, 3], 4); // => 0.8\n */\nfunction quantileRank(x, value) {\n // Cloning and sorting the array\n const sortedCopy = numericSort(x);\n\n return quantileRankSorted(sortedCopy, value);\n}\n\nexport default quantileRank;\n","/**\n * The [R Squared](http://en.wikipedia.org/wiki/Coefficient_of_determination)\n * value of data compared with a function `f`\n * is the sum of the squared differences between the prediction\n * and the actual value.\n *\n * @param {Array<Array<number>>} x input data: this should be doubly-nested\n * @param {Function} func function called on `[i][0]` values within the dataset\n * @returns {number} r-squared value\n * @example\n * var samples = [[0, 0], [1, 1]];\n * var regressionLine = linearRegressionLine(linearRegression(samples));\n * rSquared(samples, regressionLine); // = 1 this line is a perfect fit\n */\nfunction rSquared(x, func) {\n if (x.length < 2) {\n return 1;\n }\n\n // Compute the average y value for the actual\n // data set in order to compute the\n // _total sum of squares_\n let sum = 0;\n for (let i = 0; i < x.length; i++) {\n sum += x[i][1];\n }\n const average = sum / x.length;\n\n // Compute the total sum of squares - the\n // squared difference between each point\n // and the average of all points.\n let sumOfSquares = 0;\n for (let j = 0; j < x.length; j++) {\n sumOfSquares += Math.pow(average - x[j][1], 2);\n }\n\n // Finally estimate the error: the squared\n // difference between the estimate and the actual data\n // value at each point.\n let err = 0;\n for (let k = 0; k < x.length; k++) {\n err += Math.pow(x[k][1] - func(x[k][0]), 2);\n }\n\n // As the error grows larger, its ratio to the\n // sum of squares increases and the r squared\n // value grows lower.\n return 1 - err / sumOfSquares;\n}\n\nexport default rSquared;\n","import mean from \"./mean.js\";\n\n/**\n * [Kurtosis](http://en.wikipedia.org/wiki/Kurtosis) is\n * a measure of the heaviness of a distribution's tails relative to its\n * variance. The kurtosis value can be positive or negative, or even undefined.\n *\n * Implementation is based on Fisher's excess kurtosis definition and uses\n * unbiased moment estimators. This is the version found in Excel and available\n * in several statistical packages, including SAS and SciPy.\n *\n * @param {Array<number>} x a sample of 4 or more data points\n * @returns {number} sample kurtosis\n * @throws {Error} if x has length less than 4\n * @example\n * sampleKurtosis([1, 2, 2, 3, 5]); // => 1.4555765595463122\n */\nfunction sampleKurtosis(x) {\n const n = x.length;\n\n if (n < 4) {\n throw new Error(\"sampleKurtosis requires at least four data points\");\n }\n\n const meanValue = mean(x);\n let tempValue;\n let secondCentralMoment = 0;\n let fourthCentralMoment = 0;\n\n for (let i = 0; i < n; i++) {\n tempValue = x[i] - meanValue;\n secondCentralMoment += tempValue * tempValue;\n fourthCentralMoment += tempValue * tempValue * tempValue * tempValue;\n }\n\n return (\n ((n - 1) / ((n - 2) * (n - 3))) *\n ((n * (n + 1) * fourthCentralMoment) /\n (secondCentralMoment * secondCentralMoment) -\n 3 * (n - 1))\n );\n}\n\nexport default sampleKurtosis;\n","import sampleCorrelation from \"./sample_correlation.js\";\n\n/**\n * The [rank correlation](https://en.wikipedia.org/wiki/Rank_correlation) is\n * a measure of the strength of monotonic relationship between two arrays\n *\n * @param {Array<number>} x first input\n * @param {Array<number>} y second input\n * @returns {number} sample rank correlation\n */\nfunction sampleRankCorrelation(x, y) {\n const xIndexes = x\n .map((value, index) => [value, index])\n .sort((a, b) => a[0] - b[0])\n .map((pair) => pair[1]);\n const yIndexes = y\n .map((value, index) => [value, index])\n .sort((a, b) => a[0] - b[0])\n .map((pair) => pair[1]);\n\n // At this step, we have an array of indexes\n // that map from sorted numbers to their original indexes. We reverse\n // that so that it is an array of the sorted destination index.\n const xRanks = Array(xIndexes.length);\n const yRanks = Array(xIndexes.length);\n for (let i = 0; i < xIndexes.length; i++) {\n xRanks[xIndexes[i]] = i;\n yRanks[yIndexes[i]] = i;\n }\n\n return sampleCorrelation(xRanks, yRanks);\n}\n\nexport default sampleRankCorrelation;\n","import mean from \"./mean.js\";\n\n/**\n * [Skewness](http://en.wikipedia.org/wiki/Skewness) is\n * a measure of the extent to which a probability distribution of a\n * real-valued random variable \"leans\" to one side of the mean.\n * The skewness value can be positive or negative, or even undefined.\n *\n * Implementation is based on the adjusted Fisher-Pearson standardized\n * moment coefficient, which is the version found in Excel and several\n * statistical packages including Minitab, SAS and SPSS.\n *\n * @since 4.1.0\n * @param {Array<number>} x a sample of 3 or more data points\n * @returns {number} sample skewness\n * @throws {Error} if x has length less than 3\n * @example\n * sampleSkewness([2, 4, 6, 3, 1]); // => 0.590128656384365\n */\nfunction sampleSkewness(x) {\n if (x.length < 3) {\n throw new Error(\"sampleSkewness requires at least three data points\");\n }\n\n const meanValue = mean(x);\n let tempValue;\n let sumSquaredDeviations = 0;\n let sumCubedDeviations = 0;\n\n for (let i = 0; i < x.length; i++) {\n tempValue = x[i] - meanValue;\n sumSquaredDeviations += tempValue * tempValue;\n sumCubedDeviations += tempValue * tempValue * tempValue;\n }\n\n // this is Bessels' Correction: an adjustment made to sample statistics\n // that allows for the reduced degree of freedom entailed in calculating\n // values from samples rather than complete populations.\n const besselsCorrection = x.length - 1;\n\n // Find the mean value of that list\n const theSampleStandardDeviation = Math.sqrt(\n sumSquaredDeviations / besselsCorrection,\n );\n\n const n = x.length;\n const cubedS = Math.pow(theSampleStandardDeviation, 3);\n\n return (n * sumCubedDeviations) / ((n - 1) * (n - 2) * cubedS);\n}\n\nexport default sampleSkewness;\n","/**\n * Sampling with replacement is a type of sampling that allows the same\n * item to be picked out of a population more than once.\n *\n * @param {Array<*>} x an array of any kind of value\n * @param {number} n count of how many elements to take\n * @param {Function} [randomSource=Math.random] an optional entropy source that\n * returns numbers between 0 inclusive and 1 exclusive: the range [0, 1)\n * @return {Array} n sampled items from the population\n * @example\n * var values = [1, 2, 3, 4];\n * sampleWithReplacement(values, 2); // returns 2 random values, like [2, 4];\n */\nfunction sampleWithReplacement(x, n, randomSource) {\n if (x.length === 0) {\n return [];\n }\n\n // a custom random number source can be provided if you want to use\n // a fixed seed or another random number generator, like\n // [random-js](https://www.npmjs.org/package/random-js)\n randomSource = randomSource || Math.random;\n\n const length = x.length;\n const sample = [];\n\n for (let i = 0; i < n; i++) {\n const index = Math.floor(randomSource() * length);\n\n sample.push(x[index]);\n }\n\n return sample;\n}\n\nexport default sampleWithReplacement;\n","import max from \"./max.js\";\nimport silhouette from \"./silhouette.js\";\n\n/**\n * Calculate the [silhouette metric](https://en.wikipedia.org/wiki/Silhouette_(clustering))\n * for a set of N-dimensional points arranged in groups. The metric is the largest\n * individual silhouette value for the data.\n *\n * @param {Array<Array<number>>} points N-dimensional coordinates of points.\n * @param {Array<number>} labels Labels of points. This must be the same length as `points`,\n * and values must lie in [0..G-1], where G is the number of groups.\n * @return {number} The silhouette metric for the groupings.\n *\n * @example\n * silhouetteMetric([[0.25], [0.75]], [0, 0]); // => 1.0\n */\nfunction silhouetteMetric(points, labels) {\n const values = silhouette(points, labels);\n return max(values);\n}\n\nexport default silhouetteMetric;\n","/**\n * When removing a value from a list, one does not have to necessary\n * recompute the mean of the list in linear time. They can instead use\n * this function to compute the new mean by providing the current mean,\n * the number of elements in the list that produced it and the value to remove.\n *\n * @since 3.0.0\n * @param {number} mean current mean\n * @param {number} n number of items in the list\n * @param {number} value the value to remove\n * @returns {number} the new mean\n *\n * @example\n * subtractFromMean(20.5, 6, 53); // => 14\n */\nfunction subtractFromMean(mean, n, value) {\n return (mean * n - value) / (n - 1);\n}\n\nexport default subtractFromMean;\n","import mean from \"./mean.js\";\nimport standardDeviation from \"./standard_deviation.js\";\n\n/**\n * This is to compute [a one-sample t-test](https://en.wikipedia.org/wiki/Student%27s_t-test#One-sample_t-test), comparing the mean\n * of a sample to a known value, x.\n *\n * in this case, we're trying to determine whether the\n * population mean is equal to the value that we know, which is `x`\n * here. Usually the results here are used to look up a\n * [p-value](http://en.wikipedia.org/wiki/P-value), which, for\n * a certain level of significance, will let you determine that the\n * null hypothesis can or cannot be rejected.\n *\n * @param {Array<number>} x sample of one or more numbers\n * @param {number} expectedValue expected value of the population mean\n * @returns {number} value\n * @example\n * tTest([1, 2, 3, 4, 5, 6], 3.385).toFixed(2); // => '0.16'\n */\nfunction tTest(x, expectedValue) {\n // The mean of the sample\n const sampleMean = mean(x);\n\n // The standard deviation of the sample\n const sd = standardDeviation(x);\n\n // Square root the length of the sample\n const rootN = Math.sqrt(x.length);\n\n // returning the t value\n return (sampleMean - expectedValue) / (sd / rootN);\n}\n\nexport default tTest;\n","import mean from \"./mean.js\";\nimport sampleVariance from \"./sample_variance.js\";\n\n/**\n * This is to compute [two sample t-test](http://en.wikipedia.org/wiki/Student's_t-test).\n * Tests whether \"mean(X)-mean(Y) = difference\", (\n * in the most common case, we often have `difference == 0` to test if two samples\n * are likely to be taken from populations with the same mean value) with\n * no prior knowledge on standard deviations of both samples\n * other than the fact that they have the same standard deviation.\n *\n * Usually the results here are used to look up a\n * [p-value](http://en.wikipedia.org/wiki/P-value), which, for\n * a certain level of significance, will let you determine that the\n * null hypothesis can or cannot be rejected.\n *\n * `diff` can be omitted if it equals 0.\n *\n * [This is used to reject](https://en.wikipedia.org/wiki/Exclusion_of_the_null_hypothesis)\n * a null hypothesis that the two populations that have been sampled into\n * `sampleX` and `sampleY` are equal to each other.\n *\n * @param {Array<number>} sampleX a sample as an array of numbers\n * @param {Array<number>} sampleY a sample as an array of numbers\n * @param {number} [difference=0]\n * @returns {number|null} test result\n *\n * @example\n * tTestTwoSample([1, 2, 3, 4], [3, 4, 5, 6], 0); // => -2.1908902300206643\n */\nfunction tTestTwoSample(sampleX, sampleY, difference) {\n const n = sampleX.length;\n const m = sampleY.length;\n\n // If either sample doesn't actually have any values, we can't\n // compute this at all, so we return `null`.\n if (!n || !m) {\n return null;\n }\n\n // default difference (mu) is zero\n if (!difference) {\n difference = 0;\n }\n\n const meanX = mean(sampleX);\n const meanY = mean(sampleY);\n const sampleVarianceX = sampleVariance(sampleX);\n const sampleVarianceY = sampleVariance(sampleY);\n\n if (\n typeof meanX === \"number\" &&\n typeof meanY === \"number\" &&\n typeof sampleVarianceX === \"number\" &&\n typeof sampleVarianceY === \"number\"\n ) {\n const weightedVariance =\n ((n - 1) * sampleVarianceX + (m - 1) * sampleVarianceY) /\n (n + m - 2);\n\n return (\n (meanX - meanY - difference) /\n Math.sqrt(weightedVariance * (1 / n + 1 / m))\n );\n }\n}\n\nexport default tTestTwoSample;\n","/**\n * This function calculates the Wilcoxon rank sum statistic for the first sample\n * with respect to the second. The Wilcoxon rank sum test is a non-parametric\n * alternative to the t-test which is equivalent to the\n * [Mann-Whitney U test](https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test).\n * The statistic is calculated by pooling all the observations together, ranking them,\n * and then summing the ranks associated with one of the samples. If this rank sum is\n * sufficiently large or small we reject the hypothesis that the two samples come\n * from the same distribution in favor of the alternative that one is shifted with\n * respect to the other.\n *\n * @param {Array<number>} sampleX a sample as an array of numbers\n * @param {Array<number>} sampleY a sample as an array of numbers\n * @returns {number} rank sum for sampleX\n *\n * @example\n * wilcoxonRankSum([1, 4, 8], [9, 12, 15]); // => 6\n */\nfunction wilcoxonRankSum(sampleX, sampleY) {\n if (!sampleX.length || !sampleY.length) {\n throw new Error(\"Neither sample can be empty\");\n }\n\n const pooledSamples = sampleX\n .map((x) => ({ label: \"x\", value: x }))\n .concat(sampleY.map((y) => ({ label: \"y\", value: y })))\n .sort((a, b) => a.value - b.value);\n\n for (let rank = 0; rank < pooledSamples.length; rank++) {\n pooledSamples[rank].rank = rank;\n }\n\n let tiedRanks = [pooledSamples[0].rank];\n for (let i = 1; i < pooledSamples.length; i++) {\n if (pooledSamples[i].value === pooledSamples[i - 1].value) {\n tiedRanks.push(pooledSamples[i].rank);\n if (i === pooledSamples.length - 1) {\n replaceRanksInPlace(pooledSamples, tiedRanks);\n }\n } else if (tiedRanks.length > 1) {\n replaceRanksInPlace(pooledSamples, tiedRanks);\n } else {\n tiedRanks = [pooledSamples[i].rank];\n }\n }\n\n function replaceRanksInPlace(pooledSamples, tiedRanks) {\n const average = (tiedRanks[0] + tiedRanks[tiedRanks.length - 1]) / 2;\n for (let i = 0; i < tiedRanks.length; i++) {\n pooledSamples[tiedRanks[i]].rank = average;\n }\n }\n\n let rankSum = 0;\n\n for (let i = 0; i < pooledSamples.length; i++) {\n const sample = pooledSamples[i];\n if (sample.label === \"x\") {\n rankSum += sample.rank + 1;\n }\n }\n\n return rankSum;\n}\n\nexport default wilcoxonRankSum;\n","/**\n * The [Z-Score, or Standard Score](http://en.wikipedia.org/wiki/Standard_score).\n *\n * The standard score is the number of standard deviations an observation\n * or datum is above or below the mean. Thus, a positive standard score\n * represents a datum above the mean, while a negative standard score\n * represents a datum below the mean. It is a dimensionless quantity\n * obtained by subtracting the population mean from an individual raw\n * score and then dividing the difference by the population standard\n * deviation.\n *\n * The z-score is only defined if one knows the population parameters;\n * if one only has a sample set, then the analogous computation with\n * sample mean and sample standard deviation yields the\n * Student's t-statistic.\n *\n * @param {number} x\n * @param {number} mean\n * @param {number} standardDeviation\n * @return {number} z score\n * @example\n * zScore(78, 80, 5); // => -0.4\n */\nfunction zScore(x, mean, standardDeviation) {\n return (x - mean) / standardDeviation;\n}\n\nexport default zScore;\n"],"names":["sum","x","length","let","transition","correction","Number","NaN","i","Math","abs","mean","Error","sumNthPowerDeviations","n","const","tempValue","meanValue","pow","variance","standardDeviation","v","sqrt","modeSorted","sorted","last","value","maxSeen","seenThis","numericSort","slice","sort","a","b","min","max","sumSimple","quantileSorted","p","idx","ceil","quickselect","arr","k","left","right","m","z","log","s","exp","sd","floor","t","j","swap","tmp","quantile","copy","Array","isArray","indices","push","quantileIndex","compare","stack","r","pop","l","quantileSelect","multiQuantileSelect","results","len","quantileRankSorted","mid","lo","hi","lowerBound","u","upperBound","interquartileRange","q1","q2","median","medianAbsoluteDeviation","medianValue","medianAbsoluteDeviations","shuffleInPlace","randomSource","random","temporary","index","shuffle","sample","makeMatrix","columns","rows","matrix","column","uniqueCountSorted","lastSeenValue","uniqueValueCount","ssq","sums","sumsOfSquares","sji","muji","fillMatrixColumn","iMin","iMax","cluster","backtrackMatrix","jlow","ssqjlow","ssqj","jhigh","sampleCovariance","y","xmean","ymean","sampleVariance","sampleStandardDeviation","sampleVarianceX","sampleCorrelation","combineMeans","mean1","n1","mean2","n2","meanSimple","rootMeanSquare","sumOfSquares","BayesianClassifier","this","totalCount","data","prototype","train","item","category","undefined","score","odds","oddsSums","combination","PerceptronModel","weights","bias","predict","features","label","prediction","gradient","epsilon","factorial","accumulator","COEFFICIENTS","LOGSQRT2PI","PI","chiSquaredDistributionTable","SQRT_2PI","kernels","gaussian","bandwidthMethods","nrd","stddev","iqr","kernelDensityEstimation","X","kernel","bandwidthMethod","kernelFn","bandwidth","cumulativeDistribution","round","standardNormalTable","errorFunction","tau","inverseErrorFunction","inv","sign","TypeError","euclideanDistance","diff","labelPoints","points","centroids","map","minDist","MAX_VALUE","dist","calculateCentroids","labels","numCluster","dimension","counts","fill","numPoints","point","current","centroid","calculateChange","total","silhouette","groupings","numGroups","result","createGroups","distances","calculateAllDistances","meanDistanceFromPointToGroup","meanDistanceToNearestGroup","which","d","group","relativeError","actual","expected","newValue","tolerance","trials","probability","cumulativeProbability","cells","binomialCoefficient","func","start","end","maxIterations","errorTolerance","output","distributionType","significance","chiSquared","hypothesizedDistribution","observedFrequencies","expectedFrequencies","degreesOfFreedom","chunkSize","nClusters","nValues","shift","shiftedValue","fillMatrices","clusters","clusterRight","clusterLeft","combinations","subI","subsetCombinations","next","combinationList","unshift","combinationsReplacement","concat","variance1","variance2","newMean","absZ","nClasses","theMin","theMax","breaks","breakSize","gamma","isInteger","sin","seriesDenom","E","POSITIVE_INFINITY","g","reciprocalSum","matrices","lowerClassLimits","varianceCombinations","tmp1","tmp2","sumSquares","w","i4","lowerClassLimit","val","jenksMatrices","kclass","countNum","jenksBreaks","oldCentroids","newCentroids","change","dataLength","sumX","sumY","sumXX","sumXY","mb","mode","Map","modeCount","newCount","get","set","sampleX","sampleY","alternative","testStatistic","testStatDsn","allData","midIndex","permLeft","permRight","permTestStatistic","numExtremeTStats","elements","indexes","permutations","swapFrom","temp","lambda","factorialX","average","err","secondCentralMoment","fourthCentralMoment","xIndexes","pair","yIndexes","xRanks","yRanks","sumSquaredDeviations","sumCubedDeviations","besselsCorrection","theSampleStandardDeviation","expectedValue","difference","meanX","meanY","sampleVarianceY","weightedVariance","pooledSamples","rank","tiedRanks","replaceRanksInPlace","rankSum"],"mappings":"0OAkBA,SAASA,EAAIC,GAET,GAAiB,IAAbA,EAAEC,OACF,OAAO,EAIXC,IAKIC,EALAJ,EAAMC,EAAE,GAGRI,EAAa,EAIjB,GAAmB,iBAARL,EACP,OAAOM,OAAOC,IAGlB,IAAKJ,IAAIK,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IAAK,CAC/B,GAAoB,iBAATP,EAAEO,GACT,OAAOF,OAAOC,IAElBH,EAAaJ,EAAMC,EAAEO,GAIjBC,KAAKC,IAAIV,IAAQS,KAAKC,IAAIT,EAAEO,IAC5BH,GAAcL,EAAMI,EAAaH,EAAEO,GAEnCH,GAAcJ,EAAEO,GAAKJ,EAAaJ,EAGtCA,EAAMI,CACT,CAGD,OAAOJ,EAAMK,CACjB,CCvCA,SAASM,EAAKV,GACV,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIU,MAAM,yCAGpB,OAAOZ,EAAIC,GAAKA,EAAEC,MACtB,CCLA,SAASW,EAAsBZ,EAAGa,GAC9BC,IAEIC,EACAR,EAHES,EAAYN,EAAKV,GACnBD,EAAM,EAOV,GAAU,IAANc,EACA,IAAKN,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IAEtBR,IADAgB,EAAYf,EAAEO,GAAKS,GACAD,OAGvB,IAAKR,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IACtBR,GAAOS,KAAKS,IAAIjB,EAAEO,GAAKS,EAAWH,GAI1C,OAAOd,CACX,CCtBA,SAASmB,EAASlB,GACd,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIU,MAAM,6CAKpB,OAAOC,EAAsBZ,EAAG,GAAKA,EAAEC,MAC3C,CCNA,SAASkB,EAAkBnB,GACvB,GAAiB,IAAbA,EAAEC,OACF,OAAO,EAEXa,IAAMM,EAAIF,EAASlB,GACnB,OAAOQ,KAAKa,KAAKD,EACrB,CCPA,SAASE,EAAWC,GAGhB,GAAsB,IAAlBA,EAAOtB,OACP,MAAM,IAAIU,MAAM,yCAEpB,GAAsB,IAAlBY,EAAOtB,OACP,OAAOsB,EAAO,GAmBlB,IAbArB,IAAIsB,EAAOD,EAAO,GAEdE,EAAQpB,OAAOC,IAEfoB,EAAU,EAGVC,EAAW,EAMNpB,EAAI,EAAGA,EAAIgB,EAAOtB,OAAS,EAAGM,IAE/BgB,EAAOhB,KAAOiB,GAGVG,EAAWD,IACXA,EAAUC,EACVF,EAAQD,GAEZG,EAAW,EACXH,EAAOD,EAAOhB,IAIdoB,IAGR,OAAOF,CACX,CC5CA,SAASG,EAAY5B,GACjB,OACIA,EAEK6B,QAEAC,MAAK,SAAUC,EAAGC,GACf,OAAOD,EAAIC,CAC3B,GAEA,CCjBA,SAASC,EAAIjC,GACT,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIU,MAAM,wCAIpB,IADAT,IAAIuB,EAAQzB,EAAE,GACLO,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IACtBP,EAAEO,GAAKkB,IACPA,EAAQzB,EAAEO,IAGlB,OAAOkB,CACX,CCVA,SAASS,EAAIlC,GACT,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIU,MAAM,wCAIpB,IADAT,IAAIuB,EAAQzB,EAAE,GACLO,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IACtBP,EAAEO,GAAKkB,IACPA,EAAQzB,EAAEO,IAGlB,OAAOkB,CACX,CCbA,SAASU,EAAUnC,GAEf,IADAE,IAAIuB,EAAQ,EACHlB,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IAAK,CAC/B,GAAoB,iBAATP,EAAEO,GACT,OAAOF,OAAOC,IAElBmB,GAASzB,EAAEO,EACd,CACD,OAAOkB,CACX,CCPA,SAASW,EAAepC,EAAGqC,GACvBvB,IAAMwB,EAAMtC,EAAEC,OAASoC,EACvB,GAAiB,IAAbrC,EAAEC,OACF,MAAM,IAAIU,MAAM,8CACb,GAAI0B,EAAI,GAAKA,EAAI,EACpB,MAAM,IAAI1B,MAAM,qCACb,OAAU,IAAN0B,EAEArC,EAAEA,EAAEC,OAAS,GACP,IAANoC,EAEArC,EAAE,GACFsC,EAAM,GAAM,EAEZtC,EAAEQ,KAAK+B,KAAKD,GAAO,GACnBtC,EAAEC,OAAS,GAAM,GAGhBD,EAAEsC,EAAM,GAAKtC,EAAEsC,IAAQ,EAIxBtC,EAAEsC,EAEjB,CCrBA,SAASE,EAAYC,EAAKC,EAAGC,EAAMC,GAI/B,IAHAD,EAAOA,GAAQ,EACfC,EAAQA,GAASH,EAAIxC,OAAS,EAEvB2C,EAAQD,GAAM,CAEjB,GAAIC,EAAQD,EAAO,IAAK,CACpB7B,IAAMD,EAAI+B,EAAQD,EAAO,EACnBE,EAAIH,EAAIC,EAAO,EACfG,EAAItC,KAAKuC,IAAIlC,GACbmC,EAAI,GAAMxC,KAAKyC,IAAK,EAAIH,EAAK,GAC/BI,EAAK,GAAM1C,KAAKa,KAAMyB,EAAIE,GAAKnC,EAAImC,GAAMnC,GACzCgC,EAAIhC,EAAI,EAAI,IAAGqC,IAAO,GAM1BV,EAAYC,EAAKC,EALDlC,KAAK0B,IAAIS,EAAMnC,KAAK2C,MAAMT,EAAKG,EAAIG,EAAKnC,EAAIqC,IAC3C1C,KAAKyB,IAClBW,EACApC,KAAK2C,MAAMT,GAAM7B,EAAIgC,GAAKG,EAAKnC,EAAIqC,IAG1C,CAEDpC,IAAMsC,EAAIX,EAAIC,GACVnC,EAAIoC,EACJU,EAAIT,EAKR,IAHAU,EAAKb,EAAKE,EAAMD,GACZD,EAAIG,GAASQ,GAAGE,EAAKb,EAAKE,EAAMC,GAE7BrC,EAAI8C,GAAG,CAIV,IAHAC,EAAKb,EAAKlC,EAAG8C,GACb9C,IACA8C,IACOZ,EAAIlC,GAAK6C,GAAG7C,IACnB,KAAOkC,EAAIY,GAAKD,GAAGC,GACtB,CAEGZ,EAAIE,KAAUS,EAAGE,EAAKb,EAAKE,EAAMU,GAGjCC,EAAKb,IADLY,EACaT,GAGbS,GAAKX,IAAGC,EAAOU,EAAI,GACnBX,GAAKW,IAAGT,EAAQS,EAAI,EAC3B,CACL,CAEA,SAASC,EAAKb,EAAKlC,EAAG8C,GAClBvC,IAAMyC,EAAMd,EAAIlC,GAChBkC,EAAIlC,GAAKkC,EAAIY,GACbZ,EAAIY,GAAKE,CACb,CC3CA,SAASC,EAASxD,EAAGqC,GACjBvB,IAAM2C,EAAOzD,EAAE6B,QAEf,GAAI6B,MAAMC,QAAQtB,GAAI,EA4B1B,SAA6BI,EAAKJ,GAE9B,IADAvB,IAAM8C,EAAU,CAAC,GACRrD,EAAI,EAAGA,EAAI8B,EAAEpC,OAAQM,IAC1BqD,EAAQC,KAAKC,EAAcrB,EAAIxC,OAAQoC,EAAE9B,KAE7CqD,EAAQC,KAAKpB,EAAIxC,OAAS,GAC1B2D,EAAQ9B,KAAKiC,GAEbjD,IAAMkD,EAAQ,CAAC,EAAGJ,EAAQ3D,OAAS,GAEnC,KAAO+D,EAAM/D,QAAQ,CACjBa,IAAMmD,EAAIzD,KAAK+B,KAAKyB,EAAME,OACpBC,EAAI3D,KAAK2C,MAAMa,EAAME,OAC3B,KAAID,EAAIE,GAAK,GAAb,CAEArD,IAAM+B,EAAIrC,KAAK2C,OAAOgB,EAAIF,GAAK,GAC/BG,EACI3B,EACAmB,EAAQf,GACRrC,KAAK2C,MAAMS,EAAQO,IACnB3D,KAAK+B,KAAKqB,EAAQK,KAGtBD,EAAMH,KAAKM,EAAGtB,EAAGA,EAAGoB,EAVK,CAW5B,CACL,CAlDQI,CAAoBZ,EAAMpB,GAI1B,IAFAvB,IAAMwD,EAAU,GAEP/D,EAAI,EAAGA,EAAI8B,EAAEpC,OAAQM,IAC1B+D,EAAQ/D,GAAK6B,EAAeqB,EAAMpB,EAAE9B,IAExC,OAAO+D,CACf,CAGQ,OADAF,EAAeX,EADHK,EAAcL,EAAKxD,OAAQoC,GACb,EAAGoB,EAAKxD,OAAS,GACpCmC,EAAeqB,EAAMpB,EAEpC,CAEA,SAAS+B,EAAe3B,EAAKC,EAAGC,EAAMC,GAC9BF,EAAI,GAAM,EACVF,EAAYC,EAAKC,EAAGC,EAAMC,IAG1BJ,EAAYC,EADZC,EAAIlC,KAAK2C,MAAMT,GACKC,EAAMC,GAC1BJ,EAAYC,EAAKC,EAAI,EAAGA,EAAI,EAAGE,GAEvC,CA6BA,SAASmB,EAAQhC,EAAGC,GAChB,OAAOD,EAAIC,CACf,CAEA,SAAS8B,EAAcS,EAAKlC,GACxBvB,IAAMwB,EAAMiC,EAAMlC,EAClB,OAAU,IAANA,EAEOkC,EAAM,EACA,IAANlC,EAEA,EACAC,EAAM,GAAM,EAEZ9B,KAAK+B,KAAKD,GAAO,EACjBiC,EAAM,GAAM,EAGZjC,EAAM,GAINA,CAEf,CC3FA,SAASkC,EAAmBxE,EAAGyB,GAE3B,GAAIA,EAAQzB,EAAE,GACV,OAAO,EAIX,GAAIyB,EAAQzB,EAAEA,EAAEC,OAAS,GACrB,OAAO,EAGXC,IAAIiE,EA2BR,SAAoBnE,EAAGyB,GACnBvB,IAAIuE,EAAM,EACNC,EAAK,EACLC,EAAK3E,EAAEC,OAEX,KAAOyE,EAAKC,GAGJlD,GAASzB,EAFbyE,EAAOC,EAAKC,IAAQ,GAGhBA,EAAKF,EAELC,IAAOD,EAIf,OAAOC,CACX,CA3CYE,CAAW5E,EAAGyB,GAGtB,GAAIzB,EAAEmE,KAAO1C,EACT,OAAO0C,EAAInE,EAAEC,OAGjBkE,IAEArD,IAAM+D,EAoCV,SAAoB7E,EAAGyB,GACnBvB,IAAIuE,EAAM,EACNC,EAAK,EACLC,EAAK3E,EAAEC,OAEX,KAAOyE,EAAKC,GAGJlD,GAASzB,EAFbyE,EAAOC,EAAKC,IAAQ,GAGhBD,IAAOD,EAEPE,EAAKF,EAIb,OAAOC,CACX,CApDcI,CAAW9E,EAAGyB,GAGxB,GAAIoD,IAAMV,EACN,OAAOA,EAAInE,EAAEC,OAOjBa,IAAMmD,EAAIY,EAAIV,EAAI,EAIlB,OAHaF,GAAKY,EAAIV,GAAM,EACTF,EAELjE,EAAEC,MACpB,CCrCA,SAAS8E,EAAmB/E,GAGxBc,IAAMkE,EAAKxB,EAASxD,EAAG,KACjBiF,EAAKzB,EAASxD,EAAG,KAEvB,GAAkB,iBAAPgF,GAAiC,iBAAPC,EACjC,OAAOD,EAAKC,CAEpB,CCLA,SAASC,EAAOlF,GACZ,OAAQwD,EAASxD,EAAG,GACxB,CCRA,SAASmF,EAAwBnF,GAK7B,IAJAc,IAAMsE,EAAcF,EAAOlF,GACrBqF,EAA2B,GAGxB9E,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IAC1B8E,EAAyBxB,KAAKrD,KAAKC,IAAIT,EAAEO,GAAK6E,IAIlD,OAAOF,EAAOG,EAClB,CCNA,SAASC,EAAetF,EAAGuF,GAIvBA,EAAeA,GAAgB/E,KAAKgF,OAcpC,IAVAtF,IAIIuF,EAGAC,EAPAzF,EAASD,EAAEC,OAURA,EAAS,GAGZyF,EAAQlF,KAAK2C,MAAMoC,IAAiBtF,KAGpCwF,EAAYzF,EAAEC,GAGdD,EAAEC,GAAUD,EAAE0F,GACd1F,EAAE0F,GAASD,EAGf,OAAOzF,CACX,CCjCA,SAAS2F,EAAQ3F,EAAGuF,GAKhB,OAAOD,EAHQtF,EAAE6B,QAGa0D,EAClC,CCHA,SAASK,EAAO5F,EAAGa,EAAG0E,GAKlB,OAHiBI,EAAQ3F,EAAGuF,GAGZ1D,MAAM,EAAGhB,EAC7B,CCfA,SAASgF,EAAWC,EAASC,GAEzB,IADAjF,IAAMkF,EAAS,GACNzF,EAAI,EAAGA,EAAIuF,EAASvF,IAAK,CAE9B,IADAO,IAAMmF,EAAS,GACN5C,EAAI,EAAGA,EAAI0C,EAAM1C,IACtB4C,EAAOpC,KAAK,GAEhBmC,EAAOnC,KAAKoC,EACf,CACD,OAAOD,CACX,CCNA,SAASE,EAAkBlG,GAGvB,IAFAE,IACIiG,EADAC,EAAmB,EAEd7F,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IAChB,IAANA,GAAWP,EAAEO,KAAO4F,IACpBA,EAAgBnG,EAAEO,GAClB6F,KAGR,OAAOA,CACX,CCPA,SAASC,EAAIhD,EAAG9C,EAAG+F,EAAMC,GACrBrG,IAAIsG,EACJ,GAAInD,EAAI,EAAG,CACPvC,IAAM2F,GAAQH,EAAK/F,GAAK+F,EAAKjD,EAAI,KAAO9C,EAAI8C,EAAI,GAChDmD,EACID,EAAchG,GAAKgG,EAAclD,EAAI,IAAM9C,EAAI8C,EAAI,GAAKoD,EAAOA,CAC3E,MACQD,EAAMD,EAAchG,GAAM+F,EAAK/F,GAAK+F,EAAK/F,IAAOA,EAAI,GAExD,OAAIiG,EAAM,EACC,EAEJA,CACX,CAeA,SAASE,EACLC,EACAC,EACAC,EACAb,EACAc,EACAR,EACAC,GAEA,KAAII,EAAOC,GAAX,CAKA9F,IAAMP,EAAIC,KAAK2C,OAAOwD,EAAOC,GAAQ,GAErCZ,EAAOa,GAAStG,GAAKyF,EAAOa,EAAU,GAAGtG,EAAI,GAC7CuG,EAAgBD,GAAStG,GAAKA,EAE9BL,IAAI6G,EAAOF,EAEPF,EAAOE,IACPE,EAAOvG,KAAK0B,IAAI6E,EAAMD,EAAgBD,GAASF,EAAO,IAAM,IAEhEI,EAAOvG,KAAK0B,IAAI6E,EAAMD,EAAgBD,EAAU,GAAGtG,IAAM,GAEzDL,IAOIsG,EAEAQ,EACAC,EAVAC,EAAQ3G,EAAI,EACZqG,EAAOZ,EAAO,GAAG/F,OAAS,IAE1BiH,EAAQ1G,KAAKyB,IAAIiF,EAAOJ,EAAgBD,GAASD,EAAO,IAAM,IAQlE,IAAK1G,IAAImD,EAAI6D,EAAO7D,GAAK0D,MACrBP,EAAMH,EAAIhD,EAAG9C,EAAG+F,EAAMC,IAEZP,EAAOa,EAAU,GAAGE,EAAO,IAAMf,EAAOa,GAAStG,MAH9B8C,GAU7B2D,EAFSX,EAAIU,EAAMxG,EAAG+F,EAAMC,GAETP,EAAOa,EAAU,GAAGE,EAAO,IAEhCf,EAAOa,GAAStG,KAE1ByF,EAAOa,GAAStG,GAAKyG,EACrBF,EAAgBD,GAAStG,GAAKwG,GAElCA,KAEAE,EAAOT,EAAMR,EAAOa,EAAU,GAAGxD,EAAI,IAC1B2C,EAAOa,GAAStG,KACvByF,EAAOa,GAAStG,GAAK0G,EACrBH,EAAgBD,GAAStG,GAAK8C,GAItCqD,EACIC,EACApG,EAAI,EACJsG,EACAb,EACAc,EACAR,EACAC,GAEJG,EACInG,EAAI,EACJqG,EACAC,EACAb,EACAc,EACAR,EACAC,EApEH,CAsEL,CC/GA,SAASY,EAAiBnH,EAAGoH,GAEzB,GAAIpH,EAAEC,SAAWmH,EAAEnH,OACf,MAAM,IAAIU,MAAM,wDAGpB,GAAIX,EAAEC,OAAS,EACX,MAAM,IAAIU,MACN,qEAgBR,IARAG,IAAMuG,EAAQ3G,EAAKV,GACbsH,EAAQ5G,EAAK0G,GACfrH,EAAM,EAMDQ,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IAC1BR,IAAQC,EAAEO,GAAK8G,IAAUD,EAAE7G,GAAK+G,GASpC,OAAOvH,GAHmBC,EAAEC,OAAS,EAIzC,CC/BA,SAASsH,EAAevH,GACpB,GAAIA,EAAEC,OAAS,EACX,MAAM,IAAIU,MAAM,oDAWpB,OARkCC,EAAsBZ,EAAG,IAKjCA,EAAEC,OAAS,EAIzC,CCrBA,SAASuH,EAAwBxH,GAC7Bc,IAAM2G,EAAkBF,EAAevH,GACvC,OAAOQ,KAAKa,KAAKoG,EACrB,CCDA,SAASC,EAAkB1H,EAAGoH,GAK1B,OAJYD,EAAiBnH,EAAGoH,GACnBI,EAAwBxH,GACxBwH,EAAwBJ,EAGzC,CCHA,SAASO,EAAaC,EAAOC,EAAIC,EAAOC,GACpC,OAAQH,EAAQC,EAAKC,EAAQC,IAAOF,EAAKE,EAC7C,CCGA,SAASC,EAAWhI,GAChB,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIU,MAAM,+CAGpB,OAAOwB,EAAUnC,GAAKA,EAAEC,MAC5B,CCdA,SAASgI,EAAejI,GACpB,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIU,MAAM,mDAIpB,IADAT,IAAIgI,EAAe,EACV3H,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IAC1B2H,GAAgB1H,KAAKS,IAAIjB,EAAEO,GAAI,GAGnC,OAAOC,KAAKa,KAAK6G,EAAelI,EAAEC,OACtC,CCLM,IAAAkI,EAGF,WAGIC,KAAKC,WAAa,EAElBD,KAAKE,KAAO,EAChB,EAUAH,EAAAI,UAAAC,MAAA,SAAMC,EAAMC,GAQR,IAAK5H,IAAM4B,KALN0F,KAAKE,KAAKI,KACXN,KAAKE,KAAKI,GAAY,IAIVD,EAAM,CAClB3H,IAAMM,EAAIqH,EAAK/F,QAGgBiG,IAA3BP,KAAKE,KAAKI,GAAUhG,KACpB0F,KAAKE,KAAKI,GAAUhG,GAAK,CAAA,QAEKiG,IAA9BP,KAAKE,KAAKI,GAAUhG,GAAGtB,KACvBgH,KAAKE,KAAKI,GAAUhG,GAAGtB,GAAK,GAIhCgH,KAAKE,KAAKI,GAAUhG,GAAGtB,IAC1B,CAGDgH,KAAKC,YACT,cAUAO,MAAK,SAACH,GAEF3H,IACI4H,EADEG,EAAO,CAAA,EAKb,IAAK/H,IAAM4B,KAAK+F,EAAM,CAClB3H,IAAMM,EAAIqH,EAAK/F,GACf,IAAKgG,KAAYN,KAAKE,KAGlBO,EAAKH,GAAY,