ultralytics 8.3.106__py3-none-any.whl → 8.3.107__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- ultralytics/__init__.py +1 -1
- ultralytics/engine/exporter.py +23 -133
- ultralytics/nn/autobackend.py +3 -3
- ultralytics/utils/__init__.py +1 -0
- ultralytics/utils/export.py +217 -0
- ultralytics/utils/torch_utils.py +5 -1
- ultralytics/utils/tuner.py +6 -1
- {ultralytics-8.3.106.dist-info → ultralytics-8.3.107.dist-info}/METADATA +2 -2
- {ultralytics-8.3.106.dist-info → ultralytics-8.3.107.dist-info}/RECORD +13 -12
- {ultralytics-8.3.106.dist-info → ultralytics-8.3.107.dist-info}/WHEEL +0 -0
- {ultralytics-8.3.106.dist-info → ultralytics-8.3.107.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.106.dist-info → ultralytics-8.3.107.dist-info}/licenses/LICENSE +0 -0
- {ultralytics-8.3.106.dist-info → ultralytics-8.3.107.dist-info}/top_level.txt +0 -0
    
        ultralytics/__init__.py
    CHANGED
    
    
    
        ultralytics/engine/exporter.py
    CHANGED
    
    | @@ -55,7 +55,6 @@ TensorFlow.js: | |
| 55 55 | 
             
                $ npm start
         | 
| 56 56 | 
             
            """
         | 
| 57 57 |  | 
| 58 | 
            -
            import gc
         | 
| 59 58 | 
             
            import json
         | 
| 60 59 | 
             
            import os
         | 
| 61 60 | 
             
            import re
         | 
| @@ -86,6 +85,7 @@ from ultralytics.utils import ( | |
| 86 85 | 
             
                LINUX,
         | 
| 87 86 | 
             
                LOGGER,
         | 
| 88 87 | 
             
                MACOS,
         | 
| 88 | 
            +
                MACOS_VERSION,
         | 
| 89 89 | 
             
                RKNN_CHIPS,
         | 
| 90 90 | 
             
                ROOT,
         | 
| 91 91 | 
             
                WINDOWS,
         | 
| @@ -103,6 +103,7 @@ from ultralytics.utils.checks import ( | |
| 103 103 | 
             
                is_sudo_available,
         | 
| 104 104 | 
             
            )
         | 
| 105 105 | 
             
            from ultralytics.utils.downloads import attempt_download_asset, get_github_assets, safe_download
         | 
| 106 | 
            +
            from ultralytics.utils.export import export_engine, export_onnx
         | 
| 106 107 | 
             
            from ultralytics.utils.files import file_size, spaces_in_path
         | 
| 107 108 | 
             
            from ultralytics.utils.ops import Profile, nms_rotated, xywh2xyxy
         | 
| 108 109 | 
             
            from ultralytics.utils.torch_utils import TORCH_1_13, get_latest_opset, select_device
         | 
| @@ -577,16 +578,14 @@ class Exporter: | |
| 577 578 | 
             
                        check_requirements("onnxslim>=0.1.46")  # Older versions has bug with OBB
         | 
| 578 579 |  | 
| 579 580 | 
             
                    with arange_patch(self.args):
         | 
| 580 | 
            -
                         | 
| 581 | 
            +
                        export_onnx(
         | 
| 581 582 | 
             
                            NMSModel(self.model, self.args) if self.args.nms else self.model,
         | 
| 582 583 | 
             
                            self.im,
         | 
| 583 584 | 
             
                            f,
         | 
| 584 | 
            -
                             | 
| 585 | 
            -
                            opset_version=opset_version,
         | 
| 586 | 
            -
                            do_constant_folding=True,  # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
         | 
| 585 | 
            +
                            opset=opset_version,
         | 
| 587 586 | 
             
                            input_names=["images"],
         | 
| 588 587 | 
             
                            output_names=output_names,
         | 
| 589 | 
            -
                             | 
| 588 | 
            +
                            dynamic=dynamic or None,
         | 
| 590 589 | 
             
                        )
         | 
| 591 590 |  | 
| 592 591 | 
             
                    # Checks
         | 
| @@ -614,7 +613,10 @@ class Exporter: | |
| 614 613 | 
             
                @try_export
         | 
| 615 614 | 
             
                def export_openvino(self, prefix=colorstr("OpenVINO:")):
         | 
| 616 615 | 
             
                    """YOLO OpenVINO export."""
         | 
| 617 | 
            -
                     | 
| 616 | 
            +
                    if MACOS:
         | 
| 617 | 
            +
                        msg = "OpenVINO error in macOS>=15.4 https://github.com/openvinotoolkit/openvino/issues/30023"
         | 
| 618 | 
            +
                        check_version(MACOS_VERSION, "<15.4", name="macOS ", hard=True, msg=msg)
         | 
| 619 | 
            +
                    check_requirements("openvino>=2024.0.0")
         | 
| 618 620 | 
             
                    import openvino as ov
         | 
| 619 621 |  | 
| 620 622 | 
             
                    LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
         | 
| @@ -883,134 +885,22 @@ class Exporter: | |
| 883 885 |  | 
| 884 886 | 
             
