ultralytics 8.3.11__py3-none-any.whl → 8.3.13__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- tests/test_cli.py +4 -1
- tests/test_cuda.py +13 -1
- ultralytics/__init__.py +1 -3
- ultralytics/cfg/__init__.py +2 -35
- ultralytics/cfg/solutions/default.yaml +1 -0
- ultralytics/engine/exporter.py +9 -1
- ultralytics/models/sam/predict.py +79 -50
- ultralytics/models/yolo/classify/train.py +1 -2
- ultralytics/solutions/analytics.py +151 -264
- ultralytics/solutions/distance_calculation.py +15 -72
- ultralytics/solutions/object_counter.py +2 -2
- ultralytics/utils/metrics.py +1 -1
- ultralytics/utils/plotting.py +14 -15
- {ultralytics-8.3.11.dist-info → ultralytics-8.3.13.dist-info}/METADATA +4 -5
- {ultralytics-8.3.11.dist-info → ultralytics-8.3.13.dist-info}/RECORD +19 -24
- ultralytics/data/explorer/__init__.py +0 -5
- ultralytics/data/explorer/explorer.py +0 -460
- ultralytics/data/explorer/gui/__init__.py +0 -1
- ultralytics/data/explorer/gui/dash.py +0 -269
- ultralytics/data/explorer/utils.py +0 -167
- {ultralytics-8.3.11.dist-info → ultralytics-8.3.13.dist-info}/LICENSE +0 -0
- {ultralytics-8.3.11.dist-info → ultralytics-8.3.13.dist-info}/WHEEL +0 -0
- {ultralytics-8.3.11.dist-info → ultralytics-8.3.13.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.11.dist-info → ultralytics-8.3.13.dist-info}/top_level.txt +0 -0
tests/test_cli.py
CHANGED
|
@@ -97,9 +97,12 @@ def test_mobilesam():
|
|
|
97
97
|
# Source
|
|
98
98
|
source = ASSETS / "zidane.jpg"
|
|
99
99
|
|
|
100
|
-
# Predict a segment based on a point prompt
|
|
100
|
+
# Predict a segment based on a 1D point prompt and 1D labels.
|
|
101
101
|
model.predict(source, points=[900, 370], labels=[1])
|
|
102
102
|
|
|
103
|
+
# Predict a segment based on 3D points and 2D labels (multiple points per object).
|
|
104
|
+
model.predict(source, points=[[[900, 370], [1000, 100]]], labels=[[1, 1]])
|
|
105
|
+
|
|
103
106
|
# Predict a segment based on a box prompt
|
|
104
107
|
model.predict(source, bboxes=[439, 437, 524, 709], save=True)
|
|
105
108
|
|
tests/test_cuda.py
CHANGED
|
@@ -127,9 +127,21 @@ def test_predict_sam():
|
|
|
127
127
|
# Run inference with bboxes prompt
|
|
128
128
|
model(SOURCE, bboxes=[439, 437, 524, 709], device=0)
|
|
129
129
|
|
|
130
|
-
# Run inference with
|
|
130
|
+
# Run inference with no labels
|
|
131
|
+
model(ASSETS / "zidane.jpg", points=[900, 370], device=0)
|
|
132
|
+
|
|
133
|
+
# Run inference with 1D points and 1D labels
|
|
131
134
|
model(ASSETS / "zidane.jpg", points=[900, 370], labels=[1], device=0)
|
|
132
135
|
|
|
136
|
+
# Run inference with 2D points and 1D labels
|
|
137
|
+
model(ASSETS / "zidane.jpg", points=[[900, 370]], labels=[1], device=0)
|
|
138
|
+
|
|
139
|
+
# Run inference with multiple 2D points and 1D labels
|
|
140
|
+
model(ASSETS / "zidane.jpg", points=[[400, 370], [900, 370]], labels=[1, 1], device=0)
|
|
141
|
+
|
|
142
|
+
# Run inference with 3D points and 2D labels (multiple points per object)
|
|
143
|
+
model(ASSETS / "zidane.jpg", points=[[[900, 370], [1000, 100]]], labels=[[1, 1]], device=0)
|
|
144
|
+
|
|
133
145
|
# Create SAMPredictor
|
|
134
146
|
overrides = dict(conf=0.25, task="segment", mode="predict", imgsz=1024, model=WEIGHTS_DIR / "mobile_sam.pt")
|
|
135
147
|
predictor = SAMPredictor(overrides=overrides)