GAMbN,KAAKE,KAAKI,GAAUhG,GACpBmG,EAAKH,GAAUhG,EAAI,IAAMtB,IACpBgH,KAAKE,KAAKI,GAAUhG,GAAGtB,IAAM,GAAKgH,KAAKC,WAE5CQ,EAAKH,GAAUhG,EAAI,IAAMtB,GAAK,CAGzC,CAGDN,IAAMgI,EAAW,CAAA,EAEjB,IAAKJ,KAAYG,EAKb,IAAK/H,IAAMiI,KADXD,EAASJ,GAAY,EACKG,EAAKH,GAC3BI,EAASJ,IAAaG,EAAKH,GAAUK,GAI7C,OAAOD,CACX,EC/FE,IAAAE,EAGF,WAGIZ,KAAKa,QAAU,GAIfb,KAAKc,KAAO,CAChB,cAQAC,QAAO,SAACC,GAGJ,GAAIA,EAASnJ,SAAWmI,KAAKa,QAAQhJ,OACjC,OAAO,KAMX,IADAC,IAAI0I,EAAQ,EACHrI,EAAI,EAAGA,EAAI6H,KAAKa,QAAQhJ,OAAQM,IACrCqI,GAASR,KAAKa,QAAQ1I,GAAK6I,EAAS7I,GAKxC,OAHAqI,GAASR,KAAKc,MAGF,EACD,EAEA,CAEf,EAUAF,EAAAT,UAAAC,MAAA,SAAMY,EAAUC,GAEZ,GAAc,IAAVA,GAAyB,IAAVA,EACf,OAAO,KAOPD,EAASnJ,SAAWmI,KAAKa,QAAQhJ,SACjCmI,KAAKa,QAAUG,EACfhB,KAAKc,KAAO,GAGhBpI,IAAMwI,EAAalB,KAAKe,QAAQC,GAEhC,GAA0B,iBAAfE,GAA2BA,IAAeD,EAAO,CAExD,IADAvI,IAAMyI,EAAWF,EAAQC,EAChB/I,EAAI,EAAGA,EAAI6H,KAAKa,QAAQhJ,OAAQM,IACrC6H,KAAKa,QAAQ1I,IAAMgJ,EAAWH,EAAS7I,GAE3C6H,KAAKc,MAAQK,CAChB,CACD,OAAOnB,IACX,EC7DC,IAACoB,EAAU,KCtBhB,SAASC,EAAU5I,GAEf,GAAIA,EAAI,EACJ,MAAM,IAAIF,MAAM,2CAGpB,GAAIH,KAAK2C,MAAMtC,KAAOA,EAClB,MAAM,IAAIF,MAAM,uCAQpB,IADAT,IAAIwJ,EAAc,EACTnJ,EAAI,EAAGA,GAAKM,EAAGN,IAGpBmJ,GAAenJ,EAEnB,OAAOmJ,CACX,CChCA5I,IAAM6I,EAAe,CACjB,kBAAwB,mBAAwB,kBAChD,oBAAwB,kBAAwB,qBAChD,sBAA4B,qBAC5B,sBAA4B,sBAC5B,uBAA2B,qBAC3B,sBAA4B,sBAC5B,uBAIEC,EAAapJ,KAAKuC,IAAIvC,KAAKa,KAAK,EAAIb,KAAKqJ,KCD1C,IAACC,EAA8B,CAChC,EAAG,CACC,KAAO,EACP,IAAM,EACN,KAAO,EACP,IAAM,EACN,GAAK,IACL,GAAK,IACL,GAAK,KACL,IAAM,KACN,KAAO,KACP,IAAM,KACN,KAAO,MAEX,EAAG,CACC,KAAO,IACP,IAAM,IACN,KAAO,IACP,IAAM,GACN,GAAK,IACL,GAAK,KACL,GAAK,KACL,IAAM,KACN,KAAO,KACP,IAAM,KACN,KAAO,MAEX,EAAG,CACC,KAAO,IACP,IAAM,IACN,KAAO,IACP,IAAM,IACN,GAAK,IACL,GAAK,KACL,GAAK,KACL,IAAM,KACN,KAAO,KACP,IAAM,MACN,KAAO,OAEX,EAAG,CACC,KAAO,IACP,IAAM,GACN,KAAO,IACP,IAAM,IACN,GAAK,KACL,GAAK,KACL,GAAK,KACL,IAAM,KACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,EAAG,CACC,KAAO,IACP,IAAM,IACN,KAAO,IACP,IAAM,KACN,GAAK,KACL,GAAK,KACL,GAAK,KACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,EAAG,CACC,KAAO,IACP,IAAM,IACN,KAAO,KACP,IAAM,KACN,GAAK,IACL,GAAK,KACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,EAAG,CACC,KAAO,IACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,KACL,GAAK,KACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,EAAG,CACC,KAAO,KACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,KACL,GAAK,KACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,EAAG,CACC,KAAO,KACP,IAAM,KACN,KAAO,IACP,IAAM,KACN,GAAK,KACL,GAAK,KACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,KACL,GAAK,KACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,IACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,KACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,IACP,IAAM,KACN,GAAK,IACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,MAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,KACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,KACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,IACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,KACL,GAAK,MACL,GAAK,MACL,IAAM,GACN,KAAO,MACP,IAAM,MACN,KAAO,MAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,KACL,GAAK,MACL,GAAK,MACL,IAAM,KACN,KAAO,MACP,IAAM,GACN,KAAO,OAEX,GAAI,CACA,KAAO,IACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,KACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,KACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,KACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,IAEX,GAAI,CACA,KAAO,KACP,IAAM,IACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,MAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,MAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,KACP,IAAM,MACN,KAAO,KACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,KACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,KACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,KACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,KACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,KACL,IAAM,MACN,KAAO,KACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,OACN,KAAO,QAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,OACN,KAAO,OACP,IAAM,OACN,KAAO,QAEX,GAAI,CACA,KAAO,KACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,OACL,IAAM,OACN,KAAO,OACP,IAAM,OACN,KAAO,OAEX,IAAK,CACD,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,OACN,KAAO,OACP,IAAM,OACN,KAAO,SCxefhJ,IAAMiJ,EAAWvJ,KAAKa,KAAK,EAAIb,KAAKqJ,IAM9BG,EAAU,CAKZC,SAAU,SAAUpF,GAChB,OAAOrE,KAAKyC,KAAK,GAAM4B,EAAIA,GAAKkF,CACnC,GAOCG,EAAmB,CAQrBC,IAAK,SAAUnK,GACXE,IAAI8C,EAAIoH,EAAOpK,GACTqK,EAAMtF,EAAmB/E,GAI/B,MAHmB,iBAARqK,IACPrH,EAAIxC,KAAKyB,IAAIe,EAAGqH,EAAM,OAEnB,KAAOrH,EAAIxC,KAAKS,IAAIjB,EAAEC,QAAS,GACzC,GAcL,SAASqK,EAAwBC,EAAGC,EAAQC,GACxCvK,IAAIwK,EAYAC,EAXJ,QAAehC,IAAX6B,EACAE,EAAWV,EAAQC,cAChB,GAAsB,iBAAXO,EAAqB,CACnC,IAAKR,EAAQQ,GACT,MAAM,IAAI7J,MAAM,mBAAqB6J,EAAS,KAElDE,EAAWV,EAAQQ,EAC3B,MACQE,EAAWF,EAIf,QAA+B,IAApBC,EACPE,EAAYT,EAAiBC,IAAII,QAC9B,GAA+B,iBAApBE,EAA8B,CAC5C,IAAKP,EAAiBO,GAClB,MAAM,IAAI9J,MACN,6BAA+B8J,EAAkB,KAGzDE,EAAYT,EAAiBO,GAAiBF,EACtD,MACQI,EAAYF,EAGhB,OAAO,SAAUzK,GACbE,IAAIK,EAAI,EACJR,EAAM,EACV,IAAKQ,EAAI,EAAGA,EAAIgK,EAAEtK,OAAQM,IACtBR,GAAO2K,GAAU1K,EAAIuK,EAAEhK,IAAMoK,GAEjC,OAAO5K,EAAM4K,EAAYJ,EAAEtK,MACnC,CACA,CCvFAa,IAAMiJ,EAAWvJ,KAAKa,KAAK,EAAIb,KAAKqJ,IAEpC,SAASe,EAAuB9H,GAK5B,IAJA5C,IAAIH,EAAM+C,EACNS,EAAMT,EAGDvC,EAAI,EAAGA,EAAI,GAAIA,IAEpBR,GADAwD,GAAQT,EAAIA,GAAM,EAAIvC,EAAI,GAG9B,OACIC,KAAKqK,MAA0D,KAAnD,GAAO9K,EAAMgK,EAAYvJ,KAAKyC,KAAMH,EAAIA,EAAK,KACzD,GAER,CAYA,IAFM,IAAAgI,EAAsB,GAEnBhI,EAAI,EAAGA,GAAK,KAAMA,GAAK,IAC5BgI,EAAoBjH,KAAK+G,EAAuB9H,ICdpD,SAASiI,EAAc/K,GACnBc,IAAMsC,EAAI,GAAK,EAAI,GAAM5C,KAAKC,IAAIT,IAC5BgL,EACF5H,EACA5C,KAAKyC,KACAjD,EAAIA,UACO,UAAaoD,EAAI,WAAcA,EAAI,YAAcA,EACrD,YACAA,EACA,WACAA,EACA,WACAA,EACA,WACAA,EACA,WACAA,EACA,YACAA,EACJ,YAEZ,OAAIpD,GAAK,EACE,EAAIgL,EAEJA,EAAM,CAErB,CChCA,SAASC,EAAqBjL,GAC1Bc,IAAMiB,EAAK,GAAKvB,KAAKqJ,GAAK,IAAO,EAAIrJ,KAAKqJ,IAAM,EAAIrJ,KAAKqJ,KAEnDqB,EAAM1K,KAAKa,KACbb,KAAKa,KACDb,KAAKS,IAAI,GAAKT,KAAKqJ,GAAK9H,GAAKvB,KAAKuC,IAAI,EAAI/C,EAAIA,GAAK,EAAG,GAClDQ,KAAKuC,IAAI,EAAI/C,EAAIA,GAAK+B,IAEzB,GAAKvB,KAAKqJ,GAAK9H,GAAKvB,KAAKuC,IAAI,EAAI/C,EAAIA,GAAK,IAGnD,OAAIA,GAAK,EACEkL,GAECA,CAEhB,CCZA,SAASC,EAAKnL,GACV,GAAiB,iBAANA,EACP,OAAIA,EAAI,GACI,EACK,IAANA,EACA,EAEA,EAGX,MAAM,IAAIoL,UAAU,eAE5B,CClBA,SAASC,GAAkB1I,EAAMC,GAE7B,IADA1C,IAAIH,EAAM,EACDQ,EAAI,EAAGA,EAAIoC,EAAK1C,OAAQM,IAAK,CAClCO,IAAMwK,EAAO3I,EAAKpC,GAAKqC,EAAMrC,GAC7BR,GAAOuL,EAAOA,CACjB,CACD,OAAO9K,KAAKa,KAAKtB,EACrB,CCkCA,SAASwL,GAAYC,EAAQC,GACzB,OAAOD,EAAOE,KAAI,SAACrJ,GAGf,IAFAnC,IAAIyL,EAAUtL,OAAOuL,UACjBvC,GAAS,EACJ9I,EAAI,EAAGA,EAAIkL,EAAUxL,OAAQM,IAAK,CACvCO,IAAM+K,EAAOR,GAAkBhJ,EAAGoJ,EAAUlL,IACxCsL,EAAOF,IACPA,EAAUE,EACVxC,EAAQ9I,EAEf,CACD,OAAO8I,CACf,GACA,CAYA,SAASyC,GAAmBN,EAAQO,EAAQC,GAQxC,IANAlL,IAAMmL,EAAYT,EAAO,GAAGvL,OACtBwL,EAAY5F,EAAWmG,EAAYC,GACnCC,EAASxI,MAAMsI,GAAYG,KAAK,GAGhCC,EAAYZ,EAAOvL,OAChBM,EAAI,EAAGA,EAAI6L,EAAW7L,IAAK,CAIhC,IAHAO,IAAMuL,EAAQb,EAAOjL,GACf8I,EAAQ0C,EAAOxL,GACf+L,EAAUb,EAAUpC,GACjBhG,EAAI,EAAGA,EAAI4I,EAAW5I,IAC3BiJ,EAAQjJ,IAAMgJ,EAAMhJ,GAExB6I,EAAO7C,IAAU,CACpB,CAGD,IAAKnJ,IAAIK,EAAI,EAAGA,EAAIyL,EAAYzL,IAAK,CACjC,GAAkB,IAAd2L,EAAO3L,GACP,MAAM,IAAII,kBAAkBJ,EAAC,mBAGjC,IADAO,IAAMyL,EAAWd,EAAUlL,GAClB8C,EAAI,EAAGA,EAAI4I,EAAW5I,IAC3BkJ,EAASlJ,IAAM6I,EAAO3L,EAE7B,CAED,OAAOkL,CACX,CAUA,SAASe,GAAgB7J,EAAMC,GAE3B,IADA1C,IAAIuM,EAAQ,EACHlM,EAAI,EAAGA,EAAIoC,EAAK1C,OAAQM,IAC7BkM,GAASpB,GAAkB1I,EAAKpC,GAAIqC,EAAMrC,IAE9C,OAAOkM,CACX,CCtGA,SAASC,GAAWlB,EAAQO,GACxB,GAAIP,EAAOvL,SAAW8L,EAAO9L,OACzB,MAAM,IAAIU,MAAM,8CAKpB,IAHAG,IAAM6L,EAiCV,SAAsBZ,GAGlB,IAFAjL,IAAM8L,EAAY,EAAI1K,EAAI6J,GACpBc,EAASnJ,MAAMkJ,GACZrM,EAAI,EAAGA,EAAIwL,EAAO9L,OAAQM,IAAK,CACpCO,IAAMuI,EAAQ0C,EAAOxL,QACCoI,IAAlBkE,EAAOxD,KACPwD,EAAOxD,GAAS,IAEpBwD,EAAOxD,GAAOxF,KAAKtD,EACtB,CACD,OAAOsM,CACX,CA5CsBC,CAAaf,GACzBgB,EAqDV,SAA+BvB,GAG3B,IAFA1K,IAAMsL,EAAYZ,EAAOvL,OACnB4M,EAAShH,EAAWuG,EAAWA,GAC5B7L,EAAI,EAAGA,EAAI6L,EAAW7L,IAC3B,IAAKL,IAAImD,EAAI,EAAGA,EAAI9C,EAAG8C,IACnBwJ,EAAOtM,GAAG8C,GAAKgI,GAAkBG,EAAOjL,GAAIiL,EAAOnI,IACnDwJ,EAAOxJ,GAAG9C,GAAKsM,EAAOtM,GAAG8C,GAGjC,OAAOwJ,CACX,CA/DsBG,CAAsBxB,GAClCqB,EAAS,GACNtM,EAAI,EAAGA,EAAIiL,EAAOvL,OAAQM,IAAK,CACpCL,IAAI8C,EAAI,EACR,GAAI2J,EAAUZ,EAAOxL,IAAIN,OAAS,EAAG,CACjCa,IAAMiB,EAAIkL,GACN1M,EACAoM,EAAUZ,EAAOxL,IACjBwM,GAEE/K,EAAIkL,GACN3M,EACAwL,EACAY,EACAI,GAEJ/J,GAAKhB,EAAID,GAAKvB,KAAK0B,IAAIH,EAAGC,EAC7B,CACD6K,EAAOhJ,KAAKb,EACf,CACD,OAAO6J,CACX,CA0DA,SAASK,GAA2BC,EAAOpB,EAAQY,EAAWI,GAG1D,IAFAjM,IAAMuI,EAAQ0C,EAAOoB,GACjBN,EAASxM,OAAOuL,UACXrL,EAAI,EAAGA,EAAIoM,EAAU1M,OAAQM,IAClC,GAAIA,IAAM8I,EAAO,CACbvI,IAAMsM,EAAIH,GACNE,EACAR,EAAUpM,GACVwM,GAEAK,EAAIP,IACJA,EAASO,EAEhB,CAEL,OAAOP,CACX,CAeA,SAASI,GAA6BE,EAAOE,EAAON,GAEhD,IADA7M,IAAIuM,EAAQ,EACHlM,EAAI,EAAGA,EAAI8M,EAAMpN,OAAQM,IAC9BkM,GAASM,EAAUI,GAAOE,EAAM9M,IAEpC,OAAOkM,EAAQY,EAAMpN,MACzB,CCzGA,SAASqN,GAAcC,EAAQC,GAI3B,OAAe,IAAXD,GAA6B,IAAbC,EACT,EAGJhN,KAAKC,KAAK8M,EAASC,GAAYA,EAC1C,wDCzBA,SAAmB9M,EAAMG,EAAG4M,GACxB,OAAO/M,GAAQ+M,EAAW/M,IAASG,EAAI,EAC3C,gBCPA,SAAqB0M,EAAQC,EAAUE,GACnC,sBAD+ClE,GACxC8D,GAAcC,EAAQC,IAAaE,CAC9C,qECIA,SAA+BrL,GAE3B,GAAIA,EAAI,GAAKA,EAAI,EACb,MAAM,IAAI1B,MACN,8EAIR,MAAO,CAAC,EAAI0B,EAAGA,EACnB,yBCdA,SAA8BsL,EAAQC,GAGlC,KAAIA,EAAc,GAAKA,EAAc,GAAKD,GAAU,GAAKA,EAAS,GAAM,GAAxE,CAUAzN,IAAIF,EAAI,EACJ6N,EAAwB,EACtBC,EAAQ,GACVC,EAAsB,EAK1B,GAEID,EAAM9N,GACF+N,EACAvN,KAAKS,IAAI2M,EAAa5N,GACtBQ,KAAKS,IAAI,EAAI2M,EAAaD,EAAS3N,GACvC6N,GAAyBC,EAAM9N,GAE/B+N,EAAuBA,GAAuBJ,IAD9C3N,EAC2D,GAAMA,QAG5D6N,EAAwB,OAEjC,OAAOC,CA7BN,CA8BL,WC5BA,SAAgBE,EAAMC,EAAOC,EAAKC,EAAeC,GAC7C,GAAoB,mBAATJ,EACP,MAAM,IAAI5C,UAAU,2BAExB,IAAKlL,IAAIK,EAAI,EAAGA,EAAI4N,EAAe5N,IAAK,CACpCO,IAAMuN,GAAUJ,EAAQC,GAAO,EAE/B,GACqB,IAAjBF,EAAKK,IACL7N,KAAKC,KAAKyN,EAAMD,GAAS,GAAKG,EAE9B,OAAOC,EAGPlD,EAAK6C,EAAKK,MAAalD,EAAK6C,EAAKC,IACjCA,EAAQI,EAERH,EAAMG,CAEb,CAED,MAAM,IAAI1N,MAAM,wCACpB,4DCXA,SAAiC2H,EAAMgG,EAAkBC,GAgBrD,IAdAzN,IAEI0N,EAAa,EAMXC,EAA2BH,EARf5N,EAAK4H,IASjBoG,EAAsB,GACtBC,EAAsB,GAInBpO,EAAI,EAAGA,EAAI+H,EAAKrI,OAAQM,SACQoI,IAAjC+F,EAAoBpG,EAAK/H,MACzBmO,EAAoBpG,EAAK/H,IAAM,GAEnCmO,EAAoBpG,EAAK/H,MAM7B,IAAKL,IAAIK,EAAI,EAAGA,EAAImO,EAAoBzO,OAAQM,SACboI,IAA3B+F,EAAoBnO,KACpBmO,EAAoBnO,GAAK,GAMjC,IAAKO,IAAM4B,KAAK+L,EACR/L,KAAKgM,IACLC,GAAqBjM,GAAK+L,EAAyB/L,GAAK4F,EAAKrI,QAOrE,IAAKC,IAAIwC,EAAIiM,EAAoB1O,OAAS,EAAGyC,GAAK,EAAGA,IAC7CiM,EAAoBjM,GAAK,IACzBiM,EAAoBjM,EAAI,IAAMiM,EAAoBjM,GAClDiM,EAAoBzK,MAEpBwK,EAAoBhM,EAAI,IAAMgM,EAAoBhM,GAClDgM,EAAoBxK,OAM5B,IAAKhE,IAAIwC,EAAI,EAAGA,EAAIgM,EAAoBzO,OAAQyC,IAC5C8L,GACIhO,KAAKS,IAAIyN,EAAoBhM,GAAKiM,EAAoBjM,GAAI,GAC1DiM,EAAoBjM,GAQ5B5B,IAAM8N,EAAmBF,EAAoBzO,OA3DnC,EA2DgD,EAC1D,OACI6J,EAA4B8E,GAAkBL,GAAgBC,CAEtE,UCnFA,SAAexO,EAAG6O,GAEd/N,IAAMuN,EAAS,GAMf,GAAIQ,EAAY,EACZ,MAAM,IAAIlO,MAAM,wCAGpB,GAAIH,KAAK2C,MAAM0L,KAAeA,EAC1B,MAAM,IAAIlO,MAAM,iCAKpB,IAAKT,IAAI+N,EAAQ,EAAGA,EAAQjO,EAAEC,OAAQgO,GAASY,EAI3CR,EAAOxK,KAAK7D,EAAE6B,MAAMoM,EAAOA,EAAQY,IAEvC,OAAOR,CACX,Y7B2LA,SAAiBrO,EAAG8O,GAChB,GAAIA,EAAY9O,EAAEC,OACd,MAAM,IAAIU,MACN,2DAIRG,IAAMS,EAASK,EAAY5B,GAM3B,GAAoB,IAJAkG,EAAkB3E,GAKlC,MAAO,CAACA,GAIZT,IAAMkF,EAASH,EAAWiJ,EAAWvN,EAAOtB,QAEtC6G,EAAkBjB,EAAWiJ,EAAWvN,EAAOtB,SAhHzD,SAAsBqI,EAAMtC,EAAQc,GAWhC,IAVAhG,IAAMiO,EAAU/I,EAAO,GAAG/F,OAGpB+O,EAAQ1G,EAAK9H,KAAK2C,MAAM4L,EAAU,IAGlCzI,EAAO,GACPC,EAAgB,GAGbhG,EAAI,EAAG0O,OAAY,EAAE1O,EAAIwO,IAAWxO,EACzC0O,EAAe3G,EAAK/H,GAAKyO,EACf,IAANzO,GACA+F,EAAKzC,KAAKoL,GACV1I,EAAc1C,KAAKoL,EAAeA,KAElC3I,EAAKzC,KAAKyC,EAAK/F,EAAI,GAAK0O,GACxB1I,EAAc1C,KACV0C,EAAchG,EAAI,GAAK0O,EAAeA,IAK9CjJ,EAAO,GAAGzF,GAAK8F,EAAI,EAAG9F,EAAG+F,EAAMC,GAC/BO,EAAgB,GAAGvG,GAAK,EAK5B,IAAKL,IAAI2G,EAAU,EAAGA,EAAUb,EAAO/F,SAAU4G,EAQ7CH,EAPIG,EAAUb,EAAO/F,OAAS,EACnB4G,EAGAkI,EAAU,EAKjBA,EAAU,EACVlI,EACAb,EACAc,EACAR,EACAC,EAGZ,CAsEI2I,CAAa3N,EAAQyE,EAAQc,GAY7B,IANAhG,IAAMqO,EAAW,GACbC,EAAetI,EAAgB,GAAG7G,OAAS,EAKtC4G,EAAUC,EAAgB7G,OAAS,EAAG4G,GAAW,EAAGA,IAAW,CACpE/F,IAAMuO,EAAcvI,EAAgBD,GAASuI,GAK7CD,EAAStI,GAAWtF,EAAOM,MAAMwN,EAAaD,EAAe,GAEzDvI,EAAU,IACVuI,EAAeC,EAAc,EAEpC,CAED,OAAOF,CACX,2B8B1QA,SAAgCnP,GAC5B,OAAOwH,EAAwBxH,GAAKU,EAAKV,EAC7C,iBCNA,SAASsP,EAAatP,EAAG0C,GACrBxC,IAAIK,EACAgP,EAEAC,EACAC,EAFEC,EAAkB,GAIxB,IAAKnP,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IACtB,GAAU,IAANmC,EACAgN,EAAgB7L,KAAK,CAAC7D,EAAEO,UAGxB,IADAiP,EAAqBF,EAAatP,EAAE6B,MAAMtB,EAAI,EAAGP,EAAEC,QAASyC,EAAI,GAC3D6M,EAAO,EAAGA,EAAOC,EAAmBvP,OAAQsP,KAC7CE,EAAOD,EAAmBD,IACrBI,QAAQ3P,EAAEO,IACfmP,EAAgB7L,KAAK4L,GAIjC,OAAOC,CACX,4BCnBA,SAASE,EAAwB5P,EAAG0C,GAGhC,IAFA5B,IAAM4O,EAAkB,GAEfnP,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IAC1B,GAAU,IAANmC,EAGAgN,EAAgB7L,KAAK,CAAC7D,EAAEO,UAcxB,IALAO,IAAM0O,EAAqBI,EACvB5P,EAAE6B,MAAMtB,EAAGP,EAAEC,QACbyC,EAAI,GAGCW,EAAI,EAAGA,EAAImM,EAAmBvP,OAAQoD,IAC3CqM,EAAgB7L,KAAK,CAAC7D,EAAEO,IAAIsP,OAAOL,EAAmBnM,KAKlE,OAAOqM,CACX,sCCnBA,SAA0BI,EAAWlI,EAAOC,EAAIkI,EAAWjI,EAAOC,GAC9DjH,IAAMkP,EAAUrI,EAAaC,EAAOC,EAAIC,EAAOC,GAE/C,OACKF,GAAMiI,EAAYtP,KAAKS,IAAI2G,EAAQoI,EAAS,IACzCjI,GAAMgI,EAAYvP,KAAKS,IAAI6G,EAAQkI,EAAS,MAC/CnI,EAAKE,EAEd,qCCvBA,SAA0C/H,GACtC,OAAO,GAAKQ,KAAKyC,KAAKjD,GAAK,EAC/B,mCCQA,SAAwC8C,GAEpChC,IAAMmP,EAAOzP,KAAKC,IAAIqC,GAKhB4C,EAAQlF,KAAKyB,IACfzB,KAAKqK,MAAa,IAAPoF,GACXnF,EAAoB7K,OAAS,GAMjC,OAAI6C,GAAK,EACEgI,EAAoBpF,GAKpBlF,KAAKqK,MAAyC,KAAlC,EAAIC,EAAoBpF,KAAiB,GAEpE,oCCvBA,SAA6B1F,EAAGkQ,GAC5B,GAAIlQ,EAAEC,OAAS,EACX,OAAOD,EAgBX,IAbAc,IAAMqP,EAASlO,EAAIjC,GACboQ,EAASlO,EAAIlC,GAIbqQ,EAAS,CAACF,GAIVG,GAAaF,EAASD,GAAUD,EAI7B3P,EAAI,EAAGA,EAAI2P,EAAU3P,IAC1B8P,EAAOxM,KAAKwM,EAAO,GAAKC,EAAY/P,GAOxC,OAFA8P,EAAOxM,KAAKuM,GAELC,CACX,qCC/BA,SAAgBrQ,GACZ,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIU,MAAM,2CAKpB,IAFAT,IAAI+B,EAAMjC,EAAE,GACRkC,EAAMlC,EAAE,GACHO,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IACtBP,EAAEO,GAAK2B,IACPA,EAAMlC,EAAEO,IAERP,EAAEO,GAAK0B,IACPA,EAAMjC,EAAEO,IAGhB,MAAO,CAAC0B,EAAKC,EACjB,iBClBA,SAAsBlC,GAClB,MAAO,CAACA,EAAE,GAAIA,EAAEA,EAAEC,OAAS,GAC/B,wBCMA,SAASsQ,EAAM1P,GACX,GAAIR,OAAOmQ,UAAU3P,GACjB,OAAIA,GAAK,EAEER,OAAOC,IAGPmJ,EAAU5I,EAAI,GAO7B,KAFAA,EAEQ,EAGJ,OAAOL,KAAKqJ,IAAMrJ,KAAKiQ,IAAIjQ,KAAKqJ,IAAMhJ,GAAK0P,GAAO1P,IAGlDC,IAGM4P,EAAc7P,EAAI,EAAI,EAW5B,OAbIL,KAAKS,IAAIJ,EAAIL,KAAKmQ,EAAG9P,GAAKL,KAAKa,KAAK,EAAIb,KAAKqJ,IAAMhJ,EAAI,EAAI,KAK3D,EACA,EAAI,IAAML,KAAKS,IAAIyP,EAAa,GAChC,EAAI,MAAQlQ,KAAKS,IAAIyP,EAAa,GAClC,IAAM,OAASlQ,KAAKS,IAAIyP,EAAa,GACrC,GAAK,QAAUlQ,KAAKS,IAAIyP,EAAa,GACrC,QAAU,WAAalQ,KAAKS,IAAIyP,EAAa,GAC7C,MAAQ,YAAclQ,KAAKS,IAAIyP,EAAa,GAIxD,Y3B3BA,SAAiB7P,GAEb,GAAIA,GAAK,EACL,OAAOR,OAAOuQ,kBAIlB/P,IAKA,IAFAX,IAAI6B,EAAI4H,EAAa,GAEZpJ,EAAI,EAAGA,EAAI,GAAIA,IACpBwB,GAAK4H,EAAapJ,IAAMM,EAAIN,GAGhCO,IAAMyC,EAAMsN,UAAUhQ,EAGtB,OAAO+I,EAAapJ,KAAKuC,IAAIhB,GAAKwB,GAAO1C,EAAI,IAAOL,KAAKuC,IAAIQ,EACjE,kB4BbA,SAAuBvD,GACnB,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIU,MAAM,kDAMpB,IAFAT,IAAIuB,EAAQ,EAEHlB,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IAAK,CAE/B,GAAIP,EAAEO,GAAK,EACP,MAAM,IAAII,MACN,6DAKRc,GAASzB,EAAEO,EACd,CAED,OAAOC,KAAKS,IAAIQ,EAAO,EAAIzB,EAAEC,OACjC,iBCrCA,SAAsBD,GAClB,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIU,MAAM,iDAKpB,IAFAT,IAAI4Q,EAAgB,EAEXvQ,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IAAK,CAE/B,GAAIP,EAAEO,IAAM,EACR,MAAM,IAAII,MACN,wDAIRmQ,GAAiB,EAAI9Q,EAAEO,EAC1B,CAGD,OAAOP,EAAEC,OAAS6Q,CACtB,kECnBA,SAAexI,EAAM4H,GACjB,GAAIA,EAAW5H,EAAKrI,OAChB,OAAO,KAUXa,IAAMiQ,ECvBV,SAAuBzI,EAAM4H,GAMzBpP,IAGIP,EACA8C,EAJE2N,EAAmB,GACnBC,EAAuB,GAKzB/P,EAAW,EAGf,IAAKX,EAAI,EAAGA,EAAI+H,EAAKrI,OAAS,EAAGM,IAAK,CAClCO,IAAMoQ,EAAO,GACPC,EAAO,GAIb,IAAK9N,EAAI,EAAGA,EAAI6M,EAAW,EAAG7M,IAC1B6N,EAAKrN,KAAK,GACVsN,EAAKtN,KAAK,GAEdmN,EAAiBnN,KAAKqN,GACtBD,EAAqBpN,KAAKsN,EAC7B,CAED,IAAK5Q,EAAI,EAAGA,EAAI2P,EAAW,EAAG3P,IAK1B,IAJAyQ,EAAiB,GAAGzQ,GAAK,EACzB0Q,EAAqB,GAAG1Q,GAAK,EAGxB8C,EAAI,EAAGA,EAAIiF,EAAKrI,OAAS,EAAGoD,IAC7B4N,EAAqB5N,GAAG9C,GAAKF,OAAOuQ,kBAI5C,IAAK1Q,IAAIiE,EAAI,EAAGA,EAAImE,EAAKrI,OAAS,EAAGkE,IAAK,CAetC,IAZAjE,IAAIH,EAAM,EAGNqR,EAAa,EAEbC,EAAI,EAEJC,EAAK,EAKAzO,EAAI,EAAGA,EAAIsB,EAAI,EAAGtB,IAAK,CAE5B/B,IAAMyQ,EAAkBpN,EAAItB,EAAI,EAC1B2O,EAAMlJ,EAAKiJ,EAAkB,GAkBnC,GAJArQ,GALAkQ,GAAcI,EAAMA,IADpBzR,GAAOyR,GAMwBzR,IAT/BsR,EAaW,IAFXC,EAAKC,EAAkB,GAGnB,IAAKlO,EAAI,EAAGA,EAAI6M,EAAW,EAAG7M,IAMtB4N,EAAqB9M,GAAGd,IACxBnC,EAAW+P,EAAqBK,GAAIjO,EAAI,KAExC2N,EAAiB7M,GAAGd,GAAKkO,EACzBN,EAAqB9M,GAAGd,GACpBnC,EAAW+P,EAAqBK,GAAIjO,EAAI,GAI3D,CAED2N,EAAiB7M,GAAG,GAAK,EACzB8M,EAAqB9M,GAAG,GAAKjD,CAChC,CAKD,MAAO,CACH8P,iBAAkBA,EAClBC,qBAAsBA,EAE9B,CDjFqBQ,CALjBnJ,EAAOA,EAAKzG,QAAQC,MAAK,SAAUC,EAAGC,GAClC,OAAOD,EAAIC,CACnB,IAGyCkO,GAKrC,OE5BJ,SAAqB5H,EAAM0I,EAAkBd,GACzChQ,IAAIwC,EAAI4F,EAAKrI,OACPyR,EAAS,GACXC,EAAWzB,EAQf,IAJAwB,EAAOxB,GAAY5H,EAAKA,EAAKrI,OAAS,GAI/B0R,EAAW,GACdD,EAAOC,EAAW,GAAKrJ,EAAK0I,EAAiBtO,GAAGiP,GAAY,GAC5DjP,EAAIsO,EAAiBtO,GAAGiP,GAAY,EACpCA,IAGJ,OAAOD,CACX,CFUWE,CAAYtJ,EAHMyI,EAASC,iBAGSd,EAC/C,kBtBfA,SAAuB1E,EAAQQ,EAAYzG,QAAY,IAAAA,IAAAA,EAAG/E,KAAKgF,QAK3D,IAJAtF,IAAI2R,EAAe,KACfC,EAAelM,EAAO4F,EAAQQ,EAAYzG,GAC1CwG,EAAS,KACTgG,EAAS1R,OAAOuL,UACF,IAAXmG,GAEHF,EAAeC,EAEfC,EAASvF,GADTsF,EAAehG,GAAmBN,EAFlCO,EAASR,GAAYC,EAAQsG,GAEqB9F,GACX6F,GAE3C,MAAO,CACH9F,OAAQA,EACRN,UAAWqG,EAEnB,yDyBzBA,SAA0BxJ,GACtBpI,IAAI2C,EACAb,EAIEgQ,EAAa1J,EAAKrI,OAIxB,GAAmB,IAAf+R,EACAnP,EAAI,EACJb,EAAIsG,EAAK,GAAG,OACT,CAmBH,IAhBApI,IAOImM,EACArM,EACAoH,EATA6K,EAAO,EACPC,EAAO,EACPC,EAAQ,EACRC,EAAQ,EAaH7R,EAAI,EAAGA,EAAIyR,EAAYzR,IAK5B0R,GAHAjS,GADAqM,EAAQ/D,EAAK/H,IACH,GAIV2R,GAHA9K,EAAIiF,EAAM,GAKV8F,GAASnS,EAAIA,EACboS,GAASpS,EAAIoH,EASjBpF,EAAIkQ,EAAOF,GALXnP,GACKmP,EAAaI,EAAQH,EAAOC,IAC5BF,EAAaG,EAAQF,EAAOA,IAGJA,EAAQD,CACxC,CAGD,MAAO,CACHnP,EAAGA,EACHb,EAAGA,EAEX,yBCrDA,SAA8BqQ,GAI1B,OAAO,SAAUrS,GACb,OAAOqS,EAAGrQ,EAAIqQ,EAAGxP,EAAI7C,CAC7B,CACA,eCbA,SAAoBA,GAChB,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIU,MAAM,+CAIpB,IADAT,IAAIuB,EAAQ,EACHlB,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IAAK,CAC/B,GAAIP,EAAEO,GAAK,EACP,MAAM,IAAII,MACN,0DAGRc,GAASjB,KAAKuC,IAAI/C,EAAEO,GACvB,CAED,OAAOC,KAAKyC,IAAIxB,EAAQzB,EAAEC,OAC9B,UCnBA,SAAeoC,GACX,GAAIA,GAAK,GAAKA,GAAK,EACf,MAAM,IAAI1B,MAAM,2CAEpB,OAAOH,KAAKuC,IAAIV,GAAK,EAAIA,GAC7B,8BCHA,SAAmBrC,GACf,OAAOA,EAAEA,EAAEC,OAAS,EACxB,gFCMA,SAAsBsB,GAClB,OAAOa,EAAeb,EAAQ,GAClC,sBCVA,SAAmBvB,GACf,OAAOA,EAAE,EACb,SCQA,SAAcA,GAIV,OAAOsB,EAAWM,EAAY5B,GAClC,aCAA,SAAkBA,GAUd,IANAc,IAGIwR,EAHE5M,EAAQ,IAAI6M,IAIdC,EAAY,EAEPjS,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IAAK,CAC/BL,IAAIuS,EAAW/M,EAAMgN,IAAI1S,EAAEO,SACVoI,IAAb8J,EACAA,EAAW,EAEXA,IAEAA,EAAWD,IACXF,EAAOtS,EAAEO,GACTiS,EAAYC,GAEhB/M,EAAMiN,IAAI3S,EAAEO,GAAIkS,EACnB,CAED,GAAkB,IAAdD,EACA,MAAM,IAAI7R,MAAM,wCAGpB,OAAO2R,CACX,kEC7BA,SAAyBM,EAASC,EAASC,EAAapQ,EAAG6C,GAQvD,QANUoD,IAANjG,IACAA,EAAI,UAEYiG,IAAhBmK,IACAA,EAAc,YAGE,aAAhBA,GACgB,YAAhBA,GACgB,SAAhBA,EAEA,MAAM,IAAInS,MACN,kEAmBR,IAdAG,IAKMiS,EALQrS,EAAKkS,GACLlS,EAAKmS,GAObG,EAAc,IAAItP,MAAMhB,GAGxBuQ,EAAUL,EAAQ/C,OAAOgD,GACzBK,EAAW1S,KAAK2C,MAAM8P,EAAQhT,OAAS,GAEpCM,EAAI,EAAGA,EAAImC,EAAGnC,IAAK,CAExB+E,EAAe2N,EAAS1N,GACxBzE,IAAMqS,EAAWF,EAAQpR,MAAM,EAAGqR,GAC5BE,EAAYH,EAAQpR,MAAMqR,EAAUD,EAAQhT,QAG5CoT,EAAoB3S,EAAKyS,GAAYzS,EAAK0S,GAGhDJ,EAAYzS,GAAK8S,CACpB,CAKDnT,IAAIoT,EAAmB,EACvB,GAAoB,aAAhBR,EACA,IAAK5S,IAAIK,EAAI,EAAGA,GAAKmC,EAAGnC,IAChBC,KAAKC,IAAIuS,EAAYzS,KAAOC,KAAKC,IAAIsS,KACrCO,GAAoB,QAGzB,GAAoB,YAAhBR,EACP,IAAK5S,IAAIK,EAAI,EAAGA,GAAKmC,EAAGnC,IAChByS,EAAYzS,IAAMwS,IAClBO,GAAoB,QAK5B,IAAKpT,IAAIK,EAAI,EAAGA,GAAKmC,EAAGnC,IAEhByS,EAAYzS,IAAMwS,IAClBO,GAAoB,GAMhC,OAAOA,EAAmB5Q,CAC9B,qBC5FA,SAA0B6Q,GAItB,IAHAzS,IAAM0S,EAAU,IAAI9P,MAAM6P,EAAStT,QAC7BwT,EAAe,CAACF,EAAS1R,SAEtBtB,EAAI,EAAGA,EAAIgT,EAAStT,OAAQM,IACjCiT,EAAQjT,GAAK,EAGjB,IAAKL,IAAIK,EAAI,EAAGA,EAAIgT,EAAStT,QACzB,GAAIuT,EAAQjT,GAAKA,EAAG,CAGhBL,IAAIwT,EAAW,EACXnT,EAAI,GAAM,IACVmT,EAAWF,EAAQjT,IAKvBO,IAAM6S,EAAOJ,EAASG,GACtBH,EAASG,GAAYH,EAAShT,GAC9BgT,EAAShT,GAAKoT,EAEdF,EAAa5P,KAAK0P,EAAS1R,SAC3B2R,EAAQjT,KACRA,EAAI,CAChB,MACYiT,EAAQjT,GAAK,EACbA,IAIR,OAAOkT,CACX,wBCzBA,SAA6BG,GAEzB,KAAIA,GAAU,GAAd,CAKA1T,IAAIF,EAAI,EAGJ6N,EAAwB,EAEtBC,EAAQ,GACV+F,EAAa,EAKjB,GAEI/F,EAAM9N,GAAMQ,KAAKyC,KAAK2Q,GAAUpT,KAAKS,IAAI2S,EAAQ5T,GAAM6T,EACvDhG,GAAyBC,EAAM9N,GAE/B6T,KADA7T,QAIK6N,EAAwB,OAEjC,OAAOC,CAxBN,CAyBL,WC5BA,SAAgBzL,GAMZ,OALU,IAANA,EACAA,EAAImH,EACGnH,GAAK,IACZA,EAAI,OAED7B,KAAKa,KAAK,GAAK4J,EAAqB,EAAI5I,EAAI,EACvD,YCZA,SAAiBrC,GAEb,IADAE,IAAIuB,EAAQ,EACHlB,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IAC1BkB,GAASzB,EAAEO,GAEf,OAAOkB,CACX,8BCAA,SAAsBzB,EAAGyB,GAIrB,OAAO+C,EAFY5C,EAAY5B,GAEOyB,EAC1C,uECRA,SAAkBzB,EAAGgO,GACjB,GAAIhO,EAAEC,OAAS,EACX,OAAO,EAOX,IADAC,IAAIH,EAAM,EACDQ,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IAC1BR,GAAOC,EAAEO,GAAG,GAQhB,IANAO,IAAMgT,EAAU/T,EAAMC,EAAEC,OAKpBiI,EAAe,EACV7E,EAAI,EAAGA,EAAIrD,EAAEC,OAAQoD,IAC1B6E,GAAgB1H,KAAKS,IAAI6S,EAAU9T,EAAEqD,GAAG,GAAI,GAOhD,IADAnD,IAAI6T,EAAM,EACDrR,EAAI,EAAGA,EAAI1C,EAAEC,OAAQyC,IAC1BqR,GAAOvT,KAAKS,IAAIjB,EAAE0C,GAAG,GAAKsL,EAAKhO,EAAE0C,GAAG,IAAK,GAM7C,OAAO,EAAIqR,EAAM7L,CACrB,uHC/BA,SAAwBlI,GACpBc,IAAMD,EAAIb,EAAEC,OAEZ,GAAIY,EAAI,EACJ,MAAM,IAAIF,MAAM,qDAQpB,IALAG,IACIC,EADEC,EAAYN,EAAKV,GAEnBgU,EAAsB,EACtBC,EAAsB,EAEjB1T,EAAI,EAAGA,EAAIM,EAAGN,IAEnByT,IADAjT,EAAYf,EAAEO,GAAKS,GACgBD,EACnCkT,GAAuBlT,EAAYA,EAAYA,EAAYA,EAG/D,OACMF,EAAI,KAAOA,EAAI,IAAMA,EAAI,KACzBA,GAAKA,EAAI,GAAKoT,GACXD,EAAsBA,GACvB,GAAKnT,EAAI,GAErB,0BC/BA,SAA+Bb,EAAGoH,GAe9B,IAdAtG,IAAMoT,EAAWlU,EACZ0L,KAAG,SAAEjK,EAAOiE,GAAU,MAAA,CAACjE,EAAOiE,MAC9B5D,MAAK,SAACC,EAAGC,GAAM,OAAAD,EAAE,GAAKC,EAAE,MACxB0J,KAAI,SAACyI,GAAI,OAAKA,EAAK,EAAE,IACpBC,EAAWhN,EACZsE,KAAG,SAAEjK,EAAOiE,GAAU,MAAA,CAACjE,EAAOiE,MAC9B5D,MAAK,SAACC,EAAGC,GAAM,OAAAD,EAAE,GAAKC,EAAE,MACxB0J,KAAI,SAACyI,GAAI,OAAKA,EAAK,EAAE,IAKpBE,EAAS3Q,MAAMwQ,EAASjU,QACxBqU,EAAS5Q,MAAMwQ,EAASjU,QACrBM,EAAI,EAAGA,EAAI2T,EAASjU,OAAQM,IACjC8T,EAAOH,EAAS3T,IAAMA,EACtB+T,EAAOF,EAAS7T,IAAMA,EAG1B,OAAOmH,EAAkB2M,EAAQC,EACrC,mBCZA,SAAwBtU,GACpB,GAAIA,EAAEC,OAAS,EACX,MAAM,IAAIU,MAAM,sDAQpB,IALAG,IACIC,EADEC,EAAYN,EAAKV,GAEnBuU,EAAuB,EACvBC,EAAqB,EAEhBjU,EAAI,EAAGA,EAAIP,EAAEC,OAAQM,IAE1BgU,IADAxT,EAAYf,EAAEO,GAAKS,GACiBD,EACpCyT,GAAsBzT,EAAYA,EAAYA,EAMlDD,IAAM2T,EAAoBzU,EAAEC,OAAS,EAG/ByU,EAA6BlU,KAAKa,KACpCkT,EAAuBE,GAGrB5T,EAAIb,EAAEC,OAGZ,OAAQY,EAAI2T,IAAwB3T,EAAI,IAAMA,EAAI,GAFnCL,KAAKS,IAAIyT,EAA4B,GAGxD,yECpCA,SAA+B1U,EAAGa,EAAG0E,GACjC,GAAiB,IAAbvF,EAAEC,OACF,MAAO,GAMXsF,EAAeA,GAAgB/E,KAAKgF,OAKpC,IAHA1E,IAAMb,EAASD,EAAEC,OACX2F,EAAS,GAENrF,EAAI,EAAGA,EAAIM,EAAGN,IAAK,CACxBO,IAAM4E,EAAQlF,KAAK2C,MAAMoC,IAAiBtF,GAE1C2F,EAAO/B,KAAK7D,EAAE0F,GACjB,CAED,OAAOE,CACX,6ECjBA,SAA0B4F,EAAQO,GAE9B,OAAO7J,EADQwK,GAAWlB,EAAQO,GAEtC,mECJA,SAA0BrL,EAAMG,EAAGY,GAC/B,OAAQf,EAAOG,EAAIY,IAAUZ,EAAI,EACrC,0DCGA,SAAeb,EAAG2U,GAWd,OATmBjU,EAAKV,GASH2U,IANVxT,EAAkBnB,GAGfQ,KAAKa,KAAKrB,EAAEC,QAI9B,mBCFA,SAAwB2S,EAASC,EAAS+B,GACtC9T,IAAMD,EAAI+R,EAAQ3S,OACZ4C,EAAIgQ,EAAQ5S,OAIlB,IAAKY,IAAMgC,EACP,OAAO,KAIN+R,IACDA,EAAa,GAGjB9T,IAAM+T,EAAQnU,EAAKkS,GACbkC,EAAQpU,EAAKmS,GACbpL,EAAkBF,EAAeqL,GACjCmC,EAAkBxN,EAAesL,GAEvC,GACqB,iBAAVgC,GACU,iBAAVC,GACoB,iBAApBrN,GACoB,iBAApBsN,EACT,CACEjU,IAAMkU,IACAnU,EAAI,GAAK4G,GAAmB5E,EAAI,GAAKkS,IACtClU,EAAIgC,EAAI,GAEb,OACKgS,EAAQC,EAAQF,GACjBpU,KAAKa,KAAK2T,GAAoB,EAAInU,EAAI,EAAIgC,GAEjD,CACL,uDC/CA,SAAyB+P,EAASC,GAC9B,IAAKD,EAAQ3S,SAAW4S,EAAQ5S,OAC5B,MAAM,IAAIU,MAAM,+BAQpB,IALAG,IAAMmU,EAAgBrC,EACjBlH,KAAI,SAAC1L,GAAC,OAAQqJ,MAAO,IAAK5H,MAAOzB,MACjC6P,OAAOgD,EAAQnH,KAAI,SAACtE,GAAM,MAAA,CAAGiC,MAAO,IAAK5H,MAAO2F,EAAI,KACpDtF,MAAI,SAAEC,EAAGC,GAAC,OAAKD,EAAEN,MAAQO,EAAEP,KAAA,IAEvByT,EAAO,EAAGA,EAAOD,EAAchV,OAAQiV,IAC5CD,EAAcC,GAAMA,KAAOA,EAI/B,IADAhV,IAAIiV,EAAY,CAACF,EAAc,GAAGC,MACzB3U,EAAI,EAAGA,EAAI0U,EAAchV,OAAQM,IAClC0U,EAAc1U,GAAGkB,QAAUwT,EAAc1U,EAAI,GAAGkB,OAChD0T,EAAUtR,KAAKoR,EAAc1U,GAAG2U,MAC5B3U,IAAM0U,EAAchV,OAAS,GAC7BmV,EAAoBH,EAAeE,IAEhCA,EAAUlV,OAAS,EAC1BmV,EAAoBH,EAAeE,GAEnCA,EAAY,CAACF,EAAc1U,GAAG2U,MAItC,SAASE,EAAoBH,EAAeE,GAExC,IADArU,IAAMgT,GAAWqB,EAAU,GAAKA,EAAUA,EAAUlV,OAAS,IAAM,EAC1DM,EAAI,EAAGA,EAAI4U,EAAUlV,OAAQM,IAClC0U,EAAcE,EAAU5U,IAAI2U,KAAOpB,CAE1C,CAID,IAFA5T,IAAImV,EAAU,EAEL9U,EAAI,EAAGA,EAAI0U,EAAchV,OAAQM,IAAK,CAC3CO,IAAM8E,EAASqP,EAAc1U,GACR,MAAjBqF,EAAOyD,QACPgM,GAAWzP,EAAOsP,KAAO,EAEhC,CAED,OAAOG,CACX,WCxCA,SAAgBrV,EAAGU,EAAMS,GACrB,OAAQnB,EAAIU,GAAQS,CACxB"}
|
|
1
|
+
{"version":3,"file":"simple-statistics.min.js","sources":["../src/sum.js","../src/mean.js","../src/sum_nth_power_deviations.js","../src/variance.js","../src/standard_deviation.js","../src/mode_sorted.js","../src/numeric_sort.js","../src/min.js","../src/max.js","../src/sum_simple.js","../src/quantile_sorted.js","../src/quickselect.js","../src/quantile.js","../src/quantile_rank_sorted.js","../src/interquartile_range.js","../src/median.js","../src/median_absolute_deviation.js","../src/shuffle_in_place.js","../src/shuffle.js","../src/sample.js","../src/make_matrix.js","../src/unique_count_sorted.js","../src/ckmeans.js","../src/sample_covariance.js","../src/sample_variance.js","../src/sample_standard_deviation.js","../src/sample_correlation.js","../src/combine_means.js","../src/mean_simple.js","../src/root_mean_square.js","../src/bayesian_classifier.js","../src/perceptron.js","../src/epsilon.js","../src/factorial.js","../src/gammaln.js","../src/chi_squared_distribution_table.js","../src/kernel_density_estimation.js","../src/standard_normal_table.js","../src/error_function.js","../src/inverse_error_function.js","../src/sign.js","../src/euclidean_distance.js","../src/k_means_cluster.js","../src/silhouette.js","../src/relative_error.js","../src/add_to_mean.js","../src/approx_equal.js","../src/bernoulli_distribution.js","../src/binomial_distribution.js","../src/bisect.js","../src/chi_squared_goodness_of_fit.js","../src/chunk.js","../src/coefficient_of_variation.js","../src/combinations.js","../src/combinations_replacement.js","../src/combine_variances.js","../src/cumulative_std_logistic_probability.js","../src/cumulative_std_normal_probability.js","../src/equal_interval_breaks.js","../src/extent.js","../src/extent_sorted.js","../src/gamma.js","../src/geometric_mean.js","../src/harmonic_mean.js","../src/jenks.js","../src/jenks_matrices.js","../src/jenks_breaks.js","../src/linear_regression.js","../src/linear_regression_line.js","../src/log_average.js","../src/logit.js","../src/max_sorted.js","../src/median_sorted.js","../src/min_sorted.js","../src/mode.js","../src/mode_fast.js","../src/permutation_test.js","../src/permutations_heap.js","../src/poisson_distribution.js","../src/probit.js","../src/product.js","../src/quantile_rank.js","../src/r_squared.js","../src/sample_kurtosis.js","../src/sample_rank_correlation.js","../src/sample_skewness.js","../src/sample_with_replacement.js","../src/silhouette_metric.js","../src/subtract_from_mean.js","../src/t_test.js","../src/t_test_two_sample.js","../src/wilcoxon_rank_sum.js","../src/z_score.js"],"sourcesContent":["/**\n * Our default sum is the [Kahan-Babuska algorithm](https://pdfs.semanticscholar.org/1760/7d467cda1d0277ad272deb2113533131dc09.pdf).\n * This method is an improvement over the classical\n * [Kahan summation algorithm](https://en.wikipedia.org/wiki/Kahan_summation_algorithm).\n * It aims at computing the sum of a list of numbers while correcting for\n * floating-point errors. Traditionally, sums are calculated as many\n * successive additions, each one with its own floating-point roundoff. These\n * losses in precision add up as the number of numbers increases. This alternative\n * algorithm is more accurate than the simple way of calculating sums by simple\n * addition.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x input\n * @return {number} sum of all input numbers\n * @example\n * sum([1, 2, 3]); // => 6\n */\nfunction sum(x) {\n // If the array is empty, we needn't bother computing its sum\n if (x.length === 0) {\n return 0;\n }\n\n // Initializing the sum as the first number in the array\n let sum = x[0];\n\n // Keeping track of the floating-point error correction\n let correction = 0;\n\n let transition;\n\n if (typeof sum !== \"number\") {\n return NaN;\n }\n\n for (let i = 1; i < x.length; i++) {\n if (typeof x[i] !== \"number\") {\n return NaN;\n }\n transition = sum + x[i];\n\n // Here we need to update the correction in a different fashion\n // if the new absolute value is greater than the absolute sum\n if (Math.abs(sum) >= Math.abs(x[i])) {\n correction += sum - transition + x[i];\n } else {\n correction += x[i] - transition + sum;\n }\n\n sum = transition;\n }\n\n // Returning the corrected sum\n return sum + correction;\n}\n\nexport default sum;\n","import sum from \"./sum.js\";\n\n/**\n * The mean, _also known as average_,\n * is the sum of all values over the number of values.\n * This is a [measure of central tendency](https://en.wikipedia.org/wiki/Central_tendency):\n * a method of finding a typical or central value of a set of numbers.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x sample of one or more data points\n * @throws {Error} if the length of x is less than one\n * @returns {number} mean\n * @example\n * mean([0, 10]); // => 5\n */\nfunction mean(x) {\n if (x.length === 0) {\n throw new Error(\"mean requires at least one data point\");\n }\n\n return sum(x) / x.length;\n}\n\nexport default mean;\n","import mean from \"./mean.js\";\n\n/**\n * The sum of deviations to the Nth power.\n * When n=2 it's the sum of squared deviations.\n * When n=3 it's the sum of cubed deviations.