ultralytics 8.3.106__py3-none-any.whl → 8.3.107__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics 🚀 AGPL-3.0 License - https://ultralytics.com/license
2
2
 
3
- __version__ = "8.3.106"
3
+ __version__ = "8.3.107"
4
4
 
5
5
  import os
6
6
 
@@ -55,7 +55,6 @@ TensorFlow.js:
55
55
  $ npm start
56
56
  """
57
57
 
58
- import gc
59
58
  import json
60
59
  import os
61
60
  import re
@@ -86,6 +85,7 @@ from ultralytics.utils import (
86
85
  LINUX,
87
86
  LOGGER,
88
87
  MACOS,
88
+ MACOS_VERSION,
89
89
  RKNN_CHIPS,
90
90
  ROOT,
91
91
  WINDOWS,
@@ -103,6 +103,7 @@ from ultralytics.utils.checks import (
103
103
  is_sudo_available,
104
104
  )
105
105
  from ultralytics.utils.downloads import attempt_download_asset, get_github_assets, safe_download
106
+ from ultralytics.utils.export import export_engine, export_onnx
106
107
  from ultralytics.utils.files import file_size, spaces_in_path
107
108
  from ultralytics.utils.ops import Profile, nms_rotated, xywh2xyxy
108
109
  from ultralytics.utils.torch_utils import TORCH_1_13, get_latest_opset, select_device
@@ -577,16 +578,14 @@ class Exporter:
577
578
  check_requirements("onnxslim>=0.1.46") # Older versions has bug with OBB
578
579
 
579
580
  with arange_patch(self.args):
580
- torch.onnx.export(
581
+ export_onnx(
581
582
  NMSModel(self.model, self.args) if self.args.nms else self.model,
582
583
  self.im,
583
584
  f,
584
- verbose=False,
585
- opset_version=opset_version,
586
- do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
585
+ opset=opset_version,
587
586
  input_names=["images"],
588
587
  output_names=output_names,
589
- dynamic_axes=dynamic or None,
588
+ dynamic=dynamic or None,
590
589
  )
591
590
 
592
591
  # Checks
@@ -614,7 +613,10 @@ class Exporter:
614
613
  @try_export
615
614
  def export_openvino(self, prefix=colorstr("OpenVINO:")):
616
615
  """YOLO OpenVINO export."""
617
- check_requirements("openvino>=2024.0.0,!=2025.0.0")
616
+ if MACOS:
617
+ msg = "OpenVINO error in macOS>=15.4 https://github.com/openvinotoolkit/openvino/issues/30023"
618
+ check_version(MACOS_VERSION, "<15.4", name="macOS ", hard=True, msg=msg)
619
+ check_requirements("openvino>=2024.0.0")
618
620
  import openvino as ov
619
621
 
620
622
  LOGGER.info(f"\n{prefix} starting export with openvino {ov.__version__}...")
@@ -883,134 +885,22 @@ class Exporter:
883
885
 
884
886
  # Setup and checks
885
887
  LOGGER.info(f"\n{prefix} starting export with TensorRT {trt.__version__}...")
886
- is_trt10 = int(trt.__version__.split(".")[0]) >= 10 # is TensorRT >= 10
887
888
  assert Path(f_onnx).exists(), f"failed to export ONNX file: {f_onnx}"
888
889
  f = self.file.with_suffix(".engine") # TensorRT engine file
889
- logger = trt.Logger(trt.Logger.INFO)
890
- if self.args.verbose:
891
- logger.min_severity = trt.Logger.Severity.VERBOSE
892
-
893
- # Engine builder
894
- builder = trt.Builder(logger)
895
- config = builder.create_builder_config()
896
- workspace = int((self.args.workspace or 0) * (1 << 30))
897
- if is_trt10 and workspace > 0:
898
- config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace)
899
- elif workspace > 0: # TensorRT versions 7, 8
900
- config.max_workspace_size = workspace
901
- flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
902
- network = builder.create_network(flag)
903
- half = builder.platform_has_fast_fp16 and self.args.half
904
- int8 = builder.platform_has_fast_int8 and self.args.int8
905
-
906
- # Optionally switch to DLA if enabled
907
- if dla is not None:
908
- if not IS_JETSON:
909
- raise ValueError("DLA is only available on NVIDIA Jetson devices")
910
- LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
911
- if not self.args.half and not self.args.int8:
912
- raise ValueError(
913
- "DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
914
- )
915
- config.default_device_type = trt.DeviceType.DLA
916
- config.DLA_core = int(dla)
917
- config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
918
-
919
- # Read ONNX file
920
- parser = trt.OnnxParser(network, logger)
921
- if not parser.parse_from_file(f_onnx):
922
- raise RuntimeError(f"failed to load ONNX file: {f_onnx}")
923
-
924
- # Network inputs
925
- inputs = [network.get_input(i) for i in range(network.num_inputs)]
926
- outputs = [network.get_output(i) for i in range(network.num_outputs)]
927
- for inp in inputs:
928
- LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
929
- for out in outputs:
930
- LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
931
-
932
- if self.args.dynamic:
933
- shape = self.im.shape
934
- if shape[0] <= 1:
935
- LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
936
- profile = builder.create_optimization_profile()
937
- min_shape = (1, shape[1], 32, 32) # minimum input shape
938
- max_shape = (*shape[:2], *(int(max(1, self.args.workspace or 1) * d) for d in shape[2:])) # max input shape
939
- for inp in inputs:
940
- profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
941
- config.add_optimization_profile(profile)
942
-
943
- LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {f}")
944
- if int8:
945
- config.set_flag(trt.BuilderFlag.INT8)
946
- config.set_calibration_profile(profile)
947
- config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
948
-
949
- class EngineCalibrator(trt.IInt8Calibrator):
950
- def __init__(
951
- self,
952
- dataset, # ultralytics.data.build.InfiniteDataLoader
953
- batch: int,
954
- cache: str = "",
955
- ) -> None:
956
- trt.IInt8Calibrator.__init__(self)
957
- self.dataset = dataset
958
- self.data_iter = iter(dataset)
959
- self.algo = trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2
960
- self.batch = batch
961
- self.cache = Path(cache)
962
-
963
- def get_algorithm(self) -> trt.CalibrationAlgoType:
964
- """Get the calibration algorithm to use."""
965
- return self.algo
966
-
967
- def get_batch_size(self) -> int:
968
- """Get the batch size to use for calibration."""
969
- return self.batch or 1
970
-
971
- def get_batch(self, names) -> list:
972
- """Get the next batch to use for calibration, as a list of device memory pointers."""
973
- try:
974
- im0s = next(self.data_iter)["img"] / 255.0
975
- im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
976
- return [int(im0s.data_ptr())]
977
- except StopIteration:
978
- # Return [] or None, signal to TensorRT there is no calibration data remaining
979
- return None
980
-
981
- def read_calibration_cache(self) -> bytes:
982
- """Use existing cache instead of calibrating again, otherwise, implicitly return None."""
983
- if self.cache.exists() and self.cache.suffix == ".cache":
984
- return self.cache.read_bytes()
985
-
986
- def write_calibration_cache(self, cache) -> None:
987
- """Write calibration cache to disk."""
988
- _ = self.cache.write_bytes(cache)
989
-
990
- # Load dataset w/ builder (for batching) and calibrate
991
- config.int8_calibrator = EngineCalibrator(
992
- dataset=self.get_int8_calibration_dataloader(prefix),
993
- batch=2 * self.args.batch, # TensorRT INT8 calibration should use 2x batch size
994
- cache=str(self.file.with_suffix(".cache")),
995
- )
996
-
997
- elif half:
998
- config.set_flag(trt.BuilderFlag.FP16)
999
-
1000
- # Free CUDA memory
1001
- del self.model
1002
- gc.collect()
1003
- torch.cuda.empty_cache()
1004
-
1005
- # Write file
1006
- build = builder.build_serialized_network if is_trt10 else builder.build_engine
1007
- with build(network, config) as engine, open(f, "wb") as t:
1008
- # Metadata
1009
- meta = json.dumps(self.metadata)
1010
- t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
1011
- t.write(meta.encode())
1012
- # Model
1013
- t.write(engine if is_trt10 else engine.serialize())
890
+ export_engine(
891
+ f_onnx,
892
+ f,
893
+ self.args.workspace,
894
+ self.args.half,
895
+ self.args.int8,
896
+ self.args.dynamic,
897
+ self.im.shape,
898
+ dla=dla,
899
+ dataset=self.get_int8_calibration_dataloader(prefix) if self.args.int8 else None,
900
+ metadata=self.metadata,
901
+ verbose=self.args.verbose,
902
+ prefix=prefix,
903
+ )
1014
904
 
1015
905
  return f, None
1016
906
 
@@ -258,7 +258,7 @@ class AutoBackend(nn.Module):
258
258
  # OpenVINO
259
259
  elif xml:
260
260
  LOGGER.info(f"Loading {w} for OpenVINO inference...")
261
- check_requirements("openvino>=2024.0.0,!=2025.0.0")
261
+ check_requirements("openvino>=2024.0.0")
262
262
  import openvino as ov
263
263
 
264
264
  core = ov.Core()
@@ -511,9 +511,9 @@ class AutoBackend(nn.Module):
511
511
  if not w.is_file(): # if not *.rknn
512
512
  w = next(w.rglob("*.rknn")) # get *.rknn file from *_rknn_model dir
513
513
  rknn_model = RKNNLite()
514
- rknn_model.load_rknn(w)
514
+ rknn_model.load_rknn(str(w))
515
515
  rknn_model.init_runtime()
516
- metadata = Path(w).parent / "metadata.yaml"
516
+ metadata = w.parent / "metadata.yaml"
517
517
 
518
518
  # Any other format (unsupported)
519
519
  else:
@@ -48,6 +48,7 @@ VERBOSE = str(os.getenv("YOLO_VERBOSE", True)).lower() == "true" # global verbo
48
48
  TQDM_BAR_FORMAT = "{l_bar}{bar:10}{r_bar}" if VERBOSE else None # tqdm bar format
49
49
  LOGGING_NAME = "ultralytics"
50
50
  MACOS, LINUX, WINDOWS = (platform.system() == x for x in ["Darwin", "Linux", "Windows"]) # environment booleans
51
+ MACOS_VERSION = platform.mac_ver()[0] if MACOS else None
51
52
  ARM64 = platform.machine() in {"arm64", "aarch64"} # ARM64 booleans
52
53
  PYTHON_VERSION = platform.python_version()
53
54
  TORCH_VERSION = torch.__version__
@@ -0,0 +1,217 @@
1
+ import json
2
+ from pathlib import Path
3
+
4
+ import torch
5
+
6
+ from ultralytics.utils import IS_JETSON, LOGGER
7
+
8
+
9
+ def export_onnx(
10
+ torch_model,
11
+ im,
12
+ onnx_file,
13
+ opset=14,
14
+ input_names=["images"],
15
+ output_names=["output0"],
16
+ dynamic=False,
17
+ ):
18
+ """
19
+ Exports a PyTorch model to ONNX format.
20
+
21
+ Args:
22
+ torch_model (torch.nn.Module): The PyTorch model to export.
23
+ im (torch.Tensor): Example input tensor for the model.
24
+ onnx_file (str): Path to save the exported ONNX file.
25
+ opset (int): ONNX opset version to use for export.
26
+ input_names (list): List of input tensor names.
27
+ output_names (list): List of output tensor names.
28
+ dynamic (bool | dict, optional): Whether to enable dynamic axes. Defaults to False.
29
+
30
+ Notes:
31
+ - Setting `do_constant_folding=True` may cause issues with DNN inference for torch>=1.12.
32
+ """
33
+ torch.onnx.export(
34
+ torch_model,
35
+ im,
36
+ onnx_file,
37
+ verbose=False,
38
+ opset_version=opset,
39
+ do_constant_folding=True, # WARNING: DNN inference with torch>=1.12 may require do_constant_folding=False
40
+ input_names=input_names,
41
+ output_names=output_names,
42
+ dynamic_axes=dynamic or None,
43
+ )
44
+
45
+
46
+ def export_engine(
47
+ onnx_file,
48
+ engine_file=None,
49
+ workspace=None,
50
+ half=False,
51
+ int8=False,
52
+ dynamic=False,
53
+ shape=(1, 3, 640, 640),
54
+ dla=None,
55
+ dataset=None,
56
+ metadata=None,
57
+ verbose=False,
58
+ prefix="",
59
+ ):
60
+ """
61
+ Exports a YOLO model to TensorRT engine format.
62
+
63
+ Args:
64
+ onnx_file (str): Path to the ONNX file to be converted.
65
+ engine_file (str, optional): Path to save the generated TensorRT engine file.
66
+ workspace (int, optional): Workspace size in GB for TensorRT. Defaults to None.
67
+ half (bool, optional): Enable FP16 precision. Defaults to False.
68
+ int8 (bool, optional): Enable INT8 precision. Defaults to False.
69
+ dynamic (bool, optional): Enable dynamic input shapes. Defaults to False.
70
+ shape (tuple, optional): Input shape (batch, channels, height, width). Defaults to (1, 3, 640, 640).
71
+ dla (int, optional): DLA core to use (Jetson devices only). Defaults to None.
72
+ dataset (ultralytics.data.build.InfiniteDataLoader, optional): Dataset for INT8 calibration. Defaults to None.
73
+ metadata (dict, optional): Metadata to include in the engine file. Defaults to None.
74
+ verbose (bool, optional): Enable verbose logging. Defaults to False.
75
+ prefix (str, optional): Prefix for log messages. Defaults to "".
76
+
77
+ Raises:
78
+ ValueError: If DLA is enabled on non-Jetson devices or required precision is not set.
79
+ RuntimeError: If the ONNX file cannot be parsed.
80
+
81
+ Notes:
82
+ - TensorRT version compatibility is handled for workspace size and engine building.
83
+ - INT8 calibration requires a dataset and generates a calibration cache.
84
+ - Metadata is serialized and written to the engine file if provided.
85
+ """
86
+ import tensorrt as trt # noqa
87
+
88
+ engine_file = engine_file or Path(onnx_file).with_suffix(".engine")
89
+
90
+ logger = trt.Logger(trt.Logger.INFO)
91
+ if verbose:
92
+ logger.min_severity = trt.Logger.Severity.VERBOSE
93
+
94
+ # Engine builder
95
+ builder = trt.Builder(logger)
96
+ config = builder.create_builder_config()
97
+ workspace = int((workspace or 0) * (1 << 30))
98
+ is_trt10 = int(trt.__version__.split(".")[0]) >= 10 # is TensorRT >= 10
99
+ if is_trt10 and workspace > 0:
100
+ config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace)
101
+ elif workspace > 0: # TensorRT versions 7, 8
102
+ config.max_workspace_size = workspace
103
+ flag = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
104
+ network = builder.create_network(flag)
105
+ half = builder.platform_has_fast_fp16 and half
106
+ int8 = builder.platform_has_fast_int8 and int8
107
+
108
+ # Optionally switch to DLA if enabled
109
+ if dla is not None:
110
+ if not IS_JETSON:
111
+ raise ValueError("DLA is only available on NVIDIA Jetson devices")
112
+ LOGGER.info(f"{prefix} enabling DLA on core {dla}...")
113
+ if not half and not int8:
114
+ raise ValueError(
115
+ "DLA requires either 'half=True' (FP16) or 'int8=True' (INT8) to be enabled. Please enable one of them and try again."
116
+ )
117
+ config.default_device_type = trt.DeviceType.DLA
118
+ config.DLA_core = int(dla)
119
+ config.set_flag(trt.BuilderFlag.GPU_FALLBACK)
120
+
121
+ # Read ONNX file
122
+ parser = trt.OnnxParser(network, logger)
123
+ if not parser.parse_from_file(onnx_file):
124
+ raise RuntimeError(f"failed to load ONNX file: {onnx_file}")
125
+
126
+ # Network inputs
127
+ inputs = [network.get_input(i) for i in range(network.num_inputs)]
128
+ outputs = [network.get_output(i) for i in range(network.num_outputs)]
129
+ for inp in inputs:
130
+ LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
131
+ for out in outputs:
132
+ LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
133
+
134
+ if dynamic:
135
+ if shape[0] <= 1:
136
+ LOGGER.warning(f"{prefix} WARNING ⚠️ 'dynamic=True' model requires max batch size, i.e. 'batch=16'")
137
+ profile = builder.create_optimization_profile()
138
+ min_shape = (1, shape[1], 32, 32) # minimum input shape
139
+ max_shape = (*shape[:2], *(int(max(1, workspace or 1) * d) for d in shape[2:])) # max input shape
140
+ for inp in inputs:
141
+ profile.set_shape(inp.name, min=min_shape, opt=shape, max=max_shape)
142
+ config.add_optimization_profile(profile)
143
+
144
+ LOGGER.info(f"{prefix} building {'INT8' if int8 else 'FP' + ('16' if half else '32')} engine as {engine_file}")
145
+ if int8:
146
+ config.set_flag(trt.BuilderFlag.INT8)
147
+ config.set_calibration_profile(profile)
148
+ config.profiling_verbosity = trt.ProfilingVerbosity.DETAILED
149
+
150
+ class EngineCalibrator(trt.IInt8Calibrator):
151
+ """
152
+ Custom INT8 calibrator for TensorRT.
153
+
154
+ Args:
155
+ dataset (object): Dataset for calibration.
156
+ batch (int): Batch size for calibration.
157
+ cache (str, optional): Path to save the calibration cache. Defaults to "".
158
+ """
159
+
160
+ def __init__(
161
+ self,
162
+ dataset, # ultralytics.data.build.InfiniteDataLoader
163
+ cache: str = "",
164
+ ) -> None:
165
+ trt.IInt8Calibrator.__init__(self)
166
+ self.dataset = dataset
167
+ self.data_iter = iter(dataset)
168
+ self.algo = trt.CalibrationAlgoType.ENTROPY_CALIBRATION_2
169
+ self.batch = dataset.batch_size
170
+ self.cache = Path(cache)
171
+
172
+ def get_algorithm(self) -> trt.CalibrationAlgoType:
173
+ """Get the calibration algorithm to use."""
174
+ return self.algo
175
+
176
+ def get_batch_size(self) -> int:
177
+ """Get the batch size to use for calibration."""
178
+ return self.batch or 1
179
+
180
+ def get_batch(self, names) -> list:
181
+ """Get the next batch to use for calibration, as a list of device memory pointers."""
182
+ try:
183
+ im0s = next(self.data_iter)["img"] / 255.0
184
+ im0s = im0s.to("cuda") if im0s.device.type == "cpu" else im0s
185
+ return [int(im0s.data_ptr())]
186
+ except StopIteration:
187
+ # Return [] or None, signal to TensorRT there is no calibration data remaining
188
+ return None
189
+
190
+ def read_calibration_cache(self) -> bytes:
191
+ """Use existing cache instead of calibrating again, otherwise, implicitly return None."""
192
+ if self.cache.exists() and self.cache.suffix == ".cache":
193
+ return self.cache.read_bytes()
194
+
195
+ def write_calibration_cache(self, cache) -> None:
196
+ """Write calibration cache to disk."""
197
+ _ = self.cache.write_bytes(cache)
198
+
199
+ # Load dataset w/ builder (for batching) and calibrate
200
+ config.int8_calibrator = EngineCalibrator(
201
+ dataset=dataset,
202
+ cache=str(Path(onnx_file).with_suffix(".cache")),
203
+ )
204
+
205
+ elif half:
206
+ config.set_flag(trt.BuilderFlag.FP16)
207
+
208
+ # Write file
209
+ build = builder.build_serialized_network if is_trt10 else builder.build_engine
210
+ with build(network, config) as engine, open(engine_file, "wb") as t:
211
+ # Metadata
212
+ if metadata is not None:
213
+ meta = json.dumps(metadata)
214
+ t.write(len(meta).to_bytes(4, byteorder="little", signed=True))
215
+ t.write(meta.encode())
216
+ # Model
217
+ t.write(engine if is_trt10 else engine.serialize())
@@ -260,7 +260,11 @@ def fuse_conv_and_bn(conv, bn):
260
260
  fusedconv.weight.copy_(torch.mm(w_bn, w_conv).view(fusedconv.weight.shape))
261
261
 
262
262
  # Prepare spatial bias
263
- b_conv = torch.zeros(conv.weight.shape[0], device=conv.weight.device) if conv.bias is None else conv.bias
263
+ b_conv = (
264
+ torch.zeros(conv.weight.shape[0], dtype=conv.weight.dtype, device=conv.weight.device)
265
+ if conv.bias is None
266
+ else conv.bias
267
+ )
264
268
  b_bn = bn.bias - bn.weight.mul(bn.running_mean).div(torch.sqrt(bn.running_var + bn.eps))
265
269
  fusedconv.bias.copy_(torch.mm(w_bn, b_conv.reshape(-1, 1)).reshape(-1) + b_bn)
266
270
 
@@ -137,7 +137,12 @@ def run_ray_tune(
137
137
  tuner = tune.Tuner(
138
138
  trainable_with_resources,
139
139
  param_space=space,
140
- tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples),
140
+ tune_config=tune.TuneConfig(
141
+ scheduler=asha_scheduler,
142
+ num_samples=max_samples,
143
+ trial_name_creator=lambda trial: f"{trial.trainable_name}_{trial.trial_id}",
144
+ trial_dirname_creator=lambda trial: f"{trial.trainable_name}_{trial.trial_id}",
145
+ ),
141
146
  run_config=RunConfig(callbacks=tuner_callbacks, storage_path=tune_dir.parent, name=tune_dir.name),
142
147
  )
143
148
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ultralytics
3
- Version: 8.3.106
3
+ Version: 8.3.107
4
4
  Summary: Ultralytics YOLO 🚀 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
6
6
  Maintainer-email: Ultralytics <hello@ultralytics.com>
@@ -62,7 +62,7 @@ Provides-Extra: export
62
62
  Requires-Dist: onnx>=1.12.0; extra == "export"
63
63
  Requires-Dist: coremltools>=8.0; (platform_system != "Windows" and python_version <= "3.12") and extra == "export"
64
64
  Requires-Dist: scikit-learn>=1.3.2; (platform_system != "Windows" and python_version <= "3.12") and extra == "export"
65
- Requires-Dist: openvino!=2025.0.0,>=2024.0.0; extra == "export"
65
+ Requires-Dist: openvino>=2024.0.0; extra == "export"
66
66
  Requires-Dist: tensorflow>=2.0.0; extra == "export"
67
67
  Requires-Dist: tensorflowjs>=4.0.0; extra == "export"
68
68
  Requires-Dist: tensorstore>=0.1.63; (platform_machine == "aarch64" and python_version >= "3.9") and extra == "export"
@@ -1,4 +1,4 @@
1
- ultralytics/__init__.py,sha256=ey81HB6cgSBcFyxUYLBPSmZvuTyw-WPic4IrVBhQboc,730
1
+ ultralytics/__init__.py,sha256=tIiMmD1lgop-6FXN0gw50mi9LmU73AZGjQSfh2uE0Aw,730
2
2
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
3
3
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
4
4
  ultralytics/cfg/__init__.py,sha256=UCUFiZg-bqJwpuLLaGgy7RvAMxD-nbcVsPLxSo8x3ZA,39821
@@ -102,7 +102,7 @@ ultralytics/data/loaders.py,sha256=_Gyp_BfGTZwsFdn4UnolXxdU_sAYZLIrv0L2TRI9R5g,2
102
102
  ultralytics/data/split_dota.py,sha256=p8eVGht9tABSVbf9vwvxA_AQYEva3IGHePKlMeNrn64,11872
103
103
  ultralytics/data/utils.py,sha256=aRPwIoLrCML_Kcd0dI9B6c5Ct4dvhdF36rDHtuf7Ww4,33217
104
104
  ultralytics/engine/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6DXppv1-QUM,70
105
- ultralytics/engine/exporter.py,sha256=rIQpCkgC_f_3liWpkBUAhZTQmivN8ptDfkhpi39fyzY,78504
105
+ ultralytics/engine/exporter.py,sha256=G-It6VeXPxo7bxuLt8mEyXVx8uzjpooalJ1aSdI23VQ,72998
106
106
  ultralytics/engine/model.py,sha256=YgQKYZrPENSTvLENspg-bXI9FinzzWARfb0U-C9vH-M,52916
107
107
  ultralytics/engine/predictor.py,sha256=fRUh82EJlu_6ZlIy8NFovlCcgX53UbRYSXcLljOs7Sc,21669
108
108
  ultralytics/engine/results.py,sha256=H3pFJhUjYKvVyOUqqZjfIn8vnCpl81aYNOnregMrBoQ,79716
@@ -177,7 +177,7 @@ ultralytics/models/yolo/yoloe/train.py,sha256=7JxJkMN9bkUGsO-RojFG2Q3yfdKhb-TXlB
177
177
  ultralytics/models/yolo/yoloe/train_seg.py,sha256=JguKB1ez8Rf7XBu_D_mWHMLJto7y7Kr2m0Tq2NwDtwU,5269
178
178
  ultralytics/models/yolo/yoloe/val.py,sha256=utdt8wZvvW9OPxO5rx8KsFlkLG0FXj0YMD7Jhyk54D8,8440
179
179
  ultralytics/nn/__init__.py,sha256=rjociYD9lo_K-d-1s6TbdWklPLjTcEHk7OIlRDJstIE,615
180
- ultralytics/nn/autobackend.py,sha256=Y597hrrvhHlRX5SoOiXJZXj_1ND9kHMn94V2m_saRAU,38871
180
+ ultralytics/nn/autobackend.py,sha256=XaPuvhfCz8l1x_Zw3F4ZV9SfQ1EhAuXNE1xpcUc7jzY,38859
181
181
  ultralytics/nn/tasks.py,sha256=r9CoXW9owNK5UWH2ufM5cyG3DB5TEEIX-JmhTSECCN8,62991
182
182
  ultralytics/nn/text_model.py,sha256=H6OiLe0FOyZY4pd7-ixRTxaBgx3lOc2GmGTmrFnoJd0,10136
183
183
  ultralytics/nn/modules/__init__.py,sha256=dXLtIk9rt944WfsTdpgEdWOg3HQEHdwQztuZ6WNJygs,3144
@@ -214,13 +214,14 @@ ultralytics/trackers/utils/__init__.py,sha256=lm6MckFYCPTbqIoX7w0s_daxdjNeBeKW6D
214
214
  ultralytics/trackers/utils/gmc.py,sha256=NnLxtgZIKdO5-C_J0xqeob1iRXgpubyJOgbIEeJz0Ps,14500
215
215
  ultralytics/trackers/utils/kalman_filter.py,sha256=A0CqOnnaKH6kr0XwuHzyHmIU6aJAjJYxF9jVlNBKZHo,21326
216
216
  ultralytics/trackers/utils/matching.py,sha256=7eIufSdeN7cXuFMjvcfvz0Ldq84m4YKZl5IGxBR8IIo,7169
217
- ultralytics/utils/__init__.py,sha256=vkL5eXMA-1CvTJou5D16FkIdO_ANDwPUJPB4NovnMQw,50197
217
+ ultralytics/utils/__init__.py,sha256=-OY2ZAJdN7XLPSG1dpnWWv63ZqmhzAxrio2dMGXuyEg,50254
218
218
  ultralytics/utils/autobatch.py,sha256=KnvmNSAO_6H3ZLJ4fOFMTFbOaMlbp025LiJqrdKIz8c,4998
219
219
  ultralytics/utils/benchmarks.py,sha256=7xJ7I0XqLXE-51_OCETKdfMKpk1zUkMTq0kCbdMsMks,30359
220
220
  ultralytics/utils/checks.py,sha256=d30cJY1G3wBWWTlq3C3yGVmDhAUtfXa9U3nuTO4sXQo,32677
221
221
  ultralytics/utils/dist.py,sha256=M8svPWdrRDcSmqIBGrqIaV8yi98Z3HUhXwsauDjVlkM,4090
222
222
  ultralytics/utils/downloads.py,sha256=4P1JIc04tTd_oz3-AHlhRSGaVtnSQPg_gYlh__U27-4,22169
223
223
  ultralytics/utils/errors.py,sha256=vY9h2evFSrHnZdHJVVrmm8Zzw4qVDLyo9DeYW5g0dFk,1573
224
+ ultralytics/utils/export.py,sha256=yv2CL_CfG_f6hO8-WC6fgdWrSfBc_iCp5dQ3uI1O1YM,8761
224
225
  ultralytics/utils/files.py,sha256=0K4O1cgqRiXaDw7EQK13TqA5SME_RrvfDVQSPetNr5w,8042
225
226
  ultralytics/utils/instance.py,sha256=UOEsXR9V-bXNRk6BTonASBEgeMqvzzAk4S7VdXZJUAM,18090
226
227
  ultralytics/utils/loss.py,sha256=us3lwmSlIwEzoMztNjpet7Kb1r1-sMGyESykqgYPDVo,36945
@@ -229,9 +230,9 @@ ultralytics/utils/ops.py,sha256=Ag69Hvy8HxKLvewrtfQRseveboc_RGzlMYmO1B2U1Lk,3421
229
230
  ultralytics/utils/patches.py,sha256=auTWwYBieowiwH7ww1FgR67JSPkKr_7-PGA1SCYXB4A,4569
230
231
  ultralytics/utils/plotting.py,sha256=wAg_z9ik6Wi3XZCfKO2K6TWV1G0TcLEkjxxz2H42CX8,46703
231
232
  ultralytics/utils/tal.py,sha256=B-NV9qC3WIiKDcRWgJB2RN1r6aA0UUp0lL7RFwYhYK4,20814
232
- ultralytics/utils/torch_utils.py,sha256=7O0sJhISx3RzQI6uRtx2ZhJm-qNEYF359qXwQFL99pw,38894
233
+ ultralytics/utils/torch_utils.py,sha256=3sm0oG9rmLfCWUeeiuqxSwrTGk4AnWPidEoM4vaRmYM,38951
233
234
  ultralytics/utils/triton.py,sha256=xK9Db_ZUVDnIK1u76S2G-6ulIBsLfj9HN_YOaSrnMuU,5304
234
- ultralytics/utils/tuner.py,sha256=JBarTM7E8AC6ZLfRf8XCE5s_nwzEAp-dU4wM9MKDQ5k,6476
235
+ ultralytics/utils/tuner.py,sha256=eX238JDALFejbx-QMEQBLoNfXQvA7GzArqgVUa1l4nI,6712
235
236
  ultralytics/utils/callbacks/__init__.py,sha256=hzL63Rce6VkZhP4Lcim9LKjadixaQG86nKqPhk7IkS0,242
236
237
  ultralytics/utils/callbacks/base.py,sha256=p8YCeYDp4GLcyHWFZxC2Wxr2IXLw_MfIE5ef1fOQcWk,6848
237
238
  ultralytics/utils/callbacks/clearml.py,sha256=jxTL2QSt8Cjp_BkK2XUDPg5t2XnykMYXJFRp6B66ulA,6005
@@ -243,9 +244,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=XXnnKQ-MoLIexl8y2Vb0i-cCLyePE0n5BU
243
244
  ultralytics/utils/callbacks/raytune.py,sha256=omVZNNuzYxsZZXrF9xpbFv7R1Wjdx1j-gv0xXuZrQas,1122
244
245
  ultralytics/utils/callbacks/tensorboard.py,sha256=7eUX21_Ym7i6iN4euZzrqglphyl5xak1yl_-wfFshbg,5502
245
246
  ultralytics/utils/callbacks/wb.py,sha256=iDRFXI4IIDm8R5OI89DMTmjs8aHLo1HRCLkOFKdaMG4,7507
246
- ultralytics-8.3.106.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
247
- ultralytics-8.3.106.dist-info/METADATA,sha256=ljT7_fUugMTOUfhqXUXTuqgKPnVa-YBnNYzPJVZfizc,37355
248
- ultralytics-8.3.106.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
249
- ultralytics-8.3.106.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
250
- ultralytics-8.3.106.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
251
- ultralytics-8.3.106.dist-info/RECORD,,
247
+ ultralytics-8.3.107.dist-info/licenses/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
248
+ ultralytics-8.3.107.dist-info/METADATA,sha256=7CYps8WGNYgKPtFPnDZip1QagdZFeHHPhTd0gp3uZ-s,37344
249
+ ultralytics-8.3.107.dist-info/WHEEL,sha256=CmyFI0kx5cdEMTLiONQRbGQwjIoR1aIYB7eCAQ4KPJ0,91
250
+ ultralytics-8.3.107.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
251
+ ultralytics-8.3.107.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
252
+ ultralytics-8.3.107.dist-info/RECORD,,