ultralytics 8.2.80__py3-none-any.whl → 8.2.82__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (97) hide show
  1. tests/test_solutions.py +0 -4
  2. ultralytics/__init__.py +1 -1
  3. ultralytics/cfg/__init__.py +14 -16
  4. ultralytics/data/annotator.py +1 -1
  5. ultralytics/data/augment.py +58 -58
  6. ultralytics/data/base.py +3 -3
  7. ultralytics/data/converter.py +7 -8
  8. ultralytics/data/explorer/explorer.py +7 -23
  9. ultralytics/data/loaders.py +1 -1
  10. ultralytics/data/split_dota.py +11 -3
  11. ultralytics/data/utils.py +6 -10
  12. ultralytics/engine/exporter.py +2 -4
  13. ultralytics/engine/model.py +47 -47
  14. ultralytics/engine/predictor.py +1 -1
  15. ultralytics/engine/results.py +30 -30
  16. ultralytics/engine/trainer.py +11 -8
  17. ultralytics/engine/tuner.py +7 -8
  18. ultralytics/engine/validator.py +3 -5
  19. ultralytics/hub/__init__.py +5 -5
  20. ultralytics/hub/auth.py +6 -2
  21. ultralytics/hub/session.py +30 -20
  22. ultralytics/models/fastsam/model.py +13 -10
  23. ultralytics/models/fastsam/predict.py +2 -2
  24. ultralytics/models/fastsam/utils.py +0 -1
  25. ultralytics/models/nas/model.py +4 -4
  26. ultralytics/models/nas/predict.py +1 -2
  27. ultralytics/models/nas/val.py +1 -1
  28. ultralytics/models/rtdetr/predict.py +1 -1
  29. ultralytics/models/rtdetr/train.py +1 -1
  30. ultralytics/models/rtdetr/val.py +1 -1
  31. ultralytics/models/sam/model.py +11 -11
  32. ultralytics/models/sam/modules/decoders.py +7 -4
  33. ultralytics/models/sam/modules/sam.py +9 -1
  34. ultralytics/models/sam/modules/tiny_encoder.py +1 -1
  35. ultralytics/models/sam/modules/transformer.py +0 -2
  36. ultralytics/models/sam/modules/utils.py +1 -1
  37. ultralytics/models/sam/predict.py +10 -10
  38. ultralytics/models/utils/loss.py +29 -17
  39. ultralytics/models/utils/ops.py +1 -5
  40. ultralytics/models/yolo/classify/predict.py +1 -1
  41. ultralytics/models/yolo/classify/train.py +1 -1
  42. ultralytics/models/yolo/classify/val.py +1 -1
  43. ultralytics/models/yolo/detect/predict.py +1 -1
  44. ultralytics/models/yolo/detect/train.py +1 -1
  45. ultralytics/models/yolo/detect/val.py +1 -1
  46. ultralytics/models/yolo/model.py +6 -2
  47. ultralytics/models/yolo/obb/predict.py +1 -1
  48. ultralytics/models/yolo/obb/train.py +1 -1
  49. ultralytics/models/yolo/obb/val.py +2 -2
  50. ultralytics/models/yolo/pose/predict.py +1 -1
  51. ultralytics/models/yolo/pose/train.py +1 -1
  52. ultralytics/models/yolo/pose/val.py +1 -1
  53. ultralytics/models/yolo/segment/predict.py +1 -1
  54. ultralytics/models/yolo/segment/train.py +1 -1
  55. ultralytics/models/yolo/segment/val.py +1 -1
  56. ultralytics/models/yolo/world/train.py +1 -1
