ultralytics 8.2.69__py3-none-any.whl → 8.2.70__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- ultralytics/__init__.py +3 -2
- ultralytics/cfg/__init__.py +4 -0
- ultralytics/models/__init__.py +2 -1
- ultralytics/models/fastsam/predict.py +1 -0
- ultralytics/models/sam/build.py +2 -2
- ultralytics/models/sam/model.py +10 -2
- ultralytics/models/sam/modules/decoders.py +1 -42
- ultralytics/models/sam/modules/encoders.py +3 -1
- ultralytics/models/sam/modules/sam.py +5 -7
- ultralytics/models/sam/modules/transformer.py +4 -3
- ultralytics/models/sam/predict.py +12 -6
- ultralytics/models/sam2/__init__.py +6 -0
- ultralytics/models/sam2/build.py +156 -0
- ultralytics/models/sam2/model.py +97 -0
- ultralytics/models/sam2/modules/__init__.py +1 -0
- ultralytics/models/sam2/modules/decoders.py +305 -0
- ultralytics/models/sam2/modules/encoders.py +332 -0
- ultralytics/models/sam2/modules/memory_attention.py +170 -0
- ultralytics/models/sam2/modules/sam2.py +804 -0
- ultralytics/models/sam2/modules/sam2_blocks.py +715 -0
- ultralytics/models/sam2/modules/utils.py +191 -0
- ultralytics/models/sam2/predict.py +182 -0
- ultralytics/nn/modules/transformer.py +5 -3
- ultralytics/utils/torch_utils.py +9 -6
- {ultralytics-8.2.69.dist-info → ultralytics-8.2.70.dist-info}/METADATA +1 -1
- {ultralytics-8.2.69.dist-info → ultralytics-8.2.70.dist-info}/RECORD +30 -19
- {ultralytics-8.2.69.dist-info → ultralytics-8.2.70.dist-info}/LICENSE +0 -0
- {ultralytics-8.2.69.dist-info → ultralytics-8.2.70.dist-info}/WHEEL +0 -0
- {ultralytics-8.2.69.dist-info → ultralytics-8.2.70.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.2.69.dist-info → ultralytics-8.2.70.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,305 @@
|
|
|
1
|
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
|
+
|
|
3
|
+
from typing import List, Optional, Tuple, Type
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
from torch import nn
|
|
7
|
+
|
|
8
|
+
from ultralytics.nn.modules import MLP, LayerNorm2d
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class MaskDecoder(nn.Module):
|
|
12
|
+
"""Transformer-based decoder predicting instance segmentation masks from image and prompt embeddings."""
|
|
13
|
+
|
|
14
|
+
def __init__(
|
|
15
|
+
self,
|
|
16
|
+
transformer_dim: int,
|
|
17
|
+
transformer: nn.Module,
|
|
18
|
+
num_multimask_outputs: int = 3,
|
|
19
|
+
activation: Type[nn.Module] = nn.GELU,
|
|
20
|
+
iou_head_depth: int = 3,
|
|
21
|
+
iou_head_hidden_dim: int = 256,
|
|
22
|
+
use_high_res_features: bool = False,
|
|
23
|
+
iou_prediction_use_sigmoid=False,
|
|
24
|
+
dynamic_multimask_via_stability=False,
|
|
25
|
+
dynamic_multimask_stability_delta=0.05,
|
|
26
|
+
dynamic_multimask_stability_thresh=0.98,
|
|
27
|
+
pred_obj_scores: bool = False,
|
|
28
|
+
pred_obj_scores_mlp: bool = False,
|
|
29
|
+
use_multimask_token_for_obj_ptr: bool = False,
|
|
30
|
+
) -> None:
|
|
31
|
+
"""
|
|
32
|
+
Initializes the MaskDecoder module for predicting instance segmentation masks.
|
|
33
|
+
|
|
34
|
+
Args:
|
|
35
|
+
transformer_dim (int): Channel dimension of the transformer.
|
|
36
|
+
transformer (nn.Module): Transformer used to predict masks.
|
|
37
|
+
num_multimask_outputs (int): Number of masks to predict when disambiguating masks.
|
|
38
|
+
activation (Type[nn.Module]): Type of activation to use when upscaling masks.