                    # Setup and checks
         | 
| 885 887 | 
             
                    LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
         | 
| 886 | 
            -
                    is_trt10 = int(trt.__version__.split(".")[0]) >= 10  # is TensorRT >= 10
         | 
| 887 888 | 
             
                    assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}"
         | 
| 888 889 | 
             
                    f = self.file.with_suffix(".engine")  # TensorRT engine file
         | 
| 889 | 
            -
                     | 
| 890 | 
            -
             | 
| 891 | 
            -
                         | 
| 892 | 
            -
             | 
| 893 | 
            -
             | 
| 894 | 
            -
             | 
| 895 | 
            -
             | 
| 896 | 
            -
             | 
| 897 | 
            -
             | 
| 898 | 
            -
                         | 
| 899 | 
            -
             | 
| 900 | 
            -
                         | 
| 901 | 
            -
             | 
| 902 | 
            -
                     | 
| 903 | 
            -
                    half = builder.platform_has_fast_fp16 and self.args.half
         | 
| 904 | 
            -
                    int8 = builder.platform_has_fast_int8 and self.args.int8
         | 
| 905 | 
            -
             | 
| 906 | 
            -
                    # Optionally switch to DLA if enabled
         | 
| 907 | 
            -
                    if dla is not None:
         | 
| 908 | 
            -
                        if not IS_JETSON:
         | 
| 909 | 
            -
                            raise ValueError("DLA is only available on NVIDIA Jetson devices")
         | 
| 910 | 
            -
                        LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
         | 
| 911 | 
            -
                        if not self.args.half and not self.args.int8:
         | 
| 912 | 
            -
                            raise ValueError(
         | 
| 913 | 
            -
                                "DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
         | 
| 914 | 
            -
                            )
         | 
| 915 | 
            -
                        config.default_device_type = trt.DeviceType.DLA
         | 
| 916 | 
            -
                        config.DLA_core = int(dla)
         | 
| 917 | 
            -
                        config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
         | 
| 918 | 
            -
             | 
| 919 | 
            -
                    # Read ONNX file
         | 
| 920 | 
            -
                    parser = trt.OnnxParser(network, logger)
         | 
| 921 | 
            -
                    if not parser.parse_from_file(f_onnx):
         | 
| 922 | 
            -
                        raise RuntimeError(f"failed to load ONNX file: {f_onnx}")
         | 
| 923 | 
            -
             | 
| 924 | 
            -
                    # Network inputs
         | 
| 925 | 
            -
                    inputs = [network.get_input(i) for i in range(network.num_inputs)]
         | 
| 926 | 
            -
                    outputs = [network.get_output(i) for i in range(network.num_outputs)]
         | 
| 927 | 
            -
                    for inp in inputs:
         | 
| 928 | 
            -
                        LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
         | 
| 929 | 
            -
                    for out in outputs:
         | 
| 930 | 
            -
                        LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
         | 
| 931 | 
            -
             | 
| 932 | 
            -
                    if self.args.dynamic:
         | 
| 933 | 
            -
                        shape = self.im.shape
         | 
| 934 | 
            -
                        if shape[0] <= 1:
         | 
| 935 | 
            -
                            LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
         | 
| 936 | 
            -
                        profile = builder.create_optimization_profile()
         | 
| 937 | 
            -
                        min_shape = (1, shape[1], 32, 32)  # minimum input shape
         | 
| 938 | 
            -
                        max_shape = (*shape[:2], *(int(max(1, self.args.workspace or 1) * d) for d in shape[2:]))  # max input shape
         | 
| 939 | 
            -
                        for inp in inputs:
         | 
| 940 | 
            -
                            profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
         | 
| 941 | 
            -
                        config.add_optimization_profile(profile)
         | 
| 942 | 
            -
             | 
| 943 | 
            -
                    LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {f}")
         | 
| 944 | 
            -
                    if int8:
         | 
| 945 | 
            -
                        config.set_flag(trt.BuilderFlag.INT8)
         | 
| 946 | 
            -
                        config.set_calibration_profile(profile)
         | 
| 947 | 
            -
                        config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
         | 
| 948 | 
            -
             | 
| 949 | 
            -
                        class EngineCalibrator(trt.IInt8Calibrator):
         | 
| 950 | 
            -
                            def __init__(
         | 
| 951 | 
            -
                                self,
         | 
| 952 | 
            -
                                dataset,  # ultralytics.data.build.InfiniteDataLoader
         | 
| 953 | 
            -
                                batch: int,
         | 
| 954 | 
            -
                                cache: str = "",
         | 
| 955 | 
            -
                            ) -> None:
         | 
| 956 | 
            -
                                trt.IInt8Calibrator.__init__(self)
         | 
| 957 | 
            -
                                self.dataset = dataset
         | 
| 958 | 
            -
                                self.data_iter = iter(dataset)
         | 
| 959 | 
            -
                                self.algo = trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2
         | 
| 960 | 
            -
                                self.batch = batch
         | 
| 961 | 
            -
                                self.cache = Path(cache)
         | 
| 962 | 
            -
             | 
| 963 | 
            -
                            def get_algorithm(self) -> trt.CalibrationAlgoType:
         | 
| 964 | 
            -
                                """Get the calibration algorithm to use."""
         | 
| 965 | 
            -
                                return self.algo
         | 
| 966 | 
            -
             | 
| 967 | 
            -
                            def get_batch_size(self) -> int:
         | 
| 968 | 
            -
                                """Get the batch size to use for calibration."""
         | 
| 969 | 
            -
                                return self.batch or 1
         | 
| 970 | 
            -
             | 
| 971 | 
            -
                            def get_batch(self, names) -> list:
         | 
| 972 | 
            -
                                """Get the next batch to use for calibration, as a list of device memory pointers."""
         | 
| 973 | 
            -
                                try:
         | 
| 974 | 
            -
                                    im0s = next(self.data_iter)["img"] / 255.0
         | 
| 975 | 
            -
                                    im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
         | 
| 976 | 
            -
                                    return [int(im0s.data_ptr())]
         | 
| 977 | 
            -
                                except StopIteration:
         | 
| 978 | 
            -
                                    # Return [] or None, signal to TensorRT there is no calibration data remaining
         | 
| 979 | 
            -
                                    return None
         | 
| 980 | 
            -
             | 
| 981 | 
            -
                            def read_calibration_cache(self) -> bytes:
         | 
| 982 | 
            -
                                """Use existing cache instead of calibrating again, otherwise, implicitly return None."""
         | 
| 983 | 
            -
                                if self.cache.exists() and self.cache.suffix == ".cache":
         | 
| 984 | 
            -
                                    return self.cache.read_bytes()
         | 
| 985 | 
            -
             | 
| 986 | 
            -
                            def write_calibration_cache(self, cache) -> None:
         | 
| 987 | 
            -
                                """Write calibration cache to disk."""
         | 
| 988 | 
            -
                                _ = self.cache.write_bytes(cache)
         | 
| 989 | 
            -
             | 
| 990 | 
            -
                        # Load dataset w/ builder (for batching) and calibrate
         | 
| 991 | 
            -
                        config.int8_calibrator = EngineCalibrator(
         | 
| 992 | 
            -
                            dataset=self.get_int8_calibration_dataloader(prefix),
         | 
| 993 | 
            -
                            batch=2 * self.args.batch,  # TensorRT INT8 calibration should use 2x batch size
         | 
| 994 | 
            -
                            cache=str(self.file.with_suffix(".cache")),
         | 
| 995 | 
            -
                        )
         | 
| 996 | 
            -
             | 
| 997 | 
            -
                    elif half:
         | 
| 998 | 
            -
                        config.set_flag(trt.BuilderFlag.FP16)
         | 
| 999 | 
            -
             | 
| 1000 | 
            -
                    # Free CUDA memory
         | 
| 1001 | 
            -
                    del self.model
         | 
| 1002 | 
            -
                    gc.collect()
         | 
| 1003 | 
            -
                    torch.cuda.empty_cache()
         | 
| 1004 | 
            -
             | 
| 1005 | 
            -
                    # Write file
         | 
| 1006 | 
            -
                    build = builder.build_serialized_network if is_trt10 else builder.build_engine
         | 
| 1007 | 
            -
                    with build(network, config) as engine, open(f, "wb") as t:
         | 
| 1008 | 
            -
                        # Metadata
         | 
| 1009 | 
            -
                        meta = json.dumps(self.metadata)
         | 
| 1010 | 
            -
                        t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
         | 
| 1011 | 
            -
                        t.write(meta.encode())
         | 
| 1012 | 
            -
                        # Model
         | 
| 1013 | 
            -
                        t.write(engine if is_trt10 else engine.serialize())
         | 
| 890 | 
            +
                    export_engine(
         | 
| 891 | 
            +
                        f_onnx,
         | 
| 892 | 
            +
                        f,
         | 
| 893 | 
            +
                        self.args.workspace,
         | 
| 894 | 
            +
                        self.args.half,
         | 
| 895 | 
            +
                        self.args.int8,
         | 
| 896 | 
            +
                        self.args.dynamic,
         | 
| 897 | 
            +
                        self.im.shape,
         | 
| 898 | 
            +
                        dla=dla,
         | 
| 899 | 
            +
                        dataset=self.get_int8_calibration_dataloader(prefix) if self.args.int8 else None,
         | 
| 900 | 
            +
                        metadata=self.metadata,
         | 
| 901 | 
            +
                        verbose=self.args.verbose,
         | 
| 902 | 
            +
                        prefix=prefix,
         | 
| 903 | 
            +
                    )
         | 
| 1014 904 |  | 
| 1015 905 | 
             