  57. ultralytics/nn/autobackend.py +2 -2
  58. ultralytics/nn/modules/__init__.py +2 -2
  59. ultralytics/nn/modules/block.py +8 -20
  60. ultralytics/nn/modules/conv.py +1 -3
  61. ultralytics/nn/modules/head.py +16 -31
  62. ultralytics/nn/modules/transformer.py +0 -1
  63. ultralytics/nn/modules/utils.py +0 -1
  64. ultralytics/nn/tasks.py +11 -9
  65. ultralytics/solutions/__init__.py +1 -0
  66. ultralytics/solutions/ai_gym.py +0 -2
  67. ultralytics/solutions/analytics.py +1 -6
  68. ultralytics/solutions/heatmap.py +0 -1
  69. ultralytics/solutions/object_counter.py +0 -2
  70. ultralytics/solutions/queue_management.py +0 -2
  71. ultralytics/trackers/basetrack.py +1 -1
  72. ultralytics/trackers/byte_tracker.py +2 -2
  73. ultralytics/trackers/utils/gmc.py +5 -5
  74. ultralytics/trackers/utils/kalman_filter.py +1 -1
  75. ultralytics/trackers/utils/matching.py +1 -5
  76. ultralytics/utils/__init__.py +132 -30
  77. ultralytics/utils/autobatch.py +7 -4
  78. ultralytics/utils/benchmarks.py +6 -14
  79. ultralytics/utils/callbacks/base.py +0 -1
  80. ultralytics/utils/callbacks/comet.py +0 -1
  81. ultralytics/utils/callbacks/tensorboard.py +0 -1
  82. ultralytics/utils/checks.py +15 -18
  83. ultralytics/utils/downloads.py +6 -7
  84. ultralytics/utils/files.py +3 -4
  85. ultralytics/utils/instance.py +17 -7
  86. ultralytics/utils/metrics.py +15 -15
  87. ultralytics/utils/ops.py +8 -8
  88. ultralytics/utils/plotting.py +25 -35
  89. ultralytics/utils/tal.py +27 -18
  90. ultralytics/utils/torch_utils.py +12 -13
  91. ultralytics/utils/tuner.py +2 -3
  92. {ultralytics-8.2.80.dist-info → ultralytics-8.2.82.dist-info}/METADATA +1 -1
  93. {ultralytics-8.2.80.dist-info → ultralytics-8.2.82.dist-info}/RECORD +97 -97
  94. {ultralytics-8.2.80.dist-info → ultralytics-8.2.82.dist-info}/LICENSE +0 -0
  95. {ultralytics-8.2.80.dist-info → ultralytics-8.2.82.dist-info}/WHEEL +0 -0
  96. {ultralytics-8.2.80.dist-info → ultralytics-8.2.82.dist-info}/entry_points.txt +0 -0
  97. {ultralytics-8.2.80.dist-info → ultralytics-8.2.82.dist-info}/top_level.txt +0 -0
@@ -37,7 +37,6 @@ class Heatmap:
37
37
  shape="circle",
38
38
  ):
39
39
  """Initializes the heatmap class with default values for Visual, Image, track, count and heatmap parameters."""
40
-
41
40
  # Visual information
42
41
  self.annotator = None
43
42
  self.view_img = view_img
@@ -53,7 +53,6 @@ class ObjectCounter:
53
53
  line_dist_thresh (int): Euclidean distance threshold for line counter.
54
54
  cls_txtdisplay_gap (int): Display gap between each class count.
55
55
  """
56
-
57
56
  # Mouse events
58
57
  self.is_drawing = False
59
58
  self.selected_point = None
@@ -141,7 +140,6 @@ class ObjectCounter:
141
140
 