|
|
39
|
+
iou_head_depth (int): Depth of the MLP used to predict mask quality.
|
|
40
|
+
iou_head_hidden_dim (int): Hidden dimension of the MLP used to predict mask quality.
|
|
41
|
+
use_high_res_features (bool): Whether to use high-resolution features.
|
|
42
|
+
iou_prediction_use_sigmoid (bool): Whether to use sigmoid for IOU prediction.
|
|
43
|
+
dynamic_multimask_via_stability (bool): Whether to use dynamic multimask via stability.
|
|
44
|
+
dynamic_multimask_stability_delta (float): Delta value for dynamic multimask stability.
|
|
45
|
+
dynamic_multimask_stability_thresh (float): Threshold for dynamic multimask stability.
|
|
46
|
+
pred_obj_scores (bool): Whether to predict object scores.
|
|
47
|
+
pred_obj_scores_mlp (bool): Whether to use MLP for object score prediction.
|
|
48
|
+
use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer.
|
|
49
|
+
|
|
50
|
+
Attributes:
|
|
51
|
+
transformer_dim (int): Channel dimension of the transformer.
|
|
52
|
+
transformer (nn.Module): Transformer used to predict masks.
|
|
53
|
+
num_multimask_outputs (int): Number of masks to predict when disambiguating masks.
|
|
54
|
+
iou_token (nn.Embedding): Embedding for IOU token.
|
|
55
|
+
num_mask_tokens (int): Total number of mask tokens.
|
|
56
|
+
mask_tokens (nn.Embedding): Embedding for mask tokens.
|
|
57
|
+
pred_obj_scores (bool): Whether to predict object scores.
|
|
58
|
+
obj_score_token (nn.Embedding): Embedding for object score token.
|
|
59
|
+
use_multimask_token_for_obj_ptr (bool): Whether to use multimask token for object pointer.
|
|
60
|
+
output_upscaling (nn.Sequential): Upscaling layers for output.
|
|
61
|
+
use_high_res_features (bool): Whether to use high-resolution features.
|
|
62
|
+
conv_s0 (nn.Conv2d): Convolutional layer for high-resolution features (s0).
|
|
63
|
+
conv_s1 (nn.Conv2d): Convolutional layer for high-resolution features (s1).
|
|
64
|
+
output_hypernetworks_mlps (nn.ModuleList): List of MLPs for output hypernetworks.
|
|
65
|
+
iou_prediction_head (MLP): MLP for IOU prediction.
|
|
66
|
+
pred_obj_score_head (nn.Linear | MLP): Linear layer or MLP for object score prediction.
|
|
67
|
+
dynamic_multimask_via_stability (bool): Whether to use dynamic multimask via stability.
|
|
68
|
+
dynamic_multimask_stability_delta (float): Delta value for dynamic multimask stability.
|
|
69
|
+
"""
|
|
70
|
+
super().__init__()
|
|
71
|
+
self.transformer_dim = transformer_dim
|
|
72
|
+
self.transformer = transformer
|
|
73
|
+
|
|
74
|
+
self.num_multimask_outputs = num_multimask_outputs
|
|
75
|
+
|
|
76
|
+
self.iou_token = nn.Embedding(1, transformer_dim)
|
|
77
|
+
self.num_mask_tokens = num_multimask_outputs + 1
|
|
78
|
+
self.mask_tokens = nn.Embedding(self.num_mask_tokens, transformer_dim)
|
|
79
|
+
|
|
80
|
+
self.pred_obj_scores = pred_obj_scores
|
|
81
|
+
if self.pred_obj_scores:
|
|
82
|
+
self.obj_score_token = nn.Embedding(1, transformer_dim)
|
|
83
|
+
self.use_multimask_token_for_obj_ptr = use_multimask_token_for_obj_ptr
|
|
84
|
+
|
|
85
|
+
self.output_upscaling = nn.Sequential(
|
|
86
|
+
nn.ConvTranspose2d(transformer_dim, transformer_dim // 4, kernel_size=2, stride=2),
