ultralytics 8.3.0__py3-none-any.whl → 8.3.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

tests/test_cuda.py CHANGED
@@ -10,6 +10,7 @@ from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE, MODEL, SOURCE
10
10
  from ultralytics import YOLO
11
11
  from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
12
12
  from ultralytics.utils import ASSETS, WEIGHTS_DIR
13
+ from ultralytics.utils.checks import check_amp
13
14
 
14
15
 
15
16
  def test_checks():
@@ -18,6 +19,13 @@ def test_checks():
18
19
  assert torch.cuda.device_count() == CUDA_DEVICE_COUNT
19
20
 
20
21
 
22
+ @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
23
+ def test_amp():
24
+ """Test AMP training checks."""
25
+ model = YOLO("yolo11n.pt").model.cuda()
26
+ assert check_amp(model)
27
+
28
+
21
29
  @pytest.mark.slow
22
30
  @pytest.mark.skipif(True, reason="CUDA export tests disabled pending additional Ultralytics GPU server availability")
23
31
  @pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.3.0"
3
+ __version__ = "8.3.2"
4
4
 
5
5
  import os
6
6
 
@@ -42,11 +42,11 @@ TASK2DATA = {
42
42
  "obb": "dota8.yaml",
43
43
  }
44
44
  TASK2MODEL = {
45
- "detect": "yolov8n.pt",
46
- "segment": "yolov8n-seg.pt",
47
- "classify": "yolov8n-cls.pt",
48
- "pose": "yolov8n-pose.pt",
49
- "obb": "yolov8n-obb.pt",
45
+ "detect": "yolo11n.pt",
46
+ "segment": "yolo11n-seg.pt",
47
+ "classify": "yolo11n-cls.pt",
48
+ "pose": "yolo11n-pose.pt",
49
+ "obb": "yolo11n-obb.pt",
50
50
  }
51
51
  TASK2METRIC = {
52
52
  "detect": "metrics/mAP50-95(B)",
@@ -69,19 +69,19 @@ CLI_HELP_MSG = f"""
69
69
  See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
70
70
 
71
71
  1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
72
- yolo train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01
72
+ yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01
73
73
 
74
74
  2. Predict a YouTube video using a pretrained segmentation model at image size 320:
75
- yolo predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
75
+ yolo predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
76
76
 
77
77
  3. Val a pretrained detection model at batch-size 1 and image size 640:
78
- yolo val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640
78
+ yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640
79
79
 
80
- 4. Export a YOLOv8n classification model to ONNX format at image size 224 by 128 (no TASK required)
81
- yolo export model=yolov8n-cls.pt format=onnx imgsz=224,128
80
+ 4. Export a YOLO11n classification model to ONNX format at image size 224 by 128 (no TASK required)
81
+ yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128
82
82
 
83
83
  5. Explore your datasets using semantic search and SQL with a simple GUI powered by Ultralytics Explorer API
84
- yolo explorer data=data.yaml model=yolov8n.pt
84
+ yolo explorer data=data.yaml model=yolo11n.pt
85
85
 
86
86
  6. Streamlit real-time webcam inference GUI
87
87
  yolo streamlit-predict
@@ -517,7 +517,7 @@ def handle_yolo_settings(args: List[str]) -> None:
517
517
 
518
518
  Examples:
519
519
  >>> handle_yolo_settings(["reset"]) # Reset YOLO settings
520
- >>> handle_yolo_settings(["default_cfg_path=yolov8n.yaml"]) # Update a specific setting
520
+ >>> handle_yolo_settings(["default_cfg_path=yolo11n.yaml"]) # Update a specific setting
521
521
 
522
522
  Notes:
523
523
  - If no arguments are provided, the function will display the current settings.
@@ -557,7 +557,7 @@ def handle_explorer(args: List[str]):
557
557
 
558
558
  Examples:
559
559
  ```bash
560
- yolo explorer data=data.yaml model=yolov8n.pt
560
+ yolo explorer data=data.yaml model=yolo11n.pt
561
561
  ```
562
562
 
563
563
  Notes:
@@ -611,9 +611,9 @@ def parse_key_value_pair(pair: str = "key=value"):
611
611
  AssertionError: If the value is missing or empty.
612
612
 
613
613
  Examples:
614
- >>> key, value = parse_key_value_pair("model=yolov8n.pt")
614
+ >>> key, value = parse_key_value_pair("model=yolo11n.pt")
615
615
  >>> print(f"Key: {key}, Value: {value}")
616
- Key: model, Value: yolov8n.pt
616
+ Key: model, Value: yolo11n.pt
617
617
 