|
ultralytics/__init__.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
2
|
|
|
3
|
-
__version__ = "8.3.
|
|
3
|
+
__version__ = "8.3.13"
|
|
4
4
|
|
|
5
5
|
import os
|
|
6
6
|
|
|
@@ -8,7 +8,6 @@ import os
|
|
|
8
8
|
if not os.environ.get("OMP_NUM_THREADS"):
|
|
9
9
|
os.environ["OMP_NUM_THREADS"] = "1" # default for reduced CPU utilization during training
|
|
10
10
|
|
|
11
|
-
from ultralytics.data.explorer.explorer import Explorer
|
|
12
11
|
from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld
|
|
13
12
|
from ultralytics.utils import ASSETS, SETTINGS
|
|
14
13
|
from ultralytics.utils.checks import check_yolo as checks
|
|
@@ -27,5 +26,4 @@ __all__ = (
|
|
|
27
26
|
"checks",
|
|
28
27
|
"download",
|
|
29
28
|
"settings",
|
|
30
|
-
"Explorer",
|
|
31
29
|
)
|
ultralytics/cfg/__init__.py
CHANGED
|
@@ -79,14 +79,11 @@ CLI_HELP_MSG = f"""
|
|
|
79
79
|
|
|
80
80
|
4. Export a YOLO11n classification model to ONNX format at image size 224 by 128 (no TASK required)
|
|
81
81
|
yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128
|
|
82
|
-
|
|
83
|
-
5. Explore your datasets using semantic search and SQL with a simple GUI powered by Ultralytics Explorer API
|
|
84
|
-
yolo explorer data=data.yaml model=yolo11n.pt
|
|
85
82
|
|
|
86
|
-
|
|
83
|
+
5. Streamlit real-time webcam inference GUI
|
|
87
84
|
yolo streamlit-predict
|
|
88
85
|
|
|
89
|
-
|
|
86
|
+
6. Run special commands:
|
|
90
87
|
yolo help
|
|
91
88
|
yolo checks
|
|
92
89
|
yolo version
|
|
@@ -546,35 +543,6 @@ def handle_yolo_settings(args: List[str]) -> None:
|
|
|
546
543
|
LOGGER.warning(f"WARNING ⚠️ settings error: '{e}'. Please see {url} for help.")
|
|
547
544
|
|
|
548
545
|
|
|
549
|
-
def handle_explorer(args: List[str]):
|
|
550
|
-
"""
|
|
551
|
-
Launches a graphical user interface that provides tools for interacting with and analyzing datasets using the
|
|
552
|
-
Ultralytics Explorer API. It checks for the required 'streamlit' package and informs the user that the Explorer
|
|
553
|
-
dashboard is loading.
|
|
554
|
-
|
|
555
|
-
Args:
|
|
556
|
-
args (List[str]): A list of optional command line arguments.
|
|
557
|
-
|
|
558
|
-
Examples:
|
|
559
|
-
```bash
|
|
560
|
-
yolo explorer data=data.yaml model=yolo11n.pt
|
|
561
|
-
```
|
|
562
|
-
|
|
563
|
-
Notes:
|
|
564
|
-
- Requires 'streamlit' package version 1.29.0 or higher.
|
|
565
|
-
- The function does not take any arguments or return any values.
|
|
566
|
-
- It is typically called from the command line interface using the 'yolo explorer' command.
|
|
567
|
-
"""
|
|
568
|
-
checks.check_requirements("streamlit>=1.29.0")
|
|
569
|
-
LOGGER.info("💡 Loading Explorer dashboard...")
