ultralytics 8.3.122__py3-none-any.whl → 8.3.123__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tests/test_cuda.py +1 -1
- tests/test_python.py +3 -3
- ultralytics/__init__.py +1 -1
- ultralytics/engine/exporter.py +6 -5
- ultralytics/engine/results.py +4 -7
- ultralytics/models/yolo/detect/predict.py +1 -1
- ultralytics/nn/autobackend.py +1 -1
- ultralytics/trackers/track.py +3 -3
- ultralytics/utils/autobatch.py +2 -2
- ultralytics/utils/benchmarks.py +5 -5
- ultralytics/utils/torch_utils.py +4 -4
- {ultralytics-8.3.122.dist-info → ultralytics-8.3.123.dist-info}/METADATA +1 -1
- {ultralytics-8.3.122.dist-info → ultralytics-8.3.123.dist-info}/RECORD +17 -17
- {ultralytics-8.3.122.dist-info → ultralytics-8.3.123.dist-info}/WHEEL +0 -0
- {ultralytics-8.3.122.dist-info → ultralytics-8.3.123.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.122.dist-info → ultralytics-8.3.123.dist-info}/licenses/LICENSE +0 -0
- {ultralytics-8.3.122.dist-info → ultralytics-8.3.123.dist-info}/top_level.txt +0 -0
tests/test_cuda.py
CHANGED
@@ -115,7 +115,7 @@ def test_utils_benchmarks():
|
|
115
115
|
|
116
116
|
# Pre-export a dynamic engine model to use dynamic inference
|
117
117
|
YOLO(MODEL).export(format="engine", imgsz=32, dynamic=True, batch=1)
|
118
|
-
ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).
|
118
|
+
ProfileModels([MODEL], imgsz=32, half=False, min_time=1, num_timed_runs=3, num_warmup_runs=1).run()
|
119
119
|
|
120
120
|
|
121
121
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
tests/test_python.py
CHANGED
@@ -399,18 +399,18 @@ def test_utils_benchmarks():
|
|
399
399
|
"""Benchmark model performance using 'ProfileModels' from 'ultralytics.utils.benchmarks'."""
|
400
400
|
from ultralytics.utils.benchmarks import ProfileModels
|
401
401
|
|
402
|
-
ProfileModels(["yolo11n.yaml"], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).
|
402
|
+
ProfileModels(["yolo11n.yaml"], imgsz=32, min_time=1, num_timed_runs=3, num_warmup_runs=1).run()
|
403
403
|
|
404
404
|
|
405
405
|
def test_utils_torchutils():
|
406
406
|
"""Test Torch utility functions including profiling and FLOP calculations."""
|
407
407
|
from ultralytics.nn.modules.conv import Conv
|
408
|
-
from ultralytics.utils.torch_utils import get_flops_with_torch_profiler,
|
408
|
+
from ultralytics.utils.torch_utils import get_flops_with_torch_profiler, profile_ops, time_sync
|
409
409
|
|
410
410
|
x = torch.randn(1, 64, 20, 20)
|
411
411
|
m = Conv(64, 64, k=1, s=2)
|
412
412
|
|
413
|
-
|
413
|
+
profile_ops(x, [m], n=3)
|
414
414
|
get_flops_with_torch_profiler(m)
|
415
415
|
time_sync()
|
416
416
|
|
ultralytics/__init__.py
CHANGED
ultralytics/engine/exporter.py
CHANGED
@@ -140,7 +140,7 @@ def export_formats():
|
|
140
140
|
["MNN", "mnn", ".mnn", True, True, ["batch", "half", "int8"]],
|
141
141
|
["NCNN", "ncnn", "_ncnn_model", True, True, ["batch", "half"]],
|
142
142
|
["IMX", "imx", "_imx_model", True, True, ["int8", "fraction"]],
|
143
|
-
["RKNN", "rknn", "_rknn_model", False, False, ["batch", "name"]],
|
143
|
+
["RKNN", "rknn", "_rknn_model", False, False, ["batch", "name", "int8"]],
|
144
144
|
]
|
145
145
|
return dict(zip(["Format", "Argument", "Suffix", "CPU", "GPU", "Arguments"], zip(*x)))
|
146
146
|
|
@@ -970,8 +970,9 @@ class Exporter:
|
|
970
970
|
output_integer_quantized_tflite=self.args.int8,
|
971
971
|
quant_type="per-tensor", # "per-tensor" (faster) or "per-channel" (slower but more accurate)
|
972
972
|
custom_input_op_name_np_data_path=np_data,