618
618
  >>> key, value = parse_key_value_pair("epochs=100")
619
619
  >>> print(f"Key: {key}, Value: {value}")
@@ -686,13 +686,13 @@ def entrypoint(debug=""):
686
686
 
687
687
  Examples:
688
688
  Train a detection model for 10 epochs with an initial learning_rate of 0.01:
689
- >>> entrypoint("train data=coco8.yaml model=yolov8n.pt epochs=10 lr0=0.01")
689
+ >>> entrypoint("train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01")
690
690
 
691
691
  Predict a YouTube video using a pretrained segmentation model at image size 320:
692
- >>> entrypoint("predict model=yolov8n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320")
692
+ >>> entrypoint("predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320")
693
693
 
694
694
  Validate a pretrained detection model at batch-size 1 and image size 640:
695
- >>> entrypoint("val model=yolov8n.pt data=coco8.yaml batch=1 imgsz=640")
695
+ >>> entrypoint("val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640")
696
696
 
697
697
  Notes:
698
698
  - If no arguments are passed, the function will display the usage help message.
@@ -782,7 +782,7 @@ def entrypoint(debug=""):
782
782
  # Model
783
783
  model = overrides.pop("model", DEFAULT_CFG.model)
784
784
  if model is None:
785
- model = "yolov8n.pt"
785
+ model = "yolo11n.pt"
786
786
  LOGGER.warning(f"WARNING ⚠️ 'model' argument is missing. Using default 'model={model}'.")
787
787
  overrides["model"] = model
788
788
  stem = Path(model).stem.lower()
@@ -869,5 +869,5 @@ def copy_default_cfg():
869
869
 
870
870
 
871
871
  if __name__ == "__main__":
872
- # Example: entrypoint(debug='yolo predict model=yolov8n.pt')
872
+ # Example: entrypoint(debug='yolo predict model=yolo11n.pt')
873
873
  entrypoint(debug="")
@@ -377,7 +377,7 @@ class Model(nn.Module):
377
377
  self.model.load(weights)
378
378
  return self
379
379
 
380
- def save(self, filename: Union[str, Path] = "saved_model.pt", use_dill=True) -> None:
380
+ def save(self, filename: Union[str, Path] = "saved_model.pt") -> None:
381
381
  """
382
382
  Saves the current model state to a file.
383
383
 
@@ -386,7 +386,6 @@ class Model(nn.Module):
386
386
 
387
387
  Args:
388
388
  filename (Union[str, Path]): The name of the file to save the model to.
389
- use_dill (bool): Whether to try using dill for serialization if available.
390
389
 
391
390
  Raises:
392
391
  AssertionError: If the model is not a PyTorch model.
@@ -408,7 +407,7 @@ class Model(nn.Module):
408
407
  "license": "AGPL-3.0 License (https://ultralytics.com/license)",
409
408
  "docs": "https://docs.ultralytics.com",
410
409
  }
411
- torch.save({**self.ckpt, **updates}, filename, use_dill=use_dill)
410
+ torch.save({**self.ckpt, **updates}, filename)
412
411
 
413
412
  def info(self, detailed: bool = False, verbose: bool = True):
414
413
  """
@@ -210,8 +210,6 @@ def _build_sam(
210
210
  state_dict = torch.load(f)
211
211
  sam.load_state_dict(state_dict)
212
212
  sam.eval()
213
- # sam.load_state_dict(torch.load(checkpoint), strict=True)
214
- # sam.eval()
215
213
  return sam
216
214
 
217
215
 
@@ -111,6 +111,7 @@ torch.set_printoptions(linewidth=320, precision=4, profile="default")
111
111
  np.set_printoptions(linewidth=320, formatter={"float_kind": "{:11.5g}".format}) # format short g, %precision=5
112
112
  cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
113
113
  os.environ["NUMEXPR_MAX_THREADS"] = str(NUM_THREADS) # NumExpr max threads
114
+ os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" # for deterministic training to avoid CUDA warning
114
115
  os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # suppress verbose TF compiler warnings in Colab
115
116
  os.environ["TORCH_CPP_LOG_LEVEL"] = "ERROR" # suppress "NNPACK.cpp could not initialize NNPACK" warnings
116
117
  os.environ["KINETO_LOG_LEVEL"] = "5" # suppress verbose PyTorch profiler output when computing FLOPs
@@ -629,24 +629,24 @@ def collect_system_info():
629
629
 
