ultralytics 8.3.122__py3-none-any.whl → 8.3.123__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
tests/test_cuda.py CHANGED
@@ -115,7 +115,7 @@ def test_utils_benchmarks():
115
115
 
116
116
  # Pre-export a dynamic engine model to use dynamic inference
117
117
  YOLO(MODEL).export(format="engine", imgsz=32, dynamic=True, batch=1)
118
- ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile()
118
+ ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).run()
119
119
 
120
120
 
121
121
  @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
tests/test_python.py CHANGED
@@ -399,18 +399,18 @@ def test_utils_benchmarks():
399
399
  """Benchmark model performance using 'ProfileModels' from 'ultralytics.utils.benchmarks'."""
400
400
  from ultralytics.utils.benchmarks import ProfileModels
401
401
 
402
- ProfileModels(["yolo11n.yaml"], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).profile()
402
+ ProfileModels(["yolo11n.yaml"], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).run()
403
403
 
404
404
 
405
405
  def test_utils_torchutils():
406
406
  """Test Torch utility functions including profiling and FLOP calculations."""
407
407
  from ultralytics.nn.modules.conv import Conv
408
- from ultralytics.utils.torch_utils import get_flops_with_torch_profiler, profile, time_sync
408
+ from ultralytics.utils.torch_utils import get_flops_with_torch_profiler, profile_ops, time_sync
409
409
 
410
410
  x = torch.randn(1, 64, 20, 20)
411
411
  m = Conv(64, 64, k=1, s=2)
412
412
 
413
- profile(x, [m], n=3)
413
+ profile_ops(x, [m], n=3)
414
414
  get_flops_with_torch_profiler(m)
415
415
  time_sync()
416
416
 
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.3.122"
3
+ __version__ = "8.3.123"
4
4
 
5
5
  import os
6
6
 
@@ -140,7 +140,7 @@ def export_formats():
140
140
  ["MNN", "mnn", ".mnn", True, True, ["batch", "half", "int8"]],
141
141
  ["NCNN", "ncnn", "_ncnn_model", True, True, ["batch", "half"]],
142
142
  ["IMX", "imx", "_imx_model", True, True, ["int8", "fraction"]],
143
- ["RKNN", "rknn", "_rknn_model", False, False, ["batch", "name"]],
143
+ ["RKNN", "rknn", "_rknn_model", False, False, ["batch", "name", "int8"]],
144
144
  ]
145
145
  return dict(zip(["Format", "Argument", "Suffix", "CPU", "GPU", "Arguments"], zip(*x)))
146
146
 
@@ -970,8 +970,9 @@ class Exporter:
970
970
  output_integer_quantized_tflite=self.args.int8,
971
971
  quant_type="per-tensor", # "per-tensor" (faster) or "per-channel" (slower but more accurate)
972
972
  custom_input_op_name_np_data_path=np_data,
973
- disable_group_convolution=True, # for end-to-end model compatibility
974
- enable_batchmatmul_unfold=True, # for end-to-end model compatibility
973
+ enable_batchmatmul_unfold=True, # fix lower no. of detected objects on GPU delegate
974
+ output_signaturedefs=True, # fix error with Attention block group convolution
975
+ optimization_for_gpu_delegate=True,
975
976
  )
976
977
  yaml_save(f / "metadata.yaml", self.metadata) # add metadata.yaml
977
978
 
@@ -1110,8 +1111,8 @@ class Exporter:
1110
1111
  rknn = RKNN(verbose=False)
1111
1112
  rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform=self.args.name)
1112
1113
  rknn.load_onnx(model=f)
1113
- rknn.build(do_quantization=False) # TODO: Add quantization support
1114
- f = f.replace(".onnx", f"-{self.args.name}.rknn")
1114
+ rknn.build(do_quantization=self.args.int8)
1115
+ f = f.replace(".onnx", f"-{self.args.name}-int8.rknn" if self.args.int8 else f"-{self.args.name}-fp16.rknn")
1115
1116
  rknn.export_rknn(f"{export_path / f}")
1116
1117
  yaml_save(export_path / "metadata.yaml", self.metadata)
1117
1118
  return export_path, None
@@ -662,17 +662,14 @@ class Results(SimpleClass):
662
662
  - For classification tasks, it returns the top 5 class probabilities and their corresponding class names.
663
663
  - The returned string is comma-separated and ends with a comma and a space.
664
664
  """
665
- log_string = ""
666
665
  probs = self.probs
667
666
  if len(self) == 0:
668
- return log_string if probs is not None else f"{log_string}(no detections), "
667
+ return "" if probs is not None else "(no detections), "
669
668
  if probs is not None:
670
- log_string += f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, "
669
+ return f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, "
671
670
  if boxes := self.boxes:
672
- for c in boxes.cls.unique():
673
- n = (boxes.cls == c).sum() # detections per class
674
- log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "
675
- return log_string
671
+ counts = boxes.cls.int().bincount()
672
+ return "".join(f"{n} {self.names[i]}{'s' * (n > 1)}, " for i, n in enumerate(counts) if n > 0)
676
673
 
677
674
  def save_txt(self, txt_file, save_conf=False):
678
675
  """
@@ -90,7 +90,7 @@ class DetectionPredictor(BasePredictor):
90
90
  obj_feats = torch.cat(
91
91
  [x.permute(0, 2, 3, 1).reshape(x.shape[0], -1, s, x.shape[1] // s).mean(dim=-1) for x in feat_maps], dim=1
92
92
  ) # mean reduce all vectors to same length
93
- return [feats[idx] for feats, idx in zip(obj_feats, idxs)] # for each image in batch, indexed separately
93
+ return [feats[idx] if len(idx) else [] for feats, idx in zip(obj_feats, idxs)] # for each img in batch
94
94
 
95
95
  def construct_results(self, preds, img, orig_imgs):
96
96
  """
@@ -725,7 +725,7 @@ class AutoBackend(nn.Module):
725
725
  else:
726
726
  im = im.cpu().numpy()
727
727
  if self.saved_model: # SavedModel
728
- y = self.model(im, training=False) if self.keras else self.model(im)
728
+ y = self.model(im, training=False) if self.keras else self.model.serving_default(im)
729
729
  if not isinstance(y, list):
730
730
  y = [y]
731
731
  elif self.pb: # GraphDef
@@ -58,10 +58,10 @@ def on_predict_start(predictor: object, persist: bool = False) -> None:
58
58
  predictor._feats = None
59
59
 
60
60
  # Register hook to extract input of Detect layer
61
- def capture_io(module, input, output):
62
- predictor._feats = input[0]
61
+ def pre_hook(module, input):
62
+ predictor._feats = [t.clone() for t in input[0]]
63
63
 
64
- predictor.model.model.model[-1].register_forward_hook(capture_io)
64
+ predictor.model.model.model[-1].register_forward_pre_hook(pre_hook)
65
65
 
66
66
  trackers = []
67
67
  for _ in range(predictor.dataset.bs):
@@ -8,7 +8,7 @@ import numpy as np
8
8
  import torch
9
9
 
10
10
  from ultralytics.utils import DEFAULT_CFG, LOGGER, colorstr
11
- from ultralytics.utils.torch_utils import autocast, profile
11
+ from ultralytics.utils.torch_utils import autocast, profile_ops
12
12
 
13
13
 
14
14
  def check_train_batch_size(model, imgsz=640, amp=True, batch=-1, max_num_obj=1):
@@ -74,7 +74,7 @@ def autobatch(model, imgsz=640, fraction=0.60, batch_size=DEFAULT_CFG.batch, max
74
74
  batch_sizes = [1, 2, 4, 8, 16] if t < 16 else [1, 2, 4, 8, 16, 32, 64]
75
75
  try:
76
76
  img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
77
- results = profile(img, model, n=1, device=device, max_num_obj=max_num_obj)
77
+ results = profile_ops(img, model, n=1, device=device, max_num_obj=max_num_obj)
78
78
 
79
79
  # Fit a solution
80
80
  xy = [
@@ -4,7 +4,7 @@ Benchmark a YOLO model formats for speed and accuracy.
4
4
 