|
973
|
-
|
974
|
-
|
973
|
+
enable_batchmatmul_unfold=True, # fix lower no. of detected objects on GPU delegate
|
974
|
+
output_signaturedefs=True, # fix error with Attention block group convolution
|
975
|
+
optimization_for_gpu_delegate=True,
|
975
976
|
)
|
976
977
|
yaml_save(f / "metadata.yaml", self.metadata) # add metadata.yaml
|
977
978
|
|
@@ -1110,8 +1111,8 @@ class Exporter:
|
|
1110
1111
|
rknn = RKNN(verbose=False)
|
1111
1112
|
rknn.config(mean_values=[[0, 0, 0]], std_values=[[255, 255, 255]], target_platform=self.args.name)
|
1112
1113
|
rknn.load_onnx(model=f)
|
1113
|
-
rknn.build(do_quantization=
|
1114
|
-
f = f.replace(".onnx", f"-{self.args.name}.rknn")
|
1114
|
+
rknn.build(do_quantization=self.args.int8)
|
1115
|
+
f = f.replace(".onnx", f"-{self.args.name}-int8.rknn" if self.args.int8 else f"-{self.args.name}-fp16.rknn")
|
1115
1116
|
rknn.export_rknn(f"{export_path / f}")
|
1116
1117
|
yaml_save(export_path / "metadata.yaml", self.metadata)
|
1117
1118
|
return export_path, None
|
ultralytics/engine/results.py
CHANGED
@@ -662,17 +662,14 @@ class Results(SimpleClass):
|
|
662
662
|
- For classification tasks, it returns the top 5 class probabilities and their corresponding class names.
|
663
663
|
- The returned string is comma-separated and ends with a comma and a space.
|
664
664
|
"""
|
665
|
-
log_string = ""
|
666
665
|
probs = self.probs
|
667
666
|
if len(self) == 0:
|
668
|
-
return
|
667
|
+
return "" if probs is not None else "(no detections), "
|
669
668
|
if probs is not None:
|
670
|
-
|
669
|
+
return f"{', '.join(f'{self.names[j]} {probs.data[j]:.2f}' for j in probs.top5)}, "
|
671
670
|
if boxes := self.boxes:
|
672
|
-
|
673
|
-
|
674
|
-
log_string += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, "
|
675
|
-
return log_string
|
671
|
+
counts = boxes.cls.int().bincount()
|
672
|
+
return "".join(f"{n} {self.names[i]}{'s' * (n > 1)}, " for i, n in enumerate(counts) if n > 0)
|
676
673
|
|
677
674
|
def save_txt(self, txt_file, save_conf=False):
|
678
675
|
"""
|
@@ -90,7 +90,7 @@ class DetectionPredictor(BasePredictor):
|
|
90
90
|
obj_feats = torch.cat(
|
91
91
|
[x.permute(0, 2, 3, 1).reshape(x.shape[0], -1, s, x.shape[1] // s).mean(dim=-1) for x in feat_maps], dim=1
|
92
92
|
) # mean reduce all vectors to same length
|
93
|
-
return [feats[idx] for feats, idx in zip(obj_feats, idxs)] # for each
|
93
|
+
return [feats[idx] if len(idx) else [] for feats, idx in zip(obj_feats, idxs)] # for each img in batch
|
94
94
|
|
95
95
|
def construct_results(self, preds, img, orig_imgs):
|
96
96
|
"""
|
ultralytics/nn/autobackend.py
CHANGED
@@ -725,7 +725,7 @@ class AutoBackend(nn.Module):
|
|
725
725
|
else:
|
726
726
|
im = im.cpu().numpy()
|
727
727
|
if self.saved_model: # SavedModel
|
728
|
-
y = self.model(im, training=False) if self.keras else self.model(im)
|
728
|
+
y = self.model(im, training=False) if self.keras else self.model.serving_default(im)
|
729
729
|
if not isinstance(y, list):
|
730
730
|
y = [y]
|
731
731
|
elif self.pb: # GraphDef
|
ultralytics/trackers/track.py
CHANGED
@@ -58,10 +58,10 @@ def on_predict_start(predictor: object, persist: bool = False) -> None:
|
|
58
58
|
predictor._feats = None
|
59
59
|
|
60
60
|
# Register hook to extract input of Detect layer
|
61
|
-
def
|
62
|
-
predictor._feats = input[0]
|
61
|
+
def pre_hook(module, input):
|
62
|
+
predictor._feats = [t.clone() for t in input[0]]
|
63
63
|
|
64
|
-
predictor.model.model.model[-1].