630
630
  def check_amp(model):
631
631
  """
632
- Checks the PyTorch Automatic Mixed Precision (AMP) functionality of a YOLOv8 model. If the checks fail, it means
632
+ Checks the PyTorch Automatic Mixed Precision (AMP) functionality of a YOLO11 model. If the checks fail, it means
633
633
  there are anomalies with AMP on the system that may cause NaN losses or zero-mAP results, so AMP will be disabled
634
634
  during training.
635
635
 
636
636
  Args:
637
- model (nn.Module): A YOLOv8 model instance.
637
+ model (nn.Module): A YOLO11 model instance.
638
638
 
639
639
  Example:
640
640
  ```python
641
641
  from ultralytics import YOLO
642
642
  from ultralytics.utils.checks import check_amp
643
643
 
644
- model = YOLO("yolov8n.pt").model.cuda()
644
+ model = YOLO("yolo11n.pt").model.cuda()
645
645
  check_amp(model)
646
646
  ```
647
647
 
648
648
  Returns:
649
- (bool): Returns True if the AMP functionality works correctly with YOLOv8 model, else False.
649
+ (bool): Returns True if the AMP functionality works correctly with YOLO11 model, else False.
650
650
  """
651
651
  from ultralytics.utils.torch_utils import autocast
652
652
 
@@ -657,27 +657,28 @@ def check_amp(model):
657
657
  def amp_allclose(m, im):
658
658
  """All close FP32 vs AMP results."""
659
659
  batch = [im] * 8
660
- a = m(batch, imgsz=128, device=device, verbose=False)[0].boxes.data # FP32 inference
660
+ imgsz = max(256, int(model.stride.max() * 4)) # max stride P5-32 and P6-64
661
+ a = m(batch, imgsz=imgsz, device=device, verbose=False)[0].boxes.data # FP32 inference
661
662
  with autocast(enabled=True):
662
- b = m(batch, imgsz=128, device=device, verbose=False)[0].boxes.data # AMP inference
663
+ b = m(batch, imgsz=imgsz, device=device, verbose=False)[0].boxes.data # AMP inference
663
664
  del m
664
665
  return a.shape == b.shape and torch.allclose(a, b.float(), atol=0.5) # close to 0.5 absolute tolerance
665
666
 
666
667
  im = ASSETS / "bus.jpg" # image to check
667
668
  prefix = colorstr("AMP: ")
668
- LOGGER.info(f"{prefix}running Automatic Mixed Precision (AMP) checks with YOLOv8n...")
669
+ LOGGER.info(f"{prefix}running Automatic Mixed Precision (AMP) checks with YOLO11n...")
669
670
  warning_msg = "Setting 'amp=True'. If you experience zero-mAP or NaN losses you can disable AMP with amp=False."
670
671
  try:
671
672
  from ultralytics import YOLO
672
673
 
673
- assert amp_allclose(YOLO("yolov8n.pt"), im)
674
+ assert amp_allclose(YOLO("yolo11n.pt"), im)
674
675
  LOGGER.info(f"{prefix}checks passed ✅")
675
676
  except ConnectionError:
676
- LOGGER.warning(f"{prefix}checks skipped ⚠️, offline and unable to download YOLOv8n. {warning_msg}")
677
+ LOGGER.warning(f"{prefix}checks skipped ⚠️, offline and unable to download YOLO11n. {warning_msg}")
677
678
  except (AttributeError, ModuleNotFoundError):
678
679
  LOGGER.warning(
679
680
  f"{prefix}checks skipped ⚠️. "
680
- f"Unable to load YOLOv8n due to possible Ultralytics package modifications. {warning_msg}"
681
+ f"Unable to load YOLO11n due to possible Ultralytics package modifications. {warning_msg}"
681
682
  )
682
683
  except AssertionError:
683
684
  LOGGER.warning(
@@ -219,4 +219,4 @@ def update_models(model_names=("yolov8n.pt",), source_dir=Path("."), update_name
219
219
 
220
220
  # Save model using model.save()
221
221
  print(f"Re-saving {model_name} model to {save_path}")
222
- model.save(save_path, use_dill=False)
222
+ model.save(save_path)
@@ -86,25 +86,15 @@ def torch_load(*args, **kwargs):
86
86
  return _torch_load(*args, **kwargs)
87
87
 
88
88
 
89
- def torch_save(*args, use_dill=True, **kwargs):
89
+ def torch_save(*args, **kwargs):
90
90
  """
91
91
  Optionally use dill to serialize lambda functions where pickle does not, adding robustness with 3 retries and
92
92
  exponential standoff in case of save failure.
93
93
 