142
141
  def extract_and_process_tracks(self, tracks):
143
142
  """Extracts and processes tracks for object counting in a video stream."""
144
-
145
143
  # Annotator Init and region drawing
146
144
  self.annotator = Annotator(self.im0, self.tf, self.names)
147
145
 
@@ -49,7 +49,6 @@ class QueueManager:
49
49
  region_thickness (int, optional): Thickness of the counting region lines. Defaults to 5.
50
50
  fontsize (float, optional): Font size for the text annotations. Defaults to 0.7.
51
51
  """
52
-
53
52
  # Mouse events state
54
53
  self.is_drawing = False
55
54
  self.selected_point = None
@@ -88,7 +87,6 @@ class QueueManager:
88
87
 
89
88
  def extract_and_process_tracks(self, tracks):
90
89
  """Extracts and processes tracks for queue management in a video stream."""
91
-
92
90
  # Initialize annotator and draw the queue region
93
91
  self.annotator = Annotator(self.im0, self.tf, self.names)
94
92
 
@@ -1,5 +1,5 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
- """This module defines the base classes and structures for object tracking in YOLO."""
2
+ """Module defines the base classes and structures for object tracking in YOLO."""
3
3
 
4
4
  from collections import OrderedDict
5
5
 
@@ -42,7 +42,7 @@ class STrack(BaseTrack):
42
42
 
43
43
  Examples:
44
44
  Initialize and activate a new track
45
- >>> track = STrack(xywh=[100, 200, 50, 80, 0], score=0.9, cls='person')
45
+ >>> track = STrack(xywh=[100, 200, 50, 80, 0], score=0.9, cls="person")
46
46
  >>> track.activate(kalman_filter=KalmanFilterXYAH(), frame_id=1)
47
47
  """
48
48
 
@@ -61,7 +61,7 @@ class STrack(BaseTrack):
61
61
  Examples:
62
62
  >>> xywh = [100.0, 150.0, 50.0, 75.0, 1]
63
63
  >>> score = 0.9
64
- >>> cls = 'person'
64
+ >>> cls = "person"
65
65
  >>> track = STrack(xywh, score, cls)
66
66
  """
67
67
  super().__init__()
@@ -33,7 +33,7 @@ class GMC:
33
33
 
34
34
  Examples:
35
35
  Create a GMC object and apply it to a frame
36
- >>> gmc = GMC(method='sparseOptFlow', downscale=2)
36
+ >>> gmc = GMC(method="sparseOptFlow", downscale=2)
37
37
  >>> frame = np.array([[1, 2, 3], [4, 5, 6]])
38
38
  >>> processed_frame = gmc.apply(frame)
39
39
  >>> print(processed_frame)
@@ -51,7 +51,7 @@ class GMC:
51
51
 
52
52
  Examples:
53
53
  Initialize a GMC object with the 'sparseOptFlow' method and a downscale factor of 2
54
- >>> gmc = GMC(method='sparseOptFlow', downscale=2)
54
+ >>> gmc = GMC(method="sparseOptFlow", downscale=2)
55
55
  """
56
56
  super().__init__()
57
57
 
@@ -101,7 +101,7 @@ class GMC:
101
101
  (np.ndarray): Processed frame with applied object detection.
102
102
 
103
103
  Examples:
104
- >>> gmc = GMC(method='sparseOptFlow')
104
+ >>> gmc = GMC(method="sparseOptFlow")
105
105
  >>> raw_frame = np.random.rand(480, 640, 3)
106
106
  >>> processed_frame = gmc.apply(raw_frame)
107
107
  >>> print(processed_frame.shape)
@@ -127,7 +127,7 @@ class GMC:
127
127
  (np.ndarray): The processed frame with the applied ECC transformation.
128
128
 
129
129
  Examples:
130
- >>> gmc = GMC(method='ecc')
130
+ >>> gmc = GMC(method="ecc")
131
131
  >>> processed_frame = gmc.applyEcc(np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]]))
132
132
  >>> print(processed_frame)
133
133
  [[1. 0. 0.]
@@ -173,7 +173,7 @@ class GMC:
173
173
  (np.ndarray): Processed frame.
174
174
 
175
175
  Examples:
176
- >>> gmc = GMC(method='orb')
176
+ >>> gmc = GMC(method="orb")
177
177
  >>> raw_frame = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
178
178
  >>> processed_frame = gmc.applyFeatures(raw_frame)
179
179
  >>> print(processed_frame.shape)
@@ -268,7 +268,7 @@ class KalmanFilterXYAH:
268
268
  >>> mean = np.array([0, 0, 1, 1, 0, 0, 0, 0])
269
269
  >>> covariance = np.eye(8)
270
270
  >>> measurements = np.array([[1, 1, 1, 1], [2, 2, 1, 1]])
271
- >>> distances = kf.gating_distance(mean, covariance, measurements, only_position=False, metric='maha')
271
+ >>> distances = kf.gating_distance(mean, covariance, measurements, only_position=False, metric="maha")
272
272
  """
273
273
  mean, covariance = self.project(mean, covariance)
274
274
  if only_position:
@@ -37,7 +37,6 @@ def linear_assignment(cost_matrix: np.ndarray, thresh: float, use_lap: bool = Tr
37
37
  >>> thresh = 5.0
38
38
  >>> matched_indices, unmatched_a, unmatched_b = linear_assignment(cost_matrix, thresh, use_lap=True)
39
39
  """
40
-
41
40
  if cost_matrix.size == 0:
42
41
  return np.empty((0, 2), dtype=int), tuple(range(cost_matrix.shape[0])), tuple(range(cost_matrix.shape[1]))
43
42
 