\n *\n * @param {Array<number>} x\n * @param {number} n power\n * @returns {number} sum of nth power deviations\n *\n * @example\n * var input = [1, 2, 3];\n * // since the variance of a set is the mean squared\n * // deviations, we can calculate that with sumNthPowerDeviations:\n * sumNthPowerDeviations(input, 2) / input.length;\n */\nfunction sumNthPowerDeviations(x, n) {\n const meanValue = mean(x);\n let sum = 0;\n let tempValue;\n let i;\n\n // This is an optimization: when n is 2 (we're computing a number squared),\n // multiplying the number by itself is significantly faster than using\n // the Math.pow method.\n if (n === 2) {\n for (i = 0; i < x.length; i++) {\n tempValue = x[i] - meanValue;\n sum += tempValue * tempValue;\n }\n } else {\n for (i = 0; i < x.length; i++) {\n sum += Math.pow(x[i] - meanValue, n);\n }\n }\n\n return sum;\n}\n\nexport default sumNthPowerDeviations;\n","import sumNthPowerDeviations from \"./sum_nth_power_deviations.js\";\n\n/**\n * The [variance](http://en.wikipedia.org/wiki/Variance)\n * is the sum of squared deviations from the mean.\n *\n * This is an implementation of variance, not sample variance:\n * see the `sampleVariance` method if you want a sample measure.\n *\n * @param {Array<number>} x a population of one or more data points\n * @returns {number} variance: a value greater than or equal to zero.\n * zero indicates that all values are identical.\n * @throws {Error} if x's length is 0\n * @example\n * variance([1, 2, 3, 4, 5, 6]); // => 2.9166666666666665\n */\nfunction variance(x) {\n if (x.length === 0) {\n throw new Error(\"variance requires at least one data point\");\n }\n\n // Find the mean of squared deviations between the\n // mean value and each value.\n return sumNthPowerDeviations(x, 2) / x.length;\n}\n\nexport default variance;\n","import variance from \"./variance.js\";\n\n/**\n * The [standard deviation](http://en.wikipedia.org/wiki/Standard_deviation)\n * is the square root of the variance. This is also known as the population\n * standard deviation. It's useful for measuring the amount\n * of variation or dispersion in a set of values.\n *\n * Standard deviation is only appropriate for full-population knowledge: for\n * samples of a population, {@link sampleStandardDeviation} is\n * more appropriate.\n *\n * @param {Array<number>} x input\n * @returns {number} standard deviation\n * @example\n * variance([2, 4, 4, 4, 5, 5, 7, 9]); // => 4\n * standardDeviation([2, 4, 4, 4, 5, 5, 7, 9]); // => 2\n */\nfunction standardDeviation(x) {\n if (x.length === 1) {\n return 0;\n }\n const v = variance(x);\n return Math.sqrt(v);\n}\n\nexport default standardDeviation;\n","/**\n * The [mode](https://en.wikipedia.org/wiki/Mode_%28statistics%29) is the number\n * that appears in a list the highest number of times.\n * There can be multiple modes in a list: in the event of a tie, this\n * algorithm will return the most recently seen mode.\n *\n * This is a [measure of central tendency](https://en.wikipedia.org/wiki/Central_tendency):\n * a method of finding a typical or central value of a set of numbers.\n *\n * This runs in `O(n)` because the input is sorted.\n *\n * @param {Array<number>} sorted a sample of one or more data points\n * @returns {number} mode\n * @throws {Error} if sorted is empty\n * @example\n * modeSorted([0, 0, 1]); // => 0\n */\nfunction modeSorted(sorted) {\n // Handle edge cases:\n // The mode of an empty list is undefined\n if (sorted.length === 0) {\n throw new Error(\"mode requires at least one data point\");\n } else if (sorted.length === 1) {\n return sorted[0];\n }\n\n // This assumes it is dealing with an array of size > 1, since size\n // 0 and 1 are handled immediately. Hence it starts at index 1 in the\n // array.\n let last = sorted[0],\n // store the mode as we find new modes\n value = NaN,\n // store how many times we've seen the mode\n maxSeen = 0,\n // how many times the current candidate for the mode\n // has been seen\n seenThis = 1;\n\n // end at sorted.length + 1 to fix the case in which the mode is\n // the highest number that occurs in the sequence. the last iteration\n // compares sorted[i], which is undefined, to the highest number\n // in the series\n for (let i = 1; i < sorted.length + 1; i++) {\n // we're seeing a new number pass by\n if (sorted[i] !== last) {\n // the last number is the new mode since we saw it more\n // often than the old one\n if (seenThis > maxSeen) {\n maxSeen = seenThis;\n value = last;\n }\n seenThis = 1;\n last = sorted[i];\n // if this isn't a new number, it's one more occurrence of\n // the potential mode\n } else {\n seenThis++;\n }\n }\n return value;\n}\n\nexport default modeSorted;\n","/**\n * Sort an array of numbers by their numeric value, ensuring that the\n * array is not changed in place.\n *\n * This is necessary because the default behavior of .sort\n * in JavaScript is to sort arrays as string values\n *\n * [1, 10, 12, 102, 20].sort()\n * // output\n * [1, 10, 102, 12, 20]\n *\n * @param {Array<number>} x input array\n * @return {Array<number>} sorted array\n * @private\n * @example\n * numericSort([3, 2, 1]) // => [1, 2, 3]\n */\nfunction numericSort(x) {\n return (\n x\n // ensure the array is not changed in-place\n .slice()\n // comparator function that treats input as numeric\n .sort(function (a, b) {\n return a - b;\n })\n );\n}\n\nexport default numericSort;\n","/**\n * The min is the lowest number in the array.\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x sample of one or more data points\n * @throws {Error} if the length of x is less than one\n * @returns {number} minimum value\n * @example\n * min([1, 5, -10, 100, 2]); // => -10\n */\nfunction min(x) {\n if (x.length === 0) {\n throw new Error(\"min requires at least one data point\");\n }\n\n let value = x[0];\n for (let i = 1; i < x.length; i++) {\n if (x[i] < value) {\n value = x[i];\n }\n }\n return value;\n}\n\nexport default min;\n","/**\n * This computes the maximum number in an array.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x sample of one or more data points\n * @returns {number} maximum value\n * @throws {Error} if the length of x is less than one\n * @example\n * max([1, 2, 3, 4]);\n * // => 4\n */\nfunction max(x) {\n if (x.length === 0) {\n throw new Error(\"max requires at least one data point\");\n }\n\n let value = x[0];\n for (let i = 1; i < x.length; i++) {\n if (x[i] > value) {\n value = x[i];\n }\n }\n return value;\n}\n\nexport default max;\n","/**\n * The simple [sum](https://en.wikipedia.org/wiki/Summation) of an array\n * is the result of adding all numbers together, starting from zero.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x input\n * @return {number} sum of all input numbers\n * @example\n * sumSimple([1, 2, 3]); // => 6\n */\nfunction sumSimple(x) {\n let value = 0;\n for (let i = 0; i < x.length; i++) {\n if (typeof x[i] !== \"number\") {\n return NaN;\n }\n value += x[i];\n }\n return value;\n}\n\nexport default sumSimple;\n","/**\n * This is the internal implementation of quantiles: when you know\n * that the order is sorted, you don't need to re-sort it, and the computations\n * are faster.\n *\n * @param {Array<number>} x sample of one or more data points\n * @param {number} p desired quantile: a number between 0 to 1, inclusive\n * @returns {number} quantile value\n * @throws {Error} if p ix outside of the range from 0 to 1\n * @throws {Error} if x is empty\n * @example\n * quantileSorted([3, 6, 7, 8, 8, 9, 10, 13, 15, 16, 20], 0.5); // => 9\n */\nfunction quantileSorted(x, p) {\n const idx = x.length * p;\n if (x.length === 0) {\n throw new Error(\"quantile requires at least one data point.\");\n } else if (p < 0 || p > 1) {\n throw new Error(\"quantiles must be between 0 and 1\");\n } else if (p === 1) {\n // If p is 1, directly return the last element\n return x[x.length - 1];\n } else if (p === 0) {\n // If p is 0, directly return the first element\n return x[0];\n } else if (idx % 1 !== 0) {\n // If p is not integer, return the next element in array\n return x[Math.ceil(idx) - 1];\n } else if (x.length % 2 === 0) {\n // If the list has even-length, we'll take the average of this number\n // and the next value, if there is one\n return (x[idx - 1] + x[idx]) / 2;\n } else {\n // Finally, in the simple case of an integer value\n // with an odd-length list, return the x value at the index.\n return x[idx];\n }\n}\n\nexport default quantileSorted;\n","/**\n * Rearrange items in `arr` so that all items in `[left, k]` range are the smallest.\n * The `k`-th element will have the `(k - left + 1)`-th smallest value in `[left, right]`.\n *\n * Implements Floyd-Rivest selection algorithm https://en.wikipedia.org/wiki/Floyd-Rivest_algorithm\n *\n * @param {Array<number>} arr input array\n * @param {number} k pivot index\n * @param {number} [left] left index\n * @param {number} [right] right index\n * @returns {void} mutates input array\n * @example\n * var arr = [65, 28, 59, 33, 21, 56, 22, 95, 50, 12, 90, 53, 28, 77, 39];\n * quickselect(arr, 8);\n * // = [39, 28, 28, 33, 21, 12, 22, 50, 53, 56, 59, 65, 90, 77, 95]\n */\nfunction quickselect(arr, k, left, right) {\n left = left || 0;\n right = right || arr.length - 1;\n\n while (right > left) {\n // 600 and 0.5 are arbitrary constants chosen in the original paper to minimize execution time\n if (right - left > 600) {\n const n = right - left + 1;\n const m = k - left + 1;\n const z = Math.log(n);\n const s = 0.5 * Math.exp((2 * z) / 3);\n let sd = 0.5 * Math.sqrt((z * s * (n - s)) / n);\n if (m - n / 2 < 0) sd *= -1;\n const newLeft = Math.max(left, Math.floor(k - (m * s) / n + sd));\n const newRight = Math.min(\n right,\n Math.floor(k + ((n - m) * s) / n + sd)\n );\n quickselect(arr, k, newLeft, newRight);\n }\n\n const t = arr[k];\n let i = left;\n let j = right;\n\n swap(arr, left, k);\n if (arr[right] > t) swap(arr, left, right);\n\n while (i < j) {\n swap(arr, i, j);\n i++;\n j--;\n while (arr[i] < t) i++;\n while (arr[j] > t) j--;\n }\n\n if (arr[left] === t) swap(arr, left, j);\n else {\n j++;\n swap(arr, j, right);\n }\n\n if (j <= k) left = j + 1;\n if (k <= j) right = j - 1;\n }\n}\n\nfunction swap(arr, i, j) {\n const tmp = arr[i];\n arr[i] = arr[j];\n arr[j] = tmp;\n}\n\nexport default quickselect;\n","import quantileSorted from \"./quantile_sorted.js\";\nimport quickselect from \"./quickselect.js\";\n\n/**\n * The [quantile](https://en.wikipedia.org/wiki/Quantile):\n * this is a population quantile, since we assume to know the entire\n * dataset in this library. This is an implementation of the\n * [Quantiles of a Population](http://en.wikipedia.org/wiki/Quantile#Quantiles_of_a_population)\n * algorithm from wikipedia.\n *\n * Sample is a one-dimensional array of numbers,\n * and p is either a decimal number from 0 to 1 or an array of decimal\n * numbers from 0 to 1.\n * In terms of a k/q quantile, p = k/q - it's just dealing with fractions or dealing\n * with decimal values.\n * When p is an array, the result of the function is also an array containing the appropriate\n * quantiles in input order\n *\n * @param {Array<number>} x sample of one or more numbers\n * @param {Array<number> | number} p the desired quantile, as a number between 0 and 1\n * @returns {number} quantile\n * @example\n * quantile([3, 6, 7, 8, 8, 9, 10, 13, 15, 16, 20], 0.5); // => 9\n */\nfunction quantile(x, p) {\n const copy = x.slice();\n\n if (Array.isArray(p)) {\n // rearrange elements so that each element corresponding to a requested\n // quantile is on a place it would be if the array was fully sorted\n multiQuantileSelect(copy, p);\n // Initialize the result array\n const results = [];\n // For each requested quantile\n for (let i = 0; i < p.length; i++) {\n results[i] = quantileSorted(copy, p[i]);\n }\n return results;\n } else {\n const idx = quantileIndex(copy.length, p);\n quantileSelect(copy, idx, 0, copy.length - 1);\n return quantileSorted(copy, p);\n }\n}\n\nfunction quantileSelect(arr, k, left, right) {\n if (k % 1 === 0) {\n quickselect(arr, k, left, right);\n } else {\n k = Math.floor(k);\n quickselect(arr, k, left, right);\n quickselect(arr, k + 1, k + 1, right);\n }\n}\n\nfunction multiQuantileSelect(arr, p) {\n const indices = [0];\n for (let i = 0; i < p.length; i++) {\n indices.push(quantileIndex(arr.length, p[i]));\n }\n indices.push(arr.length - 1);\n indices.sort(compare);\n\n const stack = [0, indices.length - 1];\n\n while (stack.length) {\n const r = Math.ceil(stack.pop());\n const l = Math.floor(stack.pop());\n if (r - l <= 1) continue;\n\n const m = Math.floor((l + r) / 2);\n quantileSelect(\n arr,\n indices[m],\n Math.floor(indices[l]),\n Math.ceil(indices[r])\n );\n\n stack.push(l, m, m, r);\n }\n}\n\nfunction compare(a, b) {\n return a - b;\n}\n\nfunction quantileIndex(len, p) {\n const idx = len * p;\n if (p === 1) {\n // If p is 1, directly return the last index\n return len - 1;\n } else if (p === 0) {\n // If p is 0, directly return the first index\n return 0;\n } else if (idx % 1 !== 0) {\n // If index is not integer, return the next index in array\n return Math.ceil(idx) - 1;\n } else if (len % 2 === 0) {\n // If the list has even-length, we'll return the middle of two indices\n // around quantile to indicate that we need an average value of the two\n return idx - 0.5;\n } else {\n // Finally, in the simple case of an integer index\n // with an odd-length list, return the index\n return idx;\n }\n}\n\nexport default quantile;\n","/* eslint no-bitwise: 0 */\n\n/**\n * This function returns the quantile in which one would find the given value in\n * the given array. With a sorted array, leveraging binary search, we can find\n * this information in logarithmic time.\n *\n * @param {Array<number>} x input\n * @returns {number} value value\n * @example\n * quantileRankSorted([1, 2, 3, 4], 3); // => 0.75\n * quantileRankSorted([1, 2, 3, 3, 4], 3); // => 0.7\n * quantileRankSorted([1, 2, 3, 4], 6); // => 1\n * quantileRankSorted([1, 2, 3, 3, 5], 4); // => 0.8\n */\nfunction quantileRankSorted(x, value) {\n // Value is lesser than any value in the array\n if (value < x[0]) {\n return 0;\n }\n\n // Value is greater than any value in the array\n if (value > x[x.length - 1]) {\n return 1;\n }\n\n let l = lowerBound(x, value);\n\n // Value is not in the array\n if (x[l] !== value) {\n return l / x.length;\n }\n\n l++;\n\n const u = upperBound(x, value);\n\n // The value exists only once in the array\n if (u === l) {\n return l / x.length;\n }\n\n // Here, we are basically computing the mean of the range of indices\n // containing our searched value. But, instead, of initializing an\n // array and looping over it, there is a dedicated math formula that\n // we apply below to get the result.\n const r = u - l + 1;\n const sum = (r * (u + l)) / 2;\n const mean = sum / r;\n\n return mean / x.length;\n}\n\nfunction lowerBound(x, value) {\n let mid = 0;\n let lo = 0;\n let hi = x.length;\n\n while (lo < hi) {\n mid = (lo + hi) >>> 1;\n\n if (value <= x[mid]) {\n hi = mid;\n } else {\n lo = -~mid;\n }\n }\n\n return lo;\n}\n\nfunction upperBound(x, value) {\n let mid = 0;\n let lo = 0;\n let hi = x.length;\n\n while (lo < hi) {\n mid = (lo + hi) >>> 1;\n\n if (value >= x[mid]) {\n lo = -~mid;\n } else {\n hi = mid;\n }\n }\n\n return lo;\n}\n\nexport default quantileRankSorted;\n","import quantile from \"./quantile.js\";\n\n/**\n * The [Interquartile range](http://en.wikipedia.org/wiki/Interquartile_range) is\n * a measure of statistical dispersion, or how scattered, spread, or\n * concentrated a distribution is. It's computed as the difference between\n * the third quartile and first quartile.\n *\n * @param {Array<number>} x sample of one or more numbers\n * @returns {number} interquartile range: the span between lower and upper quartile,\n * 0.25 and 0.75\n * @example\n * interquartileRange([0, 1, 2, 3]); // => 2\n */\nfunction interquartileRange(x) {\n // Interquartile range is the span between the upper quartile,\n // at `0.75`, and lower quartile, `0.25`\n const q1 = quantile(x, 0.75);\n const q2 = quantile(x, 0.25);\n\n if (typeof q1 === \"number\" && typeof q2 === \"number\") {\n return q1 - q2;\n }\n}\n\nexport default interquartileRange;\n","import quantile from \"./quantile.js\";\n\n/**\n * The [median](http://en.wikipedia.org/wiki/Median) is\n * the middle number of a list. This is often a good indicator of 'the middle'\n * when there are outliers that skew the `mean()` value.\n * This is a [measure of central tendency](https://en.wikipedia.org/wiki/Central_tendency):\n * a method of finding a typical or central value of a set of numbers.\n *\n * The median isn't necessarily one of the elements in the list: the value\n * can be the average of two elements if the list has an even length\n * and the two central values are different.\n *\n * @param {Array<number>} x input\n * @returns {number} median value\n * @example\n * median([10, 2, 5, 100, 2, 1]); // => 3.5\n */\nfunction median(x) {\n return +quantile(x, 0.5);\n}\n\nexport default median;\n","import median from \"./median.js\";\n\n/**\n * The [Median Absolute Deviation](http://en.wikipedia.org/wiki/Median_absolute_deviation) is\n * a robust measure of statistical\n * dispersion. It is more resilient to outliers than the standard deviation.\n *\n * @param {Array<number>} x input array\n * @returns {number} median absolute deviation\n * @example\n * medianAbsoluteDeviation([1, 1, 2, 2, 4, 6, 9]); // => 1\n */\nfunction medianAbsoluteDeviation(x) {\n const medianValue = median(x);\n const medianAbsoluteDeviations = [];\n\n // Make a list of absolute deviations from the median\n for (let i = 0; i < x.length; i++) {\n medianAbsoluteDeviations.push(Math.abs(x[i] - medianValue));\n }\n\n // Find the median value of that list\n return median(medianAbsoluteDeviations);\n}\n\nexport default medianAbsoluteDeviation;\n","/**\n * A [Fisher-Yates shuffle](http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle)\n * in-place - which means that it **will change the order of the original\n * array by reference**.\n *\n * This is an algorithm that generates a random [permutation](https://en.wikipedia.org/wiki/Permutation)\n * of a set.\n *\n * @param {Array} x sample of one or more numbers\n * @param {Function} [randomSource=Math.random] an optional entropy source that\n * returns numbers between 0 inclusive and 1 exclusive: the range [0, 1)\n * @returns {Array} x\n * @example\n * var x = [1, 2, 3, 4];\n * shuffleInPlace(x);\n * // x is shuffled to a value like [2, 1, 4, 3]\n */\nfunction shuffleInPlace(x, randomSource) {\n // a custom random number source can be provided if you want to use\n // a fixed seed or another random number generator, like\n // [random-js](https://www.npmjs.org/package/random-js)\n randomSource = randomSource || Math.random;\n\n // store the current length of the x to determine\n // when no elements remain to shuffle.\n let length = x.length;\n\n // temporary is used to hold an item when it is being\n // swapped between indices.\n let temporary;\n\n // The index to swap at each stage.\n let index;\n\n // While there are still items to shuffle\n while (length > 0) {\n // choose a random index within the subset of the array\n // that is not yet shuffled\n index = Math.floor(randomSource() * length--);\n\n // store the value that we'll move temporarily\n temporary = x[length];\n\n // swap the value at `x[length]` with `x[index]`\n x[length] = x[index];\n x[index] = temporary;\n }\n\n return x;\n}\n\nexport default shuffleInPlace;\n","import shuffleInPlace from \"./shuffle_in_place.js\";\n\n/**\n * A [Fisher-Yates shuffle](http://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle)\n * is a fast way to create a random permutation of a finite set. This is\n * a function around `shuffle_in_place` that adds the guarantee that\n * it will not modify its input.\n *\n * @param {Array} x sample of 0 or more numbers\n * @param {Function} [randomSource=Math.random] an optional entropy source that\n * returns numbers between 0 inclusive and 1 exclusive: the range [0, 1)\n * @return {Array} shuffled version of input\n * @example\n * var shuffled = shuffle([1, 2, 3, 4]);\n * shuffled; // = [2, 3, 1, 4] or any other random permutation\n */\nfunction shuffle(x, randomSource) {\n // slice the original array so that it is not modified\n const sample = x.slice();\n\n // and then shuffle that shallow-copied array, in place\n return shuffleInPlace(sample, randomSource);\n}\n\nexport default shuffle;\n","import shuffle from \"./shuffle.js\";\n\n/**\n * Create a [simple random sample](http://en.wikipedia.org/wiki/Simple_random_sample)\n * from a given array of `n` elements.\n *\n * The sampled values will be in any order, not necessarily the order\n * they appear in the input.\n *\n * @param {Array<any>} x input array. can contain any type\n * @param {number} n count of how many elements to take\n * @param {Function} [randomSource=Math.random] an optional entropy source that\n * returns numbers between 0 inclusive and 1 exclusive: the range [0, 1)\n * @return {Array} subset of n elements in original array\n *\n * @example\n * var values = [1, 2, 4, 5, 6, 7, 8, 9];\n * sample(values, 3); // returns 3 random values, like [2, 5, 8];\n */\nfunction sample(x, n, randomSource) {\n // shuffle the original array using a fisher-yates shuffle\n const shuffled = shuffle(x, randomSource);\n\n // and then return a subset of it - the first `n` elements.\n return shuffled.slice(0, n);\n}\n\nexport default sample;\n","/**\n * Create a new column x row matrix.\n *\n * @private\n * @param {number} columns\n * @param {number} rows\n * @return {Array<Array<number>>} matrix\n * @example\n * makeMatrix(10, 10);\n */\nfunction makeMatrix(columns, rows) {\n const matrix = [];\n for (let i = 0; i < columns; i++) {\n const column = [];\n for (let j = 0; j < rows; j++) {\n column.push(0);\n }\n matrix.push(column);\n }\n return matrix;\n}\n\nexport default makeMatrix;\n","/**\n * For a sorted input, counting the number of unique values\n * is possible in constant time and constant memory. This is\n * a simple implementation of the algorithm.\n *\n * Values are compared with `===`, so objects and non-primitive objects\n * are not handled in any special way.\n *\n * @param {Array<*>} x an array of any kind of value\n * @returns {number} count of unique values\n * @example\n * uniqueCountSorted([1, 2, 3]); // => 3\n * uniqueCountSorted([1, 1, 1]); // => 1\n */\nfunction uniqueCountSorted(x) {\n let uniqueValueCount = 0,\n lastSeenValue;\n for (let i = 0; i < x.length; i++) {\n if (i === 0 || x[i] !== lastSeenValue) {\n lastSeenValue = x[i];\n uniqueValueCount++;\n }\n }\n return uniqueValueCount;\n}\n\nexport default uniqueCountSorted;\n","import makeMatrix from \"./make_matrix.js\";\nimport numericSort from \"./numeric_sort.js\";\nimport uniqueCountSorted from \"./unique_count_sorted.js\";\n\n/**\n * Generates incrementally computed values based on the sums and sums of\n * squares for the data array\n *\n * @private\n * @param {number} j\n * @param {number} i\n * @param {Array<number>} sums\n * @param {Array<number>} sumsOfSquares\n * @return {number}\n * @example\n * ssq(0, 1, [-1, 0, 2], [1, 1, 5]);\n */\nfunction ssq(j, i, sums, sumsOfSquares) {\n let sji; // s(j, i)\n if (j > 0) {\n const muji = (sums[i] - sums[j - 1]) / (i - j + 1); // mu(j, i)\n sji =\n sumsOfSquares[i] - sumsOfSquares[j - 1] - (i - j + 1) * muji * muji;\n } else {\n sji = sumsOfSquares[i] - (sums[i] * sums[i]) / (i + 1);\n }\n if (sji < 0) {\n return 0;\n }\n return sji;\n}\n\n/**\n * Function that recursively divides and conquers computations\n * for cluster j\n *\n * @private\n * @param {number} iMin Minimum index in cluster to be computed\n * @param {number} iMax Maximum index in cluster to be computed\n * @param {number} cluster Index of the cluster currently being computed\n * @param {Array<Array<number>>} matrix\n * @param {Array<Array<number>>} backtrackMatrix\n * @param {Array<number>} sums\n * @param {Array<number>} sumsOfSquares\n */\nfunction fillMatrixColumn(\n iMin,\n iMax,\n cluster,\n matrix,\n backtrackMatrix,\n sums,\n sumsOfSquares\n) {\n if (iMin > iMax) {\n return;\n }\n\n // Start at midpoint between iMin and iMax\n const i = Math.floor((iMin + iMax) / 2);\n\n matrix[cluster][i] = matrix[cluster - 1][i - 1];\n backtrackMatrix[cluster][i] = i;\n\n let jlow = cluster; // the lower end for j\n\n if (iMin > cluster) {\n jlow = Math.max(jlow, backtrackMatrix[cluster][iMin - 1] || 0);\n }\n jlow = Math.max(jlow, backtrackMatrix[cluster - 1][i] || 0);\n\n let jhigh = i - 1; // the upper end for j\n if (iMax < matrix[0].length - 1) {\n jhigh = Math.min(jhigh, backtrackMatrix[cluster][iMax + 1] || 0);\n }\n\n let sji;\n let sjlowi;\n let ssqjlow;\n let ssqj;\n for (let j = jhigh; j >= jlow; --j) {\n sji = ssq(j, i, sums, sumsOfSquares);\n\n if (sji + matrix[cluster - 1][jlow - 1] >= matrix[cluster][i]) {\n break;\n }\n\n // Examine the lower bound of the cluster border\n sjlowi = ssq(jlow, i, sums, sumsOfSquares);\n\n ssqjlow = sjlowi + matrix[cluster - 1][jlow - 1];\n\n if (ssqjlow < matrix[cluster][i]) {\n // Shrink the lower bound\n matrix[cluster][i] = ssqjlow;\n backtrackMatrix[cluster][i] = jlow;\n }\n jlow++;\n\n ssqj = sji + matrix[cluster - 1][j - 1];\n if (ssqj < matrix[cluster][i]) {\n matrix[cluster][i] = ssqj;\n backtrackMatrix[cluster][i] = j;\n }\n }\n\n fillMatrixColumn(\n iMin,\n i - 1,\n cluster,\n matrix,\n backtrackMatrix,\n sums,\n sumsOfSquares\n );\n fillMatrixColumn(\n i + 1,\n iMax,\n cluster,\n matrix,\n backtrackMatrix,\n sums,\n sumsOfSquares\n );\n}\n\n/**\n * Initializes the main matrices used in Ckmeans and kicks\n * off the divide and conquer cluster computation strategy\n *\n * @private\n * @param {Array<number>} data sorted array of values\n * @param {Array<Array<number>>} matrix\n * @param {Array<Array<number>>} backtrackMatrix\n */\nfunction fillMatrices(data, matrix, backtrackMatrix) {\n const nValues = matrix[0].length;\n\n // Shift values by the median to improve numeric stability\n const shift = data[Math.floor(nValues / 2)];\n\n // Cumulative sum and cumulative sum of squares for all values in data array\n const sums = [];\n const sumsOfSquares = [];\n\n // Initialize first column in matrix & backtrackMatrix\n for (let i = 0, shiftedValue; i < nValues; ++i) {\n shiftedValue = data[i] - shift;\n if (i === 0) {\n sums.push(shiftedValue);\n sumsOfSquares.push(shiftedValue * shiftedValue);\n } else {\n sums.push(sums[i - 1] + shiftedValue);\n sumsOfSquares.push(\n sumsOfSquares[i - 1] + shiftedValue * shiftedValue\n );\n }\n\n // Initialize for cluster = 0\n matrix[0][i] = ssq(0, i, sums, sumsOfSquares);\n backtrackMatrix[0][i] = 0;\n }\n\n // Initialize the rest of the columns\n let iMin;\n for (let cluster = 1; cluster < matrix.length; ++cluster) {\n if (cluster < matrix.length - 1) {\n iMin = cluster;\n } else {\n // No need to compute matrix[K-1][0] ... matrix[K-1][N-2]\n iMin = nValues - 1;\n }\n\n fillMatrixColumn(\n iMin,\n nValues - 1,\n cluster,\n matrix,\n backtrackMatrix,\n sums,\n sumsOfSquares\n );\n }\n}\n\n/**\n * Ckmeans clustering is an improvement on heuristic-based clustering\n * approaches like Jenks. The algorithm was developed in\n * [Haizhou Wang and Mingzhou Song](http://journal.r-project.org/archive/2011-2/RJournal_2011-2_Wang+Song.pdf)\n * as a [dynamic programming](https://en.wikipedia.org/wiki/Dynamic_programming) approach\n * to the problem of clustering numeric data into groups with the least\n * within-group sum-of-squared-deviations.\n *\n * Minimizing the difference within groups - what Wang & Song refer to as\n * `withinss`, or within sum-of-squares, means that groups are optimally\n * homogenous within and the data is split into representative groups.\n * This is very useful for visualization, where you may want to represent\n * a continuous variable in discrete color or style groups. This function\n * can provide groups that emphasize differences between data.\n *\n * Being a dynamic approach, this algorithm is based on two matrices that\n * store incrementally-computed values for squared deviations and backtracking\n * indexes.\n *\n * This implementation is based on Ckmeans 3.4.6, which introduced a new divide\n * and conquer approach that improved runtime from O(kn^2) to O(kn log(n)).\n *\n * Unlike the [original implementation](https://cran.r-project.org/web/packages/Ckmeans.1d.dp/index.html),\n * this implementation does not include any code to automatically determine\n * the optimal number of clusters: this information needs to be explicitly\n * provided.\n *\n * ### References\n * _Ckmeans.1d.dp: Optimal k-means Clustering in One Dimension by Dynamic\n * Programming_ Haizhou Wang and Mingzhou Song ISSN 2073-4859\n *\n * from The R Journal Vol. 3/2, December 2011\n * @param {Array<number>} x input data, as an array of number values\n * @param {number} nClusters number of desired classes. This cannot be\n * greater than the number of values in the data array.