|
64
|
+
predictor.model.model.model[-1].register_forward_pre_hook(pre_hook)
|
65
65
|
|
66
66
|
trackers = []
|
67
67
|
for _ in range(predictor.dataset.bs):
|
ultralytics/utils/autobatch.py
CHANGED
@@ -8,7 +8,7 @@ import numpy as np
|
|
8
8
|
import torch
|
9
9
|
|
10
10
|
from ultralytics.utils import DEFAULT_CFG, LOGGER, colorstr
|
11
|
-
from ultralytics.utils.torch_utils import autocast,
|
11
|
+
from ultralytics.utils.torch_utils import autocast, profile_ops
|
12
12
|
|
13
13
|
|
14
14
|
def check_train_batch_size(model, imgsz=640, amp=True, batch=-1, max_num_obj=1):
|
@@ -74,7 +74,7 @@ def autobatch(model, imgsz=640, fraction=0.60, batch_size=DEFAULT_CFG.batch, max
|
|
74
74
|
batch_sizes = [1, 2, 4, 8, 16] if t < 16 else [1, 2, 4, 8, 16, 32, 64]
|
75
75
|
try:
|
76
76
|
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
|
77
|
-
results =
|
77
|
+
results = profile_ops(img, model, n=1, device=device, max_num_obj=max_num_obj)
|
78
78
|
|
79
79
|
# Fit a solution
|
80
80
|
xy = [
|
ultralytics/utils/benchmarks.py
CHANGED
@@ -4,7 +4,7 @@ Benchmark a YOLO model formats for speed and accuracy.
|
|
4
4
|
|
5
5
|
Usage:
|
6
6
|
from ultralytics.utils.benchmarks import ProfileModels, benchmark
|
7
|
-
ProfileModels(['yolo11n.yaml', 'yolov8s.yaml']).
|
7
|
+
ProfileModels(['yolo11n.yaml', 'yolov8s.yaml']).run()
|
8
8
|
benchmark(model='yolo11n.pt', imgsz=160)
|
9
9
|
|
10
10
|
Format | `format=argument` | Model
|
@@ -378,7 +378,7 @@ class ProfileModels:
|
|
378
378
|
Profile models and print results
|
379
379
|
>>> from ultralytics.utils.benchmarks import ProfileModels
|
380
380
|
>>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"], imgsz=640)
|
381
|
-
>>> profiler.
|
381
|
+
>>> profiler.run()
|
382
382
|
"""
|
383
383
|
|
384
384
|
def __init__(
|
@@ -412,7 +412,7 @@ class ProfileModels:
|
|
412
412
|
Initialize and profile models
|
413
413
|
>>> from ultralytics.utils.benchmarks import ProfileModels
|
414
414
|
>>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"], imgsz=640)
|
415
|
-
>>> profiler.