@@ -80,7 +79,6 @@ def iou_distance(atracks: list, btracks: list) -> np.ndarray:
80
79
  >>> btracks = [np.array([5, 5, 15, 15]), np.array([25, 25, 35, 35])]
81
80
  >>> cost_matrix = iou_distance(atracks, btracks)
82
81
  """
83
-
84
82
  if atracks and isinstance(atracks[0], np.ndarray) or btracks and isinstance(btracks[0], np.ndarray):
85
83
  atlbrs = atracks
86
84
  btlbrs = btracks
@@ -121,9 +119,8 @@ def embedding_distance(tracks: list, detections: list, metric: str = "cosine") -
121
119
  Compute the embedding distance between tracks and detections using cosine metric
122
120
  >>> tracks = [STrack(...), STrack(...)] # List of track objects with embedding features
123
121
  >>> detections = [BaseTrack(...), BaseTrack(...)] # List of detection objects with embedding features
124
- >>> cost_matrix = embedding_distance(tracks, detections, metric='cosine')
122
+ >>> cost_matrix = embedding_distance(tracks, detections, metric="cosine")
125
123
  """
126
-
127
124
  cost_matrix = np.zeros((len(tracks), len(detections)), dtype=np.float32)
128
125
  if cost_matrix.size == 0:
129
126
  return cost_matrix
@@ -152,7 +149,6 @@ def fuse_score(cost_matrix: np.ndarray, detections: list) -> np.ndarray:
152
149
  >>> detections = [BaseTrack(score=np.random.rand()) for _ in range(10)]
153
150
  >>> fused_matrix = fuse_score(cost_matrix, detections)
154
151
  """
155
-
156
152
  if cost_matrix.size == 0:
157
153
  return cost_matrix
158
154
  iou_sim = 1 - cost_matrix
@@ -116,18 +116,46 @@ os.environ["KINETO_LOG_LEVEL"] = "5" # suppress verbose PyTorch profiler output
116
116
 
117
117
  class TQDM(tqdm_original):
118
118
  """
119
- Custom Ultralytics tqdm class with different default arguments.
119
+ A custom TQDM progress bar class that extends the original tqdm functionality.
120
120
 
121
- Args:
122
- *args (list): Positional arguments passed to original tqdm.
123
- **kwargs (any): Keyword arguments, with custom defaults applied.
121
+ This class modifies the behavior of the original tqdm progress bar based on global settings and provides
122
+ additional customization options.
123
+
124
+ Attributes:
125
+ disable (bool): Whether to disable the progress bar. Determined by the global VERBOSE setting and
126
+ any passed 'disable' argument.
127
+ bar_format (str): The format string for the progress bar. Uses the global TQDM_BAR_FORMAT if not
128
+ explicitly set.
129
+
130
+ Methods:
131
+ __init__: Initializes the TQDM object with custom settings.
132
+
133
+ Examples:
134
+ >>> from ultralytics.utils import TQDM
135
+ >>> for i in TQDM(range(100)):
136
+ ... # Your processing code here
137
+ ... pass
124
138
  """
125
139
 
126
140
  def __init__(self, *args, **kwargs):
127
141
  """
128
- Initialize custom Ultralytics tqdm class with different default arguments.
142
+ Initializes a custom TQDM progress bar.
129
143
 
130
- Note these can still be overridden when calling TQDM.
144
+ This class extends the original tqdm class to provide customized behavior for Ultralytics projects.
145
+
146
+ Args:
147
+ *args (Any): Variable length argument list to be passed to the original tqdm constructor.
148
+ **kwargs (Any): Arbitrary keyword arguments to be passed to the original tqdm constructor.
149
+
150
+ Notes:
151
+ - The progress bar is disabled if VERBOSE is False or if 'disable' is explicitly set to True in kwargs.
152
+ - The default bar format is set to TQDM_BAR_FORMAT unless overridden in kwargs.
153
+
154
+ Examples:
155
+ >>> from ultralytics.utils import TQDM
156
+ >>> for i in TQDM(range(100)):
157
+ ... # Your code here
158
+ ... pass
131
159
  """
132
160
  kwargs["disable"] = not VERBOSE or kwargs.get("disable", False) # logical 'and' with default value if passed
133
161
  kwargs.setdefault("bar_format", TQDM_BAR_FORMAT) # override default value if passed
@@ -135,8 +163,33 @@ class TQDM(tqdm_original):
135
163
 