|
|
87
|
+
LayerNorm2d(transformer_dim // 4),
|
|
88
|
+
activation(),
|
|
89
|
+
nn.ConvTranspose2d(transformer_dim // 4, transformer_dim // 8, kernel_size=2, stride=2),
|
|
90
|
+
activation(),
|
|
91
|
+
)
|
|
92
|
+
self.use_high_res_features = use_high_res_features
|
|
93
|
+
if use_high_res_features:
|
|
94
|
+
self.conv_s0 = nn.Conv2d(transformer_dim, transformer_dim // 8, kernel_size=1, stride=1)
|
|
95
|
+
self.conv_s1 = nn.Conv2d(transformer_dim, transformer_dim // 4, kernel_size=1, stride=1)
|
|
96
|
+
|
|
97
|
+
self.output_hypernetworks_mlps = nn.ModuleList(
|
|
98
|
+
[MLP(transformer_dim, transformer_dim, transformer_dim // 8, 3) for _ in range(self.num_mask_tokens)]
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
self.iou_prediction_head = MLP(
|
|
102
|
+
transformer_dim,
|
|
103
|
+
iou_head_hidden_dim,
|
|
104
|
+
self.num_mask_tokens,
|
|
105
|
+
iou_head_depth,
|
|
106
|
+
sigmoid=iou_prediction_use_sigmoid,
|
|
107
|
+
)
|
|
108
|
+
if self.pred_obj_scores:
|
|
109
|
+
self.pred_obj_score_head = nn.Linear(transformer_dim, 1)
|
|
110
|
+
if pred_obj_scores_mlp:
|
|
111
|
+
self.pred_obj_score_head = MLP(transformer_dim, transformer_dim, 1, 3)
|
|
112
|
+
|
|
113
|
+
# When outputting a single mask, optionally we can dynamically fall back to the best
|
|
114
|
+
# multimask output token if the single mask output token gives low stability scores.
|
|
115
|
+
self.dynamic_multimask_via_stability = dynamic_multimask_via_stability
|
|
116
|
+
self.dynamic_multimask_stability_delta = dynamic_multimask_stability_delta
|
|
117
|
+
self.dynamic_multimask_stability_thresh = dynamic_multimask_stability_thresh
|
|
118
|
+
|
|
119
|
+
def forward(
|
|
120
|
+
self,
|
|
121
|
+
image_embeddings: torch.Tensor,
|
|
122
|
+
image_pe: torch.Tensor,
|
|
123
|
+
sparse_prompt_embeddings: torch.Tensor,
|
|
124
|
+
dense_prompt_embeddings: torch.Tensor,
|
|
125
|
+
multimask_output: bool,
|
|
126
|
+
repeat_image: bool,
|
|
127
|
+
high_res_features: Optional[List[torch.Tensor]] = None,
|
|
128
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
129
|
+
"""
|
|
130
|
+
Predicts masks given image and prompt embeddings.
|
|
131
|
+
|
|
132
|
+
Args:
|
|
133
|
+
image_embeddings (torch.Tensor): Embeddings from the image encoder.
|
|
134
|
+
image_pe (torch.Tensor): Positional encoding with the shape of image_embeddings.
|
|
135
|
+
sparse_prompt_embeddings (torch.Tensor): Embeddings of the points and boxes.
|
|
136
|
+
dense_prompt_embeddings (torch.Tensor): Embeddings of the mask inputs.
|
|
137
|
+
multimask_output (bool): Whether to return multiple masks or a single mask.
|
|
138
|
+
repeat_image (bool): Flag to repeat the image embeddings.
|
|
139
|
+
high_res_features (List[torch.Tensor] | None): Optional high-resolution features.
|
|
140
|
+
|
|
141
|
+
Returns:
|
|
142
|
+
(Tuple[torch.Tensor, torch.Tensor, torch.Tensor]): A tuple containing:
|
|
143
|
+
- masks (torch.Tensor): Batched predicted masks.
|
|
144
|
+
- iou_pred (torch.Tensor): Batched predictions of mask quality.
|
|
145
|
+
- sam_tokens_out (torch.Tensor): Batched SAM token for mask output.