94
94
  Args:
95
95
  *args (tuple): Positional arguments to pass to torch.save.
96
- use_dill (bool): Whether to try using dill for serialization if available. Defaults to True.
97
96
  **kwargs (Any): Keyword arguments to pass to torch.save.
98
97
  """
99
- try:
100
- assert use_dill
101
- import dill as pickle
102
- except (AssertionError, ImportError):
103
- import pickle
104
-
105
- if "pickle_module" not in kwargs:
106
- kwargs["pickle_module"] = pickle
107
-
108
98
  for i in range(4): # 3 retries
109
99
  try:
110
100
  return _torch_save(*args, **kwargs)
@@ -13,8 +13,8 @@ import torch
13
13
  from PIL import Image, ImageDraw, ImageFont
14
14
  from PIL import __version__ as pil_version
15
15
 
16
- from ultralytics.utils import LOGGER, TryExcept, ops, plt_settings, threaded
17
- from ultralytics.utils.checks import check_font, check_version, is_ascii
16
+ from ultralytics.utils import IS_JUPYTER, LOGGER, TryExcept, ops, plt_settings, threaded
17
+ from ultralytics.utils.checks import check_font, check_requirements, check_version, is_ascii
18
18
  from ultralytics.utils.files import increment_path
19
19
 
20
20
 
@@ -524,7 +524,18 @@ class Annotator:
524
524
 
525
525
  def show(self, title=None):
526
526
  """Show the annotated image."""
527
- Image.fromarray(np.asarray(self.im)[..., ::-1]).show(title)
527
+ im = Image.fromarray(np.asarray(self.im)[..., ::-1]) # Convert numpy array to PIL Image with RGB to BGR
528
+ if IS_JUPYTER:
529
+ check_requirements("ipython")
530
+ try:
531
+ from IPython.display import display
532
+
533
+ display(im)
534
+ except ImportError as e:
535
+ LOGGER.warning(f"Unable to display image in Jupyter notebooks: {e}")
536
+ else:
537
+ # Convert numpy array to PIL Image and show
538
+ im.show(title=title)
528
539
 
529
540
  def save(self, filename="image.jpg"):
530
541
  """Save the annotated image to 'filename'."""
@@ -595,7 +595,7 @@ def strip_optimizer(f: Union[str, Path] = "best.pt", s: str = "", updates: dict
595
595
 
596
596
  # Save
597
597
  combined = {**metadata, **x, **(updates or {})}
598
- torch.save(combined, s or f, use_dill=False) # combine dicts (prefer to the right)
598
+ torch.save(combined, s or f) # combine dicts (prefer to the right)
599
599
  mb = os.path.getsize(s or f) / 1e6 # file size
600
600
  LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
601
601
  return combined
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.3.0
3
+ Version: 8.3.2
4
4
  Summary: Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Ayush Chaurasia
6
6
  Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
@@ -11,7 +11,7 @@ Project-URL: Source, https://github.com/ultralytics/ultralytics
11
11
  Project-URL: Documentation, https://docs.ultralytics.com
12
12
  Project-URL: Bug Reports, https://github.com/ultralytics/ultralytics/issues
13
13
  Project-URL: Changelog, https://github.com/ultralytics/ultralytics/releases
14
- Keywords: machine-learning,deep-learning,computer-vision,ML,DL,AI,YOLO,YOLOv3,YOLOv5,YOLOv8,YOLOv9,YOLOv10,HUB,Ultralytics
14
+ Keywords: machine-learning,deep-learning,computer-vision,ML,DL,AI,YOLO,YOLOv3,YOLOv5,YOLOv8,YOLOv9,YOLOv10,YOLO11,HUB,Ultralytics
15
15
  Classifier: Development Status :: 4 - Beta
16
16
  Classifier: Intended Audience :: Developers
17
17
  Classifier: Intended Audience :: Education
@@ -212,13 +212,13 @@ All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cf
212
212
 
213
213
  See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/detect/coco/), which include 80 pre-trained classes.
214
214
 
215
- | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>Tesla T4 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
216
- | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | --------------------------------------- | ------------------ | ----------------- |
217
- | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.12 ± 0.82 ms | 1.55 ± 0.01 ms | 2.6 | 6.5 |
218
- | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.01 ± 1.17 ms | 2.46 ± 0.00 ms | 9.4 | 21.5 |
219
- | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.20 ± 2.04 ms | 4.70 ± 0.06 ms | 20.1 | 68.0 |
220
- | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.64 ± 1.39 ms | 6.16 ± 0.08 ms | 25.3 | 86.9 |
221
- | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.78 ± 6.66 ms | 11.31 ± 0.24 ms | 56.9 | 194.9 |
215
+ | Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
216
+ | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
217
+ | [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.12 ± 0.82 ms | 1.55 ± 0.01 ms | 2.6 | 6.5 |
218
+ | [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.01 ± 1.17 ms | 2.46 ± 0.00 ms | 9.4 | 21.5 |
219
+ | [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.20 ± 2.04 ms | 4.70 ± 0.06 ms | 20.1 | 68.0 |
220
+ | [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.64 ± 1.39 ms | 6.16 ± 0.08 ms | 25.3 | 86.9 |
221
+ | [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.78 ± 6.66 ms | 11.31 ± 0.24 ms | 56.9 | 194.9 |
222
222
 