136
164
 
137
165
  class SimpleClass:
138
- """Ultralytics SimpleClass is a base class providing helpful string representation, error reporting, and attribute
139
- access methods for easier debugging and usage.
166
+ """
167
+ A simple base class for creating objects with string representations of their attributes.
168
+
169
+ This class provides a foundation for creating objects that can be easily printed or represented as strings,
170
+ showing all their non-callable attributes. It's useful for debugging and introspection of object states.
171
+
172
+ Methods:
173
+ __str__: Returns a human-readable string representation of the object.
174
+ __repr__: Returns a machine-readable string representation of the object.
175
+ __getattr__: Provides a custom attribute access error message with helpful information.
176
+
177
+ Examples:
178
+ >>> class MyClass(SimpleClass):
179
+ ... def __init__(self):
180
+ ... self.x = 10
181
+ ... self.y = "hello"
182
+ >>> obj = MyClass()
183
+ >>> print(obj)
184
+ __main__.MyClass object with attributes:
185
+
186
+ x: 10
187
+ y: 'hello'
188
+
189
+ Notes:
190
+ - This class is designed to be subclassed. It provides a convenient way to inspect object attributes.
191
+ - The string representation includes the module and class name of the object.
192
+ - Callable attributes and attributes starting with an underscore are excluded from the string representation.
140
193
  """
141
194
 
142
195
  def __str__(self):
@@ -164,8 +217,38 @@ class SimpleClass:
164
217
 
165
218
 
166
219
  class IterableSimpleNamespace(SimpleNamespace):
167
- """Ultralytics IterableSimpleNamespace is an extension class of SimpleNamespace that adds iterable functionality and
168
- enables usage with dict() and for loops.
220
+ """
221
+ An iterable SimpleNamespace class that provides enhanced functionality for attribute access and iteration.
222
+
223
+ This class extends the SimpleNamespace class with additional methods for iteration, string representation,
224
+ and attribute access. It is designed to be used as a convenient container for storing and accessing
225
+ configuration parameters.
226
+
227
+ Methods:
228
+ __iter__: Returns an iterator of key-value pairs from the namespace's attributes.
229
+ __str__: Returns a human-readable string representation of the object.
230
+ __getattr__: Provides a custom attribute access error message with helpful information.
231
+ get: Retrieves the value of a specified key, or a default value if the key doesn't exist.
232
+
233
+ Examples:
234
+ >>> cfg = IterableSimpleNamespace(a=1, b=2, c=3)
235
+ >>> for k, v in cfg:
236
+ ... print(f"{k}: {v}")
237
+ a: 1
238
+ b: 2
239
+ c: 3
240
+ >>> print(cfg)
241
+ a=1
242
+ b=2
243
+ c=3
244
+ >>> cfg.get("b")
245
+ 2
246
+ >>> cfg.get("d", "default")
247
+ 'default'
248
+
249
+ Notes:
250
+ This class is particularly useful for storing configuration parameters in a more accessible
251
+ and iterable format compared to a standard dictionary.
169
252
  """
170
253
 
171
254
  def __iter__(self):
@@ -209,7 +292,6 @@ def plt_settings(rcparams=None, backend="Agg"):
209
292
  (Callable): Decorated function with temporarily set rc parameters and backend. This decorator can be
210
293
  applied to any function that needs to have specific matplotlib rc parameters and backend for its execution.
211
294
  """
212
-
213
295
  if rcparams is None:
214
296
  rcparams = {"font.size": 11}
215
297
 
@@ -219,16 +301,19 @@ def plt_settings(rcparams=None, backend="Agg"):
219
301
  def wrapper(*args, **kwargs):
220
302
  """Sets rc parameters and backend, calls the original function, and restores the settings."""
221
303
  original_backend = plt.get_backend()
222
- if backend.lower() != original_backend.lower():
304
+ switch = backend.lower() != original_backend.lower()
305
+ if switch:
223
306
  plt.close("all") # auto-close()ing of figures upon backend switching is deprecated since 3.8
224
307
  plt.switch_backend(backend)
225
308
 
226
- with plt.rc_context(rcparams):
227
- result = func(*args, **kwargs)
228
-
229
- if backend != original_backend:
230
- plt.close("all")
231
- plt.switch_backend(original_backend)
309
+ # Plot with backend and always revert to original backend
310
+ try:
311
+ with plt.rc_context(rcparams):
312
+ result = func(*args, **kwargs)
313
+ finally:
314
+ if switch:
315
+ plt.close("all")
316
+ plt.switch_backend(original_backend)
232
317
  return result
233
318
 
