ultralytics 8.3.11__py3-none-any.whl → 8.3.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- tests/test_cli.py +4 -1
- tests/test_cuda.py +13 -1
- ultralytics/__init__.py +1 -3
- ultralytics/cfg/__init__.py +2 -35
- ultralytics/cfg/solutions/default.yaml +1 -0
- ultralytics/engine/exporter.py +9 -1
- ultralytics/models/sam/predict.py +79 -50
- ultralytics/models/yolo/classify/train.py +1 -2
- ultralytics/solutions/analytics.py +151 -264
- ultralytics/solutions/distance_calculation.py +15 -72
- ultralytics/solutions/object_counter.py +2 -2
- ultralytics/utils/metrics.py +1 -1
- ultralytics/utils/plotting.py +14 -15
- {ultralytics-8.3.11.dist-info → ultralytics-8.3.13.dist-info}/METADATA +4 -5
- {ultralytics-8.3.11.dist-info → ultralytics-8.3.13.dist-info}/RECORD +19 -24
- ultralytics/data/explorer/__init__.py +0 -5
- ultralytics/data/explorer/explorer.py +0 -460
- ultralytics/data/explorer/gui/__init__.py +0 -1
- ultralytics/data/explorer/gui/dash.py +0 -269
- ultralytics/data/explorer/utils.py +0 -167
- {ultralytics-8.3.11.dist-info → ultralytics-8.3.13.dist-info}/LICENSE +0 -0
- {ultralytics-8.3.11.dist-info → ultralytics-8.3.13.dist-info}/WHEEL +0 -0
- {ultralytics-8.3.11.dist-info → ultralytics-8.3.13.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.11.dist-info → ultralytics-8.3.13.dist-info}/top_level.txt +0 -0
|
@@ -1,6 +1,5 @@
|
|
|
1
1
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
2
|
|
|
3
|
-
import warnings
|
|
4
3
|
from itertools import cycle
|
|
5
4
|
|
|
6
5
|
import cv2
|
|
@@ -9,299 +8,187 @@ import numpy as np
|
|
|
9
8
|
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
|
|
10
9
|
from matplotlib.figure import Figure
|
|
11
10
|
|
|
11
|
+
from ultralytics.solutions.solutions import BaseSolution # Import a parent class
|
|
12
12
|
|
|
13
|
-
|
|
13
|
+
|
|
14
|
+
class Analytics(BaseSolution):
|
|
14
15
|
"""A class to create and update various types of charts (line, bar, pie, area) for visual analytics."""
|
|
15
16
|
|
|
16
|
-
def __init__(
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
writer,
|
|
20
|
-
im0_shape,
|
|
21
|
-
title="ultralytics",
|
|
22
|
-
x_label="x",
|
|
23
|
-
y_label="y",
|
|
24
|
-
bg_color="white",
|
|
25
|
-
fg_color="black",
|
|
26
|
-
line_color="yellow",
|
|
27
|
-
line_width=2,
|
|
28
|
-
points_width=10,
|
|
29
|
-
fontsize=13,
|
|
30
|
-
view_img=False,
|
|
31
|
-
save_img=True,
|
|
32
|
-
max_points=50,
|
|
33
|
-
):
|
|
34
|
-
"""
|
|
35
|
-
Initialize the Analytics class with various chart types.
|
|
17
|
+
def __init__(self, **kwargs):
|
|
18
|
+
"""Initialize the Analytics class with various chart types."""
|
|
19
|
+
super().__init__(**kwargs)
|
|
36
20
|
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
fontsize (int): Font size for chart text.
|
|
50
|
-
view_img (bool): Whether to display the image.
|
|
51
|
-
save_img (bool): Whether to save the image.
|
|
52
|
-
max_points (int): Specifies when to remove the oldest points in a graph for multiple lines.