223
223
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
224
224
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
@@ -229,13 +229,13 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
229
229
 
230
230
  See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.
231
231
 
232
- | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>Tesla T4 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
233
- | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | --------------------------------------- | ------------------ | ----------------- |
234
- | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.90 ± 1.14 ms | 1.84 ± 0.00 ms | 2.9 | 10.4 |
235
- | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.56 ± 4.89 ms | 2.94 ± 0.01 ms | 10.1 | 35.5 |
236
- | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.63 ± 1.16 ms | 6.31 ± 0.09 ms | 22.4 | 123.3 |
237
- | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.16 ± 3.17 ms | 7.78 ± 0.16 ms | 27.6 | 142.2 |
238
- | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.50 ± 3.24 ms | 15.75 ± 0.67 ms | 62.1 | 319.0 |
232
+ | Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
233
+ | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
234
+ | [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.90 ± 1.14 ms | 1.84 ± 0.00 ms | 2.9 | 10.4 |
235
+ | [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.56 ± 4.89 ms | 2.94 ± 0.01 ms | 10.1 | 35.5 |
236
+ | [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.63 ± 1.16 ms | 6.31 ± 0.09 ms | 22.4 | 123.3 |
237
+ | [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.16 ± 3.17 ms | 7.78 ± 0.16 ms | 27.6 | 142.2 |
238
+ | [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.50 ± 3.24 ms | 15.75 ± 0.67 ms | 62.1 | 319.0 |
239
239
 
240
240
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
241
241
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
@@ -246,13 +246,13 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
246
246
 
247
247
  See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
248
248
 
249
- | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>Tesla T4 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
250
- | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | --------------------------------------- | ------------------ | ----------------- |
251
- | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.40 ± 0.51 ms | 1.72 ± 0.01 ms | 2.9 | 7.6 |
252
- | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.54 ± 0.59 ms | 2.57 ± 0.00 ms | 9.9 | 23.2 |
253
- | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.28 ± 0.77 ms | 4.94 ± 0.05 ms | 20.9 | 71.7 |
254
- | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.69 ± 1.10 ms | 6.42 ± 0.13 ms | 26.2 | 90.7 |
255
- | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 487.97 ± 13.91 ms | 12.06 ± 0.20 ms | 58.8 | 203.3 |
249
+ | Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
250
+ | ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
251
+ | [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.40 ± 0.51 ms | 1.72 ± 0.01 ms | 2.9 | 7.6 |
252
+ | [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.54 ± 0.59 ms | 2.57 ± 0.00 ms | 9.9 | 23.2 |
253
+ | [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.28 ± 0.77 ms | 4.94 ± 0.05 ms | 20.9 | 71.7 |
254
+ | [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.69 ± 1.10 ms | 6.42 ± 0.13 ms | 26.2 | 90.7 |
255
+ | [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 487.97 ± 13.91 ms | 12.06 ± 0.20 ms | 58.8 | 203.3 |
256
256
 
257
257
  - **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
258
258
  - **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
@@ -263,13 +263,13 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
263
263
 
264
264
  See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with these models trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), which include 15 pre-trained classes.
265
265
 
266
- | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>Tesla T4 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
267
- | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | --------------------------------------- | ------------------ | ----------------- |
268
- | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.56 ± 0.80 ms | 4.43 ± 0.01 ms | 2.7 | 17.2 |
269
- | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.41 ± 4.00 ms | 5.13 ± 0.02 ms | 9.7 | 57.5 |
270
- | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.81 ± 2.87 ms | 10.07 ± 0.38 ms | 20.9 | 183.5 |
271
- | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.49 ± 4.98 ms | 13.46 ± 0.55 ms | 26.2 | 232.0 |
272
- | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.63 ± 7.67 ms | 28.59 ± 0.96 ms | 58.8 | 520.2 |
266
+ | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
267
+ | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
268
+ | [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.56 ± 0.80 ms | 4.43 ± 0.01 ms | 2.7 | 17.2 |
269
+ | [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.41 ± 4.00 ms | 5.13 ± 0.02 ms | 9.7 | 57.5 |
270
+ | [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.81 ± 2.87 ms | 10.07 ± 0.38 ms | 20.9 | 183.5 |
271
+ | [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.49 ± 4.98 ms | 13.46 ± 0.55 ms | 26.2 | 232.0 |
272
+ | [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.63 ± 7.67 ms | 28.59 ± 0.96 ms | 58.8 | 520.2 |
273
273
 