                    return f, None
         | 
| 1016 906 |  | 
    
        ultralytics/nn/autobackend.py
    CHANGED
    
    | @@ -258,7 +258,7 @@ class AutoBackend(nn.Module): | |
| 258 258 | 
             
                    # OpenVINO
         | 
| 259 259 | 
             
                    elif xml:
         | 
| 260 260 | 
             
                        LOGGER.info(f"Loading {w} for OpenVINO inference...")
         | 
| 261 | 
            -
                        check_requirements("openvino>=2024.0.0 | 
| 261 | 
            +
                        check_requirements("openvino>=2024.0.0")
         | 
| 262 262 | 
             
                        import openvino as ov
         | 
| 263 263 |  | 
| 264 264 | 
             
                        core = ov.Core()
         | 
| @@ -511,9 +511,9 @@ class AutoBackend(nn.Module): | |
| 511 511 | 
             
                        if not w.is_file():  # if not *.rknn
         | 
| 512 512 | 
             
                            w = next(w.rglob("*.rknn"))  # get *.rknn file from *_rknn_model dir
         | 
| 513 513 | 
             
                        rknn_model = RKNNLite()
         | 
| 514 | 
            -
                        rknn_model.load_rknn(w)
         | 
| 514 | 
            +
                        rknn_model.load_rknn(str(w))
         | 
| 515 515 | 
             
                        rknn_model.init_runtime()
         | 
| 516 | 
            -
                        metadata =  | 
| 516 | 
            +
                        metadata = w.parent / "metadata.yaml"
         | 
| 517 517 |  | 
| 518 518 | 
             
                    # Any other format (unsupported)
         | 
| 519 519 | 
             
                    else:
         | 
    
        ultralytics/utils/__init__.py
    CHANGED
    
    | @@ -48,6 +48,7 @@ VERBOSE = str(os.getenv("YOLO_VERBOSE", True)).lower() == "true"  # global verbo | |
| 48 48 | 
             
            TQDM_BAR_FORMAT = "{l_bar}{bar:10}{r_bar}" if VERBOSE else None  # tqdm bar format
         | 
| 49 49 | 
             