|
|
53
|
-
"""
|
|
54
|
-
self.bg_color = bg_color
|
|
55
|
-
self.fg_color = fg_color
|
|
56
|
-
self.view_img = view_img
|
|
57
|
-
self.save_img = save_img
|
|
58
|
-
self.title = title
|
|
59
|
-
self.writer = writer
|
|
60
|
-
self.max_points = max_points
|
|
61
|
-
self.line_color = line_color
|
|
62
|
-
self.x_label = x_label
|
|
63
|
-
self.y_label = y_label
|
|
64
|
-
self.points_width = points_width
|
|
65
|
-
self.line_width = line_width
|
|
66
|
-
self.fontsize = fontsize
|
|
21
|
+
self.type = self.CFG["analytics_type"] # extract type of analytics
|
|
22
|
+
self.x_label = "Classes" if self.type in {"bar", "pie"} else "Frame#"
|
|
23
|
+
self.y_label = "Total Counts"
|
|
24
|
+
|
|
25
|
+
# Predefined data
|
|
26
|
+
self.bg_color = "#00F344" # background color of frame
|
|
27
|
+
self.fg_color = "#111E68" # foreground color of frame
|
|
28
|
+
self.title = "Ultralytics Solutions" # window name
|
|
29
|
+
self.max_points = 45 # maximum points to be drawn on window
|
|
30
|
+
self.fontsize = 25 # text font size for display
|
|
31
|
+
figsize = (19.2, 10.8) # Set output image size 1920 * 1080
|
|
32
|
+
self.color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"])
|
|
67
33
|
|
|
68
|
-
#
|
|
69
|
-
|
|
34
|
+
self.total_counts = 0 # count variable for storing total counts i.e for line
|
|
35
|
+
self.clswise_count = {} # dictionary for classwise counts
|
|
70
36
|
|
|
71
|
-
|
|
72
|
-
|
|
37
|
+
# Ensure line and area chart
|
|
38
|
+
if self.type in {"line", "area"}:
|
|
73
39
|
self.lines = {}
|
|
74
40
|
self.fig = Figure(facecolor=self.bg_color, figsize=figsize)
|
|
75
|
-
self.canvas = FigureCanvas(self.fig)
|
|
41
|
+
self.canvas = FigureCanvas(self.fig) # Set common axis properties
|
|
76
42
|
self.ax = self.fig.add_subplot(111, facecolor=self.bg_color)
|
|
77
|
-
if type == "line":
|
|
78
|
-
(self.line,) = self.ax.plot([], [], color=
|
|
79
|
-
|
|
80
|
-
elif type in {"bar", "pie"}:
|
|
43
|
+
if self.type == "line":
|
|
44
|
+
(self.line,) = self.ax.plot([], [], color="cyan", linewidth=self.line_width)
|
|
45
|
+
elif self.type in {"bar", "pie"}:
|
|
81
46
|
# Initialize bar or pie plot
|
|
82
47
|
self.fig, self.ax = plt.subplots(figsize=figsize, facecolor=self.bg_color)
|
|
48
|
+
self.canvas = FigureCanvas(self.fig) # Set common axis properties
|
|
83
49
|
self.ax.set_facecolor(self.bg_color)
|
|
84
|
-
color_palette = [
|
|
85
|
-
(31, 119, 180),
|
|
86
|
-
(255, 127, 14),
|
|
87
|
-
(44, 160, 44),
|
|
88
|
-
(214, 39, 40),
|
|
89
|
-
(148, 103, 189),
|
|
90
|
-
(140, 86, 75),
|
|
91
|
-
(227, 119, 194),
|
|
92
|
-
(127, 127, 127),
|
|
93
|
-
(188, 189, 34),
|
|
94
|
-
(23, 190, 207),
|
|
95
|
-
]
|
|
96
|
-
self.color_palette = [(r / 255, g / 255, b / 255, 1) for r, g, b in color_palette]
|
|
97
|
-
self.color_cycle = cycle(self.color_palette)
|
|
98
50
|
self.color_mapping = {}
|
|
51
|
+
self.ax.axis("equal") if type == "pie" else None # Ensure pie chart is circular
|
|
99
52
|
|
|
100
|
-
|
|
101
|
-
|
|
102
|
-
|
|
103
|
-
# Set common axis properties
|
|
104
|
-
self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize)
|
|
105
|
-
self.ax.set_xlabel(x_label, color=self.fg_color, fontsize=self.fontsize - 3)
|
|
106
|
-
self.ax.set_ylabel(y_label, color=self.fg_color, fontsize=self.fontsize - 3)
|
|
107
|
-
self.ax.tick_params(axis="both", colors=self.fg_color)
|
|
53
|
+
def process_data(self, im0, frame_number):
|
|
54
|
+
"""
|
|
55
|
+
Process the image data, run object tracking.
|
|
108
56
|
|
|
109
|
-
|
|
57
|
+
Args:
|
|
58
|
+
im0 (ndarray): Input image for processing.