274
274
  - **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
275
275
  - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
@@ -280,13 +280,13 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
280
280
 
281
281
  See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
282
282
 
283
- | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>Tesla T4 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
284
- | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | --------------------------------------- | ------------------ | ------------------------ |
285
- | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.03 ± 0.32 ms | 1.10 ± 0.01 ms | 1.6 | 3.3 |
286
- | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.89 ± 0.18 ms | 1.34 ± 0.01 ms | 5.5 | 12.1 |
287
- | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.17 ± 0.40 ms | 1.95 ± 0.00 ms | 10.4 | 39.3 |
288
- | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.17 ± 0.29 ms | 2.76 ± 0.00 ms | 12.9 | 49.4 |
289
- | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.41 ± 0.94 ms | 3.82 ± 0.00 ms | 28.4 | 110.4 |
283
+ | Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
284
+ | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
285
+ | [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.03 ± 0.32 ms | 1.10 ± 0.01 ms | 1.6 | 3.3 |
286
+ | [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.89 ± 0.18 ms | 1.34 ± 0.01 ms | 5.5 | 12.1 |
287
+ | [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.17 ± 0.40 ms | 1.95 ± 0.00 ms | 10.4 | 39.3 |
288
+ | [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.17 ± 0.29 ms | 2.76 ± 0.00 ms | 12.9 | 49.4 |
289
+ | [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.41 ± 0.94 ms | 3.82 ± 0.00 ms | 28.4 | 110.4 |
290
290
 
291
291
  - **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
292
292
  - **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
@@ -1,17 +1,17 @@
1
1
  tests/__init__.py,sha256=iVH5nXrACTDv0_ZIVRPi-9f6oYBl6g-tCkeR2Hb8MFM,666
2
2
  tests/conftest.py,sha256=9PFAiwAy6eeORGspr5dOKxVuFDVKqYg8Nn_RxSJ27UI,2919
3
3
  tests/test_cli.py,sha256=E4lMt49TGo12Lb5CgQfpk1bwyFUZuFxF0V9j_ykV7xM,4821
4
- tests/test_cuda.py,sha256=NT2AqAh3uAtVI44usSdt1PRlvaECwB2MQxDFxofCptA,5133
4
+ tests/test_cuda.py,sha256=KoRtRLUB7KOb9IXYX4mCi295Uh_cZEEFhCyvCDGRK9s,5381
5
5
  tests/test_engine.py,sha256=dcEcJsMQh61rDSNv7l4TIAgybLpzjVwerv9JZC_KCM8,4934
6
6
  tests/test_explorer.py,sha256=9EeMtt4-K3-MeGnAc7NemTg3uTo-Xr6AYJlTJZJJeF8,2572
7
7
  tests/test_exports.py,sha256=fpTKEVBUGLF3WiZPNKRs-IEcIY4cfxgvgKjUNfodjww,8042
8
8
  tests/test_integrations.py,sha256=f5-QCUk1SU_-qn4mBCZwS3GN3tXEBIIXo4z2EhExbHw,6126
9
9
  tests/test_python.py,sha256=I1RRdCwLdrc3jX06huVxct8HX8ccQOmQgVpuEflRl0U,23560
10
10
  tests/test_solutions.py,sha256=eAaLf1wM7IJ6DjT7NEw6sRaeDuTX0ZgsTjrI33XFCXE,3300
11
- ultralytics/__init__.py,sha256=3ZOtXGoHwiGxBMtpPqvuSVgRik09nFq_Vyr4m3AVum0,693
11
+ ultralytics/__init__.py,sha256=tjagVFz_UrcZy9VrQs1MFlCri2UHRqEpXVaExqZQfKY,693
12
12
  ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
13
13
  ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
14
- ultralytics/cfg/__init__.py,sha256=dLbqNkfXWngwiibvrxH6wMe_oZG4OIsxhIiSvkrCbEk,33145
14
+ ultralytics/cfg/__init__.py,sha256=62PSSAa0W4-gAEcRNKoKbcxUWBeFNs0ss2O4XJQhOPY,33145
15
15
  ultralytics/cfg/default.yaml,sha256=tkBn3c6duKGFyENuULkWessAqaaxo9atuOxXq3XbItM,8314
16
16
  ultralytics/cfg/datasets/Argoverse.yaml,sha256=FyeuJT5CHq_9d4hlfAf0kpZlnbUMO0S--UJ1yIqcdKk,3134
17
17
  ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=QVfp_Qp-4rukuicaB4qx86NxSHM8Mrzym8l_fIDo8gw,1195
@@ -105,7 +105,7 @@ ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2
105
105
  ultralytics/data/explorer/gui/dash.py,sha256=vZ476NaUH4FKU08rAJ1K9WNyKtg0soMyJJxqg176yWc,10498
106
106
  ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
107
107
  ultralytics/engine/exporter.py,sha256=BFYvv763kbEm5q0-AYIh979vL0ccU4RNvON2w8qtm1s,57019
108
- ultralytics/engine/model.py,sha256=RDxuxKMTkO2_zTwZDxd474dhNeRSo-7WvvqO_Ahjz5c,51583
108
+ ultralytics/engine/model.py,sha256=TDuy9JzzyvOaq5aKVljL_MFRKBDMCFwaLo3JD_d45CU,51462
109
109
  ultralytics/engine/predictor.py,sha256=MgMWHUJdRcVCaVmOyvdy2Gjk_EyRHv-ar0SSGxQe8F4,17471
110
110
  ultralytics/engine/results.py,sha256=8RJlN8J-_9w-mrDZm9wC-DZJTPBS7v1c_r_R173QyRM,75043
111
111
  ultralytics/engine/trainer.py,sha256=lBMKJDpu8owE0eeNkAsYszbAROk-WOB3vlhoGB1Vicc,36971
@@ -133,7 +133,7 @@ ultralytics/models/rtdetr/train.py,sha256=3QjchAvLM3gh1sNTOVSVvpyqqsZSYprUQ12e4o
133
133
  ultralytics/models/rtdetr/val.py,sha256=xVjZShZ1AvES97wVekl2q_1g20Pq-IIHhkJdWtxMncs,5566
134
134
  ultralytics/models/sam/__init__.py,sha256=o4_D6y8YJlOXIK7Lwo9RHnIJJ9xoFNi4zK99QSc1kdM,176
135
135
  ultralytics/models/sam/amg.py,sha256=GrmO_8YfIDt_QkPEMF_WFjPZkhwhf7iwx7ig8JgOUnE,8709
136
- ultralytics/models/sam/build.py,sha256=zNQbrgSHUgz1gyXQwLKGTpa6CSEjeaevcP3w1Z1l3mo,12233
136
+ ultralytics/models/sam/build.py,sha256=np9vP7AETCZA2Wdds-uj2eQKVnpHQaVpRrE2-U2uMTI,12153
137
137
  ultralytics/models/sam/model.py,sha256=2KFUp8SHiqOgwUjkdqdau0oduJwKQxm4N9GHWjdhUFo,7382
138
138
  ultralytics/models/sam/predict.py,sha256=unsoNrEx6pexKD28-HTpALa02PtNtE4e2ERdzs9qbYw,38556
139
139
  ultralytics/models/sam/modules/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
@@ -202,22 +202,22 @@ ultralytics/trackers/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7J
202
202
  ultralytics/trackers/utils/gmc.py,sha256=VcURuY041qGCeWUGMxHZBr10T16LtcMqyv7AmTfE1MY,14557
203
203
  ultralytics/trackers/utils/kalman_filter.py,sha256=cH9zD3fwkuezP97H9mw8cSBN7a8hHKx_Sx1j7t3oYGs,21349
204
204
  ultralytics/trackers/utils/matching.py,sha256=3Ie1WNNRZ4_q3365F03XD7Nr9juZB_08mw4yUKC3w74,7162
205
- ultralytics/utils/__init__.py,sha256=Vl0nNyniKdFJYkQfwHnQ3CFS8GwqajZk5iY2m7l1irA,48238
205
+ ultralytics/utils/__init__.py,sha256=q8YdOKbfIccEs26krg97fmOKbOUC__O3mdzzFQzgUqE,48340
206
206
  ultralytics/utils/autobatch.py,sha256=AXboYfNSnTGsYj5FmgGYPQd0crfkeleyms6QXQfZGQ4,4194
207
207
  ultralytics/utils/benchmarks.py,sha256=IN6ZqU-1DVHnwRsdgS_vcBhng8DUMRIEjEEgdrl1mdY,25101
208
- ultralytics/utils/checks.py,sha256=PmdN42XJ7IIUNbeiY8zjPIfJceaxAO04nc780EoYxTc,28910
208
+ ultralytics/utils/checks.py,sha256=tiwVY1SCf7AlDOUQDh6fJlmhQ3CxQEqLUrXRvwRBoKs,28998
209
209
  ultralytics/utils/dist.py,sha256=NDFga-uKxkBX2zLxFHSene_cCiGQJoyOeCXcN9JIOIk,2358
210
210
  ultralytics/utils/downloads.py,sha256=97JitihZqvIMS6_TX5rJAG7BI8eYHlu5g8YXlI0RkR4,21998
211
211
  ultralytics/utils/errors.py,sha256=GqP_Jgj_n0paxn8OMhn3DTCgoNkB2WjUcUaqs-M6SQk,816
212
- ultralytics/utils/files.py,sha256=zxKNaH6YJvGKrD4DVPk0kkoo44Q7Xi-n_1Fy48TzTxw,8240
212
+ ultralytics/utils/files.py,sha256=YjfzbBDAq-nD3LKjtuMVwggnnv1dROMuVoo3Edm_tjU,8224
213
213
  ultralytics/utils/instance.py,sha256=QSms7mPHZ5e8JGuJYLohLWltzI0aBE8dob2rOUK4RtM,16249
214
214
  ultralytics/utils/loss.py,sha256=SW3FVFFp8Ki_LCT8wIdFbm6KmyPcQn3RmKNcvVAhMQI,34174
215
215
  ultralytics/utils/metrics.py,sha256=UgLGudWp57uXDMlMUJy4gsz6cfVjcq7tYmHeto3TqvM,53927
216
216
  ultralytics/utils/ops.py,sha256=dsXNdyrYx_p6io6zezig9p84dxS7U-10vceHNVu2IL0,32888
217
- ultralytics/utils/patches.py,sha256=Oo3DkP7MbXnNGvPfoFSocAkVvaPh9kwMT_9RQUfjVhI,3594
218
- ultralytics/utils/plotting.py,sha256=lCx9i3USQK2KGsgD-l2cbdbv33c396gIwMFsZ9iOa1w,61629
217
+ ultralytics/utils/patches.py,sha256=J-iOwIRbfUs-inBZerhnXby5tUKjYcOIyvhLTS352JE,3270
218
+ ultralytics/utils/plotting.py,sha256=4ow_6Pn8REgQA_qXThvwLxOKg3OrewcuCAPq9DylocY,62094
219
219
  ultralytics/utils/tal.py,sha256=ECsu95xEqOItmxMDN4YTD3FsUiIsQNWy0pZC3TfvFfk,16877
220
- ultralytics/utils/torch_utils.py,sha256=eDVUZEam4Tjerx_oZc6F71lXYQoTVRLgSBirDvr_Bi4,29689
220
+ ultralytics/utils/torch_utils.py,sha256=tqOyNnUZbLBOIueSWwljZua65cz6_RvClxYv8gNHIw0,29673
221
221
  ultralytics/utils/triton.py,sha256=gg1finxno_tY2Ge9PMhmu7PI9wvoFZoiicdT4Bhqv3w,3936
222
222
  ultralytics/utils/tuner.py,sha256=AtEtK6pOt9xVTyx864OpNRVxNdAxz5aKHzveiXwkD1A,6250
223
223
  ultralytics/utils/callbacks/__init__.py,sha256=YrWqC3BVVaTLob4iCPR6I36mUxIUOpPJW7B_LjT78Qw,214
@@ -231,9 +231,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyz
231
231
  ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
232
232
  ultralytics/utils/callbacks/tensorboard.py,sha256=0kn4IR10no99UCIheojWRujgybmUHSx5fPI6Vsq6l_g,4135
233
233
  ultralytics/utils/callbacks/wb.py,sha256=9-fjQIdLjr3b73DTE3rHO171KvbH1VweJ-bmbv-rqTw,6747
234
- ultralytics-8.3.0.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
235
- ultralytics-8.3.0.dist-info/METADATA,sha256=vTLB8y7S0_vsWiSq0eSpMq8ADLK8WuX61mLxeq2pxhI,34707
236
- ultralytics-8.3.0.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
237
- ultralytics-8.3.0.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
238
- ultralytics-8.3.0.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
239
- ultralytics-8.3.0.dist-info/RECORD,,
234
+ ultralytics-8.3.2.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
235
+ ultralytics-8.3.2.dist-info/METADATA,sha256=cjJvRz_nxBld56qrZEJDXuQn-C3lbUVzMIHtzs0n89U,34574
236
+ ultralytics-8.3.2.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
237
+ ultralytics-8.3.2.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
238
+ ultralytics-8.3.2.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
239
+ ultralytics-8.3.2.dist-info/RECORD,,