            LOGGING_NAME = "ultralytics"
         | 
| 50 50 | 
             
            MACOS, LINUX, WINDOWS = (platform.system() == x for x in ["Darwin", "Linux", "Windows"])  # environment booleans
         | 
| 51 | 
            +
            MACOS_VERSION = platform.mac_ver()[0] if MACOS else None
         | 
| 51 52 | 
             
            ARM64 = platform.machine() in {"arm64", "aarch64"}  # ARM64 booleans
         | 
| 52 53 | 
             
            PYTHON_VERSION = platform.python_version()
         | 
| 53 54 | 
             
            TORCH_VERSION = torch.__version__
         | 
| @@ -0,0 +1,217 @@ | |
| 1 | 
            +
            import json
         | 
| 2 | 
            +
            from pathlib import Path
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            from ultralytics.utils import IS_JETSON, LOGGER
         | 
| 7 | 
            +
             | 
| 8 | 
            +
             | 
| 9 | 
            +
            def export_onnx(
         | 
| 10 | 
            +
                torch_model,
         | 
| 11 | 
            +
                im,
         | 
| 12 | 
            +
                onnx_file,
         | 
| 13 | 
            +
                opset=14,
         | 
| 14 | 
            +
                input_names=["images"],
         | 
| 15 | 
            +
                output_names=["output0"],
         | 
| 16 | 
            +
                dynamic=False,
         | 
| 17 | 
            +
            ):
         | 
| 18 | 
            +
                """
         | 
| 19 | 
            +
                Exports a PyTorch model to ONNX format.
         | 
| 20 | 
            +
             | 
| 21 | 
            +
                Args:
         | 
| 22 | 
            +
                    torch_model (torch.nn.Module): The PyTorch model to export.
         | 
| 23 | 
            +
                    im (torch.Tensor): Example input tensor for the model.
         | 
| 24 | 
            +
                    onnx_file (str): Path to save the exported ONNX file.
         | 
| 25 | 
            +
                    opset (int): ONNX opset version to use for export.
         | 
| 26 | 
            +
                    input_names (list): List of input tensor names.
         | 
| 27 | 
            +
                    output_names (list): List of output tensor names.
         | 
| 28 | 
            +
                    dynamic (bool | dict, optional): Whether to enable dynamic axes. Defaults to False.
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                Notes:
         | 
| 31 | 
            +
                    - Setting `do_constant_folding=True` may cause issues with DNN inference for torch>=1.12.
         | 
| 32 | 
            +
                """
         | 
| 33 | 
            +
                torch.onnx.export(
         | 
| 34 | 
            +
                    torch_model,
         | 
| 35 | 
            +
                    im,
         | 
| 36 | 
            +
                    onnx_file,
         | 
| 37 | 
            +
                    verbose=False,
         | 
| 38 | 
            +
                    opset_version=opset,
         | 
| 39 | 
            +
                    do_constant_folding=True,  # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
         | 
| 40 | 
            +
                    input_names=input_names,
         | 
| 41 | 
            +
                    output_names=output_names,
         | 
| 42 | 
            +
                    dynamic_axes=dynamic or None,
         | 
| 43 | 
            +
                )
         | 
| 44 | 
            +
             | 
| 45 | 
            +
             | 
| 46 | 
            +
            def export_engine(
         | 
| 47 | 
            +
                onnx_file,
         | 
| 48 | 
            +
                engine_file=None,
         | 
| 49 | 
            +
                workspace=None,
         | 
| 50 | 
            +
                half=False,
         | 
| 51 | 
            +
                int8=False,
         | 
| 52 | 
            +
                dynamic=False,
         | 
| 53 | 
            +
                shape=(1, 3, 640, 640),
         | 
| 54 | 
            +
                dla=None,
         | 
| 55 | 
            +
                dataset=None,
         | 
| 56 | 
            +
                metadata=None,
         | 
| 57 | 
            +
                verbose=False,
         | 
| 58 | 
            +
                prefix="",
         | 
| 59 | 
            +
            ):
         | 
| 60 | 
            +
                """
         | 
| 61 | 
            +
                Exports a YOLO model to TensorRT engine format.
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                Args:
         | 
| 64 | 
            +
                    onnx_file (str): Path to the ONNX file to be converted.
         | 
| 65 | 
            +
                    engine_file (str, optional): Path to save the generated TensorRT engine file.
         | 
| 66 | 
            +
                    workspace (int, optional): Workspace size in GB for TensorRT. Defaults to None.
         | 
| 67 | 
            +
                    half (bool, optional): Enable FP16 precision. Defaults to False.
         | 
| 68 | 
            +
                    int8 (bool, optional): Enable INT8 precision. Defaults to False.
         | 
| 69 | 
            +
                    dynamic (bool, optional): Enable dynamic input shapes. Defaults to False.
         | 
| 70 | 
            +
                    shape (tuple, optional): Input shape (batch, channels, height, width). Defaults to (1, 3, 640, 640).
         | 
| 71 | 
            +
                    dla (int, optional): DLA core to use (Jetson devices only). Defaults to None.
         | 
| 72 | 
            +
                    dataset (ultralytics.data.build.InfiniteDataLoader, optional): Dataset for INT8 calibration. Defaults to None.
         | 
| 73 | 
            +
                    metadata (dict, optional): Metadata to include in the engine file. Defaults to None.
         | 
| 74 | 
            +
                    verbose (bool, optional): Enable verbose logging. Defaults to False.
         | 
| 75 | 
            +
                    prefix (str, optional): Prefix for log messages. Defaults to "".
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                Raises:
         | 
| 78 | 
            +
                    ValueError: If DLA is enabled on non-Jetson devices or required precision is not set.
         | 
| 79 | 
            +
                    RuntimeError: If the ONNX file cannot be parsed.
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                Notes:
         | 
| 82 | 
            +
                    - TensorRT version compatibility is handled for workspace size and engine building.
         | 
| 83 | 
            +
                    - INT8 calibration requires a dataset and generates a calibration cache.
         | 
| 84 | 
            +
                    - Metadata is serialized and written to the engine file if provided.
         | 
| 85 | 
            +
                """
         | 
| 86 | 
            +
                import tensorrt as trt  # noqa
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                engine_file = engine_file or Path(onnx_file).with_suffix(".engine")
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                logger = trt.Logger(trt.Logger.INFO)
         | 
| 91 | 
            +
                if verbose:
         | 
| 92 | 
            +
                    logger.min_severity = trt.Logger.Severity.VERBOSE
         | 
| 93 | 
            +
             | 
| 94 | 
            +
                # Engine builder
         | 
| 95 | 
            +
                builder = trt.Builder(logger)
         | 
| 96 | 
            +
                config = builder.create_builder_config()
         | 
| 97 | 
            +
                workspace = int((workspace or 0) * (1 << 30))
         | 
| 98 | 
            +
                is_trt10 = int(trt.__version__.split(".")[0]) >= 10  # is TensorRT >= 10
         | 
| 99 | 
            +
                if is_trt10 and workspace > 0:
         | 
| 100 | 
            +
                    config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace)
         | 
| 101 | 
            +
                elif workspace > 0:  # TensorRT versions 7, 8
         | 
| 102 | 
            +
                    config.max_workspace_size = workspace
         | 
| 103 | 
            +
                flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
         | 
| 104 | 
            +
                network = builder.create_network(flag)
         | 
| 105 | 
            +
                half = builder.platform_has_fast_fp16 and half
         | 
| 106 | 
            +
                int8 = builder.platform_has_fast_int8 and int8
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                # Optionally switch to DLA if enabled
         | 
| 109 | 
            +
                if dla is not None:
         | 
| 110 | 
            +
                    if not IS_JETSON:
         | 
| 111 | 
            +
                        raise ValueError("DLA is only available on NVIDIA Jetson devices")
         | 
| 112 | 
            +
                    LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
         | 
| 113 | 
            +
                    if not half and not int8:
         | 
| 114 | 
            +
                        raise ValueError(
         | 
| 115 | 
            +
                            "DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
         | 
| 116 | 
            +
                        )
         | 
| 117 | 
            +
                    config.default_device_type = trt.DeviceType.DLA
         | 
| 118 | 
            +
                    config.DLA_core = int(dla)
         | 
| 119 | 
            +
                    config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                # Read ONNX file
         | 
| 122 | 
            +
                parser = trt.OnnxParser(network, logger)
         | 
| 123 | 
            +
                if not parser.parse_from_file(onnx_file):
         | 
| 124 | 
            +
                    raise RuntimeError(f"failed to load ONNX file: {onnx_file}")
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                # Network inputs
         | 
| 127 | 
            +
                inputs = [network.get_input(i) for i in range(network.num_inputs)]
         | 
| 128 | 
            +
                outputs = [network.get_output(i) for i in range(network.num_outputs)]
         | 
| 129 | 
            +
                for inp in inputs:
         | 
| 130 | 
            +
                    LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
         | 
| 131 | 
            +
                for out in outputs:
         | 
| 132 | 
            +
                    LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                if dynamic:
         | 
| 135 | 
            +
                    if shape[0] <= 1:
         | 
| 136 | 
            +
                        LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
         | 
| 137 | 
            +
                    profile = builder.create_optimization_profile()
         | 
| 138 | 
            +
                    min_shape = (1, shape[1], 32, 32)  # minimum input shape
         | 
| 139 | 
            +
                    max_shape = (*shape[:2], *(int(max(1, workspace or 1) * d) for d in shape[2:]))  # max input shape
         | 
| 140 | 
            +
                    for inp in inputs:
         | 
| 141 | 
            +
                        profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
         | 
| 142 | 
            +
                    config.add_optimization_profile(profile)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
                LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {engine_file}")
         | 
| 145 | 
            +
                if int8:
         | 
| 146 | 
            +
                    config.set_flag(trt.BuilderFlag.INT8)
         | 
| 147 | 
            +
                    config.set_calibration_profile(profile)
         | 
| 148 | 
            +
                    config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                    class EngineCalibrator(trt.IInt8Calibrator):
         | 
| 151 | 
            +
                        """
         | 
| 152 | 
            +
                        Custom INT8 calibrator for TensorRT.
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                        Args:
         | 
| 155 | 
            +
                            dataset (object): Dataset for calibration.
         | 
| 156 | 
            +
                            batch (int): Batch size for calibration.
         | 
| 157 | 
            +
                            cache (str, optional): Path to save the calibration cache. Defaults to "".
         | 
| 158 | 
            +
                        """
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                        def __init__(
         | 
| 161 | 
            +
                            self,
         | 
| 162 | 
            +
                            dataset,  # ultralytics.data.build.InfiniteDataLoader
         | 
| 163 | 
            +
                            cache: str = "",
         | 
| 164 | 
            +
                        ) -> None:
         | 
| 165 | 
            +
                            trt.IInt8Calibrator.__init__(self)
         | 
| 166 | 
            +
                            self.dataset = dataset
         | 
| 167 | 
            +
                            self.data_iter = iter(dataset)
         | 
| 168 | 
            +
                            self.algo = trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2
         | 
| 169 | 
            +
                            self.batch = dataset.batch_size
         | 
| 170 | 
            +
                            self.cache = Path(cache)
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                        def get_algorithm(self) -> trt.CalibrationAlgoType:
         | 
| 173 | 
            +
                            """Get the calibration algorithm to use."""
         | 
| 174 | 
            +
                            return self.algo
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                        def get_batch_size(self) -> int:
         | 
| 177 | 
            +
                            """Get the batch size to use for calibration."""
         | 
| 178 | 
            +
                            return self.batch or 1
         | 
| 179 | 
            +
             | 
| 180 | 
            +
                        def get_batch(self, names) -> list:
         | 
| 181 | 
            +
                            """Get the next batch to use for calibration, as a list of device memory pointers."""
         | 
| 182 | 
            +
                            try:
         | 
| 183 | 
            +
                                im0s = next(self.data_iter)["img"] / 255.0
         | 
| 184 | 
            +
                                im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
         | 
| 185 | 
            +
                                return [int(im0s.data_ptr())]
         | 
| 186 | 
            +
                            except StopIteration:
         | 
| 187 | 
            +
                                # Return [] or None, signal to TensorRT there is no calibration data remaining
         | 
| 188 | 
            +
                                return None
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                        def read_calibration_cache(self) -> bytes:
         | 
| 191 | 
            +
                            """Use existing cache instead of calibrating again, otherwise, implicitly return None."""
         | 
| 192 | 
            +
                            if self.cache.exists() and self.cache.suffix == ".cache":
         | 
| 193 | 
            +
                                return self.cache.read_bytes()
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                        def write_calibration_cache(self, cache) -> None:
         | 
| 196 | 
            +
                            """Write calibration cache to disk."""
         | 
| 197 | 
            +
                            _ = self.cache.write_bytes(cache)
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                    # Load dataset w/ builder (for batching) and calibrate
         | 
| 200 | 
            +
                    config.int8_calibrator = EngineCalibrator(
         | 
| 201 | 
            +
                        dataset=dataset,
         | 
| 202 | 
            +
                        cache=str(Path(onnx_file).with_suffix(".cache")),
         | 
| 203 | 
            +
                    )
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                elif half:
         | 
| 206 | 
            +
                    config.set_flag(trt.BuilderFlag.FP16)
         | 
| 207 | 
            +
             | 
| 208 | 
            +
                # Write file
         | 
| 209 | 
            +
                build = builder.build_serialized_network if is_trt10 else builder.build_engine
         | 
| 210 | 
            +
                with build(network, config) as engine, open(engine_file, "wb") as t:
         | 
| 211 | 
            +
                    # Metadata
         | 
| 212 | 
            +
                    if metadata is not None:
         | 
| 213 | 
            +
                        meta = json.dumps(metadata)
         | 
| 214 | 
            +
                        t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
         | 
| 215 | 
            +
                        t.write(meta.encode())
         | 
| 216 | 
            +
                    # Model
         | 
| 217 | 
            +
                    t.write(engine if is_trt10 else engine.serialize())
         | 
    