|
|
59
|
+
frame_number (int): Video frame # for plotting the data.
|
|
60
|
+
"""
|
|
61
|
+
self.extract_tracks(im0) # Extract tracks
|
|
62
|
+
|
|
63
|
+
if self.type == "line":
|
|
64
|
+
for box in self.boxes:
|
|
65
|
+
self.total_counts += 1
|
|
66
|
+
im0 = self.update_graph(frame_number=frame_number)
|
|
67
|
+
self.total_counts = 0
|
|
68
|
+
elif self.type == "pie" or self.type == "bar" or self.type == "area":
|
|
69
|
+
self.clswise_count = {}
|
|
70
|
+
for box, cls in zip(self.boxes, self.clss):
|
|
71
|
+
if self.names[int(cls)] in self.clswise_count:
|
|
72
|
+
self.clswise_count[self.names[int(cls)]] += 1
|
|
73
|
+
else:
|
|
74
|
+
self.clswise_count[self.names[int(cls)]] = 1
|
|
75
|
+
im0 = self.update_graph(frame_number=frame_number, count_dict=self.clswise_count, plot=self.type)
|
|
76
|
+
else:
|
|
77
|
+
raise ModuleNotFoundError(f"{self.type} chart is not supported ❌")
|
|
78
|
+
return im0
|
|
79
|
+
|
|
80
|
+
def update_graph(self, frame_number, count_dict=None, plot="line"):
|
|
110
81
|
"""
|
|
111
|
-
Update the area
|
|
82
|
+
Update the graph (line or area) with new data for single or multiple classes.
|
|
112
83
|
|
|
113
84
|
Args:
|
|
114
85
|
frame_number (int): The current frame number.
|
|
115
|
-
|
|
86
|
+
count_dict (dict, optional): Dictionary with class names as keys and counts as values for multiple classes.
|
|
87
|
+
If None, updates a single line graph.
|
|
88
|
+
plot (str): Type of the plot i.e. line, bar or area.
|
|
116
89
|
"""
|
|
117
|
-
|
|
118
|
-
|
|
119
|
-
|
|
120
|
-
|
|
121
|
-
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
y_data_dict
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
x_data
|
|
149
|
-
|
|
150
|
-
|
|
151
|
-
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
|
|
155
|
-
|
|
156
|
-
|
|
90
|
+
if count_dict is None:
|
|
91
|
+
# Single line update
|
|
92
|
+
x_data = np.append(self.line.get_xdata(), float(frame_number))
|
|
93
|
+
y_data = np.append(self.line.get_ydata(), float(self.total_counts))
|
|
94
|
+
|
|
95
|
+
if len(x_data) > self.max_points:
|
|
96
|
+
x_data, y_data = x_data[-self.max_points :], y_data[-self.max_points :]
|
|
97
|
+
|
|
98
|
+
self.line.set_data(x_data, y_data)
|
|
99
|
+
self.line.set_label("Counts")
|
|
100
|
+
self.line.set_color("#7b0068") # Pink color
|
|
101
|
+
self.line.set_marker("*")
|
|
102
|
+
self.line.set_markersize(self.line_width * 5)
|
|
103
|
+
else:
|
|
104
|
+
labels = list(count_dict.keys())
|
|
105
|
+
counts = list(count_dict.values())
|
|
106
|
+
if plot == "area":
|
|
107
|
+
color_cycle = cycle(["#DD00BA", "#042AFF", "#FF4447", "#7D24FF", "#BD00FF"])
|
|
108
|
+
# Multiple lines or area update
|
|
109
|
+
x_data = self.ax.lines[0].get_xdata() if self.ax.lines else np.array([])
|
|
110
|
+
y_data_dict = {key: np.array([]) for key in count_dict.keys()}
|
|
111
|
+
if self.ax.lines:
|
|
112
|
+
for line, key in zip(self.ax.lines, count_dict.keys()):
|
|
113
|
+
y_data_dict[key] = line.get_ydata()
|
|
114
|
+
|
|
115
|
+
x_data = np.append(x_data, float(frame_number))
|
|
116
|
+
max_length = len(x_data)
|
|
117
|
+
for key in count_dict.keys():
|
|
118
|
+
y_data_dict[key] = np.append(y_data_dict[key], float(count_dict[key]))
|
|
119
|
+
if len(y_data_dict[key]) < max_length:
|
|
120
|
+
y_data_dict[key] = np.pad(y_data_dict[key], (0, max_length - len(y_data_dict[key])), "constant")
|
|
121
|
+
if len(x_data) > self.max_points:
|
|
122
|
+
x_data = x_data[1:]
|
|
123
|
+
for key in count_dict.keys():
|
|
124
|
+
y_data_dict[key] = y_data_dict[key][1:]
|
|
125
|
+
|
|
126
|
+
self.ax.clear()
|
|
127
|
+
for key, y_data in y_data_dict.items():
|
|
128
|
+
color = next(color_cycle)
|
|
129
|
+
self.ax.fill_between(x_data, y_data, color=color, alpha=0.7)
|
|
130
|
+
self.ax.plot(
|
|
131
|
+
x_data,
|
|
132
|
+
y_data,
|
|
133
|
+
color=color,
|
|
134
|
+
linewidth=self.line_width,
|
|
135
|
+
marker="o",
|
|
136
|
+
markersize=self.line_width * 5,
|
|
137
|
+
label=f"{key} Data Points",
|
|
138
|
+
)
|
|
139
|
+
if plot == "bar":
|
|
140
|
+
self.ax.clear() # clear bar data
|
|
141
|
+
for label in labels: # Map labels to colors
|
|
142
|
+
if label not in self.color_mapping:
|
|
143
|
+
self.color_mapping[label] = next(self.color_cycle)
|
|
144
|
+
colors = [self.color_mapping[label] for label in labels]
|
|
145
|
+
bars = self.ax.bar(labels, counts, color=colors)
|
|
146
|
+
for bar, count in zip(bars, counts):
|
|
147
|
+
self.ax.text(
|
|
148
|
+
bar.get_x() + bar.get_width() / 2,
|
|
149
|
+
bar.get_height(),
|
|
150
|
+
str(count),
|
|
151
|
+
ha="center",
|
|
152
|
+
va="bottom",
|
|
153
|
+
color=self.fg_color,
|
|
154
|
+
)
|
|
155
|
+
# Create the legend using labels from the bars
|
|
156
|
+
for bar, label in zip(bars, labels):
|
|
157
|
+
bar.set_label(label) # Assign label to each bar
|
|
158
|
+
self.ax.legend(loc="upper left", fontsize=13, facecolor=self.fg_color, edgecolor=self.fg_color)
|
|
159
|
+
if plot == "pie":
|
|
160
|
+
total = sum(counts)
|
|
161
|
+
percentages = [size / total * 100 for size in counts]
|
|
162
|
+
start_angle = 90
|
|
163
|
+
self.ax.clear()
|
|
164
|
+
|
|
165
|
+
# Create pie chart and create legend labels with percentages
|
|
166
|
+
wedges, autotexts = self.ax.pie(
|
|
167
|
+
counts, labels=labels, startangle=start_angle, textprops={"color": self.fg_color}, autopct=None
|
|
168
|
+
)
|
|
169
|
+
legend_labels = [f"{label} ({percentage:.1f}%)" for label, percentage in zip(labels, percentages)]
|
|
170
|
+
|
|
171
|
+
# Assign the legend using the wedges and manually created labels
|
|
172
|
+
self.ax.legend(wedges, legend_labels, title="Classes", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1))
|
|
173
|
+
self.fig.subplots_adjust(left=0.1, right=0.75) # Adjust layout to fit the legend
|
|
174
|
+
|
|
175
|
+
# Common plot settings
|
|
176
|
+
self.ax.set_facecolor("#f0f0f0") # Set to light gray or any other color you like
|
|
157
177
|
self.ax.set_title(self.title, color=self.fg_color, fontsize=self.fontsize)
|
|
158
178
|
self.ax.set_xlabel(self.x_label, color=self.fg_color, fontsize=self.fontsize - 3)
|
|
159
179
|
self.ax.set_ylabel(self.y_label, color=self.fg_color, fontsize=self.fontsize - 3)
|
|
160
|
-
legend = self.ax.legend(loc="upper left", fontsize=13, facecolor=self.bg_color, edgecolor=self.fg_color)
|
|
161
180
|
|
|
162
|
-
#
|
|
181
|
+
# Add and format legend
|
|
182
|
+
legend = self.ax.legend(loc="upper left", fontsize=13, facecolor=self.bg_color, edgecolor=self.bg_color)
|
|
163
183
|
for text in legend.get_texts():
|
|
164
184
|
text.set_color(self.fg_color)
|
|
165
185
|
|
|
166
|
-
|
|
167
|
-
im0 = np.array(self.canvas.renderer.buffer_rgba())
|
|
168
|
-
self.write_and_display(im0)
|
|
169
|
-
|
|
170
|
-
def update_line(self, frame_number, total_counts):
|
|
171
|
-
"""
|
|
172
|
-
Update the line graph with new data.