234
319
  return wrapper
@@ -237,8 +322,27 @@ def plt_settings(rcparams=None, backend="Agg"):
237
322
 
238
323
 
239
324
  def set_logging(name="LOGGING_NAME", verbose=True):
240
- """Sets up logging for the given name with UTF-8 encoding support, ensuring compatibility across different
241
- environments.
325
+ """
326
+ Sets up logging with UTF-8 encoding and configurable verbosity.
327
+
328
+ This function configures logging for the Ultralytics library, setting the appropriate logging level and
329
+ formatter based on the verbosity flag and the current process rank. It handles special cases for Windows
330
+ environments where UTF-8 encoding might not be the default.
331
+
332
+ Args:
333
+ name (str): Name of the logger. Defaults to "LOGGING_NAME".
334
+ verbose (bool): Flag to set logging level to INFO if True, ERROR otherwise. Defaults to True.
335
+
336
+ Examples:
337
+ >>> set_logging(name="ultralytics", verbose=True)
338
+ >>> logger = logging.getLogger("ultralytics")
339
+ >>> logger.info("This is an info message")
340
+
341
+ Notes:
342
+ - On Windows, this function attempts to reconfigure stdout to use UTF-8 encoding if possible.
343
+ - If reconfiguration is not possible, it falls back to a custom formatter that handles non-UTF-8 environments.
344
+ - The function sets up a StreamHandler with the appropriate formatter and level.
345
+ - The logger's propagate flag is set to False to prevent duplicate logging in parent loggers.
242
346
  """
243
347
  level = logging.INFO if verbose and RANK in {-1, 0} else logging.ERROR # rank in world for Multi-GPU trainings
244
348
 
@@ -699,7 +803,7 @@ SETTINGS_YAML = USER_CONFIG_DIR / "settings.yaml"
699
803
 
700
804
 
701
805
  def colorstr(*input):
702
- """
806
+ r"""
703
807
  Colors a string based on the provided color and style arguments. Utilizes ANSI escape codes.
704
808
  See https://en.wikipedia.org/wiki/ANSI_escape_code for more details.
705
809
 
@@ -710,7 +814,7 @@ def colorstr(*input):
710
814
  In the second form, 'blue' and 'bold' will be applied by default.
711
815
 
712
816
  Args:
713
- *input (str): A sequence of strings where the first n-1 strings are color and style arguments,
817
+ *input (str | Path): A sequence of strings where the first n-1 strings are color and style arguments,
714
818
  and the last string is the one to be colored.
715
819
 
716
820
  Supported Colors and Styles:
@@ -762,8 +866,8 @@ def remove_colorstr(input_string):
762
866
  (str): A new string with all ANSI escape codes removed.
763
867
 
764
868
  Examples:
765
- >>> remove_colorstr(colorstr('blue', 'bold', 'hello world'))
766
- >>> 'hello world'
869
+ >>> remove_colorstr(colorstr("blue", "bold", "hello world"))
870
+ >>> "hello world"
767
871
  """
768
872
  ansi_escape = re.compile(r"\x1B\[[0-9;]*[A-Za-z]")
769
873
  return ansi_escape.sub("", input_string)
@@ -777,12 +881,12 @@ class TryExcept(contextlib.ContextDecorator):
777
881
  As a decorator:
778
882
  >>> @TryExcept(msg="Error occurred in func", verbose=True)
779
883
  >>> def func():
780
- >>> # Function logic here
884
+ >>> # Function logic here
781
885
  >>> pass
782
886
 
783
887
  As a context manager:
784
888
  >>> with TryExcept(msg="Error occurred in block", verbose=True):
785
- >>> # Code block here
889
+ >>> # Code block here
786
890
  >>> pass
787
891
  """
788
892
 
@@ -813,7 +917,7 @@ class Retry(contextlib.ContextDecorator):
813
917
  Example usage as a decorator:
814
918
  >>> @Retry(times=3, delay=2)
815
919
  >>> def test_func():
816
- >>> # Replace with function logic that may raise exceptions
920
+ >>> # Replace with function logic that may raise exceptions
817
921
  >>> return True
818
922
  """
819
923
 