|
|
146
|
+
|
|
147
|
+
Examples:
|
|
148
|
+
>>> image_embeddings = torch.rand(1, 256, 64, 64)
|
|
149
|
+
>>> image_pe = torch.rand(1, 256, 64, 64)
|
|
150
|
+
>>> sparse_prompt_embeddings = torch.rand(1, 2, 256)
|
|
151
|
+
>>> dense_prompt_embeddings = torch.rand(1, 256, 64, 64)
|
|
152
|
+
>>> decoder = MaskDecoder(256, transformer)
|
|
153
|
+
>>> masks, iou_pred, sam_tokens_out = decoder.forward(image_embeddings, image_pe,
|
|
154
|
+
... sparse_prompt_embeddings, dense_prompt_embeddings, True, False)
|
|
155
|
+
"""
|
|
156
|
+
masks, iou_pred, mask_tokens_out, object_score_logits = self.predict_masks(
|
|
157
|
+
image_embeddings=image_embeddings,
|
|
158
|
+
image_pe=image_pe,
|
|
159
|
+
sparse_prompt_embeddings=sparse_prompt_embeddings,
|
|
160
|
+
dense_prompt_embeddings=dense_prompt_embeddings,
|
|
161
|
+
repeat_image=repeat_image,
|
|
162
|
+
high_res_features=high_res_features,
|
|
163
|
+
)
|
|
164
|
+
|
|
165
|
+
# Select the correct mask or masks for output
|
|
166
|
+
if multimask_output:
|
|
167
|
+
masks = masks[:, 1:, :, :]
|
|
168
|
+
iou_pred = iou_pred[:, 1:]
|
|
169
|
+
elif self.dynamic_multimask_via_stability and not self.training:
|
|
170
|
+
masks, iou_pred = self._dynamic_multimask_via_stability(masks, iou_pred)
|
|
171
|
+
else:
|
|
172
|
+
masks = masks[:, 0:1, :, :]
|
|
173
|
+
iou_pred = iou_pred[:, 0:1]
|
|
174
|
+
|
|
175
|
+
if multimask_output and self.use_multimask_token_for_obj_ptr:
|
|
176
|
+
sam_tokens_out = mask_tokens_out[:, 1:] # [b, 3, c] shape
|
|
177
|
+
else:
|
|
178
|
+
# Take the mask output token. Here we *always* use the token for single mask output.
|
|
179
|
+
# At test time, even if we track after 1-click (and using multimask_output=True),
|
|
180
|
+
# we still take the single mask token here. The rationale is that we always track
|
|
181
|
+
# after multiple clicks during training, so the past tokens seen during training
|
|
182
|
+
# are always the single mask token (and we'll let it be the object-memory token).
|
|
183
|
+
sam_tokens_out = mask_tokens_out[:, 0:1] # [b, 1, c] shape
|
|
184
|
+
|
|
185
|
+
# Prepare output
|
|
186
|
+
return masks, iou_pred, sam_tokens_out, object_score_logits
|
|
187
|
+
|
|
188
|
+
def predict_masks(
|
|
189
|
+
self,
|
|
190
|
+
image_embeddings: torch.Tensor,
|
|
191
|
+
image_pe: torch.Tensor,
|
|
192
|
+
sparse_prompt_embeddings: torch.Tensor,
|
|
193
|
+
dense_prompt_embeddings: torch.Tensor,
|
|
194
|
+
repeat_image: bool,
|
|
195
|
+
high_res_features: Optional[List[torch.Tensor]] = None,
|
|
196
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
197
|
+
"""Predicts instance segmentation masks from image and prompt embeddings using a transformer architecture."""