|
415
|
+
>>> profiler.run()
|
416
416
|
"""
|
417
417
|
self.paths = paths
|
418
418
|
self.num_timed_runs = num_timed_runs
|
@@ -423,7 +423,7 @@ class ProfileModels:
|
|
423
423
|
self.trt = trt # run TensorRT profiling
|
424
424
|
self.device = device or torch.device(0 if torch.cuda.is_available() else "cpu")
|
425
425
|
|
426
|
-
def
|
426
|
+
def run(self):
|
427
427
|
"""
|
428
428
|
Profile YOLO models for speed and accuracy across various formats including ONNX and TensorRT.
|
429
429
|
|
@@ -434,7 +434,7 @@ class ProfileModels:
|
|
434
434
|
Profile models and print results
|
435
435
|
>>> from ultralytics.utils.benchmarks import ProfileModels
|
436
436
|
>>> profiler = ProfileModels(["yolo11n.yaml", "yolov8s.yaml"])
|
437
|
-
>>> results = profiler.
|
437
|
+
>>> results = profiler.run()
|
438
438
|
"""
|
439
439
|
files = self.get_files()
|
440
440
|
|
ultralytics/utils/torch_utils.py
CHANGED
@@ -378,7 +378,7 @@ def model_info_for_loggers(trainer):
|
|
378
378
|
if trainer.args.profile: # profile ONNX and TensorRT times
|
379
379
|
from ultralytics.utils.benchmarks import ProfileModels
|
380
380
|
|
381
|
-
results = ProfileModels([trainer.last], device=trainer.device).
|
381
|
+
results = ProfileModels([trainer.last], device=trainer.device).run()[0]
|
382
382
|
results.pop("model/name")
|
383
383
|
else: # only return PyTorch times from most recent validation
|
384
384
|
results = {
|
@@ -790,7 +790,7 @@ def cuda_memory_usage(device=None):
|
|
790
790
|
yield cuda_info
|
791
791
|
|
792
792
|
|
793
|
-
def
|
793
|
+
def profile_ops(input, ops, n=10, device=None, max_num_obj=0):
|
794
794
|
"""
|
795
795
|
Ultralytics speed, memory and FLOPs profiler.
|
796
796
|
|
@@ -805,11 +805,11 @@ def profile(input, ops, n=10, device=None, max_num_obj=0):
|
|
805
805
|
(list): Profile results for each operation.
|
806
806
|
|
807
807
|
Examples:
|
808
|
-
>>> from ultralytics.utils.torch_utils import
|
808
|
+
>>> from ultralytics.utils.torch_utils import profile_ops
|
809
809
|
>>> input = torch.randn(16, 3, 640, 640)
|
810
810
|
>>> m1 = lambda x: x * torch.sigmoid(x)
|
811
811
|
>>> m2 = nn.SiLU()
|
812
|
-
>>>
|
812
|
+
>>> profile_ops(input, [m1, m2], n=100) # profile over 100 iterations
|
813
813
|
"""
|
814
814
|
results = []
|
815
815
|
if not isinstance(device, torch.device):
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.4
|
2
2
|
Name: ultralytics
|
3
|
-
Version: 8.3.
|
3
|
+
Version: 8.3.123
|
4
4
|
Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
5
5
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
6
6
|
Maintainer-email: Ultralytics <hello@ultralytics.com>
|
@@ -1,13 +1,13 @@
|
|
1
1
|
tests/__init__.py,sha256=xnMhv3O_DF1YrW4zk__ZywQzAaoTDjPKPoiI1Ktss1w,670
|
2
2
|
tests/conftest.py,sha256=rsIAipRKfrVNoTaJ1LdpYue8AbcJ_fr3d3WIlM_6uXY,2982
|
3
3
|
tests/test_cli.py,sha256=PtMFl5Lp_6ygBbYDJ1ndofz2k7ZYupMPEAiZw6aZVm8,5450
|
4
|
-
tests/test_cuda.py,sha256=
|
4
|
+
tests/test_cuda.py,sha256=vCpPMAkEUQrQMVe4oMwGZQVOiuujEAkZ2zturNXFF-4,6256
|
5
5
|
tests/test_engine.py,sha256=aGqZ8P7QO5C_nOa1b4FOyk92Ysdk5WiP-ST310Vyxys,4962
|
6
6
|
tests/test_exports.py,sha256=dhZn86LdbapW15RthQF870LGxDjC1MUZhlGdBgPmgIQ,9716
|
7
7
|
tests/test_integrations.py,sha256=dQteeRsRVuT_p5-T88-7jqT65Zm9iAXkyKg-KQ1_TQ8,6341
|
8
|
-
tests/test_python.py,sha256=
|
8
|
+
tests/test_python.py,sha256=NDIqkKt-awgjq45y29xopZLhX8kkknqYz81Wm7ixqXo,25495
|
9
9
|
tests/test_solutions.py,sha256=BIvg9zW0a_ggEmrPKgB_Y0MncveH-eYuN5KlqdJ6nHs,5726
|
10
|
-
ultralytics/__init__.py,sha256=
|
10
|
+
ultralytics/__init__.py,sha256=FzBnkV__4DhnrF8Rs0JzvAR9A3VOlusTeRBaIY30-Do,730
|
11
11
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
12
12
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
13
13
|
ultralytics/cfg/__init__.py,sha256=ZXbvd-lyu0IIwVYAN6NH3KbQ5MLC5865Lh2c7IDkNSw,39675
|
@@ -118,10 +118,10 @@ ultralytics/data/scripts/get_coco.sh,sha256=UuJpJeo3qQpTHVINeOpmP0NYmg8PhEFE3A8J
|
|
118
118
|
ultralytics/data/scripts/get_coco128.sh,sha256=qmRQl_hOKrsdHrTrnyQuFIH01oDz3lfaz138OgGfLt8,650
|
119
119
|
ultralytics/data/scripts/get_imagenet.sh,sha256=hr42H16bM47iT27rgS7MpEo-GeOZAYUQXgr0B2cwn48,1705
|
120
120
|
ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
|
121
|
-
ultralytics/engine/exporter.py,sha256=
|
121
|
+
ultralytics/engine/exporter.py,sha256=56PU45SvNhYym9JiJctZXO5NkW-cwzTu5o7yIqx13Fc,70251
|
122
122
|
ultralytics/engine/model.py,sha256=wS1cwgv0iyhsslMAZYMGlYDWitDIRW96d7MxwW-Sw5o,52817
|
123
123
|
ultralytics/engine/predictor.py,sha256=YJ5l-0qIpr6JAJxowswtZ0IqmXBqVTvAA9vR40v0sCM,21752
|
124
|
-
ultralytics/engine/results.py,sha256
|
124
|
+
ultralytics/engine/results.py,sha256=-JPBn_YMyZv6HhdlyhjRIZCcMf41LTyWID7JrEP64rc,79632
|
125
125
|
ultralytics/engine/trainer.py,sha256=fdB8H6brnnQAL-ZFP6nmNmKMze0_qy0OT3jJg1B5uhQ,38864
|
126
126
|
ultralytics/engine/tuner.py,sha256=IyFKsh4Q4a1DsjfK02DdN9cufAiBDhdhIq7F7ddguys,12646
|
127
127
|
ultralytics/engine/validator.py,sha256=jfV81wuFDgrVVXEcPzgOpxAPrAZn-1LgpKwu9l_1-ts,17050
|