@@ -943,9 +1047,7 @@ class SettingsManager(dict):
943
1047
  """
944
1048
 
945
1049
  def __init__(self, file=SETTINGS_YAML, version="0.0.4"):
946
- """Initialize the SettingsManager with default settings, load and validate current settings from the YAML
947
- file.
948
- """
1050
+ """Initializes the SettingsManager with default settings and loads user settings."""
949
1051
  import copy
950
1052
  import hashlib
951
1053
 
@@ -16,13 +16,17 @@ def check_train_batch_size(model, imgsz=640, amp=True, batch=-1):
16
16
 
17
17
  Args:
18
18
  model (torch.nn.Module): YOLO model to check batch size for.
19
- imgsz (int): Image size used for training.
20
- amp (bool): If True, use automatic mixed precision (AMP) for training.
19
+ imgsz (int, optional): Image size used for training.
20
+ amp (bool, optional): Use automatic mixed precision if True.
21
+ batch (float, optional): Fraction of GPU memory to use. If -1, use default.
21
22
 
22
23
  Returns:
23
24
  (int): Optimal batch size computed using the autobatch() function.
24
- """
25
25
 
26
+ Note:
27
+ If 0.0 < batch < 1.0, it's used as the fraction of GPU memory to use.
28
+ Otherwise, a default fraction of 0.6 is used.
29
+ """
26
30
  with autocast(enabled=amp):
27
31
  return autobatch(deepcopy(model).train(), imgsz, fraction=batch if 0.0 < batch < 1.0 else 0.6)
28
32
 
@@ -40,7 +44,6 @@ def autobatch(model, imgsz=640, fraction=0.60, batch_size=DEFAULT_CFG.batch):
40
44
  Returns:
41
45
  (int): The optimal batch size.
42
46
  """
43
-
44
47
  # Check device
45
48
  prefix = colorstr("AutoBatch: ")
46
49
  LOGGER.info(f"{prefix}Computing optimal batch size for imgsz={imgsz} at {fraction * 100}% CUDA memory utilization.")
@@ -71,7 +71,7 @@ def benchmark(
71
71
  ```python
72
72
  from ultralytics.utils.benchmarks import benchmark
73
73
 
74
- benchmark(model='yolov8n.pt', imgsz=640)
74
+ benchmark(model="yolov8n.pt", imgsz=640)
75
75
  ```
76
76
  """
77
77
  import pandas as pd # scope for faster 'import ultralytics'
@@ -97,20 +97,17 @@ def benchmark(
97
97
  assert MACOS or LINUX, "CoreML and TF.js export only supported on macOS and Linux"
98
98
  assert not IS_RASPBERRYPI, "CoreML and TF.js export not supported on Raspberry Pi"
99
99
  assert not IS_JETSON, "CoreML and TF.js export not supported on NVIDIA Jetson"
100
- assert not is_end2end, "End-to-end models not supported by CoreML and TF.js yet"
101
100
  if i in {3, 5}: # CoreML and OpenVINO
102
101
  assert not IS_PYTHON_3_12, "CoreML and OpenVINO not supported on Python 3.12"
103
102
  if i in {6, 7, 8}: # TF SavedModel, TF GraphDef, and TFLite
104
103
  assert not isinstance(model, YOLOWorld), "YOLOWorldv2 TensorFlow exports not supported by onnx2tf yet"
105
104
  if i in {9, 10}: # TF EdgeTPU and TF.js
106
105
  assert not isinstance(model, YOLOWorld), "YOLOWorldv2 TensorFlow exports not supported by onnx2tf yet"
107
- assert not is_end2end, "End-to-end models not supported by TF EdgeTPU and TF.js yet"
108
106
  if i in {11}: # Paddle
109
107
  assert not isinstance(model, YOLOWorld), "YOLOWorldv2 Paddle exports not supported yet"
110
108
  assert not is_end2end, "End-to-end models not supported by PaddlePaddle yet"
111
109
  if i in {12}: # NCNN
112
110
  assert not isinstance(model, YOLOWorld), "YOLOWorldv2 NCNN exports not supported yet"
113
- assert not is_end2end, "End-to-end models not supported by NCNN yet"
114
111
  if "cpu" in device.type:
115
112
  assert cpu, "inference not supported on CPU"
116
113
  if "cuda" in device.type:
@@ -130,6 +127,8 @@ def benchmark(
130
127
  assert model.task != "pose" or i != 7, "GraphDef Pose inference is not supported"
131
128
  assert i not in {9, 10}, "inference not supported" # Edge TPU and TF.js are unsupported
132
129
  assert i != 5 or platform.system() == "Darwin", "inference only supported on macOS>=10.13" # CoreML
130
+ if i in {12}:
131
+ assert not is_end2end, "End-to-end torch.topk operation is not supported for NCNN prediction yet"
133
132
  exported_model.predict(ASSETS / "bus.jpg", imgsz=imgsz, device=device, half=half)
134
133
 