|
|
570
|
-
cmd = ["streamlit", "run", ROOT / "data/explorer/gui/dash.py", "--server.maxMessageSize", "2048"]
|
|
571
|
-
new = dict(parse_key_value_pair(a) for a in args)
|
|
572
|
-
check_dict_alignment(base={k: DEFAULT_CFG_DICT[k] for k in ["model", "data"]}, custom=new)
|
|
573
|
-
for k, v in new.items():
|
|
574
|
-
cmd += [k, v]
|
|
575
|
-
subprocess.run(cmd)
|
|
576
|
-
|
|
577
|
-
|
|
578
546
|
def handle_streamlit_inference():
|
|
579
547
|
"""
|
|
580
548
|
Open the Ultralytics Live Inference Streamlit app for real-time object detection.
|
|
@@ -715,7 +683,6 @@ def entrypoint(debug=""):
|
|
|
715
683
|
"login": lambda: handle_yolo_hub(args),
|
|
716
684
|
"logout": lambda: handle_yolo_hub(args),
|
|
717
685
|
"copy-cfg": copy_default_cfg,
|
|
718
|
-
"explorer": lambda: handle_explorer(args[1:]),
|
|
719
686
|
"streamlit-predict": lambda: handle_streamlit_inference(),
|
|
720
687
|
}
|
|
721
688
|
full_args_dict = {**DEFAULT_CFG_DICT, **{k: None for k in TASKS}, **{k: None for k in MODES}, **special}
|
|
@@ -14,3 +14,4 @@ up_angle: 145.0 # Workouts up_angle for counts, 145.0 is default value. You can
|
|
|
14
14
|
down_angle: 90 # Workouts down_angle for counts, 90 is default value. You can change it for different workouts, based on position of keypoints.
|
|
15
15
|
kpts: [6, 8, 10] # Keypoints for workouts monitoring, i.e. If you want to consider keypoints for pushups that have mostly values of [6, 8, 10].
|
|
16
16
|
colormap: # Colormap for heatmap, Only OPENCV supported colormaps can be used. By default COLORMAP_PARULA will be used for visualization.
|
|
17
|
+
analytics_type: "line" # Analytics type i.e "line", "pie", "bar" or "area" charts. By default, "line" analytics will be used for processing.
|
ultralytics/engine/exporter.py
CHANGED
|
@@ -960,7 +960,15 @@ class Exporter:
|
|
|
960
960
|
LOGGER.info(f"\n{prefix} starting export with Edge TPU compiler {ver}...")
|
|
961
961
|
f = str(tflite_model).replace(".tflite", "_edgetpu.tflite") # Edge TPU model
|
|
962
962
|
|
|
963
|
-
cmd =
|
|
963
|
+
cmd = (
|
|
964
|
+
"edgetpu_compiler "
|
|
965
|
+
f'--out_dir "{Path(f).parent}" '
|
|
966
|
+
"--show_operations "
|
|
967
|
+
"--search_delegate "
|
|
968
|
+
"--delegate_search_step 30 "
|
|
969
|
+
"--timeout_sec 180 "
|
|
970
|
+
f'"{tflite_model}"'
|
|
971
|
+
)
|
|
964
972
|
LOGGER.info(f"{prefix} running '{cmd}'")
|
|
965
973
|
subprocess.run(cmd, shell=True)
|
|
966
974
|
self._add_tflite_metadata(f)
|
|
@@ -213,11 +213,14 @@ class Predictor(BasePredictor):
|
|
|
213
213
|
Args:
|
|
214
214
|
im (torch.Tensor): Preprocessed input image tensor with shape (N, C, H, W).
|
|
215
215
|
bboxes (np.ndarray | List | None): Bounding boxes in XYXY format with shape (N, 4).
|
|
216
|
-
points (np.ndarray | List | None): Points indicating object locations with shape (N, 2), in pixels.
|
|
217
|
-
labels (np.ndarray | List | None): Point prompt labels with shape (N,). 1 for foreground, 0 for background.
|
|
216
|
+
points (np.ndarray | List | None): Points indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels.
|
|
217
|
+
labels (np.ndarray | List | None): Point prompt labels with shape (N,) or (N, num_points). 1 for foreground, 0 for background.
|
|
218
218
|
masks (np.ndarray | None): Low-res masks from previous predictions with shape (N, H, W). For SAM, H=W=256.
|
|
219
219
|
multimask_output (bool): Flag to return multiple masks for ambiguous prompts.
|
|
220
220
|
|
|
221
|
+
Raises:
|
|
222
|
+
AssertionError: If the number of points don't match the number of labels, in case labels were passed.
|
|
223
|
+
|
|
221
224
|
Returns:
|
|
222
225
|
(tuple): Tuple containing:
|
|
223
226
|
- np.ndarray: Output masks with shape (C, H, W), where C is the number of generated masks.
|
|
@@ -232,26 +235,7 @@ class Predictor(BasePredictor):
|
|
|
232
235
|
"""
|
|
233
236
|
features = self.get_im_features(im) if self.features is None else self.features
|
|
234
237
|
|
|
235
|
-
|
|
236
|
-
r = 1.0 if self.segment_all else min(dst_shape[0] / src_shape[0], dst_shape[1] / src_shape[1])
|
|
237
|
-
# Transform input prompts
|
|
238
|
-
if points is not None:
|
|
239
|
-
points = torch.as_tensor(points, dtype=torch.float32, device=self.device)
|
|
240
|
-
points = points[None] if points.ndim == 1 else points
|
|
241
|
-
# Assuming labels are all positive if users don't pass labels.
|
|
242
|
-
if labels is None:
|
|
243
|
-
labels = np.ones(points.shape[0])
|
|
244
|
-
labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
|
|
245
|
-
points *= r
|
|
246
|
-
# (N, 2) --> (N, 1, 2), (N, ) --> (N, 1)
|
|
247
|
-
points, labels = points[:, None, :], labels[:, None]
|
|
248
|
-
if bboxes is not None:
|
|
249
|
-
bboxes = torch.as_tensor(bboxes, dtype=torch.float32, device=self.device)
|
|
250
|
-
bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
|
|
251
|
-
bboxes *= r
|
|
252
|
-
if masks is not None:
|
|
253
|
-
masks = torch.as_tensor(masks, dtype=torch.float32, device=self.device).unsqueeze(1)
|
|
254
|
-
|
|
238
|
+
bboxes, points, labels, masks = self._prepare_prompts(im.shape[2:], bboxes, points, labels, masks)
|
|
255
239
|
points = (points, labels) if points is not None else None
|
|
256
240
|
# Embed prompts
|
|
257
241
|
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(points=points, boxes=bboxes, masks=masks)
|
|
@@ -269,6 +253,48 @@ class Predictor(BasePredictor):
|
|
|
269
253
|
# `d` could be 1 or 3 depends on `multimask_output`.
|
|
270
254
|
return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)
|
|
271
255
|
|
|
256
|
+
def _prepare_prompts(self, dst_shape, bboxes=None, points=None, labels=None, masks=None):
|
|
257
|
+
"""
|
|
258
|
+
Prepares and transforms the input prompts for processing based on the destination shape.
|
|
259
|
+
|
|
260
|
+
Args:
|
|
261
|
+
dst_shape (tuple): The target shape (height, width) for the prompts.
|
|
262
|
+
bboxes (np.ndarray | List | None): Bounding boxes in XYXY format with shape (N, 4).
|
|
263
|
+
points (np.ndarray | List | None): Points indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels.
|
|
264
|
+
labels (np.ndarray | List | None): Point prompt labels with shape (N,) or (N, num_points). 1 for foreground, 0 for background.
|
|
265
|
+
masks (List | np.ndarray, Optional): Masks for the objects, where each mask is a 2D array.
|
|
266
|
+
|
|
267
|
+
Raises:
|
|
268
|
+
AssertionError: If the number of points don't match the number of labels, in case labels were passed.
|
|
269
|
+
|
|
270
|
+
Returns:
|
|
271
|
+
(tuple): A tuple containing transformed bounding boxes, points, labels, and masks.
|
|
272
|
+
"""
|
|
273
|
+
src_shape = self.batch[1][0].shape[:2]
|
|
274
|
+
r = 1.0 if self.segment_all else min(dst_shape[0] / src_shape[0], dst_shape[1] / src_shape[1])
|
|
275
|
+
# Transform input prompts
|
|
276
|
+
if points is not None:
|
|
277
|
+
points = torch.as_tensor(points, dtype=torch.float32, device=self.device)
|
|
278
|
+
points = points[None] if points.ndim == 1 else points
|
|
279
|
+
# Assuming labels are all positive if users don't pass labels.
|
|
280
|
+
if labels is None:
|
|
281
|
+
labels = np.ones(points.shape[:-1])
|
|
282
|
+
labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
|
|
283
|
+
assert (
|
|
284
|
+
points.shape[-2] == labels.shape[-1]
|
|
285
|
+
), f"Number of points {points.shape[-2]} should match number of labels {labels.shape[-1]}."
|
|
286
|
+
points *= r
|
|
287
|
+
if points.ndim == 2:
|
|
288
|
+
# (N, 2) --> (N, 1, 2), (N, ) --> (N, 1)
|
|
289
|
+
points, labels = points[:, None, :], labels[:, None]
|
|
290
|
+
if bboxes is not None:
|
|
291
|
+
bboxes = torch.as_tensor(bboxes, dtype=torch.float32, device=self.device)
|
|
292
|
+
bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
|
|
293
|
+
bboxes *= r
|
|
294
|
+
if masks is not None:
|
|
295
|
+
masks = torch.as_tensor(masks, dtype=torch.float32, device=self.device).unsqueeze(1)
|
|
296
|
+
return bboxes, points, labels, masks
|
|
297
|
+
|
|
272
298
|
def generate(
|
|
273
299
|
self,
|
|
274
300
|
im,
|
|
@@ -686,34 +712,7 @@ class SAM2Predictor(Predictor):
|
|
|
686
712
|
"""
|
|
687
713
|
features = self.get_im_features(im) if self.features is None else self.features
|
|
688
714
|
|
|
689
|
-
|
|
690
|
-
r = 1.0 if self.segment_all else min(dst_shape[0] / src_shape[0], dst_shape[1] / src_shape[1])
|
|
691
|
-
# Transform input prompts
|
|
692
|
-
if points is not None:
|
|
693
|
-
points = torch.as_tensor(points, dtype=torch.float32, device=self.device)
|
|
694
|
-
points = points[None] if points.ndim == 1 else points
|
|
695
|
-
# Assuming labels are all positive if users don't pass labels.
|
|
696
|
-
if labels is None:
|
|
697
|
-
labels = torch.ones(points.shape[0])
|
|
698
|
-
labels = torch.as_tensor(labels, dtype=torch.int32, device=self.device)
|
|
699
|
-
points *= r
|
|
700
|
-
# (N, 2) --> (N, 1, 2), (N, ) --> (N, 1)
|
|
701
|
-
points, labels = points[:, None], labels[:, None]
|
|
702
|
-
if bboxes is not None:
|
|
703
|
-
bboxes = torch.as_tensor(bboxes, dtype=torch.float32, device=self.device)
|
|
704
|
-
bboxes = bboxes[None] if bboxes.ndim == 1 else bboxes
|
|
705
|
-
bboxes = bboxes.view(-1, 2, 2) * r
|
|
706
|
-
bbox_labels = torch.tensor([[2, 3]], dtype=torch.int32, device=bboxes.device).expand(len(bboxes), -1)
|
|
707
|
-
# NOTE: merge "boxes" and "points" into a single "points" input
|
|
708
|
-
# (where boxes are added at the beginning) to model.sam_prompt_encoder
|
|
709
|
-
if points is not None:
|
|
710
|
-
points = torch.cat([bboxes, points], dim=1)
|
|
711
|
-
labels = torch.cat([bbox_labels, labels], dim=1)
|
|
712
|
-
else:
|
|
713
|
-
points, labels = bboxes, bbox_labels
|
|
714
|
-
if masks is not None:
|
|
715
|
-
masks = torch.as_tensor(masks, dtype=torch.float32, device=self.device).unsqueeze(1)
|
|
716
|
-
|
|
715
|
+
bboxes, points, labels, masks = self._prepare_prompts(im.shape[2:], bboxes, points, labels, masks)
|
|
717
716
|
points = (points, labels) if points is not None else None
|
|
718
717
|
|
|
719
718
|
sparse_embeddings, dense_embeddings = self.model.sam_prompt_encoder(
|
|
@@ -737,6 +736,36 @@ class SAM2Predictor(Predictor):
|
|
|
737
736
|
# `d` could be 1 or 3 depends on `multimask_output`.
|
|
738
737
|
return pred_masks.flatten(0, 1), pred_scores.flatten(0, 1)
|
|
739
738
|
|
|
739
|
+
def _prepare_prompts(self, dst_shape, bboxes=None, points=None, labels=None, masks=None):
|
|
740
|
+
"""
|
|
741
|
+
Prepares and transforms the input prompts for processing based on the destination shape.
|
|
742
|
+
|
|
743
|
+
Args:
|
|
744
|
+
dst_shape (tuple): The target shape (height, width) for the prompts.
|
|
745
|
+
bboxes (np.ndarray | List | None): Bounding boxes in XYXY format with shape (N, 4).
|
|
746
|
+
points (np.ndarray | List | None): Points indicating object locations with shape (N, 2) or (N, num_points, 2), in pixels.
|
|
747
|
+
labels (np.ndarray | List | None): Point prompt labels with shape (N,) or (N, num_points). 1 for foreground, 0 for background.
|
|
748
|
+
masks (List | np.ndarray, Optional): Masks for the objects, where each mask is a 2D array.
|
|
749
|
+
|
|
750
|
+
Raises:
|
|
751
|
+
AssertionError: If the number of points don't match the number of labels, in case labels were passed.
|
|
752
|
+
|
|
753
|
+
Returns:
|
|
754
|
+
(tuple): A tuple containing transformed bounding boxes, points, labels, and masks.
|
|
755
|
+
"""
|
|
756
|
+
bboxes, points, labels, masks = super()._prepare_prompts(dst_shape, bboxes, points, labels, masks)
|
|
757
|
+
if bboxes is not None:
|
|
758
|
+
bboxes = bboxes.view(-1, 2, 2)
|
|
759
|
+
bbox_labels = torch.tensor([[2, 3]], dtype=torch.int32, device=bboxes.device).expand(len(bboxes), -1)
|
|
760
|
+
# NOTE: merge "boxes" and "points" into a single "points" input
|
|
761
|
+
# (where boxes are added at the beginning) to model.sam_prompt_encoder
|
|
762
|
+
if points is not None:
|
|
763
|
+
points = torch.cat([bboxes, points], dim=1)
|
|
764
|
+
labels = torch.cat([bbox_labels, labels], dim=1)
|
|
765
|
+
else:
|
|
766
|
+
points, labels = bboxes, bbox_labels
|
|
767
|
+
return bboxes, points, labels, masks
|
|
768
|
+
|
|
740
769
|
def set_image(self, image):
|
|
741
770
|
"""
|
|
742
771
|
Preprocesses and sets a single image for inference using the SAM2 model.
|
|
@@ -8,7 +8,7 @@ from ultralytics.data import ClassificationDataset, build_dataloader
|
|
|
8
8
|
from ultralytics.engine.trainer import BaseTrainer
|
|
9
9
|
from ultralytics.models import yolo
|
|
10
10
|
from ultralytics.nn.tasks import ClassificationModel
|
|
11
|
-
from ultralytics.utils import DEFAULT_CFG, LOGGER, RANK
|
|
11
|
+
from ultralytics.utils import DEFAULT_CFG, LOGGER, RANK
|
|
12
12
|
from ultralytics.utils.plotting import plot_images, plot_results
|
|
13
13
|
from ultralytics.utils.torch_utils import is_parallel, strip_optimizer, torch_distributed_zero_first
|
|
14
14
|
|
|
@@ -141,7 +141,6 @@ class ClassificationTrainer(BaseTrainer):
|
|
|
141
141
|
self.metrics = self.validator(model=f)
|
|
142
142
|
self.metrics.pop("fitness", None)
|
|
143
143
|
self.run_callbacks("on_fit_epoch_end")
|
|
144
|
-
LOGGER.info(f"Results saved to {colorstr('bold', self.save_dir)}")
|
|
145
144
|
|
|
146
145
|
def plot_training_samples(self, batch, ni):
|
|
147
146
|
"""Plots training samples with their annotations."""
|