@@ -169,7 +169,7 @@ ultralytics/models/yolo/classify/predict.py,sha256=JV9szginTQ9Lpob0FozhKMiEIu1vV
|
|
169
169
|
ultralytics/models/yolo/classify/train.py,sha256=rv2CJv9fzvtHf2q4l5g0RsjplWKeLpz637kKqjtrLNY,9737
|
170
170
|
ultralytics/models/yolo/classify/val.py,sha256=xk-YwSQdl_oqyCBV0OOAOcXFL6CchebFOc36AkRSyjE,9992
|
171
171
|
ultralytics/models/yolo/detect/__init__.py,sha256=GIRsLYR-kT4JJx7lh4ZZAFGBZj0aebokuU0A7JbjDVA,257
|
172
|
-
ultralytics/models/yolo/detect/predict.py,sha256=
|
172
|
+
ultralytics/models/yolo/detect/predict.py,sha256=n1-WmzkvW3dHglI7XrxDr4i0nZ236h6Wh37TAWXpFfo,5341
|
173
173
|
ultralytics/models/yolo/detect/train.py,sha256=YOEmUZkfJBq6hNbB_P10k-uy4_2fUgdPfVWzO4y8Egs,9538
|
174
174
|
ultralytics/models/yolo/detect/val.py,sha256=7AB_wZi7aQ9_V1pZQSWk5qiJYS34fuO3P5aX7_3eeFE,18471
|
175
175
|
ultralytics/models/yolo/obb/__init__.py,sha256=tQmpG8wVHsajWkZdmD6cjGohJ4ki64iSXQT8JY_dydo,221
|
@@ -193,7 +193,7 @@ ultralytics/models/yolo/yoloe/train.py,sha256=St3zw_XWRol9pODWU4lvKlJnWYr1lmWQNu
|
|
193
193
|
ultralytics/models/yolo/yoloe/train_seg.py,sha256=l0SOMQQd0Y_EBBHhTNekgrQsftqhYyK4oWTdCg1dLrE,4633
|
194
194
|
ultralytics/models/yolo/yoloe/val.py,sha256=oA8cVT3pBXF6aPZy7ITq0mDcktRuIgks8tTtqMRISyY,8431
|
195
195
|
ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
|
196
|
-
ultralytics/nn/autobackend.py,sha256=
|
196
|
+
ultralytics/nn/autobackend.py,sha256=ng6CUi82BrV6qGVsif_U_1E4foL19N7isB7tQGECTGE,39314
|
197
197
|
ultralytics/nn/tasks.py,sha256=EwRC70qA3eP8Xp-gGP8OuN-q8LCGDrq1iRue7ncRSV4,62916
|
198
198
|
ultralytics/nn/text_model.py,sha256=8_7SRejKZA4Pi-ha0gjcWrQDDCDMBhtwlg8pPMWgjDE,13145
|
199
199
|
ultralytics/nn/modules/__init__.py,sha256=dXLtIk9rt944WfsTdpgEdWOg3HQEHdwQztuZ6WNJygs,3144
|
@@ -225,14 +225,14 @@ ultralytics/trackers/__init__.py,sha256=Zlu_Ig5osn7hqch_g5Be_e4pwZUkeeTQiesJCi0p
|
|
225
225
|
ultralytics/trackers/basetrack.py,sha256=LYvWB5d7Woyrz_RlxaopjV07RQKH3sff_lZJfMcMxcA,4450
|
226
226
|
ultralytics/trackers/bot_sort.py,sha256=rpaj7X8COT0Vi5GFR9z-CGSBgJ7gTfFx2wTSZFTnhco,11466
|
227
227
|
ultralytics/trackers/byte_tracker.py,sha256=D7JQ_6V8OUMQryxTrAr010UXMSaboQnI7T1xppzHXYg,20921
|
228
|
-
ultralytics/trackers/track.py,sha256=
|
228
|
+
ultralytics/trackers/track.py,sha256=wuja3-xceuhaTEJyD2VqRBJUodPEM7-4iK47MkxshjM,4830
|
229
229
|
ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
|
230
230
|
ultralytics/trackers/utils/gmc.py,sha256=dz3I5LbIv7h1__Xg7rGHecQFE32VFTe54tUnxb8F0Z8,14466
|
231
231
|
ultralytics/trackers/utils/kalman_filter.py,sha256=A0CqOnnaKH6kr0XwuHzyHmIU6aJAjJYxF9jVlNBKZHo,21326
|
232
232
|
ultralytics/trackers/utils/matching.py,sha256=7eIufSdeN7cXuFMjvcfvz0Ldq84m4YKZl5IGxBR8IIo,7169
|
233
233
|
ultralytics/utils/__init__.py,sha256=qV5nw3ED1NuSCoYwW3WpT6BTLeCnoH7KJgbPZU_3Sbo,50422
|
234
|
-
ultralytics/utils/autobatch.py,sha256=
|
235
|
-
ultralytics/utils/benchmarks.py,sha256=
|
234
|
+
ultralytics/utils/autobatch.py,sha256=kg05q2qKg74y_Uq2vvr01i3KhLfpVR7sT0IXBt3_kyI,4921
|
235
|
+
ultralytics/utils/benchmarks.py,sha256=GXcatQqAUCBg3lSmzR5ZEZDYWdPREtFapHP-S4wj7G4,30357
|
236
236
|
ultralytics/utils/checks.py,sha256=5bkna--ZH4FJDZtgef_K4xgjiKOZqCarTqIE4Z0vwJU,32628
|
237
237
|
ultralytics/utils/dist.py,sha256=e-DK_YowV7D9rDGQyWR9Kaosxp2eWe2EogSWnnUMthc,4098
|
238
238
|
ultralytics/utils/downloads.py,sha256=IvHng2-bApoyi-QMvesGwMmFNqEFiXPIKiiW16Q-U4M,22220
|
@@ -246,7 +246,7 @@ ultralytics/utils/ops.py,sha256=YFwPrKlPcgEmgAWqnJVR0Ccx5NQgp5e3P-YYHwVSP0k,3477
|
|
246
246
|
ultralytics/utils/patches.py,sha256=6rVT-l8WDp_Py3O-gZdv9t3PnrYRRkrX_lF3mZ1XS8c,4928
|
247
247
|
ultralytics/utils/plotting.py,sha256=5QPK1y-gm4T1mK3sjfRZhIUJAyP05D1cJ7h9wHPTifU,46616
|
248
248
|
ultralytics/utils/tal.py,sha256=P5nPoR9qNnFuDIda0fsn8WP6m1V8r7EbvXUuhNRFFTA,20805
|
249
|
-
ultralytics/utils/torch_utils.py,sha256=
|
249
|
+
ultralytics/utils/torch_utils.py,sha256=iaf7aJaZUadjBRvOs0vN2iIEePXIE8024anUOVkxPqE,39036
|
250
250
|
ultralytics/utils/triton.py,sha256=xK9Db_ZUVDnIK1u76S2G-6ulIBsLfj9HN_YOaSrnMuU,5304
|
251
251
|
ultralytics/utils/tuner.py,sha256=0Bp7l5dWZe1RzdvAIa11wQoX6eoAaoNRcA-EAnpofbk,6755
|
252
252
|
ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
|
@@ -260,9 +260,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=JaI95Cj2kIjUhlEEOiDN0-Drc-fDelLhNI
|
|
260
260
|
ultralytics/utils/callbacks/raytune.py,sha256=A8amUGpux7dYES-L1iSeMoMXBySGWCD1aUqT7vcG-pU,1284
|
261
261
|
ultralytics/utils/callbacks/tensorboard.py,sha256=jgYnym3cUQFAgN1GzTyO7l3jINtfAh8zhrllDvnLuVQ,5339
|
262
262
|
ultralytics/utils/callbacks/wb.py,sha256=iDRFXI4IIDm8R5OI89DMTmjs8aHLo1HRCLkOFKdaMG4,7507
|
263
|
-
ultralytics-8.3.
|
264
|
-
ultralytics-8.3.
|
265
|
-
ultralytics-8.3.
|
266
|
-
ultralytics-8.3.
|
267
|
-
ultralytics-8.3.
|
268
|
-
ultralytics-8.3.
|
263
|
+
ultralytics-8.3.123.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
264
|
+
ultralytics-8.3.123.dist-info/METADATA,sha256=kC_n3rFeiSOMo5st7xOemdh851cEtByxNnwucTt52_s,37180
|
265
|
+
ultralytics-8.3.123.dist-info/WHEEL,sha256=wXxTzcEDnjrTwFYjLPcsW_7_XihufBwmpiBeiXNBGEA,91
|
266
|
+
ultralytics-8.3.123.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
267
|
+
ultralytics-8.3.123.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
268
|
+
ultralytics-8.3.123.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|