\n * @returns {Array<Array<number>>} clustered input\n * @throws {Error} if the number of requested clusters is higher than the size of the data\n * @example\n * ckmeans([-1, 2, -1, 2, 4, 5, 6, -1, 2, -1], 3);\n * // The input, clustered into groups of similar numbers.\n * //= [[-1, -1, -1, -1], [2, 2, 2], [4, 5, 6]]);\n */\nfunction ckmeans(x, nClusters) {\n if (nClusters > x.length) {\n throw new Error(\n \"cannot generate more classes than there are data values\"\n );\n }\n\n const sorted = numericSort(x);\n // we'll use this as the maximum number of clusters\n const uniqueCount = uniqueCountSorted(sorted);\n\n // if all of the input values are identical, there's one cluster\n // with all of the input in it.\n if (uniqueCount === 1) {\n return [sorted];\n }\n\n // named 'S' originally\n const matrix = makeMatrix(nClusters, sorted.length);\n // named 'J' originally\n const backtrackMatrix = makeMatrix(nClusters, sorted.length);\n\n // This is a dynamic programming way to solve the problem of minimizing\n // within-cluster sum of squares. It's similar to linear regression\n // in this way, and this calculation incrementally computes the\n // sum of squares that are later read.\n fillMatrices(sorted, matrix, backtrackMatrix);\n\n // The real work of Ckmeans clustering happens in the matrix generation:\n // the generated matrices encode all possible clustering combinations, and\n // once they're generated we can solve for the best clustering groups\n // very quickly.\n const clusters = [];\n let clusterRight = backtrackMatrix[0].length - 1;\n\n // Backtrack the clusters from the dynamic programming matrix. This\n // starts at the bottom-right corner of the matrix (if the top-left is 0, 0),\n // and moves the cluster target with the loop.\n for (let cluster = backtrackMatrix.length - 1; cluster >= 0; cluster--) {\n const clusterLeft = backtrackMatrix[cluster][clusterRight];\n\n // fill the cluster from the sorted input by taking a slice of the\n // array. the backtrack matrix makes this easy - it stores the\n // indexes where the cluster should start and end.\n clusters[cluster] = sorted.slice(clusterLeft, clusterRight + 1);\n\n if (cluster > 0) {\n clusterRight = clusterLeft - 1;\n }\n }\n\n return clusters;\n}\n\nexport default ckmeans;\n","import mean from \"./mean.js\";\n\n/**\n * [Sample covariance](https://en.wikipedia.org/wiki/Sample_mean_and_covariance) of two datasets:\n * how much do the two datasets move together?\n * x and y are two datasets, represented as arrays of numbers.\n *\n * @param {Array<number>} x a sample of two or more data points\n * @param {Array<number>} y a sample of two or more data points\n * @throws {Error} if x and y do not have equal lengths\n * @throws {Error} if x or y have length of one or less\n * @returns {number} sample covariance\n * @example\n * sampleCovariance([1, 2, 3, 4, 5, 6], [6, 5, 4, 3, 2, 1]); // => -3.5\n */\nfunction sampleCovariance(x, y) {\n // The two datasets must have the same length which must be more than 1\n if (x.length !== y.length) {\n throw new Error(\"sampleCovariance requires samples with equal lengths\");\n }\n\n if (x.length < 2) {\n throw new Error(\n \"sampleCovariance requires at least two data points in each sample\"\n );\n }\n\n // determine the mean of each dataset so that we can judge each\n // value of the dataset fairly as the difference from the mean. this\n // way, if one dataset is [1, 2, 3] and [2, 3, 4], their covariance\n // does not suffer because of the difference in absolute values\n const xmean = mean(x);\n const ymean = mean(y);\n let sum = 0;\n\n // for each pair of values, the covariance increases when their\n // difference from the mean is associated - if both are well above\n // or if both are well below\n // the mean, the covariance increases significantly.\n for (let i = 0; i < x.length; i++) {\n sum += (x[i] - xmean) * (y[i] - ymean);\n }\n\n // this is Bessels' Correction: an adjustment made to sample statistics\n // that allows for the reduced degree of freedom entailed in calculating\n // values from samples rather than complete populations.\n const besselsCorrection = x.length - 1;\n\n // the covariance is weighted by the length of the datasets.\n return sum / besselsCorrection;\n}\n\nexport default sampleCovariance;\n","import sumNthPowerDeviations from \"./sum_nth_power_deviations.js\";\n\n/**\n * The [sample variance](https://en.wikipedia.org/wiki/Variance#Sample_variance)\n * is the sum of squared deviations from the mean. The sample variance\n * is distinguished from the variance by the usage of [Bessel's Correction](https://en.wikipedia.org/wiki/Bessel's_correction):\n * instead of dividing the sum of squared deviations by the length of the input,\n * it is divided by the length minus one. This corrects the bias in estimating\n * a value from a set that you don't know if full.\n *\n * References:\n * * [Wolfram MathWorld on Sample Variance](http://mathworld.wolfram.com/SampleVariance.html)\n *\n * @param {Array<number>} x a sample of two or more data points\n * @throws {Error} if the length of x is less than 2\n * @return {number} sample variance\n * @example\n * sampleVariance([1, 2, 3, 4, 5]); // => 2.5\n */\nfunction sampleVariance(x) {\n if (x.length < 2) {\n throw new Error(\"sampleVariance requires at least two data points\");\n }\n\n const sumSquaredDeviationsValue = sumNthPowerDeviations(x, 2);\n\n // this is Bessels' Correction: an adjustment made to sample statistics\n // that allows for the reduced degree of freedom entailed in calculating\n // values from samples rather than complete populations.\n const besselsCorrection = x.length - 1;\n\n // Find the mean value of that list\n return sumSquaredDeviationsValue / besselsCorrection;\n}\n\nexport default sampleVariance;\n","import sampleVariance from \"./sample_variance.js\";\n\n/**\n * The [sample standard deviation](http://en.wikipedia.org/wiki/Standard_deviation#Sample_standard_deviation)\n * is the square root of the sample variance.\n *\n * @param {Array<number>} x input array\n * @returns {number} sample standard deviation\n * @example\n * sampleStandardDeviation([2, 4, 4, 4, 5, 5, 7, 9]).toFixed(2);\n * // => '2.14'\n */\nfunction sampleStandardDeviation(x) {\n const sampleVarianceX = sampleVariance(x);\n return Math.sqrt(sampleVarianceX);\n}\n\nexport default sampleStandardDeviation;\n","import sampleCovariance from \"./sample_covariance.js\";\nimport sampleStandardDeviation from \"./sample_standard_deviation.js\";\n\n/**\n * The [correlation](http://en.wikipedia.org/wiki/Correlation_and_dependence) is\n * a measure of how correlated two datasets are, between -1 and 1\n *\n * @param {Array<number>} x first input\n * @param {Array<number>} y second input\n * @returns {number} sample correlation\n * @example\n * sampleCorrelation([1, 2, 3, 4, 5, 6], [2, 2, 3, 4, 5, 60]).toFixed(2);\n * // => '0.69'\n */\nfunction sampleCorrelation(x, y) {\n const cov = sampleCovariance(x, y);\n const xstd = sampleStandardDeviation(x);\n const ystd = sampleStandardDeviation(y);\n\n return cov / xstd / ystd;\n}\n\nexport default sampleCorrelation;\n","/**\n * When combining two lists of values for which one already knows the means,\n * one does not have to necessary recompute the mean of the combined lists in\n * linear time. They can instead use this function to compute the combined\n * mean by providing the mean & number of values of the first list and the mean\n * & number of values of the second list.\n *\n * @since 3.0.0\n * @param {number} mean1 mean of the first list\n * @param {number} n1 number of items in the first list\n * @param {number} mean2 mean of the second list\n * @param {number} n2 number of items in the second list\n * @returns {number} the combined mean\n *\n * @example\n * combineMeans(5, 3, 4, 3); // => 4.5\n */\nfunction combineMeans(mean1, n1, mean2, n2) {\n return (mean1 * n1 + mean2 * n2) / (n1 + n2);\n}\n\nexport default combineMeans;\n","import sumSimple from \"./sum_simple.js\";\n\n/**\n * The mean, _also known as average_,\n * is the sum of all values over the number of values.\n * This is a [measure of central tendency](https://en.wikipedia.org/wiki/Central_tendency):\n * a method of finding a typical or central value of a set of numbers.\n *\n * The simple mean uses the successive addition method internally\n * to calculate it's result. Errors in floating-point addition are\n * not accounted for, so if precision is required, the standard {@link mean}\n * method should be used instead.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n *\n * @param {Array<number>} x sample of one or more data points\n * @throws {Error} if the length of x is less than one\n * @returns {number} mean\n * @example\n * mean([0, 10]); // => 5\n */\nfunction meanSimple(x) {\n if (x.length === 0) {\n throw new Error(\"meanSimple requires at least one data point\");\n }\n\n return sumSimple(x) / x.length;\n}\n\nexport default meanSimple;\n","/**\n * The Root Mean Square (RMS) is\n * a mean function used as a measure of the magnitude of a set\n * of numbers, regardless of their sign.\n * This is the square root of the mean of the squares of the\n * input numbers.\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x a sample of one or more data points\n * @returns {number} root mean square\n * @throws {Error} if x is empty\n * @example\n * rootMeanSquare([-1, 1, -1, 1]); // => 1\n */\nfunction rootMeanSquare(x) {\n if (x.length === 0) {\n throw new Error(\"rootMeanSquare requires at least one data point\");\n }\n\n let sumOfSquares = 0;\n for (let i = 0; i < x.length; i++) {\n sumOfSquares += Math.pow(x[i], 2);\n }\n\n return Math.sqrt(sumOfSquares / x.length);\n}\n\nexport default rootMeanSquare;\n","/**\n * [Bayesian Classifier](http://en.wikipedia.org/wiki/Naive_Bayes_classifier)\n *\n * This is a naïve bayesian classifier that takes\n * singly-nested objects.\n *\n * @class\n * @example\n * var bayes = new BayesianClassifier();\n * bayes.train({\n * species: 'Cat'\n * }, 'animal');\n * var result = bayes.score({\n * species: 'Cat'\n * })\n * // result\n * // {\n * // animal: 1\n * // }\n */\nclass BayesianClassifier {\n /*:: totalCount: number */\n /*:: data: Object */\n constructor() {\n // The number of items that are currently\n // classified in the model\n this.totalCount = 0;\n // Every item classified in the model\n this.data = {};\n }\n\n /**\n * Train the classifier with a new item, which has a single\n * dimension of Javascript literal keys and values.\n *\n * @param {Object} item an object with singly-deep properties\n * @param {string} category the category this item belongs to\n * @return {undefined} adds the item to the classifier\n */\n train(item, category) {\n // If the data object doesn't have any values\n // for this category, create a new object for it.\n if (!this.data[category]) {\n this.data[category] = {};\n }\n\n // Iterate through each key in the item.\n for (const k in item) {\n const v = item[k];\n // Initialize the nested object `data[category][k][item[k]]`\n // with an object of keys that equal 0.\n if (this.data[category][k] === undefined) {\n this.data[category][k] = {};\n }\n if (this.data[category][k][v] === undefined) {\n this.data[category][k][v] = 0;\n }\n\n // And increment the key for this key/value combination.\n this.data[category][k][v]++;\n }\n\n // Increment the number of items classified\n this.totalCount++;\n }\n\n /**\n * Generate a score of how well this item matches all\n * possible categories based on its attributes\n *\n * @param {Object} item an item in the same format as with train\n * @returns {Object} of probabilities that this item belongs to a\n * given category.\n */\n score(item) {\n // Initialize an empty array of odds per category.\n const odds = {};\n let category;\n // Iterate through each key in the item,\n // then iterate through each category that has been used\n // in previous calls to `.train()`\n for (const k in item) {\n const v = item[k];\n for (category in this.data) {\n // Create an empty object for storing key - value combinations\n // for this category.\n odds[category] = {};\n\n // If this item doesn't even have a property, it counts for nothing,\n // but if it does have the property that we're looking for from\n // the item to categorize, it counts based on how popular it is\n // versus the whole population.\n if (this.data[category][k]) {\n odds[category][k + \"_\" + v] =\n (this.data[category][k][v] || 0) / this.totalCount;\n } else {\n odds[category][k + \"_\" + v] = 0;\n }\n }\n }\n\n // Set up a new object that will contain sums of these odds by category\n const oddsSums = {};\n\n for (category in odds) {\n // Tally all of the odds for each category-combination pair -\n // the non-existence of a category does not add anything to the\n // score.\n oddsSums[category] = 0;\n for (const combination in odds[category]) {\n oddsSums[category] += odds[category][combination];\n }\n }\n\n return oddsSums;\n }\n}\n\nexport default BayesianClassifier;\n","/**\n * This is a single-layer [Perceptron Classifier](http://en.wikipedia.org/wiki/Perceptron) that takes\n * arrays of numbers and predicts whether they should be classified\n * as either 0 or 1 (negative or positive examples).\n * @class\n * @example\n * // Create the model\n * var p = new PerceptronModel();\n * // Train the model with input with a diagonal boundary.\n * for (var i = 0; i < 5; i++) {\n * p.train([1, 1], 1);\n * p.train([0, 1], 0);\n * p.train([1, 0], 0);\n * p.train([0, 0], 0);\n * }\n * p.predict([0, 0]); // 0\n * p.predict([0, 1]); // 0\n * p.predict([1, 0]); // 0\n * p.predict([1, 1]); // 1\n */\nclass PerceptronModel {\n /*:: bias: number */\n /*:: weights: Array<number> */\n constructor() {\n // The weights, or coefficients of the model;\n // weights are only populated when training with data.\n this.weights = [];\n // The bias term, or intercept; it is also a weight but\n // it's stored separately for convenience as it is always\n // multiplied by one.\n this.bias = 0;\n }\n /**\n * **Predict**: Use an array of features with the weight array and bias\n * to predict whether an example is labeled 0 or 1.\n *\n * @param {Array<number>} features an array of features as numbers\n * @returns {number} 1 if the score is over 0, otherwise 0\n */\n predict(features) {\n // Only predict if previously trained\n // on the same size feature array(s).\n if (features.length !== this.weights.length) {\n return null;\n }\n\n // Calculate the sum of features times weights,\n // with the bias added (implicitly times one).\n let score = 0;\n for (let i = 0; i < this.weights.length; i++) {\n score += this.weights[i] * features[i];\n }\n score += this.bias;\n\n // Classify as 1 if the score is over 0, otherwise 0.\n if (score > 0) {\n return 1;\n } else {\n return 0;\n }\n }\n\n /**\n * **Train** the classifier with a new example, which is\n * a numeric array of features and a 0 or 1 label.\n *\n * @param {Array<number>} features an array of features as numbers\n * @param {number} label either 0 or 1\n * @returns {PerceptronModel} this\n */\n train(features, label) {\n // Require that only labels of 0 or 1 are considered.\n if (label !== 0 && label !== 1) {\n return null;\n }\n // The length of the feature array determines\n // the length of the weight array.\n // The perceptron will continue learning as long as\n // it keeps seeing feature arrays of the same length.\n // When it sees a new data shape, it initializes.\n if (features.length !== this.weights.length) {\n this.weights = features;\n this.bias = 1;\n }\n // Make a prediction based on current weights.\n const prediction = this.predict(features);\n // Update the weights if the prediction is wrong.\n if (typeof prediction === \"number\" && prediction !== label) {\n const gradient = label - prediction;\n for (let i = 0; i < this.weights.length; i++) {\n this.weights[i] += gradient * features[i];\n }\n this.bias += gradient;\n }\n return this;\n }\n}\n\nexport default PerceptronModel;\n","/**\n * We use `ε`, epsilon, as a stopping criterion when we want to iterate\n * until we're \"close enough\". Epsilon is a very small number: for\n * simple statistics, that number is **0.0001**\n *\n * This is used in calculations like the binomialDistribution, in which\n * the process of finding a value is [iterative](https://en.wikipedia.org/wiki/Iterative_method):\n * it progresses until it is close enough.\n *\n * Below is an example of using epsilon in [gradient descent](https://en.wikipedia.org/wiki/Gradient_descent),\n * where we're trying to find a local minimum of a function's derivative,\n * given by the `fDerivative` method.\n *\n * @example\n * // From calculation, we expect that the local minimum occurs at x=9/4\n * var x_old = 0;\n * // The algorithm starts at x=6\n * var x_new = 6;\n * var stepSize = 0.01;\n *\n * function fDerivative(x) {\n * return 4 * Math.pow(x, 3) - 9 * Math.pow(x, 2);\n * }\n *\n * // The loop runs until the difference between the previous\n * // value and the current value is smaller than epsilon - a rough\n * // meaure of 'close enough'\n * while (Math.abs(x_new - x_old) > ss.epsilon) {\n * x_old = x_new;\n * x_new = x_old - stepSize * fDerivative(x_old);\n * }\n *\n * console.log('Local minimum occurs at', x_new);\n */\nconst epsilon = 0.0001;\n\nexport default epsilon;\n","/**\n * A [Factorial](https://en.wikipedia.org/wiki/Factorial), usually written n!, is the product of all positive\n * integers less than or equal to n. Often factorial is implemented\n * recursively, but this iterative approach is significantly faster\n * and simpler.\n *\n * @param {number} n input, must be an integer number 1 or greater\n * @returns {number} factorial: n!\n * @throws {Error} if n is less than 0 or not an integer\n * @example\n * factorial(5); // => 120\n */\nfunction factorial(n) {\n // factorial is mathematically undefined for negative numbers\n if (n < 0) {\n throw new Error(\"factorial requires a non-negative value\");\n }\n\n if (Math.floor(n) !== n) {\n throw new Error(\"factorial requires an integer input\");\n }\n\n // typically you'll expand the factorial function going down, like\n // 5! = 5 * 4 * 3 * 2 * 1. This is going in the opposite direction,\n // counting from 2 up to the number in question, and since anything\n // multiplied by 1 is itself, the loop only needs to start at 2.\n let accumulator = 1;\n for (let i = 2; i <= n; i++) {\n // for each number up to and including the number `n`, multiply\n // the accumulator my that number.\n accumulator *= i;\n }\n return accumulator;\n}\n\nexport default factorial;\n","// Define series coefficients\nconst COEFFICIENTS = [\n 0.99999999999999709182, 57.156235665862923517, -59.597960355475491248,\n 14.136097974741747174, -0.49191381609762019978, 0.33994649984811888699e-4,\n 0.46523628927048575665e-4, -0.98374475304879564677e-4,\n 0.15808870322491248884e-3, -0.21026444172410488319e-3,\n 0.2174396181152126432e-3, -0.16431810653676389022e-3,\n 0.84418223983852743293e-4, -0.2619083840158140867e-4,\n 0.36899182659531622704e-5\n];\n\nconst g = 607 / 128;\nconst LOGSQRT2PI = Math.log(Math.sqrt(2 * Math.PI));\n\n/**\n * Compute the logarithm of the [gamma function](https://en.wikipedia.org/wiki/Gamma_function) of a value using Lanczos' approximation.\n * This function takes as input any real-value n greater than 0.\n * This function is useful for values of n too large for the normal gamma function (n > 165).\n * The code is based on Lanczo's Gamma approximation, defined [here](http://my.fit.edu/~gabdo/gamma.txt).\n *\n * @param {number} n Any real number greater than zero.\n * @returns {number} The logarithm of gamma of the input value.\n *\n * @example\n * gammaln(500); // 2605.1158503617335\n * gammaln(2.4); // 0.21685932244884043\n */\nfunction gammaln(n) {\n // Return infinity if value not in domain\n if (n <= 0) {\n return Infinity;\n }\n\n // Decrement n, because approximation is defined for n - 1\n n--;\n\n // Create series approximation\n let a = COEFFICIENTS[0];\n\n for (let i = 1; i < 15; i++) {\n a += COEFFICIENTS[i] / (n + i);\n }\n\n const tmp = g + 0.5 + n;\n\n // Return natural logarithm of gamma(n)\n return LOGSQRT2PI + Math.log(a) - tmp + (n + 0.5) * Math.log(tmp);\n}\n\nexport default gammaln;\n","/**\n * **Percentage Points of the χ2 (Chi-Squared) Distribution**\n *\n * The [χ2 (Chi-Squared) Distribution](http://en.wikipedia.org/wiki/Chi-squared_distribution) is used in the common\n * chi-squared tests for goodness of fit of an observed distribution to a theoretical one, the independence of two\n * criteria of classification of qualitative data, and in confidence interval estimation for a population standard\n * deviation of a normal distribution from a sample standard deviation.\n *\n * Values from Appendix 1, Table III of William W. Hines & Douglas C. Montgomery, \"Probability and Statistics in\n * Engineering and Management Science\", Wiley (1980).\n */\nconst chiSquaredDistributionTable = {\n 1: {\n 0.995: 0,\n 0.99: 0,\n 0.975: 0,\n 0.95: 0,\n 0.9: 0.02,\n 0.5: 0.45,\n 0.1: 2.71,\n 0.05: 3.84,\n 0.025: 5.02,\n 0.01: 6.63,\n 0.005: 7.88\n },\n 2: {\n 0.995: 0.01,\n 0.99: 0.02,\n 0.975: 0.05,\n 0.95: 0.1,\n 0.9: 0.21,\n 0.5: 1.39,\n 0.1: 4.61,\n 0.05: 5.99,\n 0.025: 7.38,\n 0.01: 9.21,\n 0.005: 10.6\n },\n 3: {\n 0.995: 0.07,\n 0.99: 0.11,\n 0.975: 0.22,\n 0.95: 0.35,\n 0.9: 0.58,\n 0.5: 2.37,\n 0.1: 6.25,\n 0.05: 7.81,\n 0.025: 9.35,\n 0.01: 11.34,\n 0.005: 12.84\n },\n 4: {\n 0.995: 0.21,\n 0.99: 0.3,\n 0.975: 0.48,\n 0.95: 0.71,\n 0.9: 1.06,\n 0.5: 3.36,\n 0.1: 7.78,\n 0.05: 9.49,\n 0.025: 11.14,\n 0.01: 13.28,\n 0.005: 14.86\n },\n 5: {\n 0.995: 0.41,\n 0.99: 0.55,\n 0.975: 0.83,\n 0.95: 1.15,\n 0.9: 1.61,\n 0.5: 4.35,\n 0.1: 9.24,\n 0.05: 11.07,\n 0.025: 12.83,\n 0.01: 15.09,\n 0.005: 16.75\n },\n 6: {\n 0.995: 0.68,\n 0.99: 0.87,\n 0.975: 1.24,\n 0.95: 1.64,\n 0.9: 2.2,\n 0.5: 5.35,\n 0.1: 10.65,\n 0.05: 12.59,\n 0.025: 14.45,\n 0.01: 16.81,\n 0.005: 18.55\n },\n 7: {\n 0.995: 0.99,\n 0.99: 1.25,\n 0.975: 1.69,\n 0.95: 2.17,\n 0.9: 2.83,\n 0.5: 6.35,\n 0.1: 12.02,\n 0.05: 14.07,\n 0.025: 16.01,\n 0.01: 18.48,\n 0.005: 20.28\n },\n 8: {\n 0.995: 1.34,\n 0.99: 1.65,\n 0.975: 2.18,\n 0.95: 2.73,\n 0.9: 3.49,\n 0.5: 7.34,\n 0.1: 13.36,\n 0.05: 15.51,\n 0.025: 17.53,\n 0.01: 20.09,\n 0.005: 21.96\n },\n 9: {\n 0.995: 1.73,\n 0.99: 2.09,\n 0.975: 2.7,\n 0.95: 3.33,\n 0.9: 4.17,\n 0.5: 8.34,\n 0.1: 14.68,\n 0.05: 16.92,\n 0.025: 19.02,\n 0.01: 21.67,\n 0.005: 23.59\n },\n 10: {\n 0.995: 2.16,\n 0.99: 2.56,\n 0.975: 3.25,\n 0.95: 3.94,\n 0.9: 4.87,\n 0.5: 9.34,\n 0.1: 15.99,\n 0.05: 18.31,\n 0.025: 20.48,\n 0.01: 23.21,\n 0.005: 25.19\n },\n 11: {\n 0.995: 2.6,\n 0.99: 3.05,\n 0.975: 3.82,\n 0.95: 4.57,\n 0.9: 5.58,\n 0.5: 10.34,\n 0.1: 17.28,\n 0.05: 19.68,\n 0.025: 21.92,\n 0.01: 24.72,\n 0.005: 26.76\n },\n 12: {\n 0.995: 3.07,\n 0.99: 3.57,\n 0.975: 4.4,\n 0.95: 5.23,\n 0.9: 6.3,\n 0.5: 11.34,\n 0.1: 18.55,\n 0.05: 21.03,\n 0.025: 23.34,\n 0.01: 26.22,\n 0.005: 28.3\n },\n 13: {\n 0.995: 3.57,\n 0.99: 4.11,\n 0.975: 5.01,\n 0.95: 5.89,\n 0.9: 7.04,\n 0.5: 12.34,\n 0.1: 19.81,\n 0.05: 22.36,\n 0.025: 24.74,\n 0.01: 27.69,\n 0.005: 29.82\n },\n 14: {\n 0.995: 4.07,\n 0.99: 4.66,\n 0.975: 5.63,\n 0.95: 6.57,\n 0.9: 7.79,\n 0.5: 13.34,\n 0.1: 21.06,\n 0.05: 23.68,\n 0.025: 26.12,\n 0.01: 29.14,\n 0.005: 31.32\n },\n 15: {\n 0.995: 4.6,\n 0.99: 5.23,\n 0.975: 6.27,\n 0.95: 7.26,\n 0.9: 8.55,\n 0.5: 14.34,\n 0.1: 22.31,\n 0.05: 25,\n 0.025: 27.49,\n 0.01: 30.58,\n 0.005: 32.8\n },\n 16: {\n 0.995: 5.14,\n 0.99: 5.81,\n 0.975: 6.91,\n 0.95: 7.96,\n 0.9: 9.31,\n 0.5: 15.34,\n 0.1: 23.54,\n 0.05: 26.3,\n 0.025: 28.85,\n 0.01: 32,\n 0.005: 34.27\n },\n 17: {\n 0.995: 5.7,\n 0.99: 6.41,\n 0.975: 7.56,\n 0.95: 8.67,\n 0.9: 10.09,\n 0.5: 16.34,\n 0.1: 24.77,\n 0.05: 27.59,\n 0.025: 30.19,\n 0.01: 33.41,\n 0.005: 35.72\n },\n 18: {\n 0.995: 6.26,\n 0.99: 7.01,\n 0.975: 8.23,\n 0.95: 9.39,\n 0.9: 10.87,\n 0.5: 17.34,\n 0.1: 25.99,\n 0.05: 28.87,\n 0.025: 31.53,\n 0.01: 34.81,\n 0.005: 37.16\n },\n 19: {\n 0.995: 6.84,\n 0.99: 7.63,\n 0.975: 8.91,\n 0.95: 10.12,\n 0.9: 11.65,\n 0.5: 18.34,\n 0.1: 27.2,\n 0.05: 30.14,\n 0.025: 32.85,\n 0.01: 36.19,\n 0.005: 38.58\n },\n 20: {\n 0.995: 7.43,\n 0.99: 8.26,\n 0.975: 9.59,\n 0.95: 10.85,\n 0.9: 12.44,\n 0.5: 19.34,\n 0.1: 28.41,\n 0.05: 31.41,\n 0.025: 34.17,\n 0.01: 37.57,\n 0.005: 40\n },\n 21: {\n 0.995: 8.03,\n 0.99: 8.9,\n 0.975: 10.28,\n 0.95: 11.59,\n 0.9: 13.24,\n 0.5: 20.34,\n 0.1: 29.62,\n 0.05: 32.67,\n 0.025: 35.48,\n 0.01: 38.93,\n 0.005: 41.4\n },\n 22: {\n 0.995: 8.64,\n 0.99: 9.54,\n 0.975: 10.98,\n 0.95: 12.34,\n 0.9: 14.04,\n 0.5: 21.34,\n 0.1: 30.81,\n 0.05: 33.92,\n 0.025: 36.78,\n 0.01: 40.29,\n 0.005: 42.8\n },\n 23: {\n 0.995: 9.26,\n 0.99: 10.2,\n 0.975: 11.69,\n 0.95: 13.09,\n 0.9: 14.85,\n 0.5: 22.34,\n 0.1: 32.01,\n 0.05: 35.17,\n 0.025: 38.08,\n 0.01: 41.64,\n 0.005: 44.18\n },\n 24: {\n 0.995: 9.89,\n 0.99: 10.86,\n 0.975: 12.4,\n 0.95: 13.85,\n 0.9: 15.66,\n 0.5: 23.34,\n 0.1: 33.2,\n 0.05: 36.42,\n 0.025: 39.36,\n 0.01: 42.98,\n 0.005: 45.56\n },\n 25: {\n 0.995: 10.52,\n 0.99: 11.52,\n 0.975: 13.12,\n 0.95: 14.61,\n 0.9: 16.47,\n 0.5: 24.34,\n 0.1: 34.28,\n 0.05: 37.65,\n 0.025: 40.65,\n 0.01: 44.31,\n 0.005: 46.93\n },\n 26: {\n 0.995: 11.16,\n 0.99: 12.2,\n 0.975: 13.84,\n 0.95: 15.38,\n 0.9: 17.29,\n 0.5: 25.34,\n 0.1: 35.56,\n 0.05: 38.89,\n 0.025: 41.92,\n 0.01: 45.64,\n 0.005: 48.29\n },\n 27: {\n 0.995: 11.81,\n 0.99: 12.88,\n 0.975: 14.57,\n 0.95: 16.15,\n 0.9: 18.11,\n 0.5: 26.34,\n 0.1: 36.74,\n 0.05: 40.11,\n 0.025: 43.19,\n 0.01: 46.96,\n 0.005: 49.65\n },\n 28: {\n 0.995: 12.46,\n 0.99: 13.57,\n 0.975: 15.31,\n 0.95: 16.93,\n 0.9: 18.94,\n 0.5: 27.34,\n 0.1: 37.92,\n 0.05: 41.34,\n 0.025: 44.46,\n 0.01: 48.28,\n 0.005: 50.99\n },\n 29: {\n 0.995: 13.12,\n 0.99: 14.26,\n 0.975: 16.05,\n 0.95: 17.71,\n 0.9: 19.77,\n 0.5: 28.34,\n 0.1: 39.09,\n 0.05: 42.56,\n 0.025: 45.72,\n 0.01: 49.59,\n 0.005: 52.34\n },\n 30: {\n 0.995: 13.79,\n 0.99: 14.95,\n 0.975: 16.79,\n 0.95: 18.49,\n 0.9: 20.6,\n 0.5: 29.34,\n 0.1: 40.26,\n 0.05: 43.77,\n 0.025: 46.98,\n 0.01: 50.89,\n 0.005: 53.67\n },\n 40: {\n 0.995: 20.71,\n 0.99: 22.16,\n 0.975: 24.43,\n 0.95: 26.51,\n 0.9: 29.05,\n 0.5: 39.34,\n 0.1: 51.81,\n 0.05: 55.76,\n 0.025: 59.34,\n 0.01: 63.69,\n 0.005: 66.77\n },\n 50: {\n 0.995: 27.99,\n 0.99: 29.71,\n 0.975: 32.36,\n 0.95: 34.76,\n 0.9: 37.69,\n 0.5: 49.33,\n 0.1: 63.17,\n 0.05: 67.5,\n 0.025: 71.42,\n 0.01: 76.15,\n 0.005: 79.49\n },\n 60: {\n 0.995: 35.53,\n 0.99: 37.48,\n 0.975: 40.48,\n 0.95: 43.19,\n 0.9: 46.46,\n 0.5: 59.33,\n 0.1: 74.4,\n 0.05: 79.08,\n 0.025: 83.3,\n 0.01: 88.38,\n 0.005: 91.95\n },\n 70: {\n 0.995: 43.28,\n 0.99: 45.44,\n 0.975: 48.76,\n 0.95: 51.74,\n 0.9: 55.33,\n 0.5: 69.33,\n 0.1: 85.53,\n 0.05: 90.53,\n 0.025: 95.02,\n 0.01: 100.42,\n 0.005: 104.22\n },\n 80: {\n 0.995: 51.17,\n 0.99: 53.54,\n 0.975: 57.15,\n 0.95: 60.39,\n 0.9: 64.28,\n 0.5: 79.33,\n 0.1: 96.58,\n 0.05: 101.88,\n 0.025: 106.63,\n 0.01: 112.33,\n 0.005: 116.32\n },\n 90: {\n 0.995: 59.2,\n 0.99: 61.75,\n 0.975: 65.65,\n 0.95: 69.13,\n 0.9: 73.29,\n 0.5: 89.33,\n 0.1: 107.57,\n 0.05: 113.14,\n 0.025: 118.14,\n 0.01: 124.12,\n 0.005: 128.3\n },\n 100: {\n 0.995: 67.33,\n 0.99: 70.06,\n 0.975: 74.22,\n 0.95: 77.93,\n 0.9: 82.36,\n 0.5: 99.33,\n 0.1: 118.5,\n 0.05: 124.34,\n 0.025: 129.56,\n 0.01: 135.81,\n 0.005: 140.17\n }\n};\n\nexport default chiSquaredDistributionTable;\n","import interquartileRange from \"./interquartile_range.js\";\nimport stddev from \"./sample_standard_deviation.js\";\n\nconst SQRT_2PI = Math.sqrt(2 * Math.PI);\n\n/**\n * [Well-known kernels](https://en.wikipedia.org/wiki/Kernel_(statistics)#Kernel_functions_in_common_use)\n * @private\n */\nconst kernels = {\n /**\n * The gaussian kernel.\n * @private\n */\n gaussian: function (u) {\n return Math.exp(-0.5 * u * u) / SQRT_2PI;\n }\n};\n\n/**\n * Well known bandwidth selection methods\n * @private\n */\nconst bandwidthMethods = {\n /**\n * The [\"normal reference distribution\"\n * rule-of-thumb](https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/bandwidth.nrd.html),\n * a commonly used version of [Silverman's\n * rule-of-thumb](https://en.wikipedia.org/wiki/Kernel_density_estimation#A_rule-of-thumb_bandwidth_estimator).\n * @private\n */\n nrd: function (x) {\n let s = stddev(x);\n const iqr = interquartileRange(x);\n if (typeof iqr === \"number\") {\n s = Math.min(s, iqr / 1.34);\n }\n return 1.06 * s * Math.pow(x.length, -0.2);\n }\n};\n\n/**\n * [Kernel density estimation](https://en.wikipedia.org/wiki/Kernel_density_estimation)\n * is a useful tool for, among other things, estimating the shape of the\n * underlying probability distribution from a sample.\n *\n * @name kernelDensityEstimation\n * @param X sample values\n * @param kernel The kernel function to use. If a function is provided, it should return non-negative values and integrate to 1. Defaults to 'gaussian'.\n * @param bandwidthMethod The \"bandwidth selection\" method to use, or a fixed bandwidth value. Defaults to \"nrd\", the commonly-used [\"normal reference distribution\" rule-of-thumb](https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/bandwidth.nrd.html).\n * @returns {Function} An estimated [probability density function](https://en.wikipedia.org/wiki/Probability_density_function) for the given sample. The returned function runs in `O(X.length)`.\n */\nfunction kernelDensityEstimation(X, kernel, bandwidthMethod) {\n let kernelFn;\n if (kernel === undefined) {\n kernelFn = kernels.gaussian;\n } else if (typeof kernel === \"string\") {\n if (!kernels[kernel]) {\n throw new Error('Unknown kernel \"' + kernel + '\"');\n }\n kernelFn = kernels[kernel];\n } else {\n kernelFn = kernel;\n }\n\n let bandwidth;\n if (typeof bandwidthMethod === \"undefined\") {\n bandwidth = bandwidthMethods.nrd(X);\n } else if (typeof bandwidthMethod === \"string\") {\n if (!bandwidthMethods[bandwidthMethod]) {\n throw new Error(\n 'Unknown bandwidth method \"' + bandwidthMethod + '\"'\n );\n }\n bandwidth = bandwidthMethods[bandwidthMethod](X);\n } else {\n bandwidth = bandwidthMethod;\n }\n\n return function (x) {\n let i = 0;\n let sum = 0;\n for (i = 0; i < X.length; i++) {\n sum += kernelFn((x - X[i]) / bandwidth);\n }\n return sum / bandwidth / X.length;\n };\n}\n\nexport default kernelDensityEstimation;\n","const SQRT_2PI = Math.sqrt(2 * Math.PI);\n\nfunction cumulativeDistribution(z) {\n let sum = z,\n tmp = z;\n\n // 15 iterations are enough for 4-digit precision\n for (let i = 1; i < 15; i++) {\n tmp *= (z * z) / (2 * i + 1);\n sum += tmp;\n }\n return (\n Math.round((0.5 + (sum / SQRT_2PI) * Math.exp((-z * z) / 2)) * 1e4) /\n 1e4\n );\n}\n\n/**\n * A standard normal table, also called the unit normal table or Z table,\n * is a mathematical table for the values of Φ (phi), which are the values of\n * the [cumulative distribution function](https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function)\n * of the normal distribution. It is used to find the probability that a\n * statistic is observed below, above, or between values on the standard\n * normal distribution, and by extension, any normal distribution.\n */\nconst standardNormalTable = [];\n\nfor (let z = 0; z <= 3.09; z += 0.01) {\n standardNormalTable.push(cumulativeDistribution(z));\n}\n\nexport default standardNormalTable;\n","/**\n * **[Gaussian error function](http://en.wikipedia.org/wiki/Error_function)**\n *\n * The `errorFunction(x/(sd * Math.sqrt(2)))` is the probability that a value in a\n * normal distribution with standard deviation sd is within x of the mean.\n *\n * This function returns a numerical approximation to the exact value.\n * It uses Horner's method to evaluate the polynomial of τ (tau).\n *\n * @param {number} x input\n * @return {number} error estimation\n * @example\n * errorFunction(1).toFixed(2); // => '0.84'\n */\nfunction errorFunction(x) {\n const t = 1 / (1 + 0.5 * Math.abs(x));\n const tau =\n t *\n Math.exp(\n -x * x +\n ((((((((0.17087277 * t - 0.82215223) * t + 1.48851587) * t -\n 1.13520398) *\n t +\n 0.27886807) *\n t -\n 0.18628806) *\n t +\n 0.09678418) *\n t +\n 0.37409196) *\n t +\n 1.00002368) *\n t -\n 1.26551223\n );\n if (x >= 0) {\n return 1 - tau;\n } else {\n return tau - 1;\n }\n}\n\nexport default errorFunction;\n","/**\n * The Inverse [Gaussian error function](http://en.wikipedia.org/wiki/Error_function)\n * returns a numerical approximation to the value that would have caused\n * `errorFunction()` to return x.\n *\n * @param {number} x value of error function\n * @returns {number} estimated inverted value\n */\nfunction inverseErrorFunction(x) {\n const a = (8 * (Math.PI - 3)) / (3 * Math.PI * (4 - Math.PI));\n\n const inv = Math.sqrt(\n Math.sqrt(\n Math.pow(2 / (Math.PI * a) + Math.log(1 - x * x) / 2, 2) -\n Math.log(1 - x * x) / a\n ) -\n (2 / (Math.PI * a) + Math.log(1 - x * x) / 2)\n );\n\n if (x >= 0) {\n return inv;\n } else {\n return -inv;\n }\n}\n\nexport default inverseErrorFunction;\n","/**\n * [Sign](https://en.wikipedia.org/wiki/Sign_function) is a function\n * that extracts the sign of a real number\n *\n * @param {number} x input value\n * @returns {number} sign value either 1, 0 or -1\n * @throws {TypeError} if the input argument x is not a number\n * @private\n *\n * @example\n * sign(2); // => 1\n */\nfunction sign(x) {\n if (typeof x === \"number\") {\n if (x < 0) {\n return -1;\n } else if (x === 0) {\n return 0;\n } else {\n return 1;\n }\n } else {\n throw new TypeError(\"not a number\");\n }\n}\n\nexport default sign;\n","/**\n * Calculate Euclidean distance between two points.\n * @param {Array<number>} left First N-dimensional point.\n * @param {Array<number>} right Second N-dimensional point.\n * @returns {number} Distance.\n */\nfunction euclideanDistance(left, right) {\n let sum = 0;\n for (let i = 0; i < left.length; i++) {\n const diff = left[i] - right[i];\n sum += diff * diff;\n }\n return Math.sqrt(sum);\n}\n\nexport default euclideanDistance;\n","import euclideanDistance from \"./euclidean_distance.js\";\nimport makeMatrix from \"./make_matrix.js\";\nimport sample from \"./sample.js\";\n\n/**\n * @typedef {Object} kMeansReturn\n * @property {Array<number>} labels The labels.\n * @property {Array<Array<number>>} centroids The cluster centroids.\n */\n\n/**\n * Perform k-means clustering.\n *\n * @param {Array<Array<number>>} points N-dimensional coordinates of points to be clustered.\n * @param {number} numCluster How many clusters to create.\n * @param {Function} randomSource An optional entropy source that generates uniform values in [0, 1).\n * @return {kMeansReturn} Labels (same length as data) and centroids (same length as numCluster).\n * @throws {Error} If any centroids wind up friendless (i.e., without associated points).\n *\n * @example\n * kMeansCluster([[0.0, 0.5], [1.0, 0.5]], 2); // => {labels: [0, 1], centroids: [[0.0, 0.5], [1.0 0.5]]}\n */\nfunction kMeansCluster(points, numCluster, randomSource = Math.random) {\n let oldCentroids = null;\n let newCentroids = sample(points, numCluster, randomSource);\n let labels = null;\n let change = Number.MAX_VALUE;\n while (change !== 0) {\n labels = labelPoints(points, newCentroids);\n oldCentroids = newCentroids;\n newCentroids = calculateCentroids(points, labels, numCluster);\n change = calculateChange(newCentroids, oldCentroids);\n }\n return {\n labels: labels,\n centroids: newCentroids\n };\n}\n\n/**\n * Label each point according to which centroid it is closest to.\n *\n * @private\n * @param {Array<Array<number>>} points Array of XY coordinates.\n * @param {Array<Array<number>>} centroids Current centroids.\n * @return {Array<number>} Group labels.\n */\nfunction labelPoints(points, centroids) {\n return points.map((p) => {\n let minDist = Number.MAX_VALUE;\n let label = -1;\n for (let i = 0; i < centroids.length; i++) {\n const dist = euclideanDistance(p, centroids[i]);\n if (dist < minDist) {\n minDist = dist;\n label = i;\n }\n }\n return label;\n });\n}\n\n/**\n * Calculate centroids for points given labels.\n *\n * @private\n * @param {Array<Array<number>>} points Array of XY coordinates.\n * @param {Array<number>} labels Which groups points belong to.\n * @param {number} numCluster Number of clusters being created.\n * @return {Array<Array<number>>} Centroid for each group.\n * @throws {Error} If any centroids wind up friendless (i.e., without associated points).\n */\nfunction calculateCentroids(points, labels, numCluster) {\n // Initialize accumulators.\n const dimension = points[0].length;\n const centroids = makeMatrix(numCluster, dimension);\n const counts = Array(numCluster).fill(0);\n\n // Add points to centroids' accumulators and count points per centroid.\n const numPoints = points.length;\n for (let i = 0; i < numPoints; i++) {\n const point = points[i];\n const label = labels[i];\n const current = centroids[label];\n for (let j = 0; j < dimension; j++) {\n current[j] += point[j];\n }\n counts[label] += 1;\n }\n\n // Rescale centroids, checking for any that have no points.\n for (let i = 0; i < numCluster; i++) {\n if (counts[i] === 0) {\n throw new Error(`Centroid ${i} has no friends`);\n }\n const centroid = centroids[i];\n for (let j = 0; j < dimension; j++) {\n centroid[j] /= counts[i];\n }\n }\n\n return centroids;\n}\n\n/**\n * Calculate the difference between old centroids and new centroids.\n *\n * @private\n * @param {Array<Array<number>>} left One list of centroids.\n * @param {Array<Array<number>>} right Another list of centroids.\n * @return {number} Distance between centroids.\n */\nfunction calculateChange(left, right) {\n let total = 0;\n for (let i = 0; i < left.length; i++) {\n total += euclideanDistance(left[i], right[i]);\n }\n return total;\n}\n\nexport default kMeansCluster;\n","import euclideanDistance from \"./euclidean_distance.js\";\nimport makeMatrix from \"./make_matrix.js\";\nimport max from \"./max.js\";\n\n/**\n * Calculate the [silhouette values](https://en.wikipedia.org/wiki/Silhouette_(clustering))\n * for clustered data.\n *\n * @param {Array<Array<number>>} points N-dimensional coordinates of points.\n * @param {Array<number>} labels Labels of points. This must be the same length as `points`,\n * and values must lie in [0..G-1], where G is the number of groups.\n * @return {Array<number>} The silhouette value for each point.\n *\n * @example\n * silhouette([[0.25], [0.75]], [0, 0]); // => [1.0, 1.0]\n */\nfunction silhouette(points, labels) {\n if (points.length !== labels.length) {\n throw new Error(\"must have exactly as many labels as points\");\n }\n const groupings = createGroups(labels);\n const distances = calculateAllDistances(points);\n const result = [];\n for (let i = 0; i < points.length; i++) {\n let s = 0;\n if (groupings[labels[i]].length > 1) {\n const a = meanDistanceFromPointToGroup(\n i,\n groupings[labels[i]],\n distances\n );\n const b = meanDistanceToNearestGroup(\n i,\n labels,\n groupings,\n distances\n );\n s = (b - a) / Math.max(a, b);\n }\n result.push(s);\n }\n return result;\n}\n\n/**\n * Create a lookup table mapping group IDs to point IDs.\n *\n * @private\n * @param {Array<number>} labels Labels of points. This must be the same length as `points`,\n * and values must lie in [0..G-1], where G is the number of groups.\n * @return {Array<Array<number>>} An array of length G, each of whose entries is an array\n * containing the indices of the points in that group.\n */\nfunction createGroups(labels) {\n const numGroups = 1 + max(labels);\n const result = Array(numGroups);\n for (let i = 0; i < labels.length; i++) {\n const label = labels[i];\n if (result[label] === undefined) {\n result[label] = [];\n }\n result[label].push(i);\n }\n return result;\n}\n\n/**\n * Create a lookup table of all inter-point distances.\n *\n * @private\n * @param {Array<Array<number>>} points N-dimensional coordinates of points.\n * @return {Array<Array<number>>} A symmetric square array of inter-point distances\n * (zero on the diagonal).\n */\nfunction calculateAllDistances(points) {\n const numPoints = points.length;\n const result = makeMatrix(numPoints, numPoints);\n for (let i = 0; i < numPoints; i++) {\n for (let j = 0; j < i; j++) {\n result[i][j] = euclideanDistance(points[i], points[j]);\n result[j][i] = result[i][j];\n }\n }\n return result;\n}\n\n/**\n * Calculate the mean distance between this point and all the points in the\n * nearest group (as determined by which point in another group is closest).\n *\n * @private\n * @param {number} which The index of this point.\n * @param {Array<number>} labels Labels of points.\n * @param {Array<Array<number>>} groupings An array whose entries are arrays\n * containing the indices of the points in that group.\n * @param {Array<Array<number>>} distances A symmetric square array of inter-point\n * distances.\n * @return {number} The mean distance from this point to others in the nearest\n * group.\n */\nfunction meanDistanceToNearestGroup(which, labels, groupings, distances) {\n const label = labels[which];\n let result = Number.MAX_VALUE;\n for (let i = 0; i < groupings.length; i++) {\n if (i !== label) {\n const d = meanDistanceFromPointToGroup(\n which,\n groupings[i],\n distances\n );\n if (d < result) {\n result = d;\n }\n }\n }\n return result;\n}\n\n/**\n * Calculate the mean distance between a point and all the points in a group\n * (possibly its own).\n *\n * @private\n * @param {number} which The index of this point.\n * @param {Array<number>} group The indices of all the points in the group in\n * question.\n * @param {Array<Array<number>>} distances A symmetric square array of inter-point\n * distances.\n * @return {number} The mean distance from this point to others in the\n * specified group.\n */\nfunction meanDistanceFromPointToGroup(which, group, distances) {\n let total = 0;\n for (let i = 0; i < group.length; i++) {\n total += distances[which][group[i]];\n }\n return total / group.length;\n}\n\nexport default silhouette;\n","/**\n * Relative error.\n *\n * This is more difficult to calculate than it first appears [1,2]. The usual\n * formula for the relative error between an actual value A and an expected\n * value E is `|(A-E)/E|`, but:\n *\n * 1. If the expected value is 0, any other value has infinite relative error,\n * which is counter-intuitive: if the expected voltage is 0, getting 1/10th\n * of a volt doesn't feel like an infinitely large error.\n *\n * 2. This formula does not satisfy the mathematical definition of a metric [3].\n * [4] solved this problem by defining the relative error as `|ln(|A/E|)|`,\n * but that formula only works if all values are positive: for example, it\n * reports the relative error of -10 and 10 as 0.\n *\n * Our implementation sticks with convention and returns:\n *\n * - 0 if the actual and expected values are both zero\n * - Infinity if the actual value is non-zero and the expected value is zero\n * - `|(A-E)/E|` in all other cases\n *\n * [1] https://math.stackexchange.com/questions/677852/how-to-calculate-relative-error-when-true-value-is-zero\n * [2] https://en.wikipedia.org/wiki/Relative_change_and_difference\n * [3] https://en.wikipedia.org/wiki/Metric_(mathematics)#Definition\n * [4] F.W.J. Olver: \"A New Approach to Error Arithmetic.\" SIAM Journal on\n * Numerical Analysis, 15(2), 1978, 10.1137/0715024.\n *\n * @param {number} actual The actual value.\n * @param {number} expected The expected value.\n * @return {number} The relative error.\n */\nfunction relativeError(actual, expected) {\n if (actual === 0 && expected === 0) {\n return 0;\n }\n return Math.abs((actual - expected) / expected);\n}\n\nexport default relativeError;\n","/**\n * When adding a new value to a list, one does not have to necessary\n * recompute the mean of the list in linear time. They can instead use\n * this function to compute the new mean by providing the current mean,\n * the number of elements in the list that produced it and the new\n * value to add.\n *\n * @since 2.5.0\n * @param {number} mean current mean\n * @param {number} n number of items in the list\n * @param {number} newValue the added value\n * @returns {number} the new mean\n *\n * @example\n * addToMean(14, 5, 53); // => 20.5\n */\nfunction addToMean(mean, n, newValue) {\n return mean + (newValue - mean) / (n + 1);\n}\n\nexport default addToMean;\n","import epsilon from \"./epsilon.js\";\nimport relativeError from \"./relative_error.js\";\n\n/**\n * Approximate equality.\n *\n * @param {number} actual The value to be tested.\n * @param {number} expected The reference value.\n * @param {number} tolerance The acceptable relative difference.\n * @return {boolean} Whether numbers are within tolerance.\n */\nfunction approxEqual(actual, expected, tolerance = epsilon) {\n return relativeError(actual, expected) <= tolerance;\n}\n\nexport default approxEqual;\n","/**\n * The [Bernoulli distribution](http://en.wikipedia.org/wiki/Bernoulli_distribution)\n * is the probability discrete\n * distribution of a random variable which takes value 1 with success\n * probability `p` and value 0 with failure\n * probability `q` = 1 - `p`. It can be used, for example, to represent the\n * toss of a coin, where \"1\" is defined to mean \"heads\" and \"0\" is defined\n * to mean \"tails\" (or vice versa). It is\n * a special case of a Binomial Distribution\n * where `n` = 1.\n *\n * @param {number} p input value, between 0 and 1 inclusive\n * @returns {number[]} values of bernoulli distribution at this point\n * @throws {Error} if p is outside 0 and 1\n * @example\n * bernoulliDistribution(0.3); // => [0.7, 0.3]\n */\nfunction bernoulliDistribution(p) /*: number[] */ {\n // Check that `p` is a valid probability (0 ≤ p ≤ 1)\n if (p < 0 || p > 1) {\n throw new Error(\n \"bernoulliDistribution requires probability to be between 0 and 1 inclusive\"\n );\n }\n\n return [1 - p, p];\n}\n\nexport default bernoulliDistribution;\n","import epsilon from \"./epsilon.js\";\n\n/**\n * The [Binomial Distribution](http://en.wikipedia.org/wiki/Binomial_distribution) is the discrete probability\n * distribution of the number of successes in a sequence of n independent yes/no experiments, each of which yields\n * success with probability `probability`. Such a success/failure experiment is also called a Bernoulli experiment or\n * Bernoulli trial; when trials = 1, the Binomial Distribution is a Bernoulli Distribution.\n *\n * @param {number} trials number of trials to simulate\n * @param {number} probability\n * @returns {number[]} output\n */\nfunction binomialDistribution(trials, probability) /*: ?number[] */ {\n // Check that `p` is a valid probability (0 ≤ p ≤ 1),\n // that `n` is an integer, strictly positive.\n if (probability < 0 || probability > 1 || trials <= 0 || trials % 1 !== 0) {\n return undefined;\n }\n\n // We initialize `x`, the random variable, and `accumulator`, an accumulator\n // for the cumulative distribution function to 0. `distribution_functions`\n // is the object we'll return with the `probability_of_x` and the\n // `cumulativeProbability_of_x`, as well as the calculated mean &\n // variance. We iterate until the `cumulativeProbability_of_x` is\n // within `epsilon` of 1.0.\n let x = 0;\n let cumulativeProbability = 0;\n const cells = [];\n let binomialCoefficient = 1;\n\n // This algorithm iterates through each potential outcome,\n // until the `cumulativeProbability` is very close to 1, at\n // which point we've defined the vast majority of outcomes\n do {\n // a [probability mass function](https://en.wikipedia.org/wiki/Probability_mass_function)\n cells[x] =\n binomialCoefficient *\n Math.pow(probability, x) *\n Math.pow(1 - probability, trials - x);\n cumulativeProbability += cells[x];\n x++;\n binomialCoefficient = (binomialCoefficient * (trials - x + 1)) / x;\n // when the cumulativeProbability is nearly 1, we've calculated\n // the useful range of this distribution\n } while (cumulativeProbability < 1 - epsilon);\n\n return cells;\n}\n\nexport default binomialDistribution;\n","import sign from \"./sign.js\";\n\n/**\n * [Bisection method](https://en.wikipedia.org/wiki/Bisection_method) is a root-finding\n * method that repeatedly bisects an interval to find the root.\n *\n * This function returns a numerical approximation to the exact value.\n *\n * @param {Function} func input function\n * @param {number} start - start of interval\n * @param {number} end - end of interval\n * @param {number} maxIterations - the maximum number of iterations\n * @param {number} errorTolerance - the error tolerance\n * @returns {number} estimated root value\n * @throws {TypeError} Argument func must be a function\n *\n * @example\n * bisect(Math.cos,0,4,100,0.003); // => 1.572265625\n */\nfunction bisect(func, start, end, maxIterations, errorTolerance) {\n if (typeof func !== \"function\")\n throw new TypeError(\"func must be a function\");\n\n for (let i = 0; i < maxIterations; i++) {\n const output = (start + end) / 2;\n\n if (\n func(output) === 0 ||\n Math.abs((end - start) / 2) < errorTolerance\n ) {\n return output;\n }\n\n if (sign(func(output)) === sign(func(start))) {\n start = output;\n } else {\n end = output;\n }\n }\n\n throw new Error(\"maximum number of iterations exceeded\");\n}\n\nexport default bisect;\n","import chiSquaredDistributionTable from \"./chi_squared_distribution_table.js\";\nimport mean from \"./mean.js\";\n\n/**\n * The [χ2 (Chi-Squared) Goodness-of-Fit Test](http://en.wikipedia.org/wiki/Goodness_of_fit#Pearson.27s_chi-squared_test)\n * uses a measure of goodness of fit which is the sum of differences between observed and expected outcome frequencies\n * (that is, counts of observations), each squared and divided by the number of observations expected given the\n * hypothesized distribution. The resulting χ2 statistic, `chiSquared`, can be compared to the chi-squared distribution\n * to determine the goodness of fit. In order to determine the degrees of freedom of the chi-squared distribution, one\n * takes the total number of observed frequencies and subtracts the number of estimated parameters. The test statistic\n * follows, approximately, a chi-square distribution with (k − c) degrees of freedom where `k` is the number of non-empty\n * cells and `c` is the number of estimated parameters for the distribution.\n *\n * @param {Array<number>} data\n * @param {Function} distributionType a function that returns a point in a distribution:\n * for instance, binomial, bernoulli, or poisson\n * @param {number} significance\n * @returns {number} chi squared goodness of fit\n * @example\n * // Data from Poisson goodness-of-fit example 10-19 in William W. Hines & Douglas C. Montgomery,\n * // \"Probability and Statistics in Engineering and Management Science\", Wiley (1980).\n * var data1019 = [\n * 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n * 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n * 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n * 2, 2, 2, 2, 2, 2, 2, 2, 2,\n * 3, 3, 3, 3\n * ];\n * ss.chiSquaredGoodnessOfFit(data1019, ss.poissonDistribution, 0.05); //= false\n */\nfunction chiSquaredGoodnessOfFit(data, distributionType, significance) {\n // Estimate from the sample data, a weighted mean.\n const inputMean = mean(data);\n // Calculated value of the χ2 statistic.\n let chiSquared = 0;\n // Number of hypothesized distribution parameters estimated, expected to be supplied in the distribution test.\n // Lose one degree of freedom for estimating `lambda` from the sample data.\n const c = 1;\n // The hypothesized distribution.\n // Generate the hypothesized distribution.\n const hypothesizedDistribution = distributionType(inputMean);\n const observedFrequencies = [];\n const expectedFrequencies = [];\n\n // Create an array holding a histogram from the sample data, of\n // the form `{ value: numberOfOcurrences }`\n for (let i = 0; i < data.length; i++) {\n if (observedFrequencies[data[i]] === undefined) {\n observedFrequencies[data[i]] = 0;\n }\n observedFrequencies[data[i]]++;\n }\n\n // The histogram we created might be sparse - there might be gaps\n // between values. So we iterate through the histogram, making\n // sure that instead of undefined, gaps have 0 values.\n for (let i = 0; i < observedFrequencies.length; i++) {\n if (observedFrequencies[i] === undefined) {\n observedFrequencies[i] = 0;\n }\n }\n\n // Create an array holding a histogram of expected data given the\n // sample size and hypothesized distribution.\n for (const k in hypothesizedDistribution) {\n if (k in observedFrequencies) {\n expectedFrequencies[+k] = hypothesizedDistribution[k] * data.length;\n }\n }\n\n // Working backward through the expected frequencies, collapse classes\n // if less than three observations are expected for a class.\n // This transformation is applied to the observed frequencies as well.\n for (let k = expectedFrequencies.length - 1; k >= 0; k--) {\n if (expectedFrequencies[k] < 3) {\n expectedFrequencies[k - 1] += expectedFrequencies[k];\n expectedFrequencies.pop();\n\n observedFrequencies[k - 1] += observedFrequencies[k];\n observedFrequencies.pop();\n }\n }\n\n // Iterate through the squared differences between observed & expected\n // frequencies, accumulating the `chiSquared` statistic.\n for (let k = 0; k < observedFrequencies.length; k++) {\n chiSquared +=\n Math.pow(observedFrequencies[k] - expectedFrequencies[k], 2) /\n expectedFrequencies[k];\n }\n\n // Calculate degrees of freedom for this test and look it up in the\n // `chiSquaredDistributionTable` in order to\n // accept or reject the goodness-of-fit of the hypothesized distribution.\n // Degrees of freedom, calculated as (number of class intervals -\n // number of hypothesized distribution parameters estimated - 1)\n const degreesOfFreedom = observedFrequencies.length - c - 1;\n return (\n chiSquaredDistributionTable[degreesOfFreedom][significance] < chiSquared\n );\n}\n\nexport default chiSquaredGoodnessOfFit;\n","/**\n * Split an array into chunks of a specified size. This function\n * has the same behavior as [PHP's array_chunk](http://php.net/manual/en/function.array-chunk.php)\n * function, and thus will insert smaller-sized chunks at the end if\n * the input size is not divisible by the chunk size.\n *\n * `x` is expected to be an array, and `chunkSize` a number.\n * The `x` array can contain any kind of data.\n *\n * @param {Array} x a sample\n * @param {number} chunkSize size of each output array. must be a positive integer\n * @returns {Array<Array>} a chunked array\n * @throws {Error} if chunk size is less than 1 or not an integer\n * @example\n * chunk([1, 2, 3, 4, 5, 6], 2);\n * // => [[1, 2], [3, 4], [5, 6]]\n */\nfunction chunk(x, chunkSize) {\n // a list of result chunks, as arrays in an array\n const output = [];\n\n // `chunkSize` must be zero or higher - otherwise the loop below,\n // in which we call `start += chunkSize`, will loop infinitely.\n // So, we'll detect and throw in that case to indicate\n // invalid input.\n if (chunkSize < 1) {\n throw new Error(\"chunk size must be a positive number\");\n }\n\n if (Math.floor(chunkSize) !== chunkSize) {\n throw new Error(\"chunk size must be an integer\");\n }\n\n // `start` is the index at which `.slice` will start selecting\n // new array elements\n for (let start = 0; start < x.length; start += chunkSize) {\n // for each chunk, slice that part of the array and add it\n // to the output. The `.slice` function does not change\n // the original array.\n output.push(x.slice(start, start + chunkSize));\n }\n return output;\n}\n\nexport default chunk;\n","import mean from \"./mean.js\";\nimport sampleStandardDeviation from \"./sample_standard_deviation.js\";\n\n/**\n * The`coefficient of variation`_ is the ratio of the standard deviation to the mean.\n * .._`coefficient of variation`: https://en.wikipedia.org/wiki/Coefficient_of_variation\n *\n *\n * @param {Array} x input\n * @returns {number} coefficient of variation\n * @example\n * coefficientOfVariation([1, 2, 3, 4]).toFixed(3); // => 0.516\n * coefficientOfVariation([1, 2, 3, 4, 5]).toFixed(3); // => 0.527\n * coefficientOfVariation([-1, 0, 1, 2, 3, 4]).toFixed(3); // => 1.247\n */\nfunction coefficientOfVariation(x) {\n return sampleStandardDeviation(x) / mean(x);\n}\n\nexport default coefficientOfVariation;\n","/**\n * Implementation of Combinations\n * Combinations are unique subsets of a collection - in this case, k x from a collection at a time.\n * https://en.wikipedia.org/wiki/Combination\n * @param {Array} x any type of data\n * @param {int} k the number of objects in each group (without replacement)\n * @returns {Array<Array>} array of permutations\n * @example\n * combinations([1, 2, 3], 2); // => [[1,2], [1,3], [2,3]]\n */\n\nfunction combinations(x, k) {\n let i;\n let subI;\n const combinationList = [];\n let subsetCombinations;\n let next;\n\n for (i = 0; i < x.length; i++) {\n if (k === 1) {\n combinationList.push([x[i]]);\n } else {\n subsetCombinations = combinations(x.slice(i + 1, x.length), k - 1);\n for (subI = 0; subI < subsetCombinations.length; subI++) {\n next = subsetCombinations[subI];\n next.unshift(x[i]);\n combinationList.push(next);\n }\n }\n }\n return combinationList;\n}\n\nexport default combinations;\n","/**\n * Implementation of [Combinations](https://en.wikipedia.org/wiki/Combination) with replacement\n * Combinations are unique subsets of a collection - in this case, k x from a collection at a time.\n * 'With replacement' means that a given element can be chosen multiple times.\n * Unlike permutation, order doesn't matter for combinations.\n *\n * @param {Array} x any type of data\n * @param {int} k the number of objects in each group (without replacement)\n * @returns {Array<Array>} array of permutations\n * @example\n * combinationsReplacement([1, 2], 2); // => [[1, 1], [1, 2], [2, 2]]\n */\nfunction combinationsReplacement(x, k) {\n const combinationList = [];\n\n for (let i = 0; i < x.length; i++) {\n if (k === 1) {\n // If we're requested to find only one element, we don't need\n // to recurse: just push `x[i]` onto the list of combinations.\n combinationList.push([x[i]]);\n } else {\n // Otherwise, recursively find combinations, given `k - 1`. Note that\n // we request `k - 1`, so if you were looking for k=3 combinations, we're\n // requesting k=2. This -1 gets reversed in the for loop right after this\n // code, since we concatenate `x[i]` onto the selected combinations,\n // bringing `k` back up to your requested level.\n // This recursion may go many levels deep, since it only stops once\n // k=1.\n const subsetCombinations = combinationsReplacement(\n x.slice(i, x.length),\n k - 1\n );\n\n for (let j = 0; j < subsetCombinations.length; j++) {\n combinationList.push([x[i]].concat(subsetCombinations[j]));\n }\n }\n }\n\n return combinationList;\n}\n\nexport default combinationsReplacement;\n","import combineMeans from \"./combine_means.js\";\n\n/**\n * When combining two lists of values for which one already knows the variances,\n * one does not have to necessary recompute the variance of the combined lists\n * in linear time. They can instead use this function to compute the combined\n * variance by providing the variance, mean & number of values of the first list\n * and the variance, mean & number of values of the second list.\n *\n * @since 3.0.0\n * @param {number} variance1 variance of the first list\n * @param {number} mean1 mean of the first list\n * @param {number} n1 number of items in the first list\n * @param {number} variance2 variance of the second list\n * @param {number} mean2 mean of the second list\n * @param {number} n2 number of items in the second list\n * @returns {number} the combined mean\n *\n * @example\n * combineVariances(14 / 3, 5, 3, 8 / 3, 4, 3); // => 47 / 12\n */\nfunction combineVariances(variance1, mean1, n1, variance2, mean2, n2) {\n const newMean = combineMeans(mean1, n1, mean2, n2);\n\n return (\n (n1 * (variance1 + Math.pow(mean1 - newMean, 2)) +\n n2 * (variance2 + Math.pow(mean2 - newMean, 2))) /\n (n1 + n2)\n );\n}\n\nexport default combineVariances;\n","/**\n * **[Logistic Cumulative Distribution Function](https://en.wikipedia.org/wiki/Logistic_distribution)**\n *\n * @param {number} x\n * @returns {number} cumulative standard logistic probability\n */\nfunction cumulativeStdLogisticProbability(x) {\n return 1 / (Math.exp(-x) + 1);\n}\n\nexport default cumulativeStdLogisticProbability;\n","import standardNormalTable from \"./standard_normal_table.js\";\n\n/**\n * **[Cumulative Standard Normal Probability](http://en.wikipedia.org/wiki/Standard_normal_table)**\n *\n * Since probability tables cannot be\n * printed for every normal distribution, as there are an infinite variety\n * of normal distributions, it is common practice to convert a normal to a\n * standard normal and then use the standard normal table to find probabilities.\n *\n * You can use `.5 + .5 * errorFunction(x / Math.sqrt(2))` to calculate the probability\n * instead of looking it up in a table.\n *\n * @param {number} z\n * @returns {number} cumulative standard normal probability\n */\nfunction cumulativeStdNormalProbability(z) {\n // Calculate the position of this value.\n const absZ = Math.abs(z);\n // Each row begins with a different\n // significant digit: 0.5, 0.6, 0.7, and so on. Each value in the table\n // corresponds to a range of 0.01 in the input values, so the value is\n // multiplied by 100.\n const index = Math.min(\n Math.round(absZ * 100),\n standardNormalTable.length - 1\n );\n\n // The index we calculate must be in the table as a positive value,\n // but we still pay attention to whether the input is positive\n // or negative, and flip the output value as a last step.\n if (z >= 0) {\n return standardNormalTable[index];\n } else {\n // due to floating-point arithmetic, values in the table with\n // 4 significant figures can nevertheless end up as repeating\n // fractions when they're computed here.\n return +(1 - standardNormalTable[index]).toFixed(4);\n }\n}\n\nexport default cumulativeStdNormalProbability;\n","import max from \"./max.js\";\nimport min from \"./min.js\";\n\n/**\n * Given an array of x, this will find the extent of the\n * x and return an array of breaks that can be used\n * to categorize the x into a number of classes. The\n * returned array will always be 1 longer than the number of\n * classes because it includes the minimum value.\n *\n * @param {Array<number>} x an array of number values\n * @param {number} nClasses number of desired classes\n * @returns {Array<number>} array of class break positions\n * @example\n * equalIntervalBreaks([1, 2, 3, 4, 5, 6], 4); // => [1, 2.25, 3.5, 4.75, 6]\n */\nfunction equalIntervalBreaks(x, nClasses) {\n if (x.length < 2) {\n return x;\n }\n\n const theMin = min(x);\n const theMax = max(x);\n\n // the first break will always be the minimum value\n // in the xset\n const breaks = [theMin];\n\n // The size of each break is the full range of the x\n // divided by the number of classes requested\n const breakSize = (theMax - theMin) / nClasses;\n\n // In the case of nClasses = 1, this loop won't run\n // and the returned breaks will be [min, max]\n for (let i = 1; i < nClasses; i++) {\n breaks.push(breaks[0] + breakSize * i);\n }\n\n // the last break will always be the\n // maximum.\n breaks.push(theMax);\n\n return breaks;\n}\n\nexport default equalIntervalBreaks;\n","/**\n * This computes the minimum & maximum number in an array.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x sample of one or more data points\n * @returns {Array<number>} minimum & maximum value\n * @throws {Error} if the length of x is less than one\n * @example\n * extent([1, 2, 3, 4]);\n * // => [1, 4]\n */\nfunction extent(x) {\n if (x.length === 0) {\n throw new Error(\"extent requires at least one data point\");\n }\n\n let min = x[0];\n let max = x[0];\n for (let i = 1; i < x.length; i++) {\n if (x[i] > max) {\n max = x[i];\n }\n if (x[i] < min) {\n min = x[i];\n }\n }\n return [min, max];\n}\n\nexport default extent;\n","/**\n * The extent is the lowest & highest number in the array. With a sorted array,\n * the first element in the array is always the lowest while the last element is always the largest, so this calculation\n * can be done in one step, or constant time.\n *\n * @param {Array<number>} x input\n * @returns {Array<number>} minimum & maximum value\n * @example\n * extentSorted([-100, -10, 1, 2, 5]); // => [-100, 5]\n */\nfunction extentSorted(x) {\n return [x[0], x[x.length - 1]];\n}\n\nexport default extentSorted;\n","import factorial from \"./factorial.js\";\n\n/**\n * Compute the [gamma function](https://en.wikipedia.org/wiki/Gamma_function) of a value using Nemes' approximation.\n * The gamma of n is equivalent to (n-1)!, but unlike the factorial function, gamma is defined for all real n except zero\n * and negative integers (where NaN is returned). Note, the gamma function is also well-defined for complex numbers,\n * though this implementation currently does not handle complex numbers as input values.\n * Nemes' approximation is defined [here](https://arxiv.org/abs/1003.6020) as Theorem 2.2.\n * Negative values use [Euler's reflection formula](https://en.wikipedia.org/wiki/Gamma_function#Properties) for computation.\n *\n * @param {number} n Any real number except for zero and negative integers.\n * @returns {number} The gamma of the input value.\n *\n * @example\n * gamma(11.5); // 11899423.084037038\n * gamma(-11.5); // 2.29575810481609e-8\n * gamma(5); // 24\n */\nfunction gamma(n) {\n if (Number.isInteger(n)) {\n if (n <= 0) {\n // gamma not defined for zero or negative integers\n return NaN;\n } else {\n // use factorial for integer inputs\n return factorial(n - 1);\n }\n }\n\n // Decrement n, because approximation is defined for n - 1\n n--;\n\n if (n < 0) {\n // Use Euler's reflection formula for negative inputs\n // see: https://en.wikipedia.org/wiki/Gamma_function#Properties\n return Math.PI / (Math.sin(Math.PI * -n) * gamma(-n));\n } else {\n // Nemes' expansion approximation\n const seriesCoefficient =\n Math.pow(n / Math.E, n) * Math.sqrt(2 * Math.PI * (n + 1 / 6));\n\n const seriesDenom = n + 1 / 4;\n\n const seriesExpansion =\n 1 +\n 1 / 144 / Math.pow(seriesDenom, 2) -\n 1 / 12960 / Math.pow(seriesDenom, 3) -\n 257 / 207360 / Math.pow(seriesDenom, 4) -\n 52 / 2612736 / Math.pow(seriesDenom, 5) +\n 5741173 / 9405849600 / Math.pow(seriesDenom, 6) +\n 37529 / 18811699200 / Math.pow(seriesDenom, 7);\n\n return seriesCoefficient * seriesExpansion;\n }\n}\n\nexport default gamma;\n","/**\n * The [Geometric Mean](https://en.wikipedia.org/wiki/Geometric_mean) is\n * a mean function that is more useful for numbers in different\n * ranges.\n *\n * This is the nth root of the input numbers multiplied by each other.\n *\n * The geometric mean is often useful for\n * **[proportional growth](https://en.wikipedia.org/wiki/Geometric_mean#Proportional_growth)**: given\n * growth rates for multiple years, like _80%, 16.66% and 42.85%_, a simple\n * mean will incorrectly estimate an average growth rate, whereas a geometric\n * mean will correctly estimate a growth rate that, over those years,\n * will yield the same end value.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x sample of one or more data points\n * @returns {number} geometric mean\n * @throws {Error} if x is empty\n * @throws {Error} if x contains a negative number\n * @example\n * var growthRates = [1.80, 1.166666, 1.428571];\n * var averageGrowth = ss.geometricMean(growthRates);\n * var averageGrowthRates = [averageGrowth, averageGrowth, averageGrowth];\n * var startingValue = 10;\n * var startingValueMean = 10;\n * growthRates.forEach(function(rate) {\n * startingValue *= rate;\n * });\n * averageGrowthRates.forEach(function(rate) {\n * startingValueMean *= rate;\n * });\n * startingValueMean === startingValue;\n */\nfunction geometricMean(x) {\n if (x.length === 0) {\n throw new Error(\"geometricMean requires at least one data point\");\n }\n\n // the starting value.\n let value = 1;\n\n for (let i = 0; i < x.length; i++) {\n // the geometric mean is only valid for positive numbers\n if (x[i] < 0) {\n throw new Error(\n \"geometricMean requires only non-negative numbers as input\"\n );\n }\n\n // repeatedly multiply the value by each number\n value *= x[i];\n }\n\n return Math.pow(value, 1 / x.length);\n}\n\nexport default geometricMean;\n","/**\n * The [Harmonic Mean](https://en.wikipedia.org/wiki/Harmonic_mean) is\n * a mean function typically used to find the average of rates.\n * This mean is calculated by taking the reciprocal of the arithmetic mean\n * of the reciprocals of the input numbers.\n *\n * This is a [measure of central tendency](https://en.wikipedia.org/wiki/Central_tendency):\n * a method of finding a typical or central value of a set of numbers.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x sample of one or more data points\n * @returns {number} harmonic mean\n * @throws {Error} if x is empty\n * @throws {Error} if x contains a negative number\n * @example\n * harmonicMean([2, 3]).toFixed(2) // => '2.40'\n */\nfunction harmonicMean(x) {\n if (x.length === 0) {\n throw new Error(\"harmonicMean requires at least one data point\");\n }\n\n let reciprocalSum = 0;\n\n for (let i = 0; i < x.length; i++) {\n // the harmonic mean is only valid for positive numbers\n if (x[i] <= 0) {\n throw new Error(\n \"harmonicMean requires only positive numbers as input\"\n );\n }\n\n reciprocalSum += 1 / x[i];\n }\n\n // divide n by the reciprocal sum\n return x.length / reciprocalSum;\n}\n\nexport default harmonicMean;\n","import jenksBreaks from \"./jenks_breaks.js\";\nimport jenksMatrices from \"./jenks_matrices.js\";\n\n/**\n * The **[jenks natural breaks optimization](http://en.wikipedia.org/wiki/Jenks_natural_breaks_optimization)**\n * is an algorithm commonly used in cartography and visualization to decide\n * upon groupings of data values that minimize variance within themselves\n * and maximize variation between themselves.\n *\n * For instance, cartographers often use jenks in order to choose which\n * values are assigned to which colors in a [choropleth](https://en.wikipedia.org/wiki/Choropleth_map)\n * map.\n *\n * @param {Array<number>} data input data, as an array of number values\n * @param {number} nClasses number of desired classes\n * @returns {Array<number>} array of class break positions\n * // split data into 3 break points\n * jenks([1, 2, 4, 5, 7, 9, 10, 20], 3) // = [1, 7, 20, 20]\n */\nfunction jenks(data, nClasses) {\n if (nClasses > data.length) {\n return null;\n }\n\n // sort data in numerical order, since this is expected\n // by the matrices function\n data = data.slice().sort(function (a, b) {\n return a - b;\n });\n\n // get our basic matrices\n const matrices = jenksMatrices(data, nClasses);\n // we only need lower class limits here\n const lowerClassLimits = matrices.lowerClassLimits;\n\n // extract nClasses out of the computed matrices\n return jenksBreaks(data, lowerClassLimits, nClasses);\n}\n\nexport default jenks;\n","/*\n * Compute Matrices for Jenks\n *\n * Compute the matrices required for Jenks breaks. These matrices\n * can be used for any classing of data with `classes <= nClasses`\n *\n * @private\n */\nfunction jenksMatrices(data, nClasses) {\n // in the original implementation, these matrices are referred to\n // as `LC` and `OP`\n //\n // * lowerClassLimits (LC): optimal lower class limits\n // * varianceCombinations (OP): optimal variance combinations for all classes\n const lowerClassLimits = [];\n const varianceCombinations = [];\n // loop counters\n let i, j;\n // the variance, as computed at each step in the calculation\n let variance = 0;\n\n // Initialize and fill each matrix with zeroes\n for (i = 0; i < data.length + 1; i++) {\n const tmp1 = [];\n const tmp2 = [];\n // despite these arrays having the same values, we need\n // to keep them separate so that changing one does not change\n // the other\n for (j = 0; j < nClasses + 1; j++) {\n tmp1.push(0);\n tmp2.push(0);\n }\n lowerClassLimits.push(tmp1);\n varianceCombinations.push(tmp2);\n }\n\n for (i = 1; i < nClasses + 1; i++) {\n lowerClassLimits[1][i] = 1;\n varianceCombinations[1][i] = 0;\n // in the original implementation, 9999999 is used but\n // since Javascript has `Infinity`, we use that.\n for (j = 2; j < data.length + 1; j++) {\n varianceCombinations[j][i] = Infinity;\n }\n }\n\n for (let l = 2; l < data.length + 1; l++) {\n // `SZ` originally. this is the sum of the values seen thus\n // far when calculating variance.\n let sum = 0;\n // `ZSQ` originally. the sum of squares of values seen\n // thus far\n let sumSquares = 0;\n // `WT` originally. This is the number of\n let w = 0;\n // `IV` originally\n let i4 = 0;\n\n // in several instances, you could say `Math.pow(x, 2)`\n // instead of `x * x`, but this is slower in some browsers\n // introduces an unnecessary concept.\n for (let m = 1; m < l + 1; m++) {\n // `III` originally\n const lowerClassLimit = l - m + 1;\n const val = data[lowerClassLimit - 1];\n\n // here we're estimating variance for each potential classing\n // of the data, for each potential number of classes. `w`\n // is the number of data points considered so far.\n w++;\n\n // increase the current sum and sum-of-squares\n sum += val;\n sumSquares += val * val;\n\n // the variance at this point in the sequence is the difference\n // between the sum of squares and the total x 2, over the number\n // of samples.\n variance = sumSquares - (sum * sum) / w;\n\n i4 = lowerClassLimit - 1;\n\n if (i4 !== 0) {\n for (j = 2; j < nClasses + 1; j++) {\n // if adding this element to an existing class\n // will increase its variance beyond the limit, break\n // the class at this point, setting the `lowerClassLimit`\n // at this point.\n if (\n varianceCombinations[l][j] >=\n variance + varianceCombinations[i4][j - 1]\n ) {\n lowerClassLimits[l][j] = lowerClassLimit;\n varianceCombinations[l][j] =\n variance + varianceCombinations[i4][j - 1];\n }\n }\n }\n }\n\n lowerClassLimits[l][1] = 1;\n varianceCombinations[l][1] = variance;\n }\n\n // return the two matrices. for just providing breaks, only\n // `lowerClassLimits` is needed, but variances can be useful to\n // evaluate goodness of fit.\n return {\n lowerClassLimits: lowerClassLimits,\n varianceCombinations: varianceCombinations\n };\n}\n\nexport default jenksMatrices;\n","/*\n * Pull Breaks Values for Jenks\n *\n * the second part of the jenks recipe: take the calculated matrices\n * and derive an array of n breaks.\n *\n * @private\n */\nfunction jenksBreaks(data, lowerClassLimits, nClasses) {\n let k = data.length;\n const kclass = [];\n let countNum = nClasses;\n\n // the calculation of classes will never include the upper\n // bound, so we need to explicitly set it\n kclass[nClasses] = data[data.length - 1];\n\n // the lowerClassLimits matrix is used as indices into itself\n // here: the `k` variable is reused in each iteration.\n while (countNum > 0) {\n kclass[countNum - 1] = data[lowerClassLimits[k][countNum] - 1];\n k = lowerClassLimits[k][countNum] - 1;\n countNum--;\n }\n\n return kclass;\n}\n\nexport default jenksBreaks;\n","/**\n * [Simple linear regression](http://en.wikipedia.org/wiki/Simple_linear_regression)\n * is a simple way to find a fitted line\n * between a set of coordinates. This algorithm finds the slope and y-intercept of a regression line\n * using the least sum of squares.\n *\n * @param {Array<Array<number>>} data an array of two-element of arrays,\n * like `[[0, 1], [2, 3]]`\n * @returns {Object} object containing slope and intersect of regression line\n * @example\n * linearRegression([[0, 0], [1, 1]]); // => { m: 1, b: 0 }\n */\nfunction linearRegression(data) {\n let m, b;\n\n // Store data length in a local variable to reduce\n // repeated object property lookups\n const dataLength = data.length;\n\n //if there's only one point, arbitrarily choose a slope of 0\n //and a y-intercept of whatever the y of the initial point is\n if (dataLength === 1) {\n m = 0;\n b = data[0][1];\n } else {\n // Initialize our sums and scope the `m` and `b`\n // variables that define the line.\n let sumX = 0,\n sumY = 0,\n sumXX = 0,\n sumXY = 0;\n\n // Use local variables to grab point values\n // with minimal object property lookups\n let point, x, y;\n\n // Gather the sum of all x values, the sum of all\n // y values, and the sum of x^2 and (x*y) for each\n // value.\n //\n // In math notation, these would be SS_x, SS_y, SS_xx, and SS_xy\n for (let i = 0; i < dataLength; i++) {\n point = data[i];\n x = point[0];\n y = point[1];\n\n sumX += x;\n sumY += y;\n\n sumXX += x * x;\n sumXY += x * y;\n }\n\n // `m` is the slope of the regression line\n m =\n (dataLength * sumXY - sumX * sumY) /\n (dataLength * sumXX - sumX * sumX);\n\n // `b` is the y-intercept of the line.\n b = sumY / dataLength - (m * sumX) / dataLength;\n }\n\n // Return both values as an object.\n return {\n m: m,\n b: b\n };\n}\n\nexport default linearRegression;\n","/**\n * Given the output of `linearRegression`: an object\n * with `m` and `b` values indicating slope and intercept,\n * respectively, generate a line function that translates\n * x values into y values.\n *\n * @param {Object} mb object with `m` and `b` members, representing\n * slope and intersect of desired line\n * @returns {Function} method that computes y-value at any given\n * x-value on the line.\n * @example\n * var l = linearRegressionLine(linearRegression([[0, 0], [1, 1]]));\n * l(0) // = 0\n * l(2) // = 2\n * linearRegressionLine({ b: 0, m: 1 })(1); // => 1\n * linearRegressionLine({ b: 1, m: 1 })(1); // => 2\n */\nfunction linearRegressionLine(mb /*: { b: number, m: number }*/) {\n // Return a function that computes a `y` value for each\n // x value it is given, based on the values of `b` and `a`\n // that we just computed.\n return function (x) {\n return mb.b + mb.m * x;\n };\n}\n\nexport default linearRegressionLine;\n","/**\n * The [log average](https://en.wikipedia.org/wiki/https://en.wikipedia.org/wiki/Geometric_mean#Relationship_with_logarithms)\n * is an equivalent way of computing the geometric mean of an array suitable for large or small products.\n *\n * It's found by calculating the average logarithm of the elements and exponentiating.\n *\n * @param {Array<number>} x sample of one or more data points\n * @returns {number} geometric mean\n * @throws {Error} if x is empty\n * @throws {Error} if x contains a negative number\n */\nfunction logAverage(x) {\n if (x.length === 0) {\n throw new Error(\"logAverage requires at least one data point\");\n }\n\n let value = 0;\n for (let i = 0; i < x.length; i++) {\n if (x[i] < 0) {\n throw new Error(\n \"logAverage requires only non-negative numbers as input\"\n );\n }\n value += Math.log(x[i]);\n }\n\n return Math.exp(value / x.length);\n}\n\nexport default logAverage;\n","/**\n * The [Logit](https://en.wikipedia.org/wiki/Logit)\n * is the inverse of cumulativeStdLogisticProbability,\n * and is also known as the logistic quantile function.\n *\n * @param {number} p\n * @returns {number} logit\n */\nfunction logit(p) {\n if (p <= 0 || p >= 1) {\n throw new Error(\"p must be strictly between zero and one\");\n }\n return Math.log(p / (1 - p));\n}\n\nexport default logit;\n","/**\n * The maximum is the highest number in the array. With a sorted array,\n * the last element in the array is always the largest, so this calculation\n * can be done in one step, or constant time.\n *\n * @param {Array<number>} x input\n * @returns {number} maximum value\n * @example\n * maxSorted([-100, -10, 1, 2, 5]); // => 5\n */\nfunction maxSorted(x) {\n return x[x.length - 1];\n}\n\nexport default maxSorted;\n","import quantileSorted from \"./quantile_sorted.js\";\n\n/**\n * The [median](http://en.wikipedia.org/wiki/Median) is\n * the middle number of a list. This is often a good indicator of 'the middle'\n * when there are outliers that skew the `mean()` value.\n * This is a [measure of central tendency](https://en.wikipedia.org/wiki/Central_tendency):\n * a method of finding a typical or central value of a set of numbers.\n *\n * The median isn't necessarily one of the elements in the list: the value\n * can be the average of two elements if the list has an even length\n * and the two central values are different.\n *\n * @param {Array<number>} sorted input\n * @returns {number} median value\n * @example\n * medianSorted([10, 2, 5, 100, 2, 1]); // => 52.5\n */\nfunction medianSorted(sorted) {\n return quantileSorted(sorted, 0.5);\n}\n\nexport default medianSorted;\n","/**\n * The minimum is the lowest number in the array. With a sorted array,\n * the first element in the array is always the smallest, so this calculation\n * can be done in one step, or constant time.\n *\n * @param {Array<number>} x input\n * @returns {number} minimum value\n * @example\n * minSorted([-100, -10, 1, 2, 5]); // => -100\n */\nfunction minSorted(x) {\n return x[0];\n}\n\nexport default minSorted;\n","import modeSorted from \"./mode_sorted.js\";\nimport numericSort from \"./numeric_sort.js\";\n\n/**\n * The [mode](https://en.wikipedia.org/wiki/Mode_%28statistics%29) is the number\n * that appears in a list the highest number of times.\n * There can be multiple modes in a list: in the event of a tie, this\n * algorithm will return the most recently seen mode.\n *\n * This is a [measure of central tendency](https://en.wikipedia.org/wiki/Central_tendency):\n * a method of finding a typical or central value of a set of numbers.\n *\n * This runs in `O(n log(n))` because it needs to sort the array internally\n * before running an `O(n)` search to find the mode.\n *\n * @param {Array<number>} x input\n * @returns {number} mode\n * @example\n * mode([0, 0, 1]); // => 0\n */\nfunction mode(x) {\n // Sorting the array lets us iterate through it below and be sure\n // that every time we see a new number it's new and we'll never\n // see the same number twice\n return modeSorted(numericSort(x));\n}\n\nexport default mode;\n","/* globals Map: false */\n\n/**\n * The [mode](https://en.wikipedia.org/wiki/Mode_%28statistics%29) is the number\n * that appears in a list the highest number of times.\n * There can be multiple modes in a list: in the event of a tie, this\n * algorithm will return the most recently seen mode.\n *\n * modeFast uses a Map object to keep track of the mode, instead of the approach\n * used with `mode`, a sorted array. As a result, it is faster\n * than `mode` and supports any data type that can be compared with `==`.\n * It also requires a\n * [JavaScript environment with support for Map](https://kangax.github.io/compat-table/es6/#test-Map),\n * and will throw an error if Map is not available.\n *\n * This is a [measure of central tendency](https://en.wikipedia.org/wiki/Central_tendency):\n * a method of finding a typical or central value of a set of numbers.\n *\n * @param {Array<*>} x a sample of one or more data points\n * @returns {?*} mode\n * @throws {ReferenceError} if the JavaScript environment doesn't support Map\n * @throws {Error} if x is empty\n * @example\n * modeFast(['rabbits', 'rabbits', 'squirrels']); // => 'rabbits'\n */\nfunction modeFast(x) {\n // This index will reflect the incidence of different values, indexing\n // them like\n // { value: count }\n const index = new Map();\n\n // A running `mode` and the number of times it has been encountered.\n let mode;\n let modeCount = 0;\n\n for (let i = 0; i < x.length; i++) {\n let newCount = index.get(x[i]);\n if (newCount === undefined) {\n newCount = 1;\n } else {\n newCount++;\n }\n if (newCount > modeCount) {\n mode = x[i];\n modeCount = newCount;\n }\n index.set(x[i], newCount);\n }\n\n if (modeCount === 0) {\n throw new Error(\"mode requires at last one data point\");\n }\n\n return mode;\n}\n\nexport default modeFast;\n","import mean from \"./mean.js\";\nimport shuffleInPlace from \"./shuffle_in_place.js\";\n\n/**\n * Conducts a [permutation test](https://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests)\n * to determine if two data sets are *significantly* different from each other, using\n * the difference of means between the groups as the test statistic.\n * The function allows for the following hypotheses:\n * - two_tail = Null hypothesis: the two distributions are equal.\n * - greater = Null hypothesis: observations from sampleX tend to be smaller than those from sampleY.\n * - less = Null hypothesis: observations from sampleX tend to be greater than those from sampleY.\n * [Learn more about one-tail vs two-tail tests.](https://en.wikipedia.org/wiki/One-_and_two-tailed_tests)\n *\n * @param {Array<number>} sampleX first dataset (e.g. treatment data)\n * @param {Array<number>} sampleY second dataset (e.g. control data)\n * @param {string} alternative alternative hypothesis, either 'two_sided' (default), 'greater', or 'less'\n * @param {number} k number of values in permutation distribution.\n * @param {Function} [randomSource=Math.random] an optional entropy source\n * @returns {number} p-value The probability of observing the difference between groups (as or more extreme than what we did), assuming the null hypothesis.\n *\n * @example\n * var control = [2, 5, 3, 6, 7, 2, 5];\n * var treatment = [20, 5, 13, 12, 7, 2, 2];\n * permutationTest(control, treatment); // ~0.1324\n */\nfunction permutationTest(sampleX, sampleY, alternative, k, randomSource) {\n // Set default arguments\n if (k === undefined) {\n k = 10000;\n }\n if (alternative === undefined) {\n alternative = \"two_side\";\n }\n if (\n alternative !== \"two_side\" &&\n alternative !== \"greater\" &&\n alternative !== \"less\"\n ) {\n throw new Error(\n \"`alternative` must be either 'two_side', 'greater', or 'less'.\"\n );\n }\n\n // get means for each sample\n const meanX = mean(sampleX);\n const meanY = mean(sampleY);\n\n // calculate initial test statistic. This will be our point of comparison with\n // the generated test statistics.\n const testStatistic = meanX - meanY;\n\n // create test-statistic distribution\n const testStatDsn = new Array(k);\n\n // combine datsets so we can easily shuffle later\n const allData = sampleX.concat(sampleY);\n const midIndex = Math.floor(allData.length / 2);\n\n for (let i = 0; i < k; i++) {\n // 1. shuffle data assignments\n shuffleInPlace(allData, randomSource);\n const permLeft = allData.slice(0, midIndex);\n const permRight = allData.slice(midIndex, allData.length);\n\n // 2.re-calculate test statistic\n const permTestStatistic = mean(permLeft) - mean(permRight);\n\n // 3. store test statistic to build test statistic distribution\n testStatDsn[i] = permTestStatistic;\n }\n\n // Calculate p-value depending on alternative\n // For this test, we calculate the percentage of 'extreme' test statistics (subject to our hypothesis)\n // more info on permutation test p-value calculations: https://onlinecourses.science.psu.edu/stat464/node/35\n let numExtremeTStats = 0;\n if (alternative === \"two_side\") {\n for (let i = 0; i <= k; i++) {\n if (Math.abs(testStatDsn[i]) >= Math.abs(testStatistic)) {\n numExtremeTStats += 1;\n }\n }\n } else if (alternative === \"greater\") {\n for (let i = 0; i <= k; i++) {\n if (testStatDsn[i] >= testStatistic) {\n numExtremeTStats += 1;\n }\n }\n } else {\n // alternative === 'less'\n for (let i = 0; i <= k; i++) {\n if (testStatDsn[i] <= testStatistic) {\n numExtremeTStats += 1;\n }\n }\n }\n\n return numExtremeTStats / k;\n}\n\nexport default permutationTest;\n","/**\n * Implementation of [Heap's Algorithm](https://en.wikipedia.org/wiki/Heap%27s_algorithm)\n * for generating permutations.