135
134
  # Validate
@@ -182,7 +181,6 @@ class RF100Benchmark:
182
181
  Args:
183
182
  api_key (str): The API key.
184
183
  """
185
-
186
184
  check_requirements("roboflow")
187
185
  from roboflow import Roboflow
188
186
 
@@ -195,7 +193,6 @@ class RF100Benchmark:
195
193
  Args:
196
194
  ds_link_txt (str): Path to dataset_links file.
197
195
  """
198
-
199
196
  (shutil.rmtree("rf-100"), os.mkdir("rf-100")) if os.path.exists("rf-100") else os.mkdir("rf-100")
200
197
  os.chdir("rf-100")
201
198
  os.mkdir("ultralytics-benchmarks")
@@ -225,7 +222,6 @@ class RF100Benchmark:
225
222
  Args:
226
223
  path (str): YAML file path.
227
224
  """
228
-
229
225
  with open(path, "r") as file:
230
226
  yaml_data = yaml.safe_load(file)
231
227
  yaml_data["train"] = "train/images"
@@ -302,7 +298,7 @@ class ProfileModels:
302
298
  ```python
303
299
  from ultralytics.utils.benchmarks import ProfileModels
304
300
 
305
- ProfileModels(['yolov8n.yaml', 'yolov8s.yaml'], imgsz=640).profile()
301
+ ProfileModels(["yolov8n.yaml", "yolov8s.yaml"], imgsz=640).profile()
306
302
  ```
307
303
  """
308
304
 
@@ -393,9 +389,7 @@ class ProfileModels:
393
389
  return [Path(file) for file in sorted(files)]
394
390
 
395
391
  def get_onnx_model_info(self, onnx_file: str):
396
- """Retrieves the information including number of layers, parameters, gradients and FLOPs for an ONNX model
397
- file.
398
- """
392
+ """Extracts metadata from an ONNX model file including parameters, GFLOPs, and input shape."""
399
393
  return 0.0, 0.0, 0.0, 0.0 # return (num_layers, num_params, num_gradients, num_flops)
400
394
 
401
395
  @staticmethod
@@ -440,9 +434,7 @@ class ProfileModels:
440
434
  return np.mean(run_times), np.std(run_times)
441
435
 
442
436
  def profile_onnx_model(self, onnx_file: str, eps: float = 1e-3):
443
- """Profiles an ONNX model by executing it multiple times and returns the mean and standard deviation of run
444
- times.
445
- """
437
+ """Profiles an ONNX model, measuring average inference time and standard deviation across multiple runs."""
446
438
  check_requirements("onnxruntime")
447
439
  import onnxruntime as ort
448
440
 
@@ -192,7 +192,6 @@ def add_integration_callbacks(instance):
192
192
  instance (Trainer, Predictor, Validator, Exporter): An object with a 'callbacks' attribute that is a dictionary
193
193
  of callback lists.
194
194
  """
195
-
196
195
  # Load HUB callbacks
197
196
  from .hub import callbacks as hub_cb
198
197
 
@@ -114,7 +114,6 @@ def _scale_bounding_box_to_original_image_shape(box, resized_image_shape, origin
114
114
 
115
115
  This function rescales the bounding box labels to the original image shape.
116
116
  """
117
-
118
117
  resized_image_height, resized_image_width = resized_image_shape
119
118
 
120
119
  # Convert normalized xywh format predictions to xyxy in resized scale format
@@ -34,7 +34,6 @@ def _log_scalars(scalars, step=0):
34
34
 
35
35
  def _log_tensorboard_graph(trainer):
36
36
  """Log model graph to TensorBoard."""
37
-
38
37
  # Input image
39
38
  imgsz = trainer.args.imgsz
40
39
  imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz