ultralytics 8.3.0__py3-none-any.whl → 8.3.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- tests/test_cuda.py +8 -0
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +20 -20
- ultralytics/engine/model.py +2 -3
- ultralytics/models/sam/build.py +0 -2
- ultralytics/utils/__init__.py +1 -0
- ultralytics/utils/checks.py +11 -10
- ultralytics/utils/files.py +1 -1
- ultralytics/utils/patches.py +1 -11
- ultralytics/utils/plotting.py +14 -3
- ultralytics/utils/torch_utils.py +1 -1
- {ultralytics-8.3.0.dist-info → ultralytics-8.3.2.dist-info}/METADATA +37 -37
- {ultralytics-8.3.0.dist-info → ultralytics-8.3.2.dist-info}/RECORD +17 -17
- {ultralytics-8.3.0.dist-info → ultralytics-8.3.2.dist-info}/LICENSE +0 -0
- {ultralytics-8.3.0.dist-info → ultralytics-8.3.2.dist-info}/WHEEL +0 -0
- {ultralytics-8.3.0.dist-info → ultralytics-8.3.2.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.3.0.dist-info → ultralytics-8.3.2.dist-info}/top_level.txt +0 -0
tests/test_cuda.py
CHANGED
|
@@ -10,6 +10,7 @@ from tests import CUDA_DEVICE_COUNT, CUDA_IS_AVAILABLE, MODEL, SOURCE
|
|
|
10
10
|
from ultralytics import YOLO
|
|
11
11
|
from ultralytics.cfg import TASK2DATA, TASK2MODEL, TASKS
|
|
12
12
|
from ultralytics.utils import ASSETS, WEIGHTS_DIR
|
|
13
|
+
from ultralytics.utils.checks import check_amp
|
|
13
14
|
|
|
14
15
|
|
|
15
16
|
def test_checks():
|
|
@@ -18,6 +19,13 @@ def test_checks():
|
|
|
18
19
|
assert torch.cuda.device_count() == CUDA_DEVICE_COUNT
|
|
19
20
|
|
|
20
21
|
|
|
22
|
+
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
|
23
|
+
def test_amp():
|
|
24
|
+
"""Test AMP training checks."""
|
|
25
|
+
model = YOLO("yolo11n.pt").model.cuda()
|
|
26
|
+
assert check_amp(model)
|
|
27
|
+
|
|
28
|
+
|
|
21
29
|
@pytest.mark.slow
|
|
22
30
|
@pytest.mark.skipif(True, reason="CUDA export tests disabled pending additional Ultralytics GPU server availability")
|
|
23
31
|
@pytest.mark.skipif(not CUDA_IS_AVAILABLE, reason="CUDA is not available")
|
ultralytics/__init__.py
CHANGED
ultralytics/cfg/__init__.py
CHANGED
|
@@ -42,11 +42,11 @@ TASK2DATA = {
|
|
|
42
42
|
"obb": "dota8.yaml",
|
|
43
43
|
}
|
|
44
44
|
TASK2MODEL = {
|
|
45
|
-
"detect": "
|
|
46
|
-
"segment": "
|
|
47
|
-
"classify": "
|
|
48
|
-
"pose": "
|
|
49
|
-
"obb": "
|
|
45
|
+
"detect": "yolo11n.pt",
|
|
46
|
+
"segment": "yolo11n-seg.pt",
|
|
47
|
+
"classify": "yolo11n-cls.pt",
|
|
48
|
+
"pose": "yolo11n-pose.pt",
|
|
49
|
+
"obb": "yolo11n-obb.pt",
|
|
50
50
|
}
|
|
51
51
|
TASK2METRIC = {
|
|
52
52
|
"detect": "metrics/mAP50-95(B)",
|
|
@@ -69,19 +69,19 @@ CLI_HELP_MSG = f"""
|
|
|
69
69
|
See all ARGS at https://docs.ultralytics.com/usage/cfg or with 'yolo cfg'
|
|
70
70
|
|
|
71
71
|
1. Train a detection model for 10 epochs with an initial learning_rate of 0.01
|
|
72
|
-
yolo train data=coco8.yaml model=
|
|
72
|
+
yolo train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01
|
|
73
73
|
|
|
74
74
|
2. Predict a YouTube video using a pretrained segmentation model at image size 320:
|
|
75
|
-
yolo predict model=
|
|
75
|
+
yolo predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320
|
|
76
76
|
|
|
77
77
|
3. Val a pretrained detection model at batch-size 1 and image size 640:
|
|
78
|
-
yolo val model=
|
|
78
|
+
yolo val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640
|
|
79
79
|
|
|
80
|
-
4. Export a
|
|
81
|
-
yolo export model=
|
|
80
|
+
4. Export a YOLO11n classification model to ONNX format at image size 224 by 128 (no TASK required)
|
|
81
|
+
yolo export model=yolo11n-cls.pt format=onnx imgsz=224,128
|
|
82
82
|
|
|
83
83
|
5. Explore your datasets using semantic search and SQL with a simple GUI powered by Ultralytics Explorer API
|
|
84
|
-
yolo explorer data=data.yaml model=
|
|
84
|
+
yolo explorer data=data.yaml model=yolo11n.pt
|
|
85
85
|
|
|
86
86
|
6. Streamlit real-time webcam inference GUI
|
|
87
87
|
yolo streamlit-predict
|
|
@@ -517,7 +517,7 @@ def handle_yolo_settings(args: List[str]) -> None:
|
|
|
517
517
|
|
|
518
518
|
Examples:
|
|
519
519
|
>>> handle_yolo_settings(["reset"]) # Reset YOLO settings
|
|
520
|
-
>>> handle_yolo_settings(["default_cfg_path=
|
|
520
|
+
>>> handle_yolo_settings(["default_cfg_path=yolo11n.yaml"]) # Update a specific setting
|
|
521
521
|
|
|
522
522
|
Notes:
|
|
523
523
|
- If no arguments are provided, the function will display the current settings.
|
|
@@ -557,7 +557,7 @@ def handle_explorer(args: List[str]):
|
|
|
557
557
|
|
|
558
558
|
Examples:
|
|
559
559
|
```bash
|
|
560
|
-
yolo explorer data=data.yaml model=
|
|
560
|
+
yolo explorer data=data.yaml model=yolo11n.pt
|
|
561
561
|
```
|
|
562
562
|
|
|
563
563
|
Notes:
|
|
@@ -611,9 +611,9 @@ def parse_key_value_pair(pair: str = "key=value"):
|
|
|
611
611
|
AssertionError: If the value is missing or empty.
|
|
612
612
|
|
|
613
613
|
Examples:
|
|
614
|
-
>>> key, value = parse_key_value_pair("model=
|
|
614
|
+
>>> key, value = parse_key_value_pair("model=yolo11n.pt")
|
|
615
615
|
>>> print(f"Key: {key}, Value: {value}")
|
|
616
|
-
Key: model, Value:
|
|
616
|
+
Key: model, Value: yolo11n.pt
|
|
617
617
|
|
|
618
618
|
>>> key, value = parse_key_value_pair("epochs=100")
|
|
619
619
|
>>> print(f"Key: {key}, Value: {value}")
|
|
@@ -686,13 +686,13 @@ def entrypoint(debug=""):
|
|
|
686
686
|
|
|
687
687
|
Examples:
|
|
688
688
|
Train a detection model for 10 epochs with an initial learning_rate of 0.01:
|
|
689
|
-
>>> entrypoint("train data=coco8.yaml model=
|
|
689
|
+
>>> entrypoint("train data=coco8.yaml model=yolo11n.pt epochs=10 lr0=0.01")
|
|
690
690
|
|
|
691
691
|
Predict a YouTube video using a pretrained segmentation model at image size 320:
|
|
692
|
-
>>> entrypoint("predict model=
|
|
692
|
+
>>> entrypoint("predict model=yolo11n-seg.pt source='https://youtu.be/LNwODJXcvt4' imgsz=320")
|
|
693
693
|
|
|
694
694
|
Validate a pretrained detection model at batch-size 1 and image size 640:
|
|
695
|
-
>>> entrypoint("val model=
|
|
695
|
+
>>> entrypoint("val model=yolo11n.pt data=coco8.yaml batch=1 imgsz=640")
|
|
696
696
|
|
|
697
697
|
Notes:
|
|
698
698
|
- If no arguments are passed, the function will display the usage help message.
|
|
@@ -782,7 +782,7 @@ def entrypoint(debug=""):
|
|
|
782
782
|
# Model
|
|
783
783
|
model = overrides.pop("model", DEFAULT_CFG.model)
|
|
784
784
|
if model is None:
|
|
785
|
-
model = "
|
|
785
|
+
model = "yolo11n.pt"
|
|
786
786
|
LOGGER.warning(f"WARNING ⚠️ 'model' argument is missing. Using default 'model={model}'.")
|
|
787
787
|
overrides["model"] = model
|
|
788
788
|
stem = Path(model).stem.lower()
|
|
@@ -869,5 +869,5 @@ def copy_default_cfg():
|
|
|
869
869
|
|
|
870
870
|
|
|
871
871
|
if __name__ == "__main__":
|
|
872
|
-
# Example: entrypoint(debug='yolo predict model=
|
|
872
|
+
# Example: entrypoint(debug='yolo predict model=yolo11n.pt')
|
|
873
873
|
entrypoint(debug="")
|
ultralytics/engine/model.py
CHANGED
|
@@ -377,7 +377,7 @@ class Model(nn.Module):
|
|
|
377
377
|
self.model.load(weights)
|
|
378
378
|
return self
|
|
379
379
|
|
|
380
|
-
def save(self, filename: Union[str, Path] = "saved_model.pt"
|
|
380
|
+
def save(self, filename: Union[str, Path] = "saved_model.pt") -> None:
|
|
381
381
|
"""
|
|
382
382
|
Saves the current model state to a file.
|
|
383
383
|
|
|
@@ -386,7 +386,6 @@ class Model(nn.Module):
|
|
|
386
386
|
|
|
387
387
|
Args:
|
|
388
388
|
filename (Union[str, Path]): The name of the file to save the model to.
|
|
389
|
-
use_dill (bool): Whether to try using dill for serialization if available.
|
|
390
389
|
|
|
391
390
|
Raises:
|
|
392
391
|
AssertionError: If the model is not a PyTorch model.
|
|
@@ -408,7 +407,7 @@ class Model(nn.Module):
|
|
|
408
407
|
"license": "AGPL-3.0 License (https://ultralytics.com/license)",
|
|
409
408
|
"docs": "https://docs.ultralytics.com",
|
|
410
409
|
}
|
|
411
|
-
torch.save({**self.ckpt, **updates}, filename
|
|
410
|
+
torch.save({**self.ckpt, **updates}, filename)
|
|
412
411
|
|
|
413
412
|
def info(self, detailed: bool = False, verbose: bool = True):
|
|
414
413
|
"""
|
ultralytics/models/sam/build.py
CHANGED
ultralytics/utils/__init__.py
CHANGED
|
@@ -111,6 +111,7 @@ torch.set_printoptions(linewidth=320, precision=4, profile="default")
|
|
|
111
111
|
np.set_printoptions(linewidth=320, formatter={"float_kind": "{:11.5g}".format}) # format short g, %precision=5
|
|
112
112
|
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
|
|
113
113
|
os.environ["NUMEXPR_MAX_THREADS"] = str(NUM_THREADS) # NumExpr max threads
|
|
114
|
+
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8" # for deterministic training to avoid CUDA warning
|
|
114
115
|
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" # suppress verbose TF compiler warnings in Colab
|
|
115
116
|
os.environ["TORCH_CPP_LOG_LEVEL"] = "ERROR" # suppress "NNPACK.cpp could not initialize NNPACK" warnings
|
|
116
117
|
os.environ["KINETO_LOG_LEVEL"] = "5" # suppress verbose PyTorch profiler output when computing FLOPs
|
ultralytics/utils/checks.py
CHANGED
|
@@ -629,24 +629,24 @@ def collect_system_info():
|
|
|
629
629
|
|
|
630
630
|
def check_amp(model):
|
|
631
631
|
"""
|
|
632
|
-
Checks the PyTorch Automatic Mixed Precision (AMP) functionality of a
|
|
632
|
+
Checks the PyTorch Automatic Mixed Precision (AMP) functionality of a YOLO11 model. If the checks fail, it means
|
|
633
633
|
there are anomalies with AMP on the system that may cause NaN losses or zero-mAP results, so AMP will be disabled
|
|
634
634
|
during training.
|
|
635
635
|
|
|
636
636
|
Args:
|
|
637
|
-
model (nn.Module): A
|
|
637
|
+
model (nn.Module): A YOLO11 model instance.
|
|
638
638
|
|
|
639
639
|
Example:
|
|
640
640
|
```python
|
|
641
641
|
from ultralytics import YOLO
|
|
642
642
|
from ultralytics.utils.checks import check_amp
|
|
643
643
|
|
|
644
|
-
model = YOLO("
|
|
644
|
+
model = YOLO("yolo11n.pt").model.cuda()
|
|
645
645
|
check_amp(model)
|
|
646
646
|
```
|
|
647
647
|
|
|
648
648
|
Returns:
|
|
649
|
-
(bool): Returns True if the AMP functionality works correctly with
|
|
649
|
+
(bool): Returns True if the AMP functionality works correctly with YOLO11 model, else False.
|
|
650
650
|
"""
|
|
651
651
|
from ultralytics.utils.torch_utils import autocast
|
|
652
652
|
|
|
@@ -657,27 +657,28 @@ def check_amp(model):
|
|
|
657
657
|
def amp_allclose(m, im):
|
|
658
658
|
"""All close FP32 vs AMP results."""
|
|
659
659
|
batch = [im] * 8
|
|
660
|
-
|
|
660
|
+
imgsz = max(256, int(model.stride.max() * 4)) # max stride P5-32 and P6-64
|
|
661
|
+
a = m(batch, imgsz=imgsz, device=device, verbose=False)[0].boxes.data # FP32 inference
|
|
661
662
|
with autocast(enabled=True):
|
|
662
|
-
b = m(batch, imgsz=
|
|
663
|
+
b = m(batch, imgsz=imgsz, device=device, verbose=False)[0].boxes.data # AMP inference
|
|
663
664
|
del m
|
|
664
665
|
return a.shape == b.shape and torch.allclose(a, b.float(), atol=0.5) # close to 0.5 absolute tolerance
|
|
665
666
|
|
|
666
667
|
im = ASSETS / "bus.jpg" # image to check
|
|
667
668
|
prefix = colorstr("AMP: ")
|
|
668
|
-
LOGGER.info(f"{prefix}running Automatic Mixed Precision (AMP) checks with
|
|
669
|
+
LOGGER.info(f"{prefix}running Automatic Mixed Precision (AMP) checks with YOLO11n...")
|
|
669
670
|
warning_msg = "Setting 'amp=True'. If you experience zero-mAP or NaN losses you can disable AMP with amp=False."
|
|
670
671
|
try:
|
|
671
672
|
from ultralytics import YOLO
|
|
672
673
|
|
|
673
|
-
assert amp_allclose(YOLO("
|
|
674
|
+
assert amp_allclose(YOLO("yolo11n.pt"), im)
|
|
674
675
|
LOGGER.info(f"{prefix}checks passed ✅")
|
|
675
676
|
except ConnectionError:
|
|
676
|
-
LOGGER.warning(f"{prefix}checks skipped ⚠️, offline and unable to download
|
|
677
|
+
LOGGER.warning(f"{prefix}checks skipped ⚠️, offline and unable to download YOLO11n. {warning_msg}")
|
|
677
678
|
except (AttributeError, ModuleNotFoundError):
|
|
678
679
|
LOGGER.warning(
|
|
679
680
|
f"{prefix}checks skipped ⚠️. "
|
|
680
|
-
f"Unable to load
|
|
681
|
+
f"Unable to load YOLO11n due to possible Ultralytics package modifications. {warning_msg}"
|
|
681
682
|
)
|
|
682
683
|
except AssertionError:
|
|
683
684
|
LOGGER.warning(
|
ultralytics/utils/files.py
CHANGED
ultralytics/utils/patches.py
CHANGED
|
@@ -86,25 +86,15 @@ def torch_load(*args, **kwargs):
|
|
|
86
86
|
return _torch_load(*args, **kwargs)
|
|
87
87
|
|
|
88
88
|
|
|
89
|
-
def torch_save(*args,
|
|
89
|
+
def torch_save(*args, **kwargs):
|
|
90
90
|
"""
|
|
91
91
|
Optionally use dill to serialize lambda functions where pickle does not, adding robustness with 3 retries and
|
|
92
92
|
exponential standoff in case of save failure.
|
|
93
93
|
|
|
94
94
|
Args:
|
|
95
95
|
*args (tuple): Positional arguments to pass to torch.save.
|
|
96
|
-
use_dill (bool): Whether to try using dill for serialization if available. Defaults to True.
|
|
97
96
|
**kwargs (Any): Keyword arguments to pass to torch.save.
|
|
98
97
|
"""
|
|
99
|
-
try:
|
|
100
|
-
assert use_dill
|
|
101
|
-
import dill as pickle
|
|
102
|
-
except (AssertionError, ImportError):
|
|
103
|
-
import pickle
|
|
104
|
-
|
|
105
|
-
if "pickle_module" not in kwargs:
|
|
106
|
-
kwargs["pickle_module"] = pickle
|
|
107
|
-
|
|
108
98
|
for i in range(4): # 3 retries
|
|
109
99
|
try:
|
|
110
100
|
return _torch_save(*args, **kwargs)
|
ultralytics/utils/plotting.py
CHANGED
|
@@ -13,8 +13,8 @@ import torch
|
|
|
13
13
|
from PIL import Image, ImageDraw, ImageFont
|
|
14
14
|
from PIL import __version__ as pil_version
|
|
15
15
|
|
|
16
|
-
from ultralytics.utils import LOGGER, TryExcept, ops, plt_settings, threaded
|
|
17
|
-
from ultralytics.utils.checks import check_font, check_version, is_ascii
|
|
16
|
+
from ultralytics.utils import IS_JUPYTER, LOGGER, TryExcept, ops, plt_settings, threaded
|
|
17
|
+
from ultralytics.utils.checks import check_font, check_requirements, check_version, is_ascii
|
|
18
18
|
from ultralytics.utils.files import increment_path
|
|
19
19
|
|
|
20
20
|
|
|
@@ -524,7 +524,18 @@ class Annotator:
|
|
|
524
524
|
|
|
525
525
|
def show(self, title=None):
|
|
526
526
|
"""Show the annotated image."""
|
|
527
|
-
Image.fromarray(np.asarray(self.im)[..., ::-1])
|
|
527
|
+
im = Image.fromarray(np.asarray(self.im)[..., ::-1]) # Convert numpy array to PIL Image with RGB to BGR
|
|
528
|
+
if IS_JUPYTER:
|
|
529
|
+
check_requirements("ipython")
|
|
530
|
+
try:
|
|
531
|
+
from IPython.display import display
|
|
532
|
+
|
|
533
|
+
display(im)
|
|
534
|
+
except ImportError as e:
|
|
535
|
+
LOGGER.warning(f"Unable to display image in Jupyter notebooks: {e}")
|
|
536
|
+
else:
|
|
537
|
+
# Convert numpy array to PIL Image and show
|
|
538
|
+
im.show(title=title)
|
|
528
539
|
|
|
529
540
|
def save(self, filename="image.jpg"):
|
|
530
541
|
"""Save the annotated image to 'filename'."""
|
ultralytics/utils/torch_utils.py
CHANGED
|
@@ -595,7 +595,7 @@ def strip_optimizer(f: Union[str, Path] = "best.pt", s: str = "", updates: dict
|
|
|
595
595
|
|
|
596
596
|
# Save
|
|
597
597
|
combined = {**metadata, **x, **(updates or {})}
|
|
598
|
-
torch.save(combined, s or f
|
|
598
|
+
torch.save(combined, s or f) # combine dicts (prefer to the right)
|
|
599
599
|
mb = os.path.getsize(s or f) / 1e6 # file size
|
|
600
600
|
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
|
|
601
601
|
return combined
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.1
|
|
2
2
|
Name: ultralytics
|
|
3
|
-
Version: 8.3.
|
|
3
|
+
Version: 8.3.2
|
|
4
4
|
Summary: Ultralytics YOLO for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
|
|
5
5
|
Author: Ayush Chaurasia
|
|
6
6
|
Author-email: Glenn Jocher <glenn.jocher@ultralytics.com>, Jing Qiu <jing.qiu@ultralytics.com>
|
|
@@ -11,7 +11,7 @@ Project-URL: Source, https://github.com/ultralytics/ultralytics
|
|
|
11
11
|
Project-URL: Documentation, https://docs.ultralytics.com
|
|
12
12
|
Project-URL: Bug Reports, https://github.com/ultralytics/ultralytics/issues
|
|
13
13
|
Project-URL: Changelog, https://github.com/ultralytics/ultralytics/releases
|
|
14
|
-
Keywords: machine-learning,deep-learning,computer-vision,ML,DL,AI,YOLO,YOLOv3,YOLOv5,YOLOv8,YOLOv9,YOLOv10,HUB,Ultralytics
|
|
14
|
+
Keywords: machine-learning,deep-learning,computer-vision,ML,DL,AI,YOLO,YOLOv3,YOLOv5,YOLOv8,YOLOv9,YOLOv10,YOLO11,HUB,Ultralytics
|
|
15
15
|
Classifier: Development Status :: 4 - Beta
|
|
16
16
|
Classifier: Intended Audience :: Developers
|
|
17
17
|
Classifier: Intended Audience :: Education
|
|
@@ -212,13 +212,13 @@ All [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cf
|
|
|
212
212
|
|
|
213
213
|
See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/detect/coco/), which include 80 pre-trained classes.
|
|
214
214
|
|
|
215
|
-
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
216
|
-
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ |
|
|
217
|
-
| [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.12 ± 0.82 ms | 1.55 ± 0.01 ms
|
|
218
|
-
| [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.01 ± 1.17 ms | 2.46 ± 0.00 ms
|
|
219
|
-
| [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.20 ± 2.04 ms | 4.70 ± 0.06 ms
|
|
220
|
-
| [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.64 ± 1.39 ms | 6.16 ± 0.08 ms
|
|
221
|
-
| [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.78 ± 6.66 ms | 11.31 ± 0.24 ms
|
|
215
|
+
| Model | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
216
|
+
| ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
217
|
+
| [YOLO11n](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n.pt) | 640 | 39.5 | 56.12 ± 0.82 ms | 1.55 ± 0.01 ms | 2.6 | 6.5 |
|
|
218
|
+
| [YOLO11s](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s.pt) | 640 | 47.0 | 90.01 ± 1.17 ms | 2.46 ± 0.00 ms | 9.4 | 21.5 |
|
|
219
|
+
| [YOLO11m](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m.pt) | 640 | 51.5 | 183.20 ± 2.04 ms | 4.70 ± 0.06 ms | 20.1 | 68.0 |
|
|
220
|
+
| [YOLO11l](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l.pt) | 640 | 53.4 | 238.64 ± 1.39 ms | 6.16 ± 0.08 ms | 25.3 | 86.9 |
|
|
221
|
+
| [YOLO11x](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x.pt) | 640 | 54.7 | 462.78 ± 6.66 ms | 11.31 ± 0.24 ms | 56.9 | 194.9 |
|
|
222
222
|
|
|
223
223
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val detect data=coco.yaml device=0`
|
|
224
224
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val detect data=coco.yaml batch=1 device=0|cpu`
|
|
@@ -229,13 +229,13 @@ See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examp
|
|
|
229
229
|
|
|
230
230
|
See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO-Seg](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.
|
|
231
231
|
|
|
232
|
-
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
233
|
-
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ |
|
|
234
|
-
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.90 ± 1.14 ms | 1.84 ± 0.00 ms
|
|
235
|
-
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.56 ± 4.89 ms | 2.94 ± 0.01 ms
|
|
236
|
-
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.63 ± 1.16 ms | 6.31 ± 0.09 ms
|
|
237
|
-
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.16 ± 3.17 ms | 7.78 ± 0.16 ms
|
|
238
|
-
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.50 ± 3.24 ms | 15.75 ± 0.67 ms
|
|
232
|
+
| Model | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
233
|
+
| -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
234
|
+
| [YOLO11n-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-seg.pt) | 640 | 38.9 | 32.0 | 65.90 ± 1.14 ms | 1.84 ± 0.00 ms | 2.9 | 10.4 |
|
|
235
|
+
| [YOLO11s-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-seg.pt) | 640 | 46.6 | 37.8 | 117.56 ± 4.89 ms | 2.94 ± 0.01 ms | 10.1 | 35.5 |
|
|
236
|
+
| [YOLO11m-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-seg.pt) | 640 | 51.5 | 41.5 | 281.63 ± 1.16 ms | 6.31 ± 0.09 ms | 22.4 | 123.3 |
|
|
237
|
+
| [YOLO11l-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-seg.pt) | 640 | 53.4 | 42.9 | 344.16 ± 3.17 ms | 7.78 ± 0.16 ms | 27.6 | 142.2 |
|
|
238
|
+
| [YOLO11x-seg](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-seg.pt) | 640 | 54.7 | 43.8 | 664.50 ± 3.24 ms | 15.75 ± 0.67 ms | 62.1 | 319.0 |
|
|
239
239
|
|
|
240
240
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val segment data=coco-seg.yaml device=0`
|
|
241
241
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val segment data=coco-seg.yaml batch=1 device=0|cpu`
|
|
@@ -246,13 +246,13 @@ See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage e
|
|
|
246
246
|
|
|
247
247
|
See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO-Pose](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, person.
|
|
248
248
|
|
|
249
|
-
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
250
|
-
| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ |
|
|
251
|
-
| [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.40 ± 0.51 ms | 1.72 ± 0.01 ms
|
|
252
|
-
| [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.54 ± 0.59 ms | 2.57 ± 0.00 ms
|
|
253
|
-
| [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.28 ± 0.77 ms | 4.94 ± 0.05 ms
|
|
254
|
-
| [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.69 ± 1.10 ms | 6.42 ± 0.13 ms
|
|
255
|
-
| [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 487.97 ± 13.91 ms | 12.06 ± 0.20 ms
|
|
249
|
+
| Model | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
250
|
+
| ---------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
251
|
+
| [YOLO11n-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt) | 640 | 50.0 | 81.0 | 52.40 ± 0.51 ms | 1.72 ± 0.01 ms | 2.9 | 7.6 |
|
|
252
|
+
| [YOLO11s-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-pose.pt) | 640 | 58.9 | 86.3 | 90.54 ± 0.59 ms | 2.57 ± 0.00 ms | 9.9 | 23.2 |
|
|
253
|
+
| [YOLO11m-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-pose.pt) | 640 | 64.9 | 89.4 | 187.28 ± 0.77 ms | 4.94 ± 0.05 ms | 20.9 | 71.7 |
|
|
254
|
+
| [YOLO11l-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-pose.pt) | 640 | 66.1 | 89.9 | 247.69 ± 1.10 ms | 6.42 ± 0.13 ms | 26.2 | 90.7 |
|
|
255
|
+
| [YOLO11x-pose](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-pose.pt) | 640 | 69.5 | 91.1 | 487.97 ± 13.91 ms | 12.06 ± 0.20 ms | 58.8 | 203.3 |
|
|
256
256
|
|
|
257
257
|
- **mAP<sup>val</sup>** values are for single-model single-scale on [COCO Keypoints val2017](https://cocodataset.org/) dataset. <br>Reproduce by `yolo val pose data=coco-pose.yaml device=0`
|
|
258
258
|
- **Speed** averaged over COCO val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val pose data=coco-pose.yaml batch=1 device=0|cpu`
|
|
@@ -263,13 +263,13 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
|
|
|
263
263
|
|
|
264
264
|
See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with these models trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), which include 15 pre-trained classes.
|
|
265
265
|
|
|
266
|
-
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
267
|
-
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ |
|
|
268
|
-
| [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.56 ± 0.80 ms | 4.43 ± 0.01 ms
|
|
269
|
-
| [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.41 ± 4.00 ms | 5.13 ± 0.02 ms
|
|
270
|
-
| [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.81 ± 2.87 ms | 10.07 ± 0.38 ms
|
|
271
|
-
| [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.49 ± 4.98 ms | 13.46 ± 0.55 ms
|
|
272
|
-
| [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.63 ± 7.67 ms | 28.59 ± 0.96 ms
|
|
266
|
+
| Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
|
|
267
|
+
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
|
|
268
|
+
| [YOLO11n-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-obb.pt) | 1024 | 78.4 | 117.56 ± 0.80 ms | 4.43 ± 0.01 ms | 2.7 | 17.2 |
|
|
269
|
+
| [YOLO11s-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-obb.pt) | 1024 | 79.5 | 219.41 ± 4.00 ms | 5.13 ± 0.02 ms | 9.7 | 57.5 |
|
|
270
|
+
| [YOLO11m-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-obb.pt) | 1024 | 80.9 | 562.81 ± 2.87 ms | 10.07 ± 0.38 ms | 20.9 | 183.5 |
|
|
271
|
+
| [YOLO11l-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-obb.pt) | 1024 | 81.0 | 712.49 ± 4.98 ms | 13.46 ± 0.55 ms | 26.2 | 232.0 |
|
|
272
|
+
| [YOLO11x-obb](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-obb.pt) | 1024 | 81.3 | 1408.63 ± 7.67 ms | 28.59 ± 0.96 ms | 58.8 | 520.2 |
|
|
273
273
|
|
|
274
274
|
- **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
|
|
275
275
|
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
|
|
@@ -280,13 +280,13 @@ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
|
|
|
280
280
|
|
|
281
281
|
See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pretrained classes.
|
|
282
282
|
|
|
283
|
-
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>
|
|
284
|
-
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ |
|
|
285
|
-
| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.03 ± 0.32 ms | 1.10 ± 0.01 ms
|
|
286
|
-
| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.89 ± 0.18 ms | 1.34 ± 0.01 ms
|
|
287
|
-
| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.17 ± 0.40 ms | 1.95 ± 0.00 ms
|
|
288
|
-
| [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.17 ± 0.29 ms | 2.76 ± 0.00 ms
|
|
289
|
-
| [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.41 ± 0.94 ms | 3.82 ± 0.00 ms
|
|
283
|
+
| Model | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>T4 TensorRT10<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
|
|
284
|
+
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
|
|
285
|
+
| [YOLO11n-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-cls.pt) | 224 | 70.0 | 89.4 | 5.03 ± 0.32 ms | 1.10 ± 0.01 ms | 1.6 | 3.3 |
|
|
286
|
+
| [YOLO11s-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11s-cls.pt) | 224 | 75.4 | 92.7 | 7.89 ± 0.18 ms | 1.34 ± 0.01 ms | 5.5 | 12.1 |
|
|
287
|
+
| [YOLO11m-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11m-cls.pt) | 224 | 77.3 | 93.9 | 17.17 ± 0.40 ms | 1.95 ± 0.00 ms | 10.4 | 39.3 |
|
|
288
|
+
| [YOLO11l-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11l-cls.pt) | 224 | 78.3 | 94.3 | 23.17 ± 0.29 ms | 2.76 ± 0.00 ms | 12.9 | 49.4 |
|
|
289
|
+
| [YOLO11x-cls](https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11x-cls.pt) | 224 | 79.5 | 94.9 | 41.41 ± 0.94 ms | 3.82 ± 0.00 ms | 28.4 | 110.4 |
|
|
290
290
|
|
|
291
291
|
- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
|
|
292
292
|
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`
|
|
@@ -1,17 +1,17 @@
|
|
|
1
1
|
tests/__init__.py,sha256=iVH5nXrACTDv0_ZIVRPi-9f6oYBl6g-tCkeR2Hb8MFM,666
|
|
2
2
|
tests/conftest.py,sha256=9PFAiwAy6eeORGspr5dOKxVuFDVKqYg8Nn_RxSJ27UI,2919
|
|
3
3
|
tests/test_cli.py,sha256=E4lMt49TGo12Lb5CgQfpk1bwyFUZuFxF0V9j_ykV7xM,4821
|
|
4
|
-
tests/test_cuda.py,sha256=
|
|
4
|
+
tests/test_cuda.py,sha256=KoRtRLUB7KOb9IXYX4mCi295Uh_cZEEFhCyvCDGRK9s,5381
|
|
5
5
|
tests/test_engine.py,sha256=dcEcJsMQh61rDSNv7l4TIAgybLpzjVwerv9JZC_KCM8,4934
|
|
6
6
|
tests/test_explorer.py,sha256=9EeMtt4-K3-MeGnAc7NemTg3uTo-Xr6AYJlTJZJJeF8,2572
|
|
7
7
|
tests/test_exports.py,sha256=fpTKEVBUGLF3WiZPNKRs-IEcIY4cfxgvgKjUNfodjww,8042
|
|
8
8
|
tests/test_integrations.py,sha256=f5-QCUk1SU_-qn4mBCZwS3GN3tXEBIIXo4z2EhExbHw,6126
|
|
9
9
|
tests/test_python.py,sha256=I1RRdCwLdrc3jX06huVxct8HX8ccQOmQgVpuEflRl0U,23560
|
|
10
10
|
tests/test_solutions.py,sha256=eAaLf1wM7IJ6DjT7NEw6sRaeDuTX0ZgsTjrI33XFCXE,3300
|
|
11
|
-
ultralytics/__init__.py,sha256=
|
|
11
|
+
ultralytics/__init__.py,sha256=tjagVFz_UrcZy9VrQs1MFlCri2UHRqEpXVaExqZQfKY,693
|
|
12
12
|
ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
|
|
13
13
|
ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
|
|
14
|
-
ultralytics/cfg/__init__.py,sha256=
|
|
14
|
+
ultralytics/cfg/__init__.py,sha256=62PSSAa0W4-gAEcRNKoKbcxUWBeFNs0ss2O4XJQhOPY,33145
|
|
15
15
|
ultralytics/cfg/default.yaml,sha256=tkBn3c6duKGFyENuULkWessAqaaxo9atuOxXq3XbItM,8314
|
|
16
16
|
ultralytics/cfg/datasets/Argoverse.yaml,sha256=FyeuJT5CHq_9d4hlfAf0kpZlnbUMO0S--UJ1yIqcdKk,3134
|
|
17
17
|
ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=QVfp_Qp-4rukuicaB4qx86NxSHM8Mrzym8l_fIDo8gw,1195
|
|
@@ -105,7 +105,7 @@ ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2
|
|
|
105
105
|
ultralytics/data/explorer/gui/dash.py,sha256=vZ476NaUH4FKU08rAJ1K9WNyKtg0soMyJJxqg176yWc,10498
|
|
106
106
|
ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
|
|
107
107
|
ultralytics/engine/exporter.py,sha256=BFYvv763kbEm5q0-AYIh979vL0ccU4RNvON2w8qtm1s,57019
|
|
108
|
-
ultralytics/engine/model.py,sha256=
|
|
108
|
+
ultralytics/engine/model.py,sha256=TDuy9JzzyvOaq5aKVljL_MFRKBDMCFwaLo3JD_d45CU,51462
|
|
109
109
|
ultralytics/engine/predictor.py,sha256=MgMWHUJdRcVCaVmOyvdy2Gjk_EyRHv-ar0SSGxQe8F4,17471
|
|
110
110
|
ultralytics/engine/results.py,sha256=8RJlN8J-_9w-mrDZm9wC-DZJTPBS7v1c_r_R173QyRM,75043
|
|
111
111
|
ultralytics/engine/trainer.py,sha256=lBMKJDpu8owE0eeNkAsYszbAROk-WOB3vlhoGB1Vicc,36971
|
|
@@ -133,7 +133,7 @@ ultralytics/models/rtdetr/train.py,sha256=3QjchAvLM3gh1sNTOVSVvpyqqsZSYprUQ12e4o
|
|
|
133
133
|
ultralytics/models/rtdetr/val.py,sha256=xVjZShZ1AvES97wVekl2q_1g20Pq-IIHhkJdWtxMncs,5566
|
|
134
134
|
ultralytics/models/sam/__init__.py,sha256=o4_D6y8YJlOXIK7Lwo9RHnIJJ9xoFNi4zK99QSc1kdM,176
|
|
135
135
|
ultralytics/models/sam/amg.py,sha256=GrmO_8YfIDt_QkPEMF_WFjPZkhwhf7iwx7ig8JgOUnE,8709
|
|
136
|
-
ultralytics/models/sam/build.py,sha256=
|
|
136
|
+
ultralytics/models/sam/build.py,sha256=np9vP7AETCZA2Wdds-uj2eQKVnpHQaVpRrE2-U2uMTI,12153
|
|
137
137
|
ultralytics/models/sam/model.py,sha256=2KFUp8SHiqOgwUjkdqdau0oduJwKQxm4N9GHWjdhUFo,7382
|
|
138
138
|
ultralytics/models/sam/predict.py,sha256=unsoNrEx6pexKD28-HTpALa02PtNtE4e2ERdzs9qbYw,38556
|
|
139
139
|
ultralytics/models/sam/modules/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
|
|
@@ -202,22 +202,22 @@ ultralytics/trackers/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7J
|
|
|
202
202
|
ultralytics/trackers/utils/gmc.py,sha256=VcURuY041qGCeWUGMxHZBr10T16LtcMqyv7AmTfE1MY,14557
|
|
203
203
|
ultralytics/trackers/utils/kalman_filter.py,sha256=cH9zD3fwkuezP97H9mw8cSBN7a8hHKx_Sx1j7t3oYGs,21349
|
|
204
204
|
ultralytics/trackers/utils/matching.py,sha256=3Ie1WNNRZ4_q3365F03XD7Nr9juZB_08mw4yUKC3w74,7162
|
|
205
|
-
ultralytics/utils/__init__.py,sha256=
|
|
205
|
+
ultralytics/utils/__init__.py,sha256=q8YdOKbfIccEs26krg97fmOKbOUC__O3mdzzFQzgUqE,48340
|
|
206
206
|
ultralytics/utils/autobatch.py,sha256=AXboYfNSnTGsYj5FmgGYPQd0crfkeleyms6QXQfZGQ4,4194
|
|
207
207
|
ultralytics/utils/benchmarks.py,sha256=IN6ZqU-1DVHnwRsdgS_vcBhng8DUMRIEjEEgdrl1mdY,25101
|
|
208
|
-
ultralytics/utils/checks.py,sha256=
|
|
208
|
+
ultralytics/utils/checks.py,sha256=tiwVY1SCf7AlDOUQDh6fJlmhQ3CxQEqLUrXRvwRBoKs,28998
|
|
209
209
|
ultralytics/utils/dist.py,sha256=NDFga-uKxkBX2zLxFHSene_cCiGQJoyOeCXcN9JIOIk,2358
|
|
210
210
|
ultralytics/utils/downloads.py,sha256=97JitihZqvIMS6_TX5rJAG7BI8eYHlu5g8YXlI0RkR4,21998
|
|
211
211
|
ultralytics/utils/errors.py,sha256=GqP_Jgj_n0paxn8OMhn3DTCgoNkB2WjUcUaqs-M6SQk,816
|
|
212
|
-
ultralytics/utils/files.py,sha256=
|
|
212
|
+
ultralytics/utils/files.py,sha256=YjfzbBDAq-nD3LKjtuMVwggnnv1dROMuVoo3Edm_tjU,8224
|
|
213
213
|
ultralytics/utils/instance.py,sha256=QSms7mPHZ5e8JGuJYLohLWltzI0aBE8dob2rOUK4RtM,16249
|
|
214
214
|
ultralytics/utils/loss.py,sha256=SW3FVFFp8Ki_LCT8wIdFbm6KmyPcQn3RmKNcvVAhMQI,34174
|
|
215
215
|
ultralytics/utils/metrics.py,sha256=UgLGudWp57uXDMlMUJy4gsz6cfVjcq7tYmHeto3TqvM,53927
|
|
216
216
|
ultralytics/utils/ops.py,sha256=dsXNdyrYx_p6io6zezig9p84dxS7U-10vceHNVu2IL0,32888
|
|
217
|
-
ultralytics/utils/patches.py,sha256=
|
|
218
|
-
ultralytics/utils/plotting.py,sha256=
|
|
217
|
+
ultralytics/utils/patches.py,sha256=J-iOwIRbfUs-inBZerhnXby5tUKjYcOIyvhLTS352JE,3270
|
|
218
|
+
ultralytics/utils/plotting.py,sha256=4ow_6Pn8REgQA_qXThvwLxOKg3OrewcuCAPq9DylocY,62094
|
|
219
219
|
ultralytics/utils/tal.py,sha256=ECsu95xEqOItmxMDN4YTD3FsUiIsQNWy0pZC3TfvFfk,16877
|
|
220
|
-
ultralytics/utils/torch_utils.py,sha256=
|
|
220
|
+
ultralytics/utils/torch_utils.py,sha256=tqOyNnUZbLBOIueSWwljZua65cz6_RvClxYv8gNHIw0,29673
|
|
221
221
|
ultralytics/utils/triton.py,sha256=gg1finxno_tY2Ge9PMhmu7PI9wvoFZoiicdT4Bhqv3w,3936
|
|
222
222
|
ultralytics/utils/tuner.py,sha256=AtEtK6pOt9xVTyx864OpNRVxNdAxz5aKHzveiXwkD1A,6250
|
|
223
223
|
ultralytics/utils/callbacks/__init__.py,sha256=YrWqC3BVVaTLob4iCPR6I36mUxIUOpPJW7B_LjT78Qw,214
|
|
@@ -231,9 +231,9 @@ ultralytics/utils/callbacks/neptune.py,sha256=5Z3ua5YBTUS56FH8VQKQG1aaIo9fH8GEyz
|
|
|
231
231
|
ultralytics/utils/callbacks/raytune.py,sha256=ODVYzy-CoM4Uge0zjkh3Hnh9nF2M0vhDrSenXnvcizw,705
|
|
232
232
|
ultralytics/utils/callbacks/tensorboard.py,sha256=0kn4IR10no99UCIheojWRujgybmUHSx5fPI6Vsq6l_g,4135
|
|
233
233
|
ultralytics/utils/callbacks/wb.py,sha256=9-fjQIdLjr3b73DTE3rHO171KvbH1VweJ-bmbv-rqTw,6747
|
|
234
|
-
ultralytics-8.3.
|
|
235
|
-
ultralytics-8.3.
|
|
236
|
-
ultralytics-8.3.
|
|
237
|
-
ultralytics-8.3.
|
|
238
|
-
ultralytics-8.3.
|
|
239
|
-
ultralytics-8.3.
|
|
234
|
+
ultralytics-8.3.2.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
|
|
235
|
+
ultralytics-8.3.2.dist-info/METADATA,sha256=cjJvRz_nxBld56qrZEJDXuQn-C3lbUVzMIHtzs0n89U,34574
|
|
236
|
+
ultralytics-8.3.2.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
|
|
237
|
+
ultralytics-8.3.2.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
|
|
238
|
+
ultralytics-8.3.2.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
|
|
239
|
+
ultralytics-8.3.2.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|
|
File without changes
|