        ultralytics/utils/torch_utils.py
    CHANGED
    
    | @@ -260,7 +260,11 @@ def fuse_conv_and_bn(conv, bn): | |
| 260 260 | 
             
                fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
         | 
| 261 261 |  | 
| 262 262 | 
             
                # Prepare spatial bias
         | 
| 263 | 
            -
                b_conv =  | 
| 263 | 
            +
                b_conv = (
         | 
| 264 | 
            +
                    torch.zeros(conv.weight.shape[0], dtype=conv.weight.dtype, device=conv.weight.device)
         | 
| 265 | 
            +
                    if conv.bias is None
         | 
| 266 | 
            +
                    else conv.bias
         | 
| 267 | 
            +
                )
         | 
| 264 268 | 
             
                b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
         | 
| 265 269 | 
             
                fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
         | 
| 266 270 |  | 
    
        ultralytics/utils/tuner.py
    CHANGED
    
    | @@ -137,7 +137,12 @@ def run_ray_tune( | |
| 137 137 | 
             
                    tuner = tune.Tuner(
         | 
| 138 138 | 
             
                        trainable_with_resources,
         | 
| 139 139 | 
             
                        param_space=space,
         | 
| 140 | 
            -
                        tune_config=tune.TuneConfig( | 
| 140 | 
            +
                        tune_config=tune.TuneConfig(
         | 
| 141 | 
            +
                            scheduler=asha_scheduler,
         | 
| 142 | 
            +
                            num_samples=max_samples,
         | 
| 143 | 
            +
                            trial_name_creator=lambda trial: f"{trial.trainable_name}_{trial.trial_id}",
         | 
| 144 | 
            +
                            trial_dirname_creator=lambda trial: f"{trial.trainable_name}_{trial.trial_id}",
         | 
| 145 | 
            +
                        ),
         | 
| 141 146 | 
             
                        run_config=RunConfig(callbacks=tuner_callbacks, storage_path=tune_dir.parent, name=tune_dir.name),
         | 
| 142 147 | 
             
                    )
         | 
| 143 148 |  | 
| @@ -1,6 +1,6 @@ | |
| 1 1 | 
             
            Metadata-Version: 2.4
         | 
| 2 2 | 
             
            Name: ultralytics
         | 
| 3 | 
            -
            Version: 8.3. | 
| 3 | 
            +
            Version: 8.3.107
         | 
| 4 4 | 
             
            Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
         | 
| 5 5 | 
             
            Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
         | 
| 6 6 | 
             
            Maintainer-email: Ultralytics <hello@ultralytics.com>
         | 
| @@ -62,7 +62,7 @@ Provides-Extra: export | |
| 62 62 | 
             
            Requires-Dist: onnx>=1.12.0; extra == "export"
         | 
| 63 63 | 
             
            Requires-Dist: coremltools>=8.0; (platform_system != "Windows" and python_version <= "3.12") and extra == "export"
         | 
| 64 64 | 
             