|
|
173
|
-
|
|
174
|
-
Args:
|
|
175
|
-
frame_number (int): The current frame number.
|
|
176
|
-
total_counts (int): The total counts to plot.
|
|
177
|
-
"""
|
|
178
|
-
# Update line graph data
|
|
179
|
-
x_data = self.line.get_xdata()
|
|
180
|
-
y_data = self.line.get_ydata()
|
|
181
|
-
x_data = np.append(x_data, float(frame_number))
|
|
182
|
-
y_data = np.append(y_data, float(total_counts))
|
|
183
|
-
self.line.set_data(x_data, y_data)
|
|
186
|
+
# Redraw graph, update view, capture, and display the updated plot
|
|
184
187
|
self.ax.relim()
|
|
185
188
|
self.ax.autoscale_view()
|
|
186
189
|
self.canvas.draw()
|
|
187
190
|
im0 = np.array(self.canvas.renderer.buffer_rgba())
|
|
188
|
-
self.write_and_display(im0)
|
|
189
|
-
|
|
190
|
-
def update_multiple_lines(self, counts_dict, labels_list, frame_number):
|
|
191
|
-
"""
|
|
192
|
-
Update the line graph with multiple classes.
|
|
193
|
-
|
|
194
|
-
Args:
|
|
195
|
-
counts_dict (int): Dictionary include each class counts.
|
|
196
|
-
labels_list (int): list include each classes names.
|
|
197
|
-
frame_number (int): The current frame number.
|
|
198
|
-
"""
|
|
199
|
-
warnings.warn("Display is not supported for multiple lines, output will be stored normally!")
|
|
200
|
-
for obj in labels_list:
|
|
201
|
-
if obj not in self.lines:
|
|
202
|
-
(line,) = self.ax.plot([], [], label=obj, marker="o", markersize=self.points_width)
|
|
203
|
-
self.lines[obj] = line
|
|
204
|
-
|
|
205
|
-
x_data = self.lines[obj].get_xdata()
|
|
206
|
-
y_data = self.lines[obj].get_ydata()
|
|
207
|
-
|
|
208
|
-
# Remove the initial point if the number of points exceeds max_points
|
|
209
|
-
if len(x_data) >= self.max_points:
|
|
210
|
-
x_data = np.delete(x_data, 0)
|
|
211
|
-
y_data = np.delete(y_data, 0)
|
|
212
|
-
|
|
213
|
-
x_data = np.append(x_data, float(frame_number)) # Ensure frame_number is converted to float
|
|
214
|
-
y_data = np.append(y_data, float(counts_dict.get(obj, 0))) # Ensure total_count is converted to float
|
|
215
|
-
self.lines[obj].set_data(x_data, y_data)
|
|
216
|
-
|
|
217
|
-
self.ax.relim()
|
|
218
|
-
self.ax.autoscale_view()
|
|
219
|
-
self.ax.legend()
|
|
220
|
-
self.canvas.draw()
|
|
221
|
-
|
|
222
|
-
im0 = np.array(self.canvas.renderer.buffer_rgba())
|
|
223
|
-
self.view_img = False # for multiple line view_img not supported yet, coming soon!
|
|
224
|
-
self.write_and_display(im0)
|
|
225
|
-
|
|
226
|
-
def write_and_display(self, im0):
|
|
227
|
-
"""
|
|
228
|
-
Write and display the line graph
|
|
229
|
-
Args:
|
|
230
|
-
im0 (ndarray): Image for processing.
|
|
231
|
-
"""
|
|
232
191
|
im0 = cv2.cvtColor(im0[:, :, :3], cv2.COLOR_RGBA2BGR)
|
|
233
|
-
|
|
234
|
-
self.writer.write(im0) if self.save_img else None
|
|
235
|
-
|
|
236
|
-
def update_bar(self, count_dict):
|
|
237
|
-
"""
|
|
238
|
-
Update the bar graph with new data.
|
|
239
|
-
|
|
240
|
-
Args:
|
|
241
|
-
count_dict (dict): Dictionary containing the count data to plot.
|
|
242
|
-
"""
|
|
243
|
-
# Update bar graph data
|
|
244
|
-
self.ax.clear()
|
|
245
|
-
self.ax.set_facecolor(self.bg_color)
|
|
246
|
-
labels = list(count_dict.keys())
|
|
247
|
-
counts = list(count_dict.values())
|
|
248
|
-
|
|
249
|
-
# Map labels to colors
|
|
250
|
-
for label in labels:
|
|
251
|
-
if label not in self.color_mapping:
|
|
252
|
-
self.color_mapping[label] = next(self.color_cycle)
|
|
253
|
-
|
|
254
|
-
colors = [self.color_mapping[label] for label in labels]
|
|
255
|
-
|
|
256
|
-
bars = self.ax.bar(labels, counts, color=colors)
|
|
257
|
-
for bar, count in zip(bars, counts):
|
|
258
|
-
self.ax.text(
|
|
259
|
-
bar.get_x() + bar.get_width() / 2,
|
|
260
|
-
bar.get_height(),
|
|
261
|
-
str(count),
|
|
262
|
-
ha="center",
|
|
263
|
-
va="bottom",
|
|
264
|
-
color=self.fg_color,
|
|
265
|
-
)
|
|
266
|
-
|
|
267
|
-
# Display and save the updated graph
|
|
268
|
-
canvas = FigureCanvas(self.fig)
|
|
269
|
-
canvas.draw()
|
|
270
|
-
buf = canvas.buffer_rgba()
|
|
271
|
-
im0 = np.asarray(buf)
|
|
272
|
-
self.write_and_display(im0)
|
|
273
|
-
|
|
274
|
-
def update_pie(self, classes_dict):
|
|
275
|
-
"""
|
|
276
|
-
Update the pie chart with new data.
|
|
277
|
-
|
|
278
|
-
Args:
|
|
279
|
-
classes_dict (dict): Dictionary containing the class data to plot.
|
|
280
|
-
"""
|
|
281
|
-
# Update pie chart data
|
|
282
|
-
labels = list(classes_dict.keys())
|
|
283
|
-
sizes = list(classes_dict.values())
|
|
284
|
-
total = sum(sizes)
|
|
285
|
-
percentages = [size / total * 100 for size in sizes]
|
|
286
|
-
start_angle = 90
|
|
287
|
-
self.ax.clear()
|
|
288
|
-
|
|
289
|
-
# Create pie chart without labels inside the slices
|
|
290
|
-
wedges, autotexts = self.ax.pie(sizes, autopct=None, startangle=start_angle, textprops={"color": self.fg_color})
|
|
291
|
-
|
|
292
|
-
# Construct legend labels with percentages
|
|
293
|
-
legend_labels = [f"{label} ({percentage:.1f}%)" for label, percentage in zip(labels, percentages)]
|
|
294
|
-
self.ax.legend(wedges, legend_labels, title="Classes", loc="center left", bbox_to_anchor=(1, 0, 0.5, 1))
|
|
295
|
-
|
|
296
|
-
# Adjust layout to fit the legend
|
|
297
|
-
self.fig.tight_layout()
|
|
298
|
-
self.fig.subplots_adjust(left=0.1, right=0.75)
|
|
299
|
-
|
|
300
|
-
# Display and save the updated chart
|
|
301
|
-
im0 = self.fig.canvas.draw()
|
|
302
|
-
im0 = np.array(self.fig.canvas.renderer.buffer_rgba())
|
|
303
|
-
self.write_and_display(im0)
|
|
304
|
-
|
|
192
|
+
self.display_output(im0)
|
|
305
193
|
|
|
306
|
-
|
|
307
|
-
Analytics("line", writer=None, im0_shape=None)
|
|
194
|
+
return im0 # Return the image
|
|
@@ -4,55 +4,21 @@ import math
|
|
|
4
4
|
|
|
5
5
|
import cv2
|
|
6
6
|
|
|
7
|
-
from ultralytics.
|
|
7
|
+
from ultralytics.solutions.solutions import BaseSolution # Import a parent class
|
|
8
8
|
from ultralytics.utils.plotting import Annotator, colors
|
|
9
9
|
|
|
10
10
|
|
|
11
|
-
class DistanceCalculation:
|
|
11
|
+
class DistanceCalculation(BaseSolution):
|
|
12
12
|
"""A class to calculate distance between two objects in a real-time video stream based on their tracks."""
|
|
13
13
|
|
|
14
|
-
def __init__(
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
view_img=False,
|
|
18
|
-
line_thickness=2,
|
|
19
|
-
line_color=(255, 0, 255),
|
|
20
|
-
centroid_color=(104, 31, 17),
|
|
21
|
-
):
|
|
22
|
-
"""
|
|
23
|
-
Initializes the DistanceCalculation class with the given parameters.
|
|
24
|
-
|
|
25
|
-
Args:
|
|
26
|
-
names (dict): Dictionary of classes names.
|
|
27
|
-
view_img (bool, optional): Flag to indicate if the video stream should be displayed. Defaults to False.
|
|
28
|
-
line_thickness (int, optional): Thickness of the lines drawn on the image. Defaults to 2.
|
|
29
|
-
line_color (tuple, optional): Color of the lines drawn on the image (BGR format). Defaults to (255, 255, 0).
|
|
30
|
-
centroid_color (tuple, optional): Color of the centroids drawn (BGR format). Defaults to (255, 0, 255).
|
|
31
|
-
"""
|
|
32
|
-
# Visual & image information
|
|
33
|
-
self.im0 = None
|
|
34
|
-
self.annotator = None
|
|
35
|
-
self.view_img = view_img
|
|
36
|
-
self.line_color = line_color
|
|
37
|
-
self.centroid_color = centroid_color
|
|
38
|
-
|
|
39
|
-
# Prediction & tracking information
|
|
40
|
-
self.names = names
|
|
41
|
-
self.boxes = None
|
|
42
|
-
self.line_thickness = line_thickness
|
|
43
|
-
self.trk_ids = None
|
|
44
|
-
|
|
45
|
-
# Distance calculation information
|
|
46
|
-
self.centroids = []
|
|
14
|
+
def __init__(self, **kwargs):
|
|
15
|
+
"""Initializes the DistanceCalculation class with the given parameters."""
|
|
16
|
+
super().__init__(**kwargs)
|
|
47
17
|
|
|
48
18
|
# Mouse event information
|
|
49
19
|
self.left_mouse_count = 0
|
|
50
20
|
self.selected_boxes = {}
|
|
51
21
|
|
|
52
|
-
# Check if environment supports imshow
|
|
53
|
-
self.env_check = check_imshow(warn=True)
|
|
54
|
-
self.window_name = "Ultralytics Solutions"
|
|
55
|
-
|
|
56
22
|
def mouse_event_for_distance(self, event, x, y, flags, param):
|
|
57
23
|
"""
|
|
58
24
|
Handles mouse events to select regions in a real-time video stream.
|
|
@@ -67,7 +33,7 @@ class DistanceCalculation:
|
|
|
67
33
|
if event == cv2.EVENT_LBUTTONDOWN:
|
|
68
34
|
self.left_mouse_count += 1
|
|
69
35
|
if self.left_mouse_count <= 2:
|
|
70
|
-
for box, track_id in zip(self.boxes, self.
|
|
36
|
+
for box, track_id in zip(self.boxes, self.track_ids):
|
|
71
37
|
if box[0] < x < box[2] and box[1] < y < box[3] and track_id not in self.selected_boxes:
|
|
72
38
|
self.selected_boxes[track_id] = box
|
|
73
39
|
|
|
@@ -75,30 +41,21 @@ class DistanceCalculation:
|
|
|
75
41
|
self.selected_boxes = {}
|
|
76
42
|
self.left_mouse_count = 0
|
|
77
43
|
|
|
78
|
-
def
|
|
44
|
+
def calculate(self, im0):
|
|
79
45
|
"""
|
|
80
46
|
Processes the video frame and calculates the distance between two bounding boxes.
|
|
81
47
|
|
|
82
48
|
Args:
|
|
83
49
|
im0 (ndarray): The image frame.
|
|
84
|
-
tracks (list): List of tracks obtained from the object tracking process.
|
|
85
50
|
|
|
86
51
|
Returns:
|
|
87
52
|
(ndarray): The processed image frame.
|
|
88
53
|
"""
|
|
89
|
-
self.im0 =
|
|
90
|
-
|
|
91
|
-
if self.view_img:
|
|
92
|
-
self.display_frames()
|
|
93
|
-
return im0
|
|
54
|
+
self.annotator = Annotator(im0, line_width=self.line_width) # Initialize annotator
|
|
55
|
+
self.extract_tracks(im0) # Extract tracks
|
|
94
56
|
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
self.trk_ids = tracks[0].boxes.id.int().cpu().tolist()
|
|
98
|
-
|
|
99
|
-
self.annotator = Annotator(self.im0, line_width=self.line_thickness)
|
|
100
|
-
|
|
101
|
-
for box, cls, track_id in zip(self.boxes, clss, self.trk_ids):
|
|
57
|
+
# Iterate over bounding boxes, track ids and classes index
|
|
58
|
+
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
|
|
102
59
|
self.annotator.box_label(box, color=colors(int(cls), True), label=self.names[int(cls)])
|
|
103
60
|
|
|
104
61
|
if len(self.selected_boxes) == 2:
|
|
@@ -115,25 +72,11 @@ class DistanceCalculation:
|
|
|
115
72
|
pixels_distance = math.sqrt(
|
|
116
73
|
(self.centroids[0][0] - self.centroids[1][0]) ** 2 + (self.centroids[0][1] - self.centroids[1][1]) ** 2
|
|
117
74
|
)
|
|
118
|
-
self.annotator.plot_distance_and_line(pixels_distance, self.centroids
|
|
75
|
+
self.annotator.plot_distance_and_line(pixels_distance, self.centroids)
|
|
119
76
|
|
|
120
77
|
self.centroids = []
|
|
121
78
|
|
|
122
|
-
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
return im0
|
|
126
|
-
|
|
127
|
-
def display_frames(self):
|
|
128
|
-
"""Displays the current frame with annotations."""
|
|
129
|
-
cv2.namedWindow(self.window_name)
|
|
130
|
-
cv2.setMouseCallback(self.window_name, self.mouse_event_for_distance)
|
|
131
|
-
cv2.imshow(self.window_name, self.im0)
|
|
132
|
-
|
|
133
|
-
if cv2.waitKey(1) & 0xFF == ord("q"):
|
|
134
|
-
return
|
|
135
|
-
|
|
79
|
+
self.display_output(im0) # display output with base class function
|
|
80
|
+
cv2.setMouseCallback("Ultralytics Solutions", self.mouse_event_for_distance)
|
|
136
81
|
|
|
137
|
-
|
|
138
|
-
names = {0: "person", 1: "car"} # example class names
|
|
139
|
-
distance_calculation = DistanceCalculation(names)
|
|
82
|
+
return im0 # return output image for more usage
|
|
@@ -112,13 +112,13 @@ class ObjectCounter(BaseSolution):
|
|
|
112
112
|
# Iterate over bounding boxes, track ids and classes index
|
|
113
113
|
for box, track_id, cls in zip(self.boxes, self.track_ids, self.clss):
|
|
114
114
|
# Draw bounding box and counting region
|
|
115
|
-
self.annotator.box_label(box, label=self.names[cls], color=colors(
|
|
115
|
+
self.annotator.box_label(box, label=self.names[cls], color=colors(cls, True))
|
|
116
116
|
self.store_tracking_history(track_id, box) # Store track history
|
|
117
117
|
self.store_classwise_counts(cls) # store classwise counts in dict
|
|
118
118
|
|
|
119
119
|
# Draw tracks of objects
|
|
120
120
|
self.annotator.draw_centroid_and_tracks(
|
|
121
|
-
self.track_line, color=colors(int(
|
|
121
|
+
self.track_line, color=colors(int(cls), True), track_thickness=self.line_width
|
|
122
122
|
)
|
|
123
123
|
|
|
124
124
|
# store previous position of track for object counting
|
ultralytics/utils/metrics.py
CHANGED
|
@@ -598,7 +598,7 @@ def ap_per_class(
|
|
|
598
598
|
# AP from recall-precision curve
|
|
599
599
|
for j in range(tp.shape[1]):
|
|
600
600
|
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
|
601
|
-
if
|
|
601
|
+
if j == 0:
|
|
602
602
|
prec_values.append(np.interp(x, mrec, mpre)) # precision at mAP@0.5
|
|
603
603
|
|
|
604
604
|
prec_values = np.array(prec_values) # (nc, 1000)
|