5
5
  Usage:
6
6
  from ultralytics.utils.benchmarks import ProfileModels, benchmark
7
- ProfileModels(['yolo11n.yaml', 'yolov8s.yaml']).profile()
7
+ ProfileModels(['yolo11n.yaml', 'yolov8s.yaml']).run()
8
8
  benchmark(model='yolo11n.pt', imgsz=160)
9
9
 
10
10
  Format | `format=argument` | Model
@@ -378,7 +378,7 @@ class ProfileModels:
378
378
  Profile models and print results
379
379
  >>> from ultralytics.utils.benchmarks import ProfileModels
380
380
  >>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"], imgsz=640)
381
- >>> profiler.profile()
381
+ >>> profiler.run()
382
382
  """
383
383
 
384
384
  def __init__(
@@ -412,7 +412,7 @@ class ProfileModels:
412
412
  Initialize and profile models
413
413
  >>> from ultralytics.utils.benchmarks import ProfileModels
414
414
  >>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"], imgsz=640)
415
- >>> profiler.profile()
415
+ >>> profiler.run()
416
416
  """
417
417
  self.paths = paths
418
418
  self.num_timed_runs = num_timed_runs
@@ -423,7 +423,7 @@ class ProfileModels:
423
423
  self.trt = trt # run TensorRT profiling
424
424
  self.device = device or torch.device(0 if torch.cuda.is_available() else "cpu")
425
425
 
426
- def profile(self):
426
+ def run(self):
427
427
  """
428
428
  Profile YOLO models for speed and accuracy across various formats including ONNX and TensorRT.
429
429
 
@@ -434,7 +434,7 @@ class ProfileModels:
434
434
  Profile models and print results
435
435
  >>> from ultralytics.utils.benchmarks import ProfileModels
436
436
  >>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"])
437
- >>> results = profiler.profile()
437
+ >>> results = profiler.run()
438
438
  """
439
439
  files = self.get_files()
440
440
 
@@ -378,7 +378,7 @@ def model_info_for_loggers(trainer):
378
378
  if trainer.args.profile: # profile ONNX and TensorRT times
379
379
  from ultralytics.utils.benchmarks import ProfileModels
380
380
 
381
- results = ProfileModels([trainer.last], device=trainer.device).profile()[0]
381
+ results = ProfileModels([trainer.last], device=trainer.device).run()[0]
382
382
  results.pop("model/name")
383
383
  else: # only return PyTorch times from most recent validation
384
384
  results = {
@@ -790,7 +790,7 @@ def cuda_memory_usage(device=None):
790
790
  yield cuda_info
791
791
 
792
792
 
793
- def profile(input, ops, n=10, device=None, max_num_obj=0):
793
+ def profile_ops(input, ops, n=10, device=None, max_num_obj=0):
794
794
  """
795
795
  Ultralytics speed, memory and FLOPs profiler.
796
796
 
@@ -805,11 +805,11 @@ def profile(input, ops, n=10, device=None, max_num_obj=0):
805
805
  (list): Profile results for each operation.
806
806
 
807
807
  Examples:
808
- >>> from ultralytics.utils.torch_utils import profile
808
+ >>> from ultralytics.utils.torch_utils import profile_ops
809
809
  >>> input = torch.randn(16, 3, 640, 640)
810
810
  >>> m1 = lambda x: x * torch.sigmoid(x)
811
811
  >>> m2 = nn.SiLU()
812
- >>> profile(input, [m1, m2], n=100) # profile over 100 iterations
812
+ >>> profile_ops(input, [m1, m2], n=100) # profile over 100 iterations
813
813
  """
814
814
  results = []
815
815
  if not isinstance(device, torch.device):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ultralytics
3
- Version: 8.3.122
3
+ Version: 8.3.123
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -1,13 +1,13 @@
1
1
  tests/__init__.py,sha256=xnMhv3O_DF1YrW4zk__ZywQzAaoTDjPKPoiI1Ktss1w,670
2
2
  tests/conftest.py,sha256=rsIAipRKfrVNoTaJ1LdpYue8AbcJ_fr3d3WIlM_6uXY,2982
3
3
  tests/test_cli.py,sha256=PtMFl5Lp_6ygBbYDJ1ndofz2k7ZYupMPEAiZw6aZVm8,5450
4
- tests/test_cuda.py,sha256=0uvTF4bY_Grsd_Xgtp7TdIEgMpUqKv8_kWA82NYDl_g,6260
4
+ tests/test_cuda.py,sha256=vCpPMAkEUQrQMVe4oMwGZQVOiuujEAkZ2zturNXFF-4,6256
5
5
  tests/test_engine.py,sha256=aGqZ8P7QO5C_nOa1b4FOyk92Ysdk5WiP-ST310Vyxys,4962
6
6
  tests/test_exports.py,sha256=dhZn86LdbapW15RthQF870LGxDjC1MUZhlGdBgPmgIQ,9716
7
7
  tests/test_integrations.py,sha256=dQteeRsRVuT_p5-T88-7jqT65Zm9iAXkyKg-KQ1_TQ8,6341
8
- tests/test_python.py,sha256=ok2xp7zwPOwcyl4yNawlx1uJ5HETn9eU-jyTPYzA0fI,25491
8
+ tests/test_python.py,sha256=NDIqkKt-awgjq45y29xopZLhX8kkknqYz81Wm7ixqXo,25495
9
9
  tests/test_solutions.py,sha256=BIvg9zW0a_ggEmrPKgB_Y0MncveH-eYuN5KlqdJ6nHs,5726
10
- ultralytics/__init__.py,sha256=StjzKKqUrYk4rkeEY2AnsNAR8keYsHJzELLBKmqs6Q4,730
10
+ ultralytics/__init__.py,sha256=FzBnkV__4DhnrF8Rs0JzvAR9A3VOlusTeRBaIY30-Do,730
11
11
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
12
12
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
13
13
  ultralytics/cfg/__init__.py,sha256=ZXbvd-lyu0IIwVYAN6NH3KbQ5MLC5865Lh2c7IDkNSw,39675
@@ -118,10 +118,10 @@ ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J
118
118
  ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
119
119
  ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
120
120
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
121
- ultralytics/engine/exporter.py,sha256=rFi7V-REi66DRLTWQzgx87NMfdp8eLfPZkYfSpS7Wfg,70137
121
+ ultralytics/engine/exporter.py,sha256=56PU45SvNhYym9JiJctZXO5NkW-cwzTu5o7yIqx13Fc,70251
122
122
  ultralytics/engine/model.py,sha256=wS1cwgv0iyhsslMAZYMGlYDWitDIRW96d7MxwW-Sw5o,52817
123
123
  ultralytics/engine/predictor.py,sha256=YJ5l-0qIpr6JAJxowswtZ0IqmXBqVTvAA9vR40v0sCM,21752
124
- ultralytics/engine/results.py,sha256=MZkhI0CCOkBQPR-EzswymVqvqeyk35EkESGUQ_08r8k,79738
124
+ ultralytics/engine/results.py,sha256=-JPBn_YMyZv6HhdlyhjRIZCcMf41LTyWID7JrEP64rc,79632
125
125
  ultralytics/engine/trainer.py,sha256=fdB8H6brnnQAL-ZFP6nmNmKMze0_qy0OT3jJg1B5uhQ,38864
126
126
  ultralytics/engine/tuner.py,sha256=IyFKsh4Q4a1DsjfK02DdN9cufAiBDhdhIq7F7ddguys,12646
127
127
  ultralytics/engine/validator.py,sha256=jfV81wuFDgrVVXEcPzgOpxAPrAZn-1LgpKwu9l_1-ts,17050
@@ -169,7 +169,7 @@ ultralytics/models/yolo/classify/predict.py,sha256=JV9szginTQ9Lpob0FozhKMiEIu1vV
169
169
  ultralytics/models/yolo/classify/train.py,sha256=rv2CJv9fzvtHf2q4l5g0RsjplWKeLpz637kKqjtrLNY,9737
170
170
  ultralytics/models/yolo/classify/val.py,sha256=xk-YwSQdl_oqyCBV0OOAOcXFL6CchebFOc36AkRSyjE,9992
171
171
  ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
172
- ultralytics/models/yolo/detect/predict.py,sha256=oAftDYhksUDjVfgKIsmmair1_ujwVY-yc-MHrl7r9Hw,5343
172
+ ultralytics/models/yolo/detect/predict.py,sha256=n1-WmzkvW3dHglI7XrxDr4i0nZ236h6Wh37TAWXpFfo,5341
173
173
  ultralytics/models/yolo/detect/train.py,sha256=YOEmUZkfJBq6hNbB_P10k-uy4_2fUgdPfVWzO4y8Egs,9538
174
174
  ultralytics/models/yolo/detect/val.py,sha256=7AB_wZi7aQ9_V1pZQSWk5qiJYS34fuO3P5aX7_3eeFE,18471
175
175
  ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
@@ -193,7 +193,7 @@ ultralytics/models/yolo/yoloe/train.py,sha256=St3zw_XWRol9pODWU4lvKlJnWYr1lmWQNu
193
193
  ultralytics/models/yolo/yoloe/train_seg.py,sha256=l0SOMQQd0Y_EBBHhTNekgrQsftqhYyK4oWTdCg1dLrE,4633
194
194
  ultralytics/models/yolo/yoloe/val.py,sha256=oA8cVT3pBXF6aPZy7ITq0mDcktRuIgks8tTtqMRISyY,8431
195
195
  ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
196
- ultralytics/nn/autobackend.py,sha256=tnYxzboWGBgNvUYrz2zokPH1Bw__GD2ZQro1gO-ZIF8,39298
196
+ ultralytics/nn/autobackend.py,sha256=ng6CUi82BrV6qGVsif_U_1E4foL19N7isB7tQGECTGE,39314
197
197
  ultralytics/nn/tasks.py,sha256=EwRC70qA3eP8Xp-gGP8OuN-q8LCGDrq1iRue7ncRSV4,62916
198
198
  ultralytics/nn/text_model.py,sha256=8_7SRejKZA4Pi-ha0gjcWrQDDCDMBhtwlg8pPMWgjDE,13145
199
199
  ultralytics/nn/modules/__init__.py,sha256=dXLtIk9rt944WfsTdpgEdWOg3HQEHdwQztuZ6WNJygs,3144
@@ -225,14 +225,14 @@ ultralytics/trackers/__init__.py,sha256=Zlu_Ig5osn7hqch_g5Be_e4pwZUkeeTQiesJCi0p
225
225
  ultralytics/trackers/basetrack.py,sha256=LYvWB5d7Woyrz_RlxaopjV07RQKH3sff_lZJfMcMxcA,4450
226
226
  ultralytics/trackers/bot_sort.py,sha256=rpaj7X8COT0Vi5GFR9z-CGSBgJ7gTfFx2wTSZFTnhco,11466
227
227
  ultralytics/trackers/byte_tracker.py,sha256=D7JQ_6V8OUMQryxTrAr010UXMSaboQnI7T1xppzHXYg,20921
228
- ultralytics/trackers/track.py,sha256=mu6L9RWAW8Nq0vJanX-hTTUST-OmLq49d8VV96-J9u8,4817
228
+ ultralytics/trackers/track.py,sha256=wuja3-xceuhaTEJyD2VqRBJUodPEM7-4iK47MkxshjM,4830
229
229
  ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
230
230
  ultralytics/trackers/utils/gmc.py,sha256=dz3I5LbIv7h1__Xg7rGHecQFE32VFTe54tUnxb8F0Z8,14466
231
231
  ultralytics/trackers/utils/kalman_filter.py,sha256=A0CqOnnaKH6kr0XwuHzyHmIU6aJAjJYxF9jVlNBKZHo,21326
232
232
  ultralytics/trackers/utils/matching.py,sha256=7eIufSdeN7cXuFMjvcfvz0Ldq84m4YKZl5IGxBR8IIo,7169
233
233
  ultralytics/utils/__init__.py,sha256=qV5nw3ED1NuSCoYwW3WpT6BTLeCnoH7KJgbPZU_3Sbo,50422
234
- ultralytics/utils/autobatch.py,sha256=VZTIKLWeFZFwBHJmbiCn3MaxoFp89hLR0DSCR_iLXJg,4913
235
- ultralytics/utils/benchmarks.py,sha256=aZse9tetEwjMy2GkdNWZ0WfCgjLfCM3_BkI1qNNQb_w,30377
234
+ ultralytics/utils/autobatch.py,sha256=kg05q2qKg74y_Uq2vvr01i3KhLfpVR7sT0IXBt3_kyI,4921
235
+ ultralytics/utils/benchmarks.py,sha256=GXcatQqAUCBg3lSmzR5ZEZDYWdPREtFapHP-S4wj7G4,30357
236
236
  ultralytics/utils/checks.py,sha256=5bkna--ZH4FJDZtgef_K4xgjiKOZqCarTqIE4Z0vwJU,32628
237
237
  ultralytics/utils/dist.py,sha256=e-DK_YowV7D9rDGQyWR9Kaosxp2eWe2EogSWnnUMthc,4098
238
238
  ultralytics/utils/downloads.py,sha256=IvHng2-bApoyi-QMvesGwMmFNqEFiXPIKiiW16Q-U4M,22220
@@ -246,7 +246,7 @@ ultralytics/utils/ops.py,sha256=YFwPrKlPcgEmgAWqnJVR0Ccx5NQgp5e3P-YYHwVSP0k,3477
246
246
  ultralytics/utils/patches.py,sha256=6rVT-l8WDp_Py3O-gZdv9t3PnrYRRkrX_lF3mZ1XS8c,4928
247
247
  ultralytics/utils/plotting.py,sha256=5QPK1y-gm4T1mK3sjfRZhIUJAyP05D1cJ7h9wHPTifU,46616
248
248
  ultralytics/utils/tal.py,sha256=P5nPoR9qNnFuDIda0fsn8WP6m1V8r7EbvXUuhNRFFTA,20805
249
- ultralytics/utils/torch_utils.py,sha256=KUt2qoud3O2bb_cWv1TDjZloNKuLbWk0XJU97wlEdU4,39028
249
+ ultralytics/utils/torch_utils.py,sha256=iaf7aJaZUadjBRvOs0vN2iIEePXIE8024anUOVkxPqE,39036
250
250
  ultralytics/utils/triton.py,sha256=xK9Db_ZUVDnIK1u76S2G-6ulIBsLfj9HN_YOaSrnMuU,5304
251
251
  ultralytics/utils/tuner.py,sha256=0Bp7l5dWZe1RzdvAIa11wQoX6eoAaoNRcA-EAnpofbk,6755
252
252
  ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
@@ -260,9 +260,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=JaI95Cj2kIjUhlEEOiDN0-Drc-fDelLhNI
260
260
  ultralytics/utils/callbacks/raytune.py,sha256=A8amUGpux7dYES-L1iSeMoMXBySGWCD1aUqT7vcG-pU,1284
261
261
  ultralytics/utils/callbacks/tensorboard.py,sha256=jgYnym3cUQFAgN1GzTyO7l3jINtfAh8zhrllDvnLuVQ,5339
262
262
  ultralytics/utils/callbacks/wb.py,sha256=iDRFXI4IIDm8R5OI89DMTmjs8aHLo1HRCLkOFKdaMG4,7507
263
- ultralytics-8.3.122.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
264
- ultralytics-8.3.122.dist-info/METADATA,sha256=Ie20iTid09rrSu0IDpyAHcgvr6MlwsZqZ5ciNuwfWmM,37180
265
- ultralytics-8.3.122.dist-info/WHEEL,sha256=wXxTzcEDnjrTwFYjLPcsW_7_XihufBwmpiBeiXNBGEA,91
266
- ultralytics-8.3.122.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
267
- ultralytics-8.3.122.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
268
- ultralytics-8.3.122.dist-info/RECORD,,
263
+ ultralytics-8.3.123.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
264
+ ultralytics-8.3.123.dist-info/METADATA,sha256=kC_n3rFeiSOMo5st7xOemdh851cEtByxNnwucTt52_s,37180
265
+ ultralytics-8.3.123.dist-info/WHEEL,sha256=wXxTzcEDnjrTwFYjLPcsW_7_XihufBwmpiBeiXNBGEA,91
266
+ ultralytics-8.3.123.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
267
+ ultralytics-8.3.123.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
268
+ ultralytics-8.3.123.dist-info/RECORD,,