            Requires-Dist: scikit-learn>=1.3.2; (platform_system != "Windows" and python_version <= "3.12") and extra == "export"
         | 
| 65 | 
            -
            Requires-Dist: openvino | 
| 65 | 
            +
            Requires-Dist: openvino>=2024.0.0; extra == "export"
         | 
| 66 66 | 
             
            Requires-Dist: tensorflow>=2.0.0; extra == "export"
         | 
| 67 67 | 
             
            Requires-Dist: tensorflowjs>=4.0.0; extra == "export"
         | 
| 68 68 | 
             
            Requires-Dist: tensorstore>=0.1.63; (platform_machine == "aarch64" and python_version >= "3.9") and extra == "export"
         | 
| @@ -1,4 +1,4 @@ | |
| 1 | 
            -
            ultralytics/__init__.py,sha256= | 
| 1 | 
            +
            ultralytics/__init__.py,sha256=tIiMmD1lgop-6FXN0gw50mi9LmU73AZGjQSfh2uE0Aw,730
         | 
| 2 2 | 
             
            ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
         | 
| 3 3 | 
             
            ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
         | 
| 4 4 | 
             
            ultralytics/cfg/__init__.py,sha256=UCUFiZg-bqJwpuLLaGgy7RvAMxD-nbcVsPLxSo8x3ZA,39821
         | 
| @@ -102,7 +102,7 @@ ultralytics/data/loaders.py,sha256=_Gyp_BfGTZwsFdn4UnolXxdU_sAYZLIrv0L2TRI9R5g,2 | |
| 102 102 | 
             
            ultralytics/data/split_dota.py,sha256=p8eVGht9tABSVbf9vwvxA_AQYEva3IGHePKlMeNrn64,11872
         | 
| 103 103 | 
             
            ultralytics/data/utils.py,sha256=aRPwIoLrCML_Kcd0dI9B6c5Ct4dvhdF36rDHtuf7Ww4,33217
         | 
| 104 104 | 
             
            ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
         | 
| 105 | 
            -
            ultralytics/engine/exporter.py,sha256= | 
| 105 | 
            +
            ultralytics/engine/exporter.py,sha256=G-It6VeXPxo7bxuLt8mEyXVx8uzjpooalJ1aSdI23VQ,72998
         | 
| 106 106 | 
             
            ultralytics/engine/model.py,sha256=YgQKYZrPENSTvLENspg-bXI9FinzzWARfb0U-C9vH-M,52916
         | 
| 107 107 | 
             
            ultralytics/engine/predictor.py,sha256=fRUh82EJlu_6ZlIy8NFovlCcgX53UbRYSXcLljOs7Sc,21669
         | 
| 108 108 | 
             
            ultralytics/engine/results.py,sha256=H3pFJhUjYKvVyOUqqZjfIn8vnCpl81aYNOnregMrBoQ,79716
         | 
| @@ -177,7 +177,7 @@ ultralytics/models/yolo/yoloe/train.py,sha256=7JxJkMN9bkUGsO-RojFG2Q3yfdKhb-TXlB | |
| 177 177 | 
             
            ultralytics/models/yolo/yoloe/train_seg.py,sha256=JguKB1ez8Rf7XBu_D_mWHMLJto7y7Kr2m0Tq2NwDtwU,5269
         | 
| 178 178 | 
             
            ultralytics/models/yolo/yoloe/val.py,sha256=utdt8wZvvW9OPxO5rx8KsFlkLG0FXj0YMD7Jhyk54D8,8440
         | 
| 179 179 | 
             
            ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
         | 
| 180 | 
            -
            ultralytics/nn/autobackend.py,sha256= | 
| 180 | 
            +
            ultralytics/nn/autobackend.py,sha256=XaPuvhfCz8l1x_Zw3F4ZV9SfQ1EhAuXNE1xpcUc7jzY,38859
         | 
| 181 181 | 
             
            ultralytics/nn/tasks.py,sha256=r9CoXW9owNK5UWH2ufM5cyG3DB5TEEIX-JmhTSECCN8,62991
         | 
| 182 182 | 
             
            ultralytics/nn/text_model.py,sha256=H6OiLe0FOyZY4pd7-ixRTxaBgx3lOc2GmGTmrFnoJd0,10136
         | 
| 183 183 | 
             
            ultralytics/nn/modules/__init__.py,sha256=dXLtIk9rt944WfsTdpgEdWOg3HQEHdwQztuZ6WNJygs,3144
         | 
| @@ -214,13 +214,14 @@ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6D | |
| 214 214 | 
             
            ultralytics/trackers/utils/gmc.py,sha256=NnLxtgZIKdO5-C_J0xqeob1iRXgpubyJOgbIEeJz0Ps,14500
         | 
| 215 215 | 
             
            ultralytics/trackers/utils/kalman_filter.py,sha256=A0CqOnnaKH6kr0XwuHzyHmIU6aJAjJYxF9jVlNBKZHo,21326
         | 
| 216 216 | 
             
            ultralytics/trackers/utils/matching.py,sha256=7eIufSdeN7cXuFMjvcfvz0Ldq84m4YKZl5IGxBR8IIo,7169
         | 
| 217 | 
            -
            ultralytics/utils/__init__.py,sha256 | 
| 217 | 
            +
            ultralytics/utils/__init__.py,sha256=-OY2ZAJdN7XLPSG1dpnWWv63ZqmhzAxrio2dMGXuyEg,50254
         | 
| 218 218 | 
             
            ultralytics/utils/autobatch.py,sha256=KnvmNSAO_6H3ZLJ4fOFMTFbOaMlbp025LiJqrdKIz8c,4998
         | 
| 219 219 | 
             