\n *\n * @param {Array} elements any type of data\n * @returns {Array<Array>} array of permutations\n */\nfunction permutationsHeap(elements) {\n const indexes = new Array(elements.length);\n const permutations = [elements.slice()];\n\n for (let i = 0; i < elements.length; i++) {\n indexes[i] = 0;\n }\n\n for (let i = 0; i < elements.length; ) {\n if (indexes[i] < i) {\n // At odd indexes, swap from indexes[i] instead\n // of from the beginning of the array\n let swapFrom = 0;\n if (i % 2 !== 0) {\n swapFrom = indexes[i];\n }\n\n // swap between swapFrom and i, using\n // a temporary variable as storage.\n const temp = elements[swapFrom];\n elements[swapFrom] = elements[i];\n elements[i] = temp;\n\n permutations.push(elements.slice());\n indexes[i]++;\n i = 0;\n } else {\n indexes[i] = 0;\n i++;\n }\n }\n\n return permutations;\n}\n\nexport default permutationsHeap;\n","import epsilon from \"./epsilon.js\";\n\n/**\n * The [Poisson Distribution](http://en.wikipedia.org/wiki/Poisson_distribution)\n * is a discrete probability distribution that expresses the probability\n * of a given number of events occurring in a fixed interval of time\n * and/or space if these events occur with a known average rate and\n * independently of the time since the last event.\n *\n * The Poisson Distribution is characterized by the strictly positive\n * mean arrival or occurrence rate, `λ`.\n *\n * @param {number} lambda location poisson distribution\n * @returns {number[]} values of poisson distribution at that point\n */\nfunction poissonDistribution(lambda) /*: ?number[] */ {\n // Check that lambda is strictly positive\n if (lambda <= 0) {\n return undefined;\n }\n\n // our current place in the distribution\n let x = 0;\n // and we keep track of the current cumulative probability, in\n // order to know when to stop calculating chances.\n let cumulativeProbability = 0;\n // the calculated cells to be returned\n const cells = [];\n let factorialX = 1;\n\n // This algorithm iterates through each potential outcome,\n // until the `cumulativeProbability` is very close to 1, at\n // which point we've defined the vast majority of outcomes\n do {\n // a [probability mass function](https://en.wikipedia.org/wiki/Probability_mass_function)\n cells[x] = (Math.exp(-lambda) * Math.pow(lambda, x)) / factorialX;\n cumulativeProbability += cells[x];\n x++;\n factorialX *= x;\n // when the cumulativeProbability is nearly 1, we've calculated\n // the useful range of this distribution\n } while (cumulativeProbability < 1 - epsilon);\n\n return cells;\n}\n\nexport default poissonDistribution;\n","import epsilon from \"./epsilon.js\";\nimport inverseErrorFunction from \"./inverse_error_function.js\";\n\n/**\n * The [Probit](http://en.wikipedia.org/wiki/Probit)\n * is the inverse of cumulativeStdNormalProbability(),\n * and is also known as the normal quantile function.\n *\n * It returns the number of standard deviations from the mean\n * where the p'th quantile of values can be found in a normal distribution.\n * So, for example, probit(0.5 + 0.6827/2) ≈ 1 because 68.27% of values are\n * normally found within 1 standard deviation above or below the mean.\n *\n * @param {number} p\n * @returns {number} probit\n */\nfunction probit(p) {\n if (p === 0) {\n p = epsilon;\n } else if (p >= 1) {\n p = 1 - epsilon;\n }\n return Math.sqrt(2) * inverseErrorFunction(2 * p - 1);\n}\n\nexport default probit;\n","/**\n * The [product](https://en.wikipedia.org/wiki/Product_(mathematics)) of an array\n * is the result of multiplying all numbers together, starting using one as the multiplicative identity.\n *\n * This runs in `O(n)`, linear time, with respect to the length of the array.\n *\n * @param {Array<number>} x input\n * @return {number} product of all input numbers\n * @example\n * product([1, 2, 3, 4]); // => 24\n */\nfunction product(x) {\n let value = 1;\n for (let i = 0; i < x.length; i++) {\n value *= x[i];\n }\n return value;\n}\n\nexport default product;\n","import numericSort from \"./numeric_sort.js\";\nimport quantileRankSorted from \"./quantile_rank_sorted.js\";\n\n/**\n * This function returns the quantile in which one would find the given value in\n * the given array. It will copy and sort your array before each run, so\n * if you know your array is already sorted, you should use `quantileRankSorted`\n * instead.\n *\n * @param {Array<number>} x input\n * @returns {number} value value\n * @example\n * quantileRank([4, 3, 1, 2], 3); // => 0.75\n * quantileRank([4, 3, 2, 3, 1], 3); // => 0.7\n * quantileRank([2, 4, 1, 3], 6); // => 1\n * quantileRank([5, 3, 1, 2, 3], 4); // => 0.8\n */\nfunction quantileRank(x, value) {\n // Cloning and sorting the array\n const sortedCopy = numericSort(x);\n\n return quantileRankSorted(sortedCopy, value);\n}\n\nexport default quantileRank;\n","/**\n * The [R Squared](http://en.wikipedia.org/wiki/Coefficient_of_determination)\n * value of data compared with a function `f`\n * is the sum of the squared differences between the prediction\n * and the actual value.\n *\n * @param {Array<Array<number>>} x input data: this should be doubly-nested\n * @param {Function} func function called on `[i][0]` values within the dataset\n * @returns {number} r-squared value\n * @example\n * var samples = [[0, 0], [1, 1]];\n * var regressionLine = linearRegressionLine(linearRegression(samples));\n * rSquared(samples, regressionLine); // = 1 this line is a perfect fit\n */\nfunction rSquared(x, func) {\n if (x.length < 2) {\n return 1;\n }\n\n // Compute the average y value for the actual\n // data set in order to compute the\n // _total sum of squares_\n let sum = 0;\n for (let i = 0; i < x.length; i++) {\n sum += x[i][1];\n }\n const average = sum / x.length;\n\n // Compute the total sum of squares - the\n // squared difference between each point\n // and the average of all points.\n let sumOfSquares = 0;\n for (let j = 0; j < x.length; j++) {\n sumOfSquares += Math.pow(average - x[j][1], 2);\n }\n\n // Finally estimate the error: the squared\n // difference between the estimate and the actual data\n // value at each point.\n let err = 0;\n for (let k = 0; k < x.length; k++) {\n err += Math.pow(x[k][1] - func(x[k][0]), 2);\n }\n\n // As the error grows larger, its ratio to the\n // sum of squares increases and the r squared\n // value grows lower.\n return 1 - err / sumOfSquares;\n}\n\nexport default rSquared;\n","import mean from \"./mean.js\";\n\n/**\n * [Kurtosis](http://en.wikipedia.org/wiki/Kurtosis) is\n * a measure of the heaviness of a distribution's tails relative to its\n * variance. The kurtosis value can be positive or negative, or even undefined.\n *\n * Implementation is based on Fisher's excess kurtosis definition and uses\n * unbiased moment estimators. This is the version found in Excel and available\n * in several statistical packages, including SAS and SciPy.\n *\n * @param {Array<number>} x a sample of 4 or more data points\n * @returns {number} sample kurtosis\n * @throws {Error} if x has length less than 4\n * @example\n * sampleKurtosis([1, 2, 2, 3, 5]); // => 1.4555765595463122\n */\nfunction sampleKurtosis(x) {\n const n = x.length;\n\n if (n < 4) {\n throw new Error(\"sampleKurtosis requires at least four data points\");\n }\n\n const meanValue = mean(x);\n let tempValue;\n let secondCentralMoment = 0;\n let fourthCentralMoment = 0;\n\n for (let i = 0; i < n; i++) {\n tempValue = x[i] - meanValue;\n secondCentralMoment += tempValue * tempValue;\n fourthCentralMoment += tempValue * tempValue * tempValue * tempValue;\n }\n\n return (\n ((n - 1) / ((n - 2) * (n - 3))) *\n ((n * (n + 1) * fourthCentralMoment) /\n (secondCentralMoment * secondCentralMoment) -\n 3 * (n - 1))\n );\n}\n\nexport default sampleKurtosis;\n","import sampleCorrelation from \"./sample_correlation.js\";\n\n/**\n * The [rank correlation](https://en.wikipedia.org/wiki/Rank_correlation) is\n * a measure of the strength of monotonic relationship between two arrays\n *\n * @param {Array<number>} x first input\n * @param {Array<number>} y second input\n * @returns {number} sample rank correlation\n */\nfunction sampleRankCorrelation(x, y) {\n const xIndexes = x\n .map((value, index) => [value, index])\n .sort((a, b) => a[0] - b[0])\n .map((pair) => pair[1]);\n const yIndexes = y\n .map((value, index) => [value, index])\n .sort((a, b) => a[0] - b[0])\n .map((pair) => pair[1]);\n\n // At this step, we have an array of indexes\n // that map from sorted numbers to their original indexes. We reverse\n // that so that it is an array of the sorted destination index.\n const xRanks = Array(xIndexes.length);\n const yRanks = Array(xIndexes.length);\n for (let i = 0; i < xIndexes.length; i++) {\n xRanks[xIndexes[i]] = i;\n yRanks[yIndexes[i]] = i;\n }\n\n return sampleCorrelation(xRanks, yRanks);\n}\n\nexport default sampleRankCorrelation;\n","import mean from \"./mean.js\";\n\n/**\n * [Skewness](http://en.wikipedia.org/wiki/Skewness) is\n * a measure of the extent to which a probability distribution of a\n * real-valued random variable \"leans\" to one side of the mean.\n * The skewness value can be positive or negative, or even undefined.\n *\n * Implementation is based on the adjusted Fisher-Pearson standardized\n * moment coefficient, which is the version found in Excel and several\n * statistical packages including Minitab, SAS and SPSS.\n *\n * @since 4.1.0\n * @param {Array<number>} x a sample of 3 or more data points\n * @returns {number} sample skewness\n * @throws {Error} if x has length less than 3\n * @example\n * sampleSkewness([2, 4, 6, 3, 1]); // => 0.590128656384365\n */\nfunction sampleSkewness(x) {\n if (x.length < 3) {\n throw new Error(\"sampleSkewness requires at least three data points\");\n }\n\n const meanValue = mean(x);\n let tempValue;\n let sumSquaredDeviations = 0;\n let sumCubedDeviations = 0;\n\n for (let i = 0; i < x.length; i++) {\n tempValue = x[i] - meanValue;\n sumSquaredDeviations += tempValue * tempValue;\n sumCubedDeviations += tempValue * tempValue * tempValue;\n }\n\n // this is Bessels' Correction: an adjustment made to sample statistics\n // that allows for the reduced degree of freedom entailed in calculating\n // values from samples rather than complete populations.\n const besselsCorrection = x.length - 1;\n\n // Find the mean value of that list\n const theSampleStandardDeviation = Math.sqrt(\n sumSquaredDeviations / besselsCorrection\n );\n\n const n = x.length;\n const cubedS = Math.pow(theSampleStandardDeviation, 3);\n\n return (n * sumCubedDeviations) / ((n - 1) * (n - 2) * cubedS);\n}\n\nexport default sampleSkewness;\n","/**\n * Sampling with replacement is a type of sampling that allows the same\n * item to be picked out of a population more than once.\n *\n * @param {Array<*>} x an array of any kind of value\n * @param {number} n count of how many elements to take\n * @param {Function} [randomSource=Math.random] an optional entropy source that\n * returns numbers between 0 inclusive and 1 exclusive: the range [0, 1)\n * @return {Array} n sampled items from the population\n * @example\n * var values = [1, 2, 3, 4];\n * sampleWithReplacement(values, 2); // returns 2 random values, like [2, 4];\n */\nfunction sampleWithReplacement(x, n, randomSource) {\n if (x.length === 0) {\n return [];\n }\n\n // a custom random number source can be provided if you want to use\n // a fixed seed or another random number generator, like\n // [random-js](https://www.npmjs.org/package/random-js)\n randomSource = randomSource || Math.random;\n\n const length = x.length;\n const sample = [];\n\n for (let i = 0; i < n; i++) {\n const index = Math.floor(randomSource() * length);\n\n sample.push(x[index]);\n }\n\n return sample;\n}\n\nexport default sampleWithReplacement;\n","import max from \"./max.js\";\nimport silhouette from \"./silhouette.js\";\n\n/**\n * Calculate the [silhouette metric](https://en.wikipedia.org/wiki/Silhouette_(clustering))\n * for a set of N-dimensional points arranged in groups. The metric is the largest\n * individual silhouette value for the data.\n *\n * @param {Array<Array<number>>} points N-dimensional coordinates of points.\n * @param {Array<number>} labels Labels of points. This must be the same length as `points`,\n * and values must lie in [0..G-1], where G is the number of groups.\n * @return {number} The silhouette metric for the groupings.\n *\n * @example\n * silhouetteMetric([[0.25], [0.75]], [0, 0]); // => 1.0\n */\nfunction silhouetteMetric(points, labels) {\n const values = silhouette(points, labels);\n return max(values);\n}\n\nexport default silhouetteMetric;\n","/**\n * When removing a value from a list, one does not have to necessary\n * recompute the mean of the list in linear time. They can instead use\n * this function to compute the new mean by providing the current mean,\n * the number of elements in the list that produced it and the value to remove.\n *\n * @since 3.0.0\n * @param {number} mean current mean\n * @param {number} n number of items in the list\n * @param {number} value the value to remove\n * @returns {number} the new mean\n *\n * @example\n * subtractFromMean(20.5, 6, 53); // => 14\n */\nfunction subtractFromMean(mean, n, value) {\n return (mean * n - value) / (n - 1);\n}\n\nexport default subtractFromMean;\n","import mean from \"./mean.js\";\nimport standardDeviation from \"./standard_deviation.js\";\n\n/**\n * This is to compute [a one-sample t-test](https://en.wikipedia.org/wiki/Student%27s_t-test#One-sample_t-test), comparing the mean\n * of a sample to a known value, x.\n *\n * in this case, we're trying to determine whether the\n * population mean is equal to the value that we know, which is `x`\n * here. Usually the results here are used to look up a\n * [p-value](http://en.wikipedia.org/wiki/P-value), which, for\n * a certain level of significance, will let you determine that the\n * null hypothesis can or cannot be rejected.\n *\n * @param {Array<number>} x sample of one or more numbers\n * @param {number} expectedValue expected value of the population mean\n * @returns {number} value\n * @example\n * tTest([1, 2, 3, 4, 5, 6], 3.385).toFixed(2); // => '0.16'\n */\nfunction tTest(x, expectedValue) {\n // The mean of the sample\n const sampleMean = mean(x);\n\n // The standard deviation of the sample\n const sd = standardDeviation(x);\n\n // Square root the length of the sample\n const rootN = Math.sqrt(x.length);\n\n // returning the t value\n return (sampleMean - expectedValue) / (sd / rootN);\n}\n\nexport default tTest;\n","import mean from \"./mean.js\";\nimport sampleVariance from \"./sample_variance.js\";\n\n/**\n * This is to compute [two sample t-test](http://en.wikipedia.org/wiki/Student's_t-test).\n * Tests whether \"mean(X)-mean(Y) = difference\", (\n * in the most common case, we often have `difference == 0` to test if two samples\n * are likely to be taken from populations with the same mean value) with\n * no prior knowledge on standard deviations of both samples\n * other than the fact that they have the same standard deviation.\n *\n * Usually the results here are used to look up a\n * [p-value](http://en.wikipedia.org/wiki/P-value), which, for\n * a certain level of significance, will let you determine that the\n * null hypothesis can or cannot be rejected.\n *\n * `diff` can be omitted if it equals 0.\n *\n * [This is used to reject](https://en.wikipedia.org/wiki/Exclusion_of_the_null_hypothesis)\n * a null hypothesis that the two populations that have been sampled into\n * `sampleX` and `sampleY` are equal to each other.\n *\n * @param {Array<number>} sampleX a sample as an array of numbers\n * @param {Array<number>} sampleY a sample as an array of numbers\n * @param {number} [difference=0]\n * @returns {number|null} test result\n *\n * @example\n * tTestTwoSample([1, 2, 3, 4], [3, 4, 5, 6], 0); // => -2.1908902300206643\n */\nfunction tTestTwoSample(sampleX, sampleY, difference) {\n const n = sampleX.length;\n const m = sampleY.length;\n\n // If either sample doesn't actually have any values, we can't\n // compute this at all, so we return `null`.\n if (!n || !m) {\n return null;\n }\n\n // default difference (mu) is zero\n if (!difference) {\n difference = 0;\n }\n\n const meanX = mean(sampleX);\n const meanY = mean(sampleY);\n const sampleVarianceX = sampleVariance(sampleX);\n const sampleVarianceY = sampleVariance(sampleY);\n\n if (\n typeof meanX === \"number\" &&\n typeof meanY === \"number\" &&\n typeof sampleVarianceX === \"number\" &&\n typeof sampleVarianceY === \"number\"\n ) {\n const weightedVariance =\n ((n - 1) * sampleVarianceX + (m - 1) * sampleVarianceY) /\n (n + m - 2);\n\n return (\n (meanX - meanY - difference) /\n Math.sqrt(weightedVariance * (1 / n + 1 / m))\n );\n }\n}\n\nexport default tTestTwoSample;\n","/**\n * This function calculates the Wilcoxon rank sum statistic for the first sample\n * with respect to the second. The Wilcoxon rank sum test is a non-parametric\n * alternative to the t-test which is equivalent to the\n * [Mann-Whitney U test](https://en.wikipedia.org/wiki/Mann%E2%80%93Whitney_U_test).\n * The statistic is calculated by pooling all the observations together, ranking them,\n * and then summing the ranks associated with one of the samples. If this rank sum is\n * sufficiently large or small we reject the hypothesis that the two samples come\n * from the same distribution in favor of the alternative that one is shifted with\n * respect to the other.\n *\n * @param {Array<number>} sampleX a sample as an array of numbers\n * @param {Array<number>} sampleY a sample as an array of numbers\n * @returns {number} rank sum for sampleX\n *\n * @example\n * wilcoxonRankSum([1, 4, 8], [9, 12, 15]); // => 6\n */\nfunction wilcoxonRankSum(sampleX, sampleY) {\n if (!sampleX.length || !sampleY.length) {\n throw new Error(\"Neither sample can be empty\");\n }\n\n const pooledSamples = sampleX\n .map((x) => ({ label: \"x\", value: x }))\n .concat(sampleY.map((y) => ({ label: \"y\", value: y })))\n .sort((a, b) => a.value - b.value);\n\n for (let rank = 0; rank < pooledSamples.length; rank++) {\n pooledSamples[rank].rank = rank;\n }\n\n let tiedRanks = [pooledSamples[0].rank];\n for (let i = 1; i < pooledSamples.length; i++) {\n if (pooledSamples[i].value === pooledSamples[i - 1].value) {\n tiedRanks.push(pooledSamples[i].rank);\n if (i === pooledSamples.length - 1) {\n replaceRanksInPlace(pooledSamples, tiedRanks);\n }\n } else if (tiedRanks.length > 1) {\n replaceRanksInPlace(pooledSamples, tiedRanks);\n } else {\n tiedRanks = [pooledSamples[i].rank];\n }\n }\n\n function replaceRanksInPlace(pooledSamples, tiedRanks) {\n const average = (tiedRanks[0] + tiedRanks[tiedRanks.length - 1]) / 2;\n for (let i = 0; i < tiedRanks.length; i++) {\n pooledSamples[tiedRanks[i]].rank = average;\n }\n }\n\n let rankSum = 0;\n\n for (let i = 0; i < pooledSamples.length; i++) {\n const sample = pooledSamples[i];\n if (sample.label === \"x\") {\n rankSum += sample.rank + 1;\n }\n }\n\n return rankSum;\n}\n\nexport default wilcoxonRankSum;\n","/**\n * The [Z-Score, or Standard Score](http://en.wikipedia.org/wiki/Standard_score).\n *\n * The standard score is the number of standard deviations an observation\n * or datum is above or below the mean. Thus, a positive standard score\n * represents a datum above the mean, while a negative standard score\n * represents a datum below the mean. It is a dimensionless quantity\n * obtained by subtracting the population mean from an individual raw\n * score and then dividing the difference by the population standard\n * deviation.\n *\n * The z-score is only defined if one knows the population parameters;\n * if one only has a sample set, then the analogous computation with\n * sample mean and sample standard deviation yields the\n * Student's t-statistic.\n *\n * @param {number} x\n * @param {number} mean\n * @param {number} standardDeviation\n * @return {number} z score\n * @example\n * zScore(78, 80, 5); // => -0.4\n */\nfunction zScore(x, mean, standardDeviation) {\n return (x - mean) / standardDeviation;\n}\n\nexport default zScore;\n"],"names":["sum","x","length","let","transition","correction","NaN","i","Math","abs","mean","Error","sumNthPowerDeviations","n","const","tempValue","meanValue","pow","variance","standardDeviation","v","sqrt","modeSorted","sorted","last","value","maxSeen","seenThis","numericSort","slice","sort","a","b","min","max","sumSimple","quantileSorted","p","idx","ceil","quickselect","arr","k","left","right","m","z","log","s","exp","sd","floor","t","j","swap","tmp","quantile","copy","Array","isArray","indices","push","quantileIndex","compare","stack","r","pop","l","quantileSelect","multiQuantileSelect","results","len","quantileRankSorted","mid","lo","hi","lowerBound","u","upperBound","interquartileRange","q1","q2","median","medianAbsoluteDeviation","medianValue","medianAbsoluteDeviations","shuffleInPlace","randomSource","random","temporary","index","shuffle","sample","makeMatrix","columns","rows","matrix","column","uniqueCountSorted","lastSeenValue","uniqueValueCount","ssq","sums","sumsOfSquares","sji","muji","fillMatrixColumn","iMin","iMax","cluster","backtrackMatrix","jlow","ssqjlow","ssqj","jhigh","sampleCovariance","y","xmean","ymean","sampleVariance","sampleStandardDeviation","sampleVarianceX","sampleCorrelation","combineMeans","mean1","n1","mean2","n2","meanSimple","rootMeanSquare","sumOfSquares","BayesianClassifier","this","totalCount","data","prototype","train","item","category","undefined","score","odds","oddsSums","combination","PerceptronModel","weights","bias","predict","features","label","prediction","gradient","epsilon","factorial","accumulator","COEFFICIENTS","LOGSQRT2PI","PI","chiSquaredDistributionTable","SQRT_2PI","kernels","gaussian","bandwidthMethods","nrd","stddev","iqr","kernelDensityEstimation","X","kernel","bandwidthMethod","kernelFn","bandwidth","cumulativeDistribution","round","standardNormalTable","errorFunction","tau","inverseErrorFunction","inv","sign","TypeError","euclideanDistance","diff","labelPoints","points","centroids","map","minDist","Number","MAX_VALUE","dist","calculateCentroids","labels","numCluster","dimension","counts","fill","numPoints","point","current","centroid","calculateChange","total","silhouette","groupings","numGroups","result","createGroups","distances","calculateAllDistances","meanDistanceFromPointToGroup","meanDistanceToNearestGroup","which","d","group","relativeError","actual","expected","newValue","tolerance","trials","probability","cumulativeProbability","cells","binomialCoefficient","func","start","end","maxIterations","errorTolerance","output","distributionType","significance","chiSquared","hypothesizedDistribution","observedFrequencies","expectedFrequencies","degreesOfFreedom","chunkSize","nClusters","nValues","shift","shiftedValue","fillMatrices","clusters","clusterRight","clusterLeft","combinations","subI","subsetCombinations","next","combinationList","unshift","combinationsReplacement","concat","variance1","variance2","newMean","absZ","toFixed","nClasses","theMin","theMax","breaks","breakSize","gamma","isInteger","sin","seriesDenom","E","Infinity","g","reciprocalSum","matrices","lowerClassLimits","varianceCombinations","tmp1","tmp2","sumSquares","w","i4","lowerClassLimit","val","jenksMatrices","kclass","countNum","jenksBreaks","oldCentroids","newCentroids","change","dataLength","sumX","sumY","sumXX","sumXY","mb","mode","Map","modeCount","newCount","get","set","sampleX","sampleY","alternative","testStatistic","testStatDsn","allData","midIndex","permLeft","permRight","permTestStatistic","numExtremeTStats","elements","indexes","permutations","swapFrom","temp","lambda","factorialX","average","err","secondCentralMoment","fourthCentralMoment","xIndexes","pair","yIndexes","xRanks","yRanks","sumSquaredDeviations","sumCubedDeviations","besselsCorrection","theSampleStandardDeviation","expectedValue","difference","meanX","meanY","sampleVarianceY","weightedVariance","pooledSamples","rank","tiedRanks","replaceRanksInPlace","rankSum"],"mappings":"0OAkBA,SAASA,EAAIC,GAET,GAAiB,IAAbA,EAAEC,OACF,OAAO,EAIXC,IAKIC,EALAJ,EAAMC,EAAE,GAGRI,EAAa,EAIjB,GAAmB,iBAARL,EACP,OAAOM,IAGX,IAAKH,IAAII,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IAAK,CAC/B,GAAoB,iBAATN,EAAEM,GACT,OAAOD,IAEXF,EAAaJ,EAAMC,EAAEM,GAIjBC,KAAKC,IAAIT,IAAQQ,KAAKC,IAAIR,EAAEM,IAC5BF,GAAcL,EAAMI,EAAaH,EAAEM,GAEnCF,GAAcJ,EAAEM,GAAKH,EAAaJ,EAGtCA,EAAMI,CACT,CAGD,OAAOJ,EAAMK,CACjB,CCvCA,SAASK,EAAKT,GACV,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIS,MAAM,yCAGpB,OAAOX,EAAIC,GAAKA,EAAEC,MACtB,CCLA,SAASU,EAAsBX,EAAGY,GAC9BC,IAEIC,EACAR,EAHES,EAAYN,EAAKT,GACnBD,EAAM,EAOV,GAAU,IAANa,EACA,IAAKN,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IAEtBP,IADAe,EAAYd,EAAEM,GAAKS,GACAD,OAGvB,IAAKR,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IACtBP,GAAOQ,KAAKS,IAAIhB,EAAEM,GAAKS,EAAWH,GAI1C,OAAOb,CACX,CCtBA,SAASkB,EAASjB,GACd,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIS,MAAM,6CAKpB,OAAOC,EAAsBX,EAAG,GAAKA,EAAEC,MAC3C,CCNA,SAASiB,EAAkBlB,GACvB,GAAiB,IAAbA,EAAEC,OACF,OAAO,EAEXY,IAAMM,EAAIF,EAASjB,GACnB,OAAOO,KAAKa,KAAKD,EACrB,CCPA,SAASE,EAAWC,GAGhB,GAAsB,IAAlBA,EAAOrB,OACP,MAAM,IAAIS,MAAM,yCACb,GAAsB,IAAlBY,EAAOrB,OACd,OAAOqB,EAAO,GAmBlB,IAbApB,IAAIqB,EAAOD,EAAO,GAEdE,EAAQnB,IAERoB,EAAU,EAGVC,EAAW,EAMNpB,EAAI,EAAGA,EAAIgB,EAAOrB,OAAS,EAAGK,IAE/BgB,EAAOhB,KAAOiB,GAGVG,EAAWD,IACXA,EAAUC,EACVF,EAAQD,GAEZG,EAAW,EACXH,EAAOD,EAAOhB,IAIdoB,IAGR,OAAOF,CACX,CC3CA,SAASG,EAAY3B,GACjB,OACIA,EAEK4B,QAEAC,MAAK,SAAUC,EAAGC,GACf,OAAOD,EAAIC,CAC3B,GAEA,CCjBA,SAASC,EAAIhC,GACT,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIS,MAAM,wCAIpB,IADAR,IAAIsB,EAAQxB,EAAE,GACLM,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IACtBN,EAAEM,GAAKkB,IACPA,EAAQxB,EAAEM,IAGlB,OAAOkB,CACX,CCVA,SAASS,EAAIjC,GACT,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIS,MAAM,wCAIpB,IADAR,IAAIsB,EAAQxB,EAAE,GACLM,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IACtBN,EAAEM,GAAKkB,IACPA,EAAQxB,EAAEM,IAGlB,OAAOkB,CACX,CCbA,SAASU,EAAUlC,GAEf,IADAE,IAAIsB,EAAQ,EACHlB,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IAAK,CAC/B,GAAoB,iBAATN,EAAEM,GACT,OAAOD,IAEXmB,GAASxB,EAAEM,EACd,CACD,OAAOkB,CACX,CCPA,SAASW,EAAenC,EAAGoC,GACvBvB,IAAMwB,EAAMrC,EAAEC,OAASmC,EACvB,GAAiB,IAAbpC,EAAEC,OACF,MAAM,IAAIS,MAAM,8CACb,GAAI0B,EAAI,GAAKA,EAAI,EACpB,MAAM,IAAI1B,MAAM,qCACb,OAAU,IAAN0B,EAEApC,EAAEA,EAAEC,OAAS,GACP,IAANmC,EAEApC,EAAE,GACFqC,EAAM,GAAM,EAEZrC,EAAEO,KAAK+B,KAAKD,GAAO,GACnBrC,EAAEC,OAAS,GAAM,GAGhBD,EAAEqC,EAAM,GAAKrC,EAAEqC,IAAQ,EAIxBrC,EAAEqC,EAEjB,CCrBA,SAASE,EAAYC,EAAKC,EAAGC,EAAMC,GAI/B,IAHAD,EAAOA,GAAQ,EACfC,EAAQA,GAASH,EAAIvC,OAAS,EAEvB0C,EAAQD,GAAM,CAEjB,GAAIC,EAAQD,EAAO,IAAK,CACpB7B,IAAMD,EAAI+B,EAAQD,EAAO,EACnBE,EAAIH,EAAIC,EAAO,EACfG,EAAItC,KAAKuC,IAAIlC,GACbmC,EAAI,GAAMxC,KAAKyC,IAAK,EAAIH,EAAK,GAC/BI,EAAK,GAAM1C,KAAKa,KAAMyB,EAAIE,GAAKnC,EAAImC,GAAMnC,GACzCgC,EAAIhC,EAAI,EAAI,IAAGqC,IAAO,GAM1BV,EAAYC,EAAKC,EALDlC,KAAK0B,IAAIS,EAAMnC,KAAK2C,MAAMT,EAAKG,EAAIG,EAAKnC,EAAIqC,IAC3C1C,KAAKyB,IAClBW,EACApC,KAAK2C,MAAMT,GAAM7B,EAAIgC,GAAKG,EAAKnC,EAAIqC,IAG1C,CAEDpC,IAAMsC,EAAIX,EAAIC,GACVnC,EAAIoC,EACJU,EAAIT,EAKR,IAHAU,EAAKb,EAAKE,EAAMD,GACZD,EAAIG,GAASQ,GAAGE,EAAKb,EAAKE,EAAMC,GAE7BrC,EAAI8C,GAAG,CAIV,IAHAC,EAAKb,EAAKlC,EAAG8C,GACb9C,IACA8C,IACOZ,EAAIlC,GAAK6C,GAAG7C,IACnB,KAAOkC,EAAIY,GAAKD,GAAGC,GACtB,CAEGZ,EAAIE,KAAUS,EAAGE,EAAKb,EAAKE,EAAMU,GAGjCC,EAAKb,IADLY,EACaT,GAGbS,GAAKX,IAAGC,EAAOU,EAAI,GACnBX,GAAKW,IAAGT,EAAQS,EAAI,EAC3B,CACL,CAEA,SAASC,EAAKb,EAAKlC,EAAG8C,GAClBvC,IAAMyC,EAAMd,EAAIlC,GAChBkC,EAAIlC,GAAKkC,EAAIY,GACbZ,EAAIY,GAAKE,CACb,CC3CA,SAASC,EAASvD,EAAGoC,GACjBvB,IAAM2C,EAAOxD,EAAE4B,QAEf,GAAI6B,MAAMC,QAAQtB,GAAI,EA4B1B,SAA6BI,EAAKJ,GAE9B,IADAvB,IAAM8C,EAAU,CAAC,GACRrD,EAAI,EAAGA,EAAI8B,EAAEnC,OAAQK,IAC1BqD,EAAQC,KAAKC,EAAcrB,EAAIvC,OAAQmC,EAAE9B,KAE7CqD,EAAQC,KAAKpB,EAAIvC,OAAS,GAC1B0D,EAAQ9B,KAAKiC,GAEbjD,IAAMkD,EAAQ,CAAC,EAAGJ,EAAQ1D,OAAS,GAEnC,KAAO8D,EAAM9D,QAAQ,CACjBY,IAAMmD,EAAIzD,KAAK+B,KAAKyB,EAAME,OACpBC,EAAI3D,KAAK2C,MAAMa,EAAME,OAC3B,KAAID,EAAIE,GAAK,GAAb,CAEArD,IAAM+B,EAAIrC,KAAK2C,OAAOgB,EAAIF,GAAK,GAC/BG,EACI3B,EACAmB,EAAQf,GACRrC,KAAK2C,MAAMS,EAAQO,IACnB3D,KAAK+B,KAAKqB,EAAQK,KAGtBD,EAAMH,KAAKM,EAAGtB,EAAGA,EAAGoB,EAVK,CAW5B,CACL,CAlDQI,CAAoBZ,EAAMpB,GAI1B,IAFAvB,IAAMwD,EAAU,GAEP/D,EAAI,EAAGA,EAAI8B,EAAEnC,OAAQK,IAC1B+D,EAAQ/D,GAAK6B,EAAeqB,EAAMpB,EAAE9B,IAExC,OAAO+D,CACf,CAGQ,OADAF,EAAeX,EADHK,EAAcL,EAAKvD,OAAQmC,GACb,EAAGoB,EAAKvD,OAAS,GACpCkC,EAAeqB,EAAMpB,EAEpC,CAEA,SAAS+B,EAAe3B,EAAKC,EAAGC,EAAMC,GAC9BF,EAAI,GAAM,EACVF,EAAYC,EAAKC,EAAGC,EAAMC,IAG1BJ,EAAYC,EADZC,EAAIlC,KAAK2C,MAAMT,GACKC,EAAMC,GAC1BJ,EAAYC,EAAKC,EAAI,EAAGA,EAAI,EAAGE,GAEvC,CA6BA,SAASmB,EAAQhC,EAAGC,GAChB,OAAOD,EAAIC,CACf,CAEA,SAAS8B,EAAcS,EAAKlC,GACxBvB,IAAMwB,EAAMiC,EAAMlC,EAClB,OAAU,IAANA,EAEOkC,EAAM,EACA,IAANlC,EAEA,EACAC,EAAM,GAAM,EAEZ9B,KAAK+B,KAAKD,GAAO,EACjBiC,EAAM,GAAM,EAGZjC,EAAM,GAINA,CAEf,CC3FA,SAASkC,EAAmBvE,EAAGwB,GAE3B,GAAIA,EAAQxB,EAAE,GACV,OAAO,EAIX,GAAIwB,EAAQxB,EAAEA,EAAEC,OAAS,GACrB,OAAO,EAGXC,IAAIgE,EA2BR,SAAoBlE,EAAGwB,GACnBtB,IAAIsE,EAAM,EACNC,EAAK,EACLC,EAAK1E,EAAEC,OAEX,KAAOwE,EAAKC,GAGJlD,GAASxB,EAFbwE,EAAOC,EAAKC,IAAQ,GAGhBA,EAAKF,EAELC,IAAOD,EAIf,OAAOC,CACX,CA3CYE,CAAW3E,EAAGwB,GAGtB,GAAIxB,EAAEkE,KAAO1C,EACT,OAAO0C,EAAIlE,EAAEC,OAGjBiE,IAEArD,IAAM+D,EAoCV,SAAoB5E,EAAGwB,GACnBtB,IAAIsE,EAAM,EACNC,EAAK,EACLC,EAAK1E,EAAEC,OAEX,KAAOwE,EAAKC,GAGJlD,GAASxB,EAFbwE,EAAOC,EAAKC,IAAQ,GAGhBD,IAAOD,EAEPE,EAAKF,EAIb,OAAOC,CACX,CApDcI,CAAW7E,EAAGwB,GAGxB,GAAIoD,IAAMV,EACN,OAAOA,EAAIlE,EAAEC,OAOjBY,IAAMmD,EAAIY,EAAIV,EAAI,EAIlB,OAHaF,GAAKY,EAAIV,GAAM,EACTF,EAELhE,EAAEC,MACpB,CCrCA,SAAS6E,EAAmB9E,GAGxBa,IAAMkE,EAAKxB,EAASvD,EAAG,KACjBgF,EAAKzB,EAASvD,EAAG,KAEvB,GAAkB,iBAAP+E,GAAiC,iBAAPC,EACjC,OAAOD,EAAKC,CAEpB,CCLA,SAASC,EAAOjF,GACZ,OAAQuD,EAASvD,EAAG,GACxB,CCRA,SAASkF,EAAwBlF,GAK7B,IAJAa,IAAMsE,EAAcF,EAAOjF,GACrBoF,EAA2B,GAGxB9E,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IAC1B8E,EAAyBxB,KAAKrD,KAAKC,IAAIR,EAAEM,GAAK6E,IAIlD,OAAOF,EAAOG,EAClB,CCNA,SAASC,EAAerF,EAAGsF,GAIvBA,EAAeA,GAAgB/E,KAAKgF,OAcpC,IAVArF,IAIIsF,EAGAC,EAPAxF,EAASD,EAAEC,OAURA,EAAS,GAGZwF,EAAQlF,KAAK2C,MAAMoC,IAAiBrF,KAGpCuF,EAAYxF,EAAEC,GAGdD,EAAEC,GAAUD,EAAEyF,GACdzF,EAAEyF,GAASD,EAGf,OAAOxF,CACX,CCjCA,SAAS0F,EAAQ1F,EAAGsF,GAKhB,OAAOD,EAHQrF,EAAE4B,QAGa0D,EAClC,CCHA,SAASK,EAAO3F,EAAGY,EAAG0E,GAKlB,OAHiBI,EAAQ1F,EAAGsF,GAGZ1D,MAAM,EAAGhB,EAC7B,CCfA,SAASgF,EAAWC,EAASC,GAEzB,IADAjF,IAAMkF,EAAS,GACNzF,EAAI,EAAGA,EAAIuF,EAASvF,IAAK,CAE9B,IADAO,IAAMmF,EAAS,GACN5C,EAAI,EAAGA,EAAI0C,EAAM1C,IACtB4C,EAAOpC,KAAK,GAEhBmC,EAAOnC,KAAKoC,EACf,CACD,OAAOD,CACX,CCNA,SAASE,EAAkBjG,GAGvB,IAFAE,IACIgG,EADAC,EAAmB,EAEd7F,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IAChB,IAANA,GAAWN,EAAEM,KAAO4F,IACpBA,EAAgBlG,EAAEM,GAClB6F,KAGR,OAAOA,CACX,CCPA,SAASC,EAAIhD,EAAG9C,EAAG+F,EAAMC,GACrBpG,IAAIqG,EACJ,GAAInD,EAAI,EAAG,CACPvC,IAAM2F,GAAQH,EAAK/F,GAAK+F,EAAKjD,EAAI,KAAO9C,EAAI8C,EAAI,GAChDmD,EACID,EAAchG,GAAKgG,EAAclD,EAAI,IAAM9C,EAAI8C,EAAI,GAAKoD,EAAOA,CAC3E,MACQD,EAAMD,EAAchG,GAAM+F,EAAK/F,GAAK+F,EAAK/F,IAAOA,EAAI,GAExD,OAAIiG,EAAM,EACC,EAEJA,CACX,CAeA,SAASE,EACLC,EACAC,EACAC,EACAb,EACAc,EACAR,EACAC,GAEA,KAAII,EAAOC,GAAX,CAKA9F,IAAMP,EAAIC,KAAK2C,OAAOwD,EAAOC,GAAQ,GAErCZ,EAAOa,GAAStG,GAAKyF,EAAOa,EAAU,GAAGtG,EAAI,GAC7CuG,EAAgBD,GAAStG,GAAKA,EAE9BJ,IAAI4G,EAAOF,EAEPF,EAAOE,IACPE,EAAOvG,KAAK0B,IAAI6E,EAAMD,EAAgBD,GAASF,EAAO,IAAM,IAEhEI,EAAOvG,KAAK0B,IAAI6E,EAAMD,EAAgBD,EAAU,GAAGtG,IAAM,GAEzDJ,IAKIqG,EAEAQ,EACAC,EARAC,EAAQ3G,EAAI,EACZqG,EAAOZ,EAAO,GAAG9F,OAAS,IAC1BgH,EAAQ1G,KAAKyB,IAAIiF,EAAOJ,EAAgBD,GAASD,EAAO,IAAM,IAOlE,IAAKzG,IAAIkD,EAAI6D,EAAO7D,GAAK0D,MACrBP,EAAMH,EAAIhD,EAAG9C,EAAG+F,EAAMC,IAEZP,EAAOa,EAAU,GAAGE,EAAO,IAAMf,EAAOa,GAAStG,MAH9B8C,GAU7B2D,EAFSX,EAAIU,EAAMxG,EAAG+F,EAAMC,GAETP,EAAOa,EAAU,GAAGE,EAAO,IAEhCf,EAAOa,GAAStG,KAE1ByF,EAAOa,GAAStG,GAAKyG,EACrBF,EAAgBD,GAAStG,GAAKwG,GAElCA,KAEAE,EAAOT,EAAMR,EAAOa,EAAU,GAAGxD,EAAI,IAC1B2C,EAAOa,GAAStG,KACvByF,EAAOa,GAAStG,GAAK0G,EACrBH,EAAgBD,GAAStG,GAAK8C,GAItCqD,EACIC,EACApG,EAAI,EACJsG,EACAb,EACAc,EACAR,EACAC,GAEJG,EACInG,EAAI,EACJqG,EACAC,EACAb,EACAc,EACAR,EACAC,EAlEH,CAoEL,CC7GA,SAASY,EAAiBlH,EAAGmH,GAEzB,GAAInH,EAAEC,SAAWkH,EAAElH,OACf,MAAM,IAAIS,MAAM,wDAGpB,GAAIV,EAAEC,OAAS,EACX,MAAM,IAAIS,MACN,qEAgBR,IARAG,IAAMuG,EAAQ3G,EAAKT,GACbqH,EAAQ5G,EAAK0G,GACfpH,EAAM,EAMDO,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IAC1BP,IAAQC,EAAEM,GAAK8G,IAAUD,EAAE7G,GAAK+G,GASpC,OAAOtH,GAHmBC,EAAEC,OAAS,EAIzC,CC/BA,SAASqH,EAAetH,GACpB,GAAIA,EAAEC,OAAS,EACX,MAAM,IAAIS,MAAM,oDAWpB,OARkCC,EAAsBX,EAAG,IAKjCA,EAAEC,OAAS,EAIzC,CCrBA,SAASsH,EAAwBvH,GAC7Ba,IAAM2G,EAAkBF,EAAetH,GACvC,OAAOO,KAAKa,KAAKoG,EACrB,CCDA,SAASC,EAAkBzH,EAAGmH,GAK1B,OAJYD,EAAiBlH,EAAGmH,GACnBI,EAAwBvH,GACxBuH,EAAwBJ,EAGzC,CCHA,SAASO,EAAaC,EAAOC,EAAIC,EAAOC,GACpC,OAAQH,EAAQC,EAAKC,EAAQC,IAAOF,EAAKE,EAC7C,CCGA,SAASC,EAAW/H,GAChB,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIS,MAAM,+CAGpB,OAAOwB,EAAUlC,GAAKA,EAAEC,MAC5B,CCdA,SAAS+H,EAAehI,GACpB,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIS,MAAM,mDAIpB,IADAR,IAAI+H,EAAe,EACV3H,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IAC1B2H,GAAgB1H,KAAKS,IAAIhB,EAAEM,GAAI,GAGnC,OAAOC,KAAKa,KAAK6G,EAAejI,EAAEC,OACtC,CCLM,IAAAiI,EAGF,WAGIC,KAAKC,WAAa,EAElBD,KAAKE,KAAO,EAChB,EAUAH,EAAAI,UAAAC,MAAA,SAAMC,EAAMC,GAQR,IAAK5H,IAAM4B,KALN0F,KAAKE,KAAKI,KACXN,KAAKE,KAAKI,GAAY,IAIVD,EAAM,CAClB3H,IAAMM,EAAIqH,EAAK/F,QAGgBiG,IAA3BP,KAAKE,KAAKI,GAAUhG,KACpB0F,KAAKE,KAAKI,GAAUhG,GAAK,CAAA,QAEKiG,IAA9BP,KAAKE,KAAKI,GAAUhG,GAAGtB,KACvBgH,KAAKE,KAAKI,GAAUhG,GAAGtB,GAAK,GAIhCgH,KAAKE,KAAKI,GAAUhG,GAAGtB,IAC1B,CAGDgH,KAAKC,YACT,cAUAO,MAAK,SAACH,GAEF3H,IACI4H,EADEG,EAAO,CAAA,EAKb,IAAK/H,IAAM4B,KAAK+F,EAAM,CAClB3H,IAAMM,EAAIqH,EAAK/F,GACf,IAAKgG,KAAYN,KAAKE,KAGlBO,EAAKH,GAAY,GAMbN,KAAKE,KAAKI,GAAUhG,GACpBmG,EAAKH,GAAUhG,EAAI,IAAMtB,IACpBgH,KAAKE,KAAKI,GAAUhG,GAAGtB,IAAM,GAAKgH,KAAKC,WAE5CQ,EAAKH,GAAUhG,EAAI,IAAMtB,GAAK,CAGzC,CAGDN,IAAMgI,EAAW,CAAA,EAEjB,IAAKJ,KAAYG,EAKb,IAAK/H,IAAMiI,KADXD,EAASJ,GAAY,EACKG,EAAKH,GAC3BI,EAASJ,IAAaG,EAAKH,GAAUK,GAI7C,OAAOD,CACX,EC/FE,IAAAE,EAGF,WAGIZ,KAAKa,QAAU,GAIfb,KAAKc,KAAO,CAChB,cAQAC,QAAO,SAACC,GAGJ,GAAIA,EAASlJ,SAAWkI,KAAKa,QAAQ/I,OACjC,OAAO,KAMX,IADAC,IAAIyI,EAAQ,EACHrI,EAAI,EAAGA,EAAI6H,KAAKa,QAAQ/I,OAAQK,IACrCqI,GAASR,KAAKa,QAAQ1I,GAAK6I,EAAS7I,GAKxC,OAHAqI,GAASR,KAAKc,MAGF,EACD,EAEA,CAEf,EAUAF,EAAAT,UAAAC,MAAA,SAAMY,EAAUC,GAEZ,GAAc,IAAVA,GAAyB,IAAVA,EACf,OAAO,KAOPD,EAASlJ,SAAWkI,KAAKa,QAAQ/I,SACjCkI,KAAKa,QAAUG,EACfhB,KAAKc,KAAO,GAGhBpI,IAAMwI,EAAalB,KAAKe,QAAQC,GAEhC,GAA0B,iBAAfE,GAA2BA,IAAeD,EAAO,CAExD,IADAvI,IAAMyI,EAAWF,EAAQC,EAChB/I,EAAI,EAAGA,EAAI6H,KAAKa,QAAQ/I,OAAQK,IACrC6H,KAAKa,QAAQ1I,IAAMgJ,EAAWH,EAAS7I,GAE3C6H,KAAKc,MAAQK,CAChB,CACD,OAAOnB,IACX,EC7DC,IAACoB,EAAU,KCtBhB,SAASC,EAAU5I,GAEf,GAAIA,EAAI,EACJ,MAAM,IAAIF,MAAM,2CAGpB,GAAIH,KAAK2C,MAAMtC,KAAOA,EAClB,MAAM,IAAIF,MAAM,uCAQpB,IADAR,IAAIuJ,EAAc,EACTnJ,EAAI,EAAGA,GAAKM,EAAGN,IAGpBmJ,GAAenJ,EAEnB,OAAOmJ,CACX,CChCA5I,IAAM6I,EAAe,CACjB,kBAAwB,mBAAwB,kBAChD,oBAAwB,kBAAwB,qBAChD,sBAA4B,qBAC5B,sBAA4B,sBAC5B,uBAA2B,qBAC3B,sBAA4B,sBAC5B,uBAIEC,EAAapJ,KAAKuC,IAAIvC,KAAKa,KAAK,EAAIb,KAAKqJ,KCD1C,IAACC,EAA8B,CAChC,EAAG,CACC,KAAO,EACP,IAAM,EACN,KAAO,EACP,IAAM,EACN,GAAK,IACL,GAAK,IACL,GAAK,KACL,IAAM,KACN,KAAO,KACP,IAAM,KACN,KAAO,MAEX,EAAG,CACC,KAAO,IACP,IAAM,IACN,KAAO,IACP,IAAM,GACN,GAAK,IACL,GAAK,KACL,GAAK,KACL,IAAM,KACN,KAAO,KACP,IAAM,KACN,KAAO,MAEX,EAAG,CACC,KAAO,IACP,IAAM,IACN,KAAO,IACP,IAAM,IACN,GAAK,IACL,GAAK,KACL,GAAK,KACL,IAAM,KACN,KAAO,KACP,IAAM,MACN,KAAO,OAEX,EAAG,CACC,KAAO,IACP,IAAM,GACN,KAAO,IACP,IAAM,IACN,GAAK,KACL,GAAK,KACL,GAAK,KACL,IAAM,KACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,EAAG,CACC,KAAO,IACP,IAAM,IACN,KAAO,IACP,IAAM,KACN,GAAK,KACL,GAAK,KACL,GAAK,KACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,EAAG,CACC,KAAO,IACP,IAAM,IACN,KAAO,KACP,IAAM,KACN,GAAK,IACL,GAAK,KACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,EAAG,CACC,KAAO,IACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,KACL,GAAK,KACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,EAAG,CACC,KAAO,KACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,KACL,GAAK,KACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,EAAG,CACC,KAAO,KACP,IAAM,KACN,KAAO,IACP,IAAM,KACN,GAAK,KACL,GAAK,KACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,KACL,GAAK,KACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,IACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,KACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,IACP,IAAM,KACN,GAAK,IACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,MAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,KACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,KACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,IACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,KACL,GAAK,MACL,GAAK,MACL,IAAM,GACN,KAAO,MACP,IAAM,MACN,KAAO,MAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,KACL,GAAK,MACL,GAAK,MACL,IAAM,KACN,KAAO,MACP,IAAM,GACN,KAAO,OAEX,GAAI,CACA,KAAO,IACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,KACP,IAAM,KACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,KACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,KACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,KACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,IAEX,GAAI,CACA,KAAO,KACP,IAAM,IACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,MAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,MAEX,GAAI,CACA,KAAO,KACP,IAAM,KACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,KACP,IAAM,MACN,KAAO,KACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,KACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,KACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,KACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,KACN,KAAO,MACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,KACL,IAAM,MACN,KAAO,KACP,IAAM,MACN,KAAO,OAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,MACN,KAAO,MACP,IAAM,OACN,KAAO,QAEX,GAAI,CACA,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,OACN,KAAO,OACP,IAAM,OACN,KAAO,QAEX,GAAI,CACA,KAAO,KACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,OACL,IAAM,OACN,KAAO,OACP,IAAM,OACN,KAAO,OAEX,IAAK,CACD,KAAO,MACP,IAAM,MACN,KAAO,MACP,IAAM,MACN,GAAK,MACL,GAAK,MACL,GAAK,MACL,IAAM,OACN,KAAO,OACP,IAAM,OACN,KAAO,SCxefhJ,IAAMiJ,EAAWvJ,KAAKa,KAAK,EAAIb,KAAKqJ,IAM9BG,EAAU,CAKZC,SAAU,SAAUpF,GAChB,OAAOrE,KAAKyC,KAAK,GAAM4B,EAAIA,GAAKkF,CACnC,GAOCG,EAAmB,CAQrBC,IAAK,SAAUlK,GACXE,IAAI6C,EAAIoH,EAAOnK,GACToK,EAAMtF,EAAmB9E,GAI/B,MAHmB,iBAARoK,IACPrH,EAAIxC,KAAKyB,IAAIe,EAAGqH,EAAM,OAEnB,KAAOrH,EAAIxC,KAAKS,IAAIhB,EAAEC,QAAS,GACzC,GAcL,SAASoK,EAAwBC,EAAGC,EAAQC,GACxCtK,IAAIuK,EAYAC,EAXJ,QAAehC,IAAX6B,EACAE,EAAWV,EAAQC,cAChB,GAAsB,iBAAXO,EAAqB,CACnC,IAAKR,EAAQQ,GACT,MAAM,IAAI7J,MAAM,mBAAqB6J,EAAS,KAElDE,EAAWV,EAAQQ,EAC3B,MACQE,EAAWF,EAIf,QAA+B,IAApBC,EACPE,EAAYT,EAAiBC,IAAII,QAC9B,GAA+B,iBAApBE,EAA8B,CAC5C,IAAKP,EAAiBO,GAClB,MAAM,IAAI9J,MACN,6BAA+B8J,EAAkB,KAGzDE,EAAYT,EAAiBO,GAAiBF,EACtD,MACQI,EAAYF,EAGhB,OAAO,SAAUxK,GACbE,IAAII,EAAI,EACJP,EAAM,EACV,IAAKO,EAAI,EAAGA,EAAIgK,EAAErK,OAAQK,IACtBP,GAAO0K,GAAUzK,EAAIsK,EAAEhK,IAAMoK,GAEjC,OAAO3K,EAAM2K,EAAYJ,EAAErK,MACnC,CACA,CCvFAY,IAAMiJ,EAAWvJ,KAAKa,KAAK,EAAIb,KAAKqJ,IAEpC,SAASe,EAAuB9H,GAK5B,IAJA3C,IAAIH,EAAM8C,EACNS,EAAMT,EAGDvC,EAAI,EAAGA,EAAI,GAAIA,IAEpBP,GADAuD,GAAQT,EAAIA,GAAM,EAAIvC,EAAI,GAG9B,OACIC,KAAKqK,MAA0D,KAAnD,GAAO7K,EAAM+J,EAAYvJ,KAAKyC,KAAMH,EAAIA,EAAK,KACzD,GAER,CAYA,IAFM,IAAAgI,EAAsB,GAEnBhI,EAAI,EAAGA,GAAK,KAAMA,GAAK,IAC5BgI,EAAoBjH,KAAK+G,EAAuB9H,ICdpD,SAASiI,EAAc9K,GACnBa,IAAMsC,EAAI,GAAK,EAAI,GAAM5C,KAAKC,IAAIR,IAC5B+K,EACF5H,EACA5C,KAAKyC,KACAhD,EAAIA,UACO,UAAamD,EAAI,WAAcA,EAAI,YAAcA,EACrD,YACAA,EACA,WACAA,EACA,WACAA,EACA,WACAA,EACA,WACAA,EACA,YACAA,EACJ,YAEZ,OAAInD,GAAK,EACE,EAAI+K,EAEJA,EAAM,CAErB,CChCA,SAASC,EAAqBhL,GAC1Ba,IAAMiB,EAAK,GAAKvB,KAAKqJ,GAAK,IAAO,EAAIrJ,KAAKqJ,IAAM,EAAIrJ,KAAKqJ,KAEnDqB,EAAM1K,KAAKa,KACbb,KAAKa,KACDb,KAAKS,IAAI,GAAKT,KAAKqJ,GAAK9H,GAAKvB,KAAKuC,IAAI,EAAI9C,EAAIA,GAAK,EAAG,GAClDO,KAAKuC,IAAI,EAAI9C,EAAIA,GAAK8B,IAEzB,GAAKvB,KAAKqJ,GAAK9H,GAAKvB,KAAKuC,IAAI,EAAI9C,EAAIA,GAAK,IAGnD,OAAIA,GAAK,EACEiL,GAECA,CAEhB,CCZA,SAASC,EAAKlL,GACV,GAAiB,iBAANA,EACP,OAAIA,EAAI,GACI,EACK,IAANA,EACA,EAEA,EAGX,MAAM,IAAImL,UAAU,eAE5B,CClBA,SAASC,GAAkB1I,EAAMC,GAE7B,IADAzC,IAAIH,EAAM,EACDO,EAAI,EAAGA,EAAIoC,EAAKzC,OAAQK,IAAK,CAClCO,IAAMwK,EAAO3I,EAAKpC,GAAKqC,EAAMrC,GAC7BP,GAAOsL,EAAOA,CACjB,CACD,OAAO9K,KAAKa,KAAKrB,EACrB,CCkCA,SAASuL,GAAYC,EAAQC,GACzB,OAAOD,EAAOE,KAAI,SAACrJ,GAGf,IAFAlC,IAAIwL,EAAUC,OAAOC,UACjBxC,GAAS,EACJ9I,EAAI,EAAGA,EAAIkL,EAAUvL,OAAQK,IAAK,CACvCO,IAAMgL,EAAOT,GAAkBhJ,EAAGoJ,EAAUlL,IACxCuL,EAAOH,IACPA,EAAUG,EACVzC,EAAQ9I,EAEf,CACD,OAAO8I,CACf,GACA,CAYA,SAAS0C,GAAmBP,EAAQQ,EAAQC,GAQxC,IANAnL,IAAMoL,EAAYV,EAAO,GAAGtL,OACtBuL,EAAY5F,EAAWoG,EAAYC,GACnCC,EAASzI,MAAMuI,GAAYG,KAAK,GAGhCC,EAAYb,EAAOtL,OAChBK,EAAI,EAAGA,EAAI8L,EAAW9L,IAAK,CAIhC,IAHAO,IAAMwL,EAAQd,EAAOjL,GACf8I,EAAQ2C,EAAOzL,GACfgM,EAAUd,EAAUpC,GACjBhG,EAAI,EAAGA,EAAI6I,EAAW7I,IAC3BkJ,EAAQlJ,IAAMiJ,EAAMjJ,GAExB8I,EAAO9C,IAAU,CACpB,CAGD,IAAKlJ,IAAII,EAAI,EAAGA,EAAI0L,EAAY1L,IAAK,CACjC,GAAkB,IAAd4L,EAAO5L,GACP,MAAM,IAAII,kBAAkBJ,EAAC,mBAGjC,IADAO,IAAM0L,EAAWf,EAAUlL,GAClB8C,EAAI,EAAGA,EAAI6I,EAAW7I,IAC3BmJ,EAASnJ,IAAM8I,EAAO5L,EAE7B,CAED,OAAOkL,CACX,CAUA,SAASgB,GAAgB9J,EAAMC,GAE3B,IADAzC,IAAIuM,EAAQ,EACHnM,EAAI,EAAGA,EAAIoC,EAAKzC,OAAQK,IAC7BmM,GAASrB,GAAkB1I,EAAKpC,GAAIqC,EAAMrC,IAE9C,OAAOmM,CACX,CCtGA,SAASC,GAAWnB,EAAQQ,GACxB,GAAIR,EAAOtL,SAAW8L,EAAO9L,OACzB,MAAM,IAAIS,MAAM,8CAKpB,IAHAG,IAAM8L,EAiCV,SAAsBZ,GAGlB,IAFAlL,IAAM+L,EAAY,EAAI3K,EAAI8J,GACpBc,EAASpJ,MAAMmJ,GACZtM,EAAI,EAAGA,EAAIyL,EAAO9L,OAAQK,IAAK,CACpCO,IAAMuI,EAAQ2C,EAAOzL,QACCoI,IAAlBmE,EAAOzD,KACPyD,EAAOzD,GAAS,IAEpByD,EAAOzD,GAAOxF,KAAKtD,EACtB,CACD,OAAOuM,CACX,CA5CsBC,CAAaf,GACzBgB,EAqDV,SAA+BxB,GAG3B,IAFA1K,IAAMuL,EAAYb,EAAOtL,OACnB4M,EAASjH,EAAWwG,EAAWA,GAC5B9L,EAAI,EAAGA,EAAI8L,EAAW9L,IAC3B,IAAKJ,IAAIkD,EAAI,EAAGA,EAAI9C,EAAG8C,IACnByJ,EAAOvM,GAAG8C,GAAKgI,GAAkBG,EAAOjL,GAAIiL,EAAOnI,IACnDyJ,EAAOzJ,GAAG9C,GAAKuM,EAAOvM,GAAG8C,GAGjC,OAAOyJ,CACX,CA/DsBG,CAAsBzB,GAClCsB,EAAS,GACNvM,EAAI,EAAGA,EAAIiL,EAAOtL,OAAQK,IAAK,CACpCJ,IAAI6C,EAAI,EACR,GAAI4J,EAAUZ,EAAOzL,IAAIL,OAAS,EAAG,CACjCY,IAAMiB,EAAImL,GACN3M,EACAqM,EAAUZ,EAAOzL,IACjByM,GAEEhL,EAAImL,GACN5M,EACAyL,EACAY,EACAI,GAEJhK,GAAKhB,EAAID,GAAKvB,KAAK0B,IAAIH,EAAGC,EAC7B,CACD8K,EAAOjJ,KAAKb,EACf,CACD,OAAO8J,CACX,CA0DA,SAASK,GAA2BC,EAAOpB,EAAQY,EAAWI,GAG1D,IAFAlM,IAAMuI,EAAQ2C,EAAOoB,GACjBN,EAASlB,OAAOC,UACXtL,EAAI,EAAGA,EAAIqM,EAAU1M,OAAQK,IAClC,GAAIA,IAAM8I,EAAO,CACbvI,IAAMuM,EAAIH,GACNE,EACAR,EAAUrM,GACVyM,GAEAK,EAAIP,IACJA,EAASO,EAEhB,CAEL,OAAOP,CACX,CAeA,SAASI,GAA6BE,EAAOE,EAAON,GAEhD,IADA7M,IAAIuM,EAAQ,EACHnM,EAAI,EAAGA,EAAI+M,EAAMpN,OAAQK,IAC9BmM,GAASM,EAAUI,GAAOE,EAAM/M,IAEpC,OAAOmM,EAAQY,EAAMpN,MACzB,CCzGA,SAASqN,GAAcC,EAAQC,GAC3B,OAAe,IAAXD,GAA6B,IAAbC,EACT,EAEJjN,KAAKC,KAAK+M,EAASC,GAAYA,EAC1C,wDCrBA,SAAmB/M,EAAMG,EAAG6M,GACxB,OAAOhN,GAAQgN,EAAWhN,IAASG,EAAI,EAC3C,gBCPA,SAAqB2M,EAAQC,EAAUE,GACnC,sBAD+CnE,GACxC+D,GAAcC,EAAQC,IAAaE,CAC9C,qECIA,SAA+BtL,GAE3B,GAAIA,EAAI,GAAKA,EAAI,EACb,MAAM,IAAI1B,MACN,8EAIR,MAAO,CAAC,EAAI0B,EAAGA,EACnB,yBCdA,SAA8BuL,EAAQC,GAGlC,KAAIA,EAAc,GAAKA,EAAc,GAAKD,GAAU,GAAKA,EAAS,GAAM,GAAxE,CAUAzN,IAAIF,EAAI,EACJ6N,EAAwB,EACtBC,EAAQ,GACVC,EAAsB,EAK1B,GAEID,EAAM9N,GACF+N,EACAxN,KAAKS,IAAI4M,EAAa5N,GACtBO,KAAKS,IAAI,EAAI4M,EAAaD,EAAS3N,GACvC6N,GAAyBC,EAAM9N,GAE/B+N,EAAuBA,GAAuBJ,IAD9C3N,EAC2D,GAAMA,QAG5D6N,EAAwB,OAEjC,OAAOC,CA7BN,CA8BL,WC5BA,SAAgBE,EAAMC,EAAOC,EAAKC,EAAeC,GAC7C,GAAoB,mBAATJ,EACP,MAAM,IAAI7C,UAAU,2BAExB,IAAKjL,IAAII,EAAI,EAAGA,EAAI6N,EAAe7N,IAAK,CACpCO,IAAMwN,GAAUJ,EAAQC,GAAO,EAE/B,GACqB,IAAjBF,EAAKK,IACL9N,KAAKC,KAAK0N,EAAMD,GAAS,GAAKG,EAE9B,OAAOC,EAGPnD,EAAK8C,EAAKK,MAAanD,EAAK8C,EAAKC,IACjCA,EAAQI,EAERH,EAAMG,CAEb,CAED,MAAM,IAAI3N,MAAM,wCACpB,4DCXA,SAAiC2H,EAAMiG,EAAkBC,GAgBrD,IAdA1N,IAEI2N,EAAa,EAMXC,EAA2BH,EARf7N,EAAK4H,IASjBqG,EAAsB,GACtBC,EAAsB,GAInBrO,EAAI,EAAGA,EAAI+H,EAAKpI,OAAQK,SACQoI,IAAjCgG,EAAoBrG,EAAK/H,MACzBoO,EAAoBrG,EAAK/H,IAAM,GAEnCoO,EAAoBrG,EAAK/H,MAM7B,IAAKJ,IAAII,EAAI,EAAGA,EAAIoO,EAAoBzO,OAAQK,SACboI,IAA3BgG,EAAoBpO,KACpBoO,EAAoBpO,GAAK,GAMjC,IAAKO,IAAM4B,KAAKgM,EACRhM,KAAKiM,IACLC,GAAqBlM,GAAKgM,EAAyBhM,GAAK4F,EAAKpI,QAOrE,IAAKC,IAAIuC,EAAIkM,EAAoB1O,OAAS,EAAGwC,GAAK,EAAGA,IAC7CkM,EAAoBlM,GAAK,IACzBkM,EAAoBlM,EAAI,IAAMkM,EAAoBlM,GAClDkM,EAAoB1K,MAEpByK,EAAoBjM,EAAI,IAAMiM,EAAoBjM,GAClDiM,EAAoBzK,OAM5B,IAAK/D,IAAIuC,EAAI,EAAGA,EAAIiM,EAAoBzO,OAAQwC,IAC5C+L,GACIjO,KAAKS,IAAI0N,EAAoBjM,GAAKkM,EAAoBlM,GAAI,GAC1DkM,EAAoBlM,GAQ5B5B,IAAM+N,EAAmBF,EAAoBzO,OA3DnC,EA2DgD,EAC1D,OACI4J,EAA4B+E,GAAkBL,GAAgBC,CAEtE,UCnFA,SAAexO,EAAG6O,GAEdhO,IAAMwN,EAAS,GAMf,GAAIQ,EAAY,EACZ,MAAM,IAAInO,MAAM,wCAGpB,GAAIH,KAAK2C,MAAM2L,KAAeA,EAC1B,MAAM,IAAInO,MAAM,iCAKpB,IAAKR,IAAI+N,EAAQ,EAAGA,EAAQjO,EAAEC,OAAQgO,GAASY,EAI3CR,EAAOzK,KAAK5D,EAAE4B,MAAMqM,EAAOA,EAAQY,IAEvC,OAAOR,CACX,Y7ByLA,SAAiBrO,EAAG8O,GAChB,GAAIA,EAAY9O,EAAEC,OACd,MAAM,IAAIS,MACN,2DAIRG,IAAMS,EAASK,EAAY3B,GAM3B,GAAoB,IAJAiG,EAAkB3E,GAKlC,MAAO,CAACA,GAIZT,IAAMkF,EAASH,EAAWkJ,EAAWxN,EAAOrB,QAEtC4G,EAAkBjB,EAAWkJ,EAAWxN,EAAOrB,SAhHzD,SAAsBoI,EAAMtC,EAAQc,GAWhC,IAVAhG,IAAMkO,EAAUhJ,EAAO,GAAG9F,OAGpB+O,EAAQ3G,EAAK9H,KAAK2C,MAAM6L,EAAU,IAGlC1I,EAAO,GACPC,EAAgB,GAGbhG,EAAI,EAAG2O,OAAY,EAAE3O,EAAIyO,IAAWzO,EACzC2O,EAAe5G,EAAK/H,GAAK0O,EACf,IAAN1O,GACA+F,EAAKzC,KAAKqL,GACV3I,EAAc1C,KAAKqL,EAAeA,KAElC5I,EAAKzC,KAAKyC,EAAK/F,EAAI,GAAK2O,GACxB3I,EAAc1C,KACV0C,EAAchG,EAAI,GAAK2O,EAAeA,IAK9ClJ,EAAO,GAAGzF,GAAK8F,EAAI,EAAG9F,EAAG+F,EAAMC,GAC/BO,EAAgB,GAAGvG,GAAK,EAK5B,IAAKJ,IAAI0G,EAAU,EAAGA,EAAUb,EAAO9F,SAAU2G,EAQ7CH,EAPIG,EAAUb,EAAO9F,OAAS,EACnB2G,EAGAmI,EAAU,EAKjBA,EAAU,EACVnI,EACAb,EACAc,EACAR,EACAC,EAGZ,CAsEI4I,CAAa5N,EAAQyE,EAAQc,GAY7B,IANAhG,IAAMsO,EAAW,GACbC,EAAevI,EAAgB,GAAG5G,OAAS,EAKtC2G,EAAUC,EAAgB5G,OAAS,EAAG2G,GAAW,EAAGA,IAAW,CACpE/F,IAAMwO,EAAcxI,EAAgBD,GAASwI,GAK7CD,EAASvI,GAAWtF,EAAOM,MAAMyN,EAAaD,EAAe,GAEzDxI,EAAU,IACVwI,EAAeC,EAAc,EAEpC,CAED,OAAOF,CACX,2B8BxQA,SAAgCnP,GAC5B,OAAOuH,EAAwBvH,GAAKS,EAAKT,EAC7C,iBCNA,SAASsP,EAAatP,EAAGyC,GACrBvC,IAAII,EACAiP,EAEAC,EACAC,EAFEC,EAAkB,GAIxB,IAAKpP,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IACtB,GAAU,IAANmC,EACAiN,EAAgB9L,KAAK,CAAC5D,EAAEM,UAGxB,IADAkP,EAAqBF,EAAatP,EAAE4B,MAAMtB,EAAI,EAAGN,EAAEC,QAASwC,EAAI,GAC3D8M,EAAO,EAAGA,EAAOC,EAAmBvP,OAAQsP,KAC7CE,EAAOD,EAAmBD,IACrBI,QAAQ3P,EAAEM,IACfoP,EAAgB9L,KAAK6L,GAIjC,OAAOC,CACX,4BCnBA,SAASE,EAAwB5P,EAAGyC,GAGhC,IAFA5B,IAAM6O,EAAkB,GAEfpP,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IAC1B,GAAU,IAANmC,EAGAiN,EAAgB9L,KAAK,CAAC5D,EAAEM,UAcxB,IALAO,IAAM2O,EAAqBI,EACvB5P,EAAE4B,MAAMtB,EAAGN,EAAEC,QACbwC,EAAI,GAGCW,EAAI,EAAGA,EAAIoM,EAAmBvP,OAAQmD,IAC3CsM,EAAgB9L,KAAK,CAAC5D,EAAEM,IAAIuP,OAAOL,EAAmBpM,KAKlE,OAAOsM,CACX,sCCnBA,SAA0BI,EAAWnI,EAAOC,EAAImI,EAAWlI,EAAOC,GAC9DjH,IAAMmP,EAAUtI,EAAaC,EAAOC,EAAIC,EAAOC,GAE/C,OACKF,GAAMkI,EAAYvP,KAAKS,IAAI2G,EAAQqI,EAAS,IACzClI,GAAMiI,EAAYxP,KAAKS,IAAI6G,EAAQmI,EAAS,MAC/CpI,EAAKE,EAEd,qCCvBA,SAA0C9H,GACtC,OAAO,GAAKO,KAAKyC,KAAKhD,GAAK,EAC/B,mCCQA,SAAwC6C,GAEpChC,IAAMoP,EAAO1P,KAAKC,IAAIqC,GAKhB4C,EAAQlF,KAAKyB,IACfzB,KAAKqK,MAAa,IAAPqF,GACXpF,EAAoB5K,OAAS,GAMjC,OAAI4C,GAAK,EACEgI,EAAoBpF,KAKlB,EAAIoF,EAAoBpF,IAAQyK,QAAQ,EAEzD,oCCvBA,SAA6BlQ,EAAGmQ,GAC5B,GAAInQ,EAAEC,OAAS,EACX,OAAOD,EAgBX,IAbAa,IAAMuP,EAASpO,EAAIhC,GACbqQ,EAASpO,EAAIjC,GAIbsQ,EAAS,CAACF,GAIVG,GAAaF,EAASD,GAAUD,EAI7B7P,EAAI,EAAGA,EAAI6P,EAAU7P,IAC1BgQ,EAAO1M,KAAK0M,EAAO,GAAKC,EAAYjQ,GAOxC,OAFAgQ,EAAO1M,KAAKyM,GAELC,CACX,qCC/BA,SAAgBtQ,GACZ,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIS,MAAM,2CAKpB,IAFAR,IAAI8B,EAAMhC,EAAE,GACRiC,EAAMjC,EAAE,GACHM,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IACtBN,EAAEM,GAAK2B,IACPA,EAAMjC,EAAEM,IAERN,EAAEM,GAAK0B,IACPA,EAAMhC,EAAEM,IAGhB,MAAO,CAAC0B,EAAKC,EACjB,iBClBA,SAAsBjC,GAClB,MAAO,CAACA,EAAE,GAAIA,EAAEA,EAAEC,OAAS,GAC/B,wBCMA,SAASuQ,EAAM5P,GACX,GAAI+K,OAAO8E,UAAU7P,GACjB,OAAIA,GAAK,EAEEP,IAGAmJ,EAAU5I,EAAI,GAO7B,KAFAA,EAEQ,EAGJ,OAAOL,KAAKqJ,IAAMrJ,KAAKmQ,IAAInQ,KAAKqJ,IAAMhJ,GAAK4P,GAAO5P,IAGlDC,IAGM8P,EAAc/P,EAAI,EAAI,EAW5B,OAbIL,KAAKS,IAAIJ,EAAIL,KAAKqQ,EAAGhQ,GAAKL,KAAKa,KAAK,EAAIb,KAAKqJ,IAAMhJ,EAAI,EAAI,KAK3D,EACA,EAAI,IAAML,KAAKS,IAAI2P,EAAa,GAChC,EAAI,MAAQpQ,KAAKS,IAAI2P,EAAa,GAClC,IAAM,OAASpQ,KAAKS,IAAI2P,EAAa,GACrC,GAAK,QAAUpQ,KAAKS,IAAI2P,EAAa,GACrC,QAAU,WAAapQ,KAAKS,IAAI2P,EAAa,GAC7C,MAAQ,YAAcpQ,KAAKS,IAAI2P,EAAa,GAIxD,Y3B3BA,SAAiB/P,GAEb,GAAIA,GAAK,EACL,OAAOiQ,IAIXjQ,IAKA,IAFAV,IAAI4B,EAAI4H,EAAa,GAEZpJ,EAAI,EAAGA,EAAI,GAAIA,IACpBwB,GAAK4H,EAAapJ,IAAMM,EAAIN,GAGhCO,IAAMyC,EAAMwN,UAAUlQ,EAGtB,OAAO+I,EAAapJ,KAAKuC,IAAIhB,GAAKwB,GAAO1C,EAAI,IAAOL,KAAKuC,IAAIQ,EACjE,kB4BbA,SAAuBtD,GACnB,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIS,MAAM,kDAMpB,IAFAR,IAAIsB,EAAQ,EAEHlB,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IAAK,CAE/B,GAAIN,EAAEM,GAAK,EACP,MAAM,IAAII,MACN,6DAKRc,GAASxB,EAAEM,EACd,CAED,OAAOC,KAAKS,IAAIQ,EAAO,EAAIxB,EAAEC,OACjC,iBCrCA,SAAsBD,GAClB,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIS,MAAM,iDAKpB,IAFAR,IAAI6Q,EAAgB,EAEXzQ,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IAAK,CAE/B,GAAIN,EAAEM,IAAM,EACR,MAAM,IAAII,MACN,wDAIRqQ,GAAiB,EAAI/Q,EAAEM,EAC1B,CAGD,OAAON,EAAEC,OAAS8Q,CACtB,kECnBA,SAAe1I,EAAM8H,GACjB,GAAIA,EAAW9H,EAAKpI,OAChB,OAAO,KAUXY,IAAMmQ,ECvBV,SAAuB3I,EAAM8H,GAMzBtP,IAGIP,EAAG8C,EAHD6N,EAAmB,GACnBC,EAAuB,GAIzBjQ,EAAW,EAGf,IAAKX,EAAI,EAAGA,EAAI+H,EAAKpI,OAAS,EAAGK,IAAK,CAClCO,IAAMsQ,EAAO,GACPC,EAAO,GAIb,IAAKhO,EAAI,EAAGA,EAAI+M,EAAW,EAAG/M,IAC1B+N,EAAKvN,KAAK,GACVwN,EAAKxN,KAAK,GAEdqN,EAAiBrN,KAAKuN,GACtBD,EAAqBtN,KAAKwN,EAC7B,CAED,IAAK9Q,EAAI,EAAGA,EAAI6P,EAAW,EAAG7P,IAK1B,IAJA2Q,EAAiB,GAAG3Q,GAAK,EACzB4Q,EAAqB,GAAG5Q,GAAK,EAGxB8C,EAAI,EAAGA,EAAIiF,EAAKpI,OAAS,EAAGmD,IAC7B8N,EAAqB9N,GAAG9C,GAAKuQ,IAIrC,IAAK3Q,IAAIgE,EAAI,EAAGA,EAAImE,EAAKpI,OAAS,EAAGiE,IAAK,CAetC,IAZAhE,IAAIH,EAAM,EAGNsR,EAAa,EAEbC,EAAI,EAEJC,EAAK,EAKA3O,EAAI,EAAGA,EAAIsB,EAAI,EAAGtB,IAAK,CAE5B/B,IAAM2Q,EAAkBtN,EAAItB,EAAI,EAC1B6O,EAAMpJ,EAAKmJ,EAAkB,GAkBnC,GAJAvQ,GALAoQ,GAAcI,EAAMA,IADpB1R,GAAO0R,GAMwB1R,IAT/BuR,EAaW,IAFXC,EAAKC,EAAkB,GAGnB,IAAKpO,EAAI,EAAGA,EAAI+M,EAAW,EAAG/M,IAMtB8N,EAAqBhN,GAAGd,IACxBnC,EAAWiQ,EAAqBK,GAAInO,EAAI,KAExC6N,EAAiB/M,GAAGd,GAAKoO,EACzBN,EAAqBhN,GAAGd,GACpBnC,EAAWiQ,EAAqBK,GAAInO,EAAI,GAI3D,CAED6N,EAAiB/M,GAAG,GAAK,EACzBgN,EAAqBhN,GAAG,GAAKjD,CAChC,CAKD,MAAO,CACHgQ,iBAAkBA,EAClBC,qBAAsBA,EAE9B,CDhFqBQ,CALjBrJ,EAAOA,EAAKzG,QAAQC,MAAK,SAAUC,EAAGC,GAClC,OAAOD,EAAIC,CACnB,IAGyCoO,GAKrC,OE5BJ,SAAqB9H,EAAM4I,EAAkBd,GACzCjQ,IAAIuC,EAAI4F,EAAKpI,OACP0R,EAAS,GACXC,EAAWzB,EAQf,IAJAwB,EAAOxB,GAAY9H,EAAKA,EAAKpI,OAAS,GAI/B2R,EAAW,GACdD,EAAOC,EAAW,GAAKvJ,EAAK4I,EAAiBxO,GAAGmP,GAAY,GAC5DnP,EAAIwO,EAAiBxO,GAAGmP,GAAY,EACpCA,IAGJ,OAAOD,CACX,CFUWE,CAAYxJ,EAHM2I,EAASC,iBAGSd,EAC/C,kBtBfA,SAAuB5E,EAAQS,EAAY1G,QAAY,IAAAA,IAAAA,EAAG/E,KAAKgF,QAK3D,IAJArF,IAAI4R,EAAe,KACfC,EAAepM,EAAO4F,EAAQS,EAAY1G,GAC1CyG,EAAS,KACTiG,EAASrG,OAAOC,UACF,IAAXoG,GAEHF,EAAeC,EAEfC,EAASxF,GADTuF,EAAejG,GAAmBP,EAFlCQ,EAAST,GAAYC,EAAQwG,GAEqB/F,GACX8F,GAE3C,MAAO,CACH/F,OAAQA,EACRP,UAAWuG,EAEnB,yDyBzBA,SAA0B1J,GACtBnI,IAAI0C,EAAGb,EAIDkQ,EAAa5J,EAAKpI,OAIxB,GAAmB,IAAfgS,EACArP,EAAI,EACJb,EAAIsG,EAAK,GAAG,OACT,CAiBH,IAdAnI,IAOImM,EAAOrM,EAAGmH,EAPV+K,EAAO,EACPC,EAAO,EACPC,EAAQ,EACRC,EAAQ,EAWH/R,EAAI,EAAGA,EAAI2R,EAAY3R,IAK5B4R,GAHAlS,GADAqM,EAAQhE,EAAK/H,IACH,GAIV6R,GAHAhL,EAAIkF,EAAM,GAKV+F,GAASpS,EAAIA,EACbqS,GAASrS,EAAImH,EASjBpF,EAAIoQ,EAAOF,GALXrP,GACKqP,EAAaI,EAAQH,EAAOC,IAC5BF,EAAaG,EAAQF,EAAOA,IAGJA,EAAQD,CACxC,CAGD,MAAO,CACHrP,EAAGA,EACHb,EAAGA,EAEX,yBClDA,SAA8BuQ,GAI1B,OAAO,SAAUtS,GACb,OAAOsS,EAAGvQ,EAAIuQ,EAAG1P,EAAI5C,CAC7B,CACA,eCbA,SAAoBA,GAChB,GAAiB,IAAbA,EAAEC,OACF,MAAM,IAAIS,MAAM,+CAIpB,IADAR,IAAIsB,EAAQ,EACHlB,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IAAK,CAC/B,GAAIN,EAAEM,GAAK,EACP,MAAM,IAAII,MACN,0DAGRc,GAASjB,KAAKuC,IAAI9C,EAAEM,GACvB,CAED,OAAOC,KAAKyC,IAAIxB,EAAQxB,EAAEC,OAC9B,UCnBA,SAAemC,GACX,GAAIA,GAAK,GAAKA,GAAK,EACf,MAAM,IAAI1B,MAAM,2CAEpB,OAAOH,KAAKuC,IAAIV,GAAK,EAAIA,GAC7B,8BCHA,SAAmBpC,GACf,OAAOA,EAAEA,EAAEC,OAAS,EACxB,gFCMA,SAAsBqB,GAClB,OAAOa,EAAeb,EAAQ,GAClC,sBCVA,SAAmBtB,GACf,OAAOA,EAAE,EACb,SCQA,SAAcA,GAIV,OAAOqB,EAAWM,EAAY3B,GAClC,aCAA,SAAkBA,GAUd,IANAa,IAGI0R,EAHE9M,EAAQ,IAAI+M,IAIdC,EAAY,EAEPnS,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IAAK,CAC/BJ,IAAIwS,EAAWjN,EAAMkN,IAAI3S,EAAEM,SACVoI,IAAbgK,EACAA,EAAW,EAEXA,IAEAA,EAAWD,IACXF,EAAOvS,EAAEM,GACTmS,EAAYC,GAEhBjN,EAAMmN,IAAI5S,EAAEM,GAAIoS,EACnB,CAED,GAAkB,IAAdD,EACA,MAAM,IAAI/R,MAAM,wCAGpB,OAAO6R,CACX,kEC7BA,SAAyBM,EAASC,EAASC,EAAatQ,EAAG6C,GAQvD,QANUoD,IAANjG,IACAA,EAAI,UAEYiG,IAAhBqK,IACAA,EAAc,YAGE,aAAhBA,GACgB,YAAhBA,GACgB,SAAhBA,EAEA,MAAM,IAAIrS,MACN,kEAmBR,IAdAG,IAKMmS,EALQvS,EAAKoS,GACLpS,EAAKqS,GAObG,EAAc,IAAIxP,MAAMhB,GAGxByQ,EAAUL,EAAQhD,OAAOiD,GACzBK,EAAW5S,KAAK2C,MAAMgQ,EAAQjT,OAAS,GAEpCK,EAAI,EAAGA,EAAImC,EAAGnC,IAAK,CAExB+E,EAAe6N,EAAS5N,GACxBzE,IAAMuS,EAAWF,EAAQtR,MAAM,EAAGuR,GAC5BE,EAAYH,EAAQtR,MAAMuR,EAAUD,EAAQjT,QAG5CqT,EAAoB7S,EAAK2S,GAAY3S,EAAK4S,GAGhDJ,EAAY3S,GAAKgT,CACpB,CAKDpT,IAAIqT,EAAmB,EACvB,GAAoB,aAAhBR,EACA,IAAK7S,IAAII,EAAI,EAAGA,GAAKmC,EAAGnC,IAChBC,KAAKC,IAAIyS,EAAY3S,KAAOC,KAAKC,IAAIwS,KACrCO,GAAoB,QAGzB,GAAoB,YAAhBR,EACP,IAAK7S,IAAII,EAAI,EAAGA,GAAKmC,EAAGnC,IAChB2S,EAAY3S,IAAM0S,IAClBO,GAAoB,QAK5B,IAAKrT,IAAII,EAAI,EAAGA,GAAKmC,EAAGnC,IAChB2S,EAAY3S,IAAM0S,IAClBO,GAAoB,GAKhC,OAAOA,EAAmB9Q,CAC9B,qBC1FA,SAA0B+Q,GAItB,IAHA3S,IAAM4S,EAAU,IAAIhQ,MAAM+P,EAASvT,QAC7ByT,EAAe,CAACF,EAAS5R,SAEtBtB,EAAI,EAAGA,EAAIkT,EAASvT,OAAQK,IACjCmT,EAAQnT,GAAK,EAGjB,IAAKJ,IAAII,EAAI,EAAGA,EAAIkT,EAASvT,QACzB,GAAIwT,EAAQnT,GAAKA,EAAG,CAGhBJ,IAAIyT,EAAW,EACXrT,EAAI,GAAM,IACVqT,EAAWF,EAAQnT,IAKvBO,IAAM+S,EAAOJ,EAASG,GACtBH,EAASG,GAAYH,EAASlT,GAC9BkT,EAASlT,GAAKsT,EAEdF,EAAa9P,KAAK4P,EAAS5R,SAC3B6R,EAAQnT,KACRA,EAAI,CAChB,MACYmT,EAAQnT,GAAK,EACbA,IAIR,OAAOoT,CACX,wBCzBA,SAA6BG,GAEzB,KAAIA,GAAU,GAAd,CAKA3T,IAAIF,EAAI,EAGJ6N,EAAwB,EAEtBC,EAAQ,GACVgG,EAAa,EAKjB,GAEIhG,EAAM9N,GAAMO,KAAKyC,KAAK6Q,GAAUtT,KAAKS,IAAI6S,EAAQ7T,GAAM8T,EACvDjG,GAAyBC,EAAM9N,GAE/B8T,KADA9T,QAIK6N,EAAwB,OAEjC,OAAOC,CAxBN,CAyBL,WC5BA,SAAgB1L,GAMZ,OALU,IAANA,EACAA,EAAImH,EACGnH,GAAK,IACZA,EAAI,OAED7B,KAAKa,KAAK,GAAK4J,EAAqB,EAAI5I,EAAI,EACvD,YCZA,SAAiBpC,GAEb,IADAE,IAAIsB,EAAQ,EACHlB,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IAC1BkB,GAASxB,EAAEM,GAEf,OAAOkB,CACX,8BCAA,SAAsBxB,EAAGwB,GAIrB,OAAO+C,EAFY5C,EAAY3B,GAEOwB,EAC1C,uECRA,SAAkBxB,EAAGgO,GACjB,GAAIhO,EAAEC,OAAS,EACX,OAAO,EAOX,IADAC,IAAIH,EAAM,EACDO,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IAC1BP,GAAOC,EAAEM,GAAG,GAQhB,IANAO,IAAMkT,EAAUhU,EAAMC,EAAEC,OAKpBgI,EAAe,EACV7E,EAAI,EAAGA,EAAIpD,EAAEC,OAAQmD,IAC1B6E,GAAgB1H,KAAKS,IAAI+S,EAAU/T,EAAEoD,GAAG,GAAI,GAOhD,IADAlD,IAAI8T,EAAM,EACDvR,EAAI,EAAGA,EAAIzC,EAAEC,OAAQwC,IAC1BuR,GAAOzT,KAAKS,IAAIhB,EAAEyC,GAAG,GAAKuL,EAAKhO,EAAEyC,GAAG,IAAK,GAM7C,OAAO,EAAIuR,EAAM/L,CACrB,uHC/BA,SAAwBjI,GACpBa,IAAMD,EAAIZ,EAAEC,OAEZ,GAAIW,EAAI,EACJ,MAAM,IAAIF,MAAM,qDAQpB,IALAG,IACIC,EADEC,EAAYN,EAAKT,GAEnBiU,EAAsB,EACtBC,EAAsB,EAEjB5T,EAAI,EAAGA,EAAIM,EAAGN,IAEnB2T,IADAnT,EAAYd,EAAEM,GAAKS,GACgBD,EACnCoT,GAAuBpT,EAAYA,EAAYA,EAAYA,EAG/D,OACMF,EAAI,KAAOA,EAAI,IAAMA,EAAI,KACzBA,GAAKA,EAAI,GAAKsT,GACXD,EAAsBA,GACvB,GAAKrT,EAAI,GAErB,0BC/BA,SAA+BZ,EAAGmH,GAe9B,IAdAtG,IAAMsT,EAAWnU,EACZyL,KAAG,SAAEjK,EAAOiE,GAAU,MAAA,CAACjE,EAAOiE,MAC9B5D,MAAK,SAACC,EAAGC,GAAM,OAAAD,EAAE,GAAKC,EAAE,MACxB0J,KAAI,SAAC2I,GAAI,OAAKA,EAAK,EAAE,IACpBC,EAAWlN,EACZsE,KAAG,SAAEjK,EAAOiE,GAAU,MAAA,CAACjE,EAAOiE,MAC9B5D,MAAK,SAACC,EAAGC,GAAM,OAAAD,EAAE,GAAKC,EAAE,MACxB0J,KAAI,SAAC2I,GAAI,OAAKA,EAAK,EAAE,IAKpBE,EAAS7Q,MAAM0Q,EAASlU,QACxBsU,EAAS9Q,MAAM0Q,EAASlU,QACrBK,EAAI,EAAGA,EAAI6T,EAASlU,OAAQK,IACjCgU,EAAOH,EAAS7T,IAAMA,EACtBiU,EAAOF,EAAS/T,IAAMA,EAG1B,OAAOmH,EAAkB6M,EAAQC,EACrC,mBCZA,SAAwBvU,GACpB,GAAIA,EAAEC,OAAS,EACX,MAAM,IAAIS,MAAM,sDAQpB,IALAG,IACIC,EADEC,EAAYN,EAAKT,GAEnBwU,EAAuB,EACvBC,EAAqB,EAEhBnU,EAAI,EAAGA,EAAIN,EAAEC,OAAQK,IAE1BkU,IADA1T,EAAYd,EAAEM,GAAKS,GACiBD,EACpC2T,GAAsB3T,EAAYA,EAAYA,EAMlDD,IAAM6T,EAAoB1U,EAAEC,OAAS,EAG/B0U,EAA6BpU,KAAKa,KACpCoT,EAAuBE,GAGrB9T,EAAIZ,EAAEC,OAGZ,OAAQW,EAAI6T,IAAwB7T,EAAI,IAAMA,EAAI,GAFnCL,KAAKS,IAAI2T,EAA4B,GAGxD,yECpCA,SAA+B3U,EAAGY,EAAG0E,GACjC,GAAiB,IAAbtF,EAAEC,OACF,MAAO,GAMXqF,EAAeA,GAAgB/E,KAAKgF,OAKpC,IAHA1E,IAAMZ,EAASD,EAAEC,OACX0F,EAAS,GAENrF,EAAI,EAAGA,EAAIM,EAAGN,IAAK,CACxBO,IAAM4E,EAAQlF,KAAK2C,MAAMoC,IAAiBrF,GAE1C0F,EAAO/B,KAAK5D,EAAEyF,GACjB,CAED,OAAOE,CACX,6ECjBA,SAA0B4F,EAAQQ,GAE9B,OAAO9J,EADQyK,GAAWnB,EAAQQ,GAEtC,mECJA,SAA0BtL,EAAMG,EAAGY,GAC/B,OAAQf,EAAOG,EAAIY,IAAUZ,EAAI,EACrC,0DCGA,SAAeZ,EAAG4U,GAWd,OATmBnU,EAAKT,GASH4U,IANV1T,EAAkBlB,GAGfO,KAAKa,KAAKpB,EAAEC,QAI9B,mBCFA,SAAwB4S,EAASC,EAAS+B,GACtChU,IAAMD,EAAIiS,EAAQ5S,OACZ2C,EAAIkQ,EAAQ7S,OAIlB,IAAKW,IAAMgC,EACP,OAAO,KAINiS,IACDA,EAAa,GAGjBhU,IAAMiU,EAAQrU,EAAKoS,GACbkC,EAAQtU,EAAKqS,GACbtL,EAAkBF,EAAeuL,GACjCmC,EAAkB1N,EAAewL,GAEvC,GACqB,iBAAVgC,GACU,iBAAVC,GACoB,iBAApBvN,GACoB,iBAApBwN,EACT,CACEnU,IAAMoU,IACArU,EAAI,GAAK4G,GAAmB5E,EAAI,GAAKoS,IACtCpU,EAAIgC,EAAI,GAEb,OACKkS,EAAQC,EAAQF,GACjBtU,KAAKa,KAAK6T,GAAoB,EAAIrU,EAAI,EAAIgC,GAEjD,CACL,uDC/CA,SAAyBiQ,EAASC,GAC9B,IAAKD,EAAQ5S,SAAW6S,EAAQ7S,OAC5B,MAAM,IAAIS,MAAM,+BAQpB,IALAG,IAAMqU,EAAgBrC,EACjBpH,KAAI,SAACzL,GAAC,OAAQoJ,MAAO,IAAK5H,MAAOxB,MACjC6P,OAAOiD,EAAQrH,KAAI,SAACtE,GAAM,MAAA,CAAGiC,MAAO,IAAK5H,MAAO2F,EAAI,KACpDtF,MAAI,SAAEC,EAAGC,GAAC,OAAKD,EAAEN,MAAQO,EAAEP,KAAA,IAEvB2T,EAAO,EAAGA,EAAOD,EAAcjV,OAAQkV,IAC5CD,EAAcC,GAAMA,KAAOA,EAI/B,IADAjV,IAAIkV,EAAY,CAACF,EAAc,GAAGC,MACzB7U,EAAI,EAAGA,EAAI4U,EAAcjV,OAAQK,IAClC4U,EAAc5U,GAAGkB,QAAU0T,EAAc5U,EAAI,GAAGkB,OAChD4T,EAAUxR,KAAKsR,EAAc5U,GAAG6U,MAC5B7U,IAAM4U,EAAcjV,OAAS,GAC7BoV,EAAoBH,EAAeE,IAEhCA,EAAUnV,OAAS,EAC1BoV,EAAoBH,EAAeE,GAEnCA,EAAY,CAACF,EAAc5U,GAAG6U,MAItC,SAASE,EAAoBH,EAAeE,GAExC,IADAvU,IAAMkT,GAAWqB,EAAU,GAAKA,EAAUA,EAAUnV,OAAS,IAAM,EAC1DK,EAAI,EAAGA,EAAI8U,EAAUnV,OAAQK,IAClC4U,EAAcE,EAAU9U,IAAI6U,KAAOpB,CAE1C,CAID,IAFA7T,IAAIoV,EAAU,EAELhV,EAAI,EAAGA,EAAI4U,EAAcjV,OAAQK,IAAK,CAC3CO,IAAM8E,EAASuP,EAAc5U,GACR,MAAjBqF,EAAOyD,QACPkM,GAAW3P,EAAOwP,KAAO,EAEhC,CAED,OAAOG,CACX,WCxCA,SAAgBtV,EAAGS,EAAMS,GACrB,OAAQlB,EAAIS,GAAQS,CACxB"}
|