            ultralytics/utils/benchmarks.py,sha256=7xJ7I0XqLXE-51_OCETKdfMKpk1zUkMTq0kCbdMsMks,30359
         | 
| 220 220 | 
             
            ultralytics/utils/checks.py,sha256=d30cJY1G3wBWWTlq3C3yGVmDhAUtfXa9U3nuTO4sXQo,32677
         | 
| 221 221 | 
             
            ultralytics/utils/dist.py,sha256=M8svPWdrRDcSmqIBGrqIaV8yi98Z3HUhXwsauDjVlkM,4090
         | 
| 222 222 | 
             
            ultralytics/utils/downloads.py,sha256=4P1JIc04tTd_oz3-AHlhRSGaVtnSQPg_gYlh__U27-4,22169
         | 
| 223 223 | 
             
            ultralytics/utils/errors.py,sha256=vY9h2evFSrHnZdHJVVrmm8Zzw4qVDLyo9DeYW5g0dFk,1573
         | 
| 224 | 
            +
            ultralytics/utils/export.py,sha256=yv2CL_CfG_f6hO8-WC6fgdWrSfBc_iCp5dQ3uI1O1YM,8761
         | 
| 224 225 | 
             
            ultralytics/utils/files.py,sha256=0K4O1cgqRiXaDw7EQK13TqA5SME_RrvfDVQSPetNr5w,8042
         | 
| 225 226 | 
             
            ultralytics/utils/instance.py,sha256=UOEsXR9V-bXNRk6BTonASBEgeMqvzzAk4S7VdXZJUAM,18090
         | 
| 226 227 | 
             
            ultralytics/utils/loss.py,sha256=us3lwmSlIwEzoMztNjpet7Kb1r1-sMGyESykqgYPDVo,36945
         | 
| @@ -229,9 +230,9 @@ ultralytics/utils/ops.py,sha256=Ag69Hvy8HxKLvewrtfQRseveboc_RGzlMYmO1B2U1Lk,3421 | |
| 229 230 | 
             
            ultralytics/utils/patches.py,sha256=auTWwYBieowiwH7ww1FgR67JSPkKr_7-PGA1SCYXB4A,4569
         | 
| 230 231 | 
             
            ultralytics/utils/plotting.py,sha256=wAg_z9ik6Wi3XZCfKO2K6TWV1G0TcLEkjxxz2H42CX8,46703
         | 
| 231 232 | 
             
            ultralytics/utils/tal.py,sha256=B-NV9qC3WIiKDcRWgJB2RN1r6aA0UUp0lL7RFwYhYK4,20814
         | 
| 232 | 
            -
            ultralytics/utils/torch_utils.py,sha256= | 
| 233 | 
            +
            ultralytics/utils/torch_utils.py,sha256=3sm0oG9rmLfCWUeeiuqxSwrTGk4AnWPidEoM4vaRmYM,38951
         | 
| 233 234 | 
             
            ultralytics/utils/triton.py,sha256=xK9Db_ZUVDnIK1u76S2G-6ulIBsLfj9HN_YOaSrnMuU,5304
         | 
| 234 | 
            -
            ultralytics/utils/tuner.py,sha256= | 
| 235 | 
            +
            ultralytics/utils/tuner.py,sha256=eX238JDALFejbx-QMEQBLoNfXQvA7GzArqgVUa1l4nI,6712
         | 
| 235 236 | 
             
            ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
         | 
| 236 237 | 
             
            ultralytics/utils/callbacks/base.py,sha256=p8YCeYDp4GLcyHWFZxC2Wxr2IXLw_MfIE5ef1fOQcWk,6848
         | 
| 237 238 | 
             
            ultralytics/utils/callbacks/clearml.py,sha256=jxTL2QSt8Cjp_BkK2XUDPg5t2XnykMYXJFRp6B66ulA,6005
         | 
| @@ -243,9 +244,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=XXnnKQ-MoLIexl8y2Vb0i-cCLyePE0n5BU | |
| 243 244 | 
             
            ultralytics/utils/callbacks/raytune.py,sha256=omVZNNuzYxsZZXrF9xpbFv7R1Wjdx1j-gv0xXuZrQas,1122
         | 
| 244 245 | 
             
            ultralytics/utils/callbacks/tensorboard.py,sha256=7eUX21_Ym7i6iN4euZzrqglphyl5xak1yl_-wfFshbg,5502
         | 
| 245 246 | 
             
            ultralytics/utils/callbacks/wb.py,sha256=iDRFXI4IIDm8R5OI89DMTmjs8aHLo1HRCLkOFKdaMG4,7507
         | 
| 246 | 
            -
            ultralytics-8.3. | 
| 247 | 
            -
            ultralytics-8.3. | 
| 248 | 
            -
            ultralytics-8.3. | 
| 249 | 
            -
            ultralytics-8.3. | 
| 250 | 
            -
            ultralytics-8.3. | 
| 251 | 
            -
            ultralytics-8.3. | 
| 247 | 
            +
            ultralytics-8.3.107.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
         | 
| 248 | 
            +
            ultralytics-8.3.107.dist-info/METADATA,sha256=7CYps8WGNYgKPtFPnDZip1QagdZFeHHPhTd0gp3uZ-s,37344
         | 
| 249 | 
            +
            ultralytics-8.3.107.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
         | 
| 250 | 
            +
            ultralytics-8.3.107.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
         | 
| 251 | 
            +
            ultralytics-8.3.107.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
         | 
| 252 | 
            +
            ultralytics-8.3.107.dist-info/RECORD,,
         | 
| 
            File without changes
         | 
| 
            File without changes
         | 
| 
            File without changes
         | 
| 
            File without changes
         |