|
|
198
|
+
# Concatenate output tokens
|
|
199
|
+
s = 0
|
|
200
|
+
if self.pred_obj_scores:
|
|
201
|
+
output_tokens = torch.cat(
|
|
202
|
+
[
|
|
203
|
+
self.obj_score_token.weight,
|
|
204
|
+
self.iou_token.weight,
|
|
205
|
+
self.mask_tokens.weight,
|
|
206
|
+
],
|
|
207
|
+
dim=0,
|
|
208
|
+
)
|
|
209
|
+
s = 1
|
|
210
|
+
else:
|
|
211
|
+
output_tokens = torch.cat([self.iou_token.weight, self.mask_tokens.weight], dim=0)
|
|
212
|
+
output_tokens = output_tokens.unsqueeze(0).expand(sparse_prompt_embeddings.size(0), -1, -1)
|
|
213
|
+
tokens = torch.cat((output_tokens, sparse_prompt_embeddings), dim=1)
|
|
214
|
+
|
|
215
|
+
# Expand per-image data in batch direction to be per-mask
|
|
216
|
+
if repeat_image:
|
|
217
|
+
src = torch.repeat_interleave(image_embeddings, tokens.shape[0], dim=0)
|
|
218
|
+
else:
|
|
219
|
+
assert image_embeddings.shape[0] == tokens.shape[0]
|
|
220
|
+
src = image_embeddings
|
|
221
|
+
src = src + dense_prompt_embeddings
|
|
222
|
+
assert image_pe.size(0) == 1, "image_pe should have size 1 in batch dim (from `get_dense_pe()`)"
|
|
223
|
+
pos_src = torch.repeat_interleave(image_pe, tokens.shape[0], dim=0)
|
|
224
|
+
b, c, h, w = src.shape
|
|
225
|
+
|
|
226
|
+
# Run the transformer
|
|
227
|
+
hs, src = self.transformer(src, pos_src, tokens)
|
|
228
|
+
iou_token_out = hs[:, s, :]
|
|
229
|
+
mask_tokens_out = hs[:, s + 1 : (s + 1 + self.num_mask_tokens), :]
|
|
230
|
+
|
|
231
|
+
# Upscale mask embeddings and predict masks using the mask tokens
|
|
232
|
+
src = src.transpose(1, 2).view(b, c, h, w)
|
|
233
|
+
if not self.use_high_res_features:
|
|
234
|
+
upscaled_embedding = self.output_upscaling(src)
|
|
235
|
+
else:
|
|
236
|
+
dc1, ln1, act1, dc2, act2 = self.output_upscaling
|
|
237
|
+
feat_s0, feat_s1 = high_res_features
|
|
238
|
+
upscaled_embedding = act1(ln1(dc1(src) + feat_s1))
|
|
239
|
+
upscaled_embedding = act2(dc2(upscaled_embedding) + feat_s0)
|
|
240
|
+
|
|
241
|
+
hyper_in_list: List[torch.Tensor] = []
|
|
242
|
+
for i in range(self.num_mask_tokens):
|
|
243
|
+
hyper_in_list.append(self.output_hypernetworks_mlps[i](mask_tokens_out[:, i, :]))
|
|
244
|
+
hyper_in = torch.stack(hyper_in_list, dim=1)
|
|
245
|
+
b, c, h, w = upscaled_embedding.shape
|
|
246
|
+
masks = (hyper_in @ upscaled_embedding.view(b, c, h * w)).view(b, -1, h, w)
|
|
247
|
+
|
|
248
|
+
# Generate mask quality predictions
|
|
249
|
+
iou_pred = self.iou_prediction_head(iou_token_out)
|
|
250
|
+
if self.pred_obj_scores:
|
|
251
|
+
assert s == 1
|
|
252
|
+
object_score_logits = self.pred_obj_score_head(hs[:, 0, :])
|
|
253
|
+
else:
|
|
254
|
+
# Obj scores logits - default to 10.0, i.e. assuming the object is present, sigmoid(10)=1
|
|
255
|
+
object_score_logits = 10.0 * iou_pred.new_ones(iou_pred.shape[0], 1)
|
|
256
|
+
|
|
257
|
+
return masks, iou_pred, mask_tokens_out, object_score_logits
|
|
258
|
+
|
|
259
|
+
def _get_stability_scores(self, mask_logits):
|
|
260
|
+
"""Computes mask stability scores based on IoU between upper and lower thresholds."""
|
|
261
|
+
mask_logits = mask_logits.flatten(-2)
|
|
262
|
+
stability_delta = self.dynamic_multimask_stability_delta
|
|
263
|
+
area_i = torch.sum(mask_logits > stability_delta, dim=-1).float()
|
|
264
|
+
area_u = torch.sum(mask_logits > -stability_delta, dim=-1).float()
|
|
265
|
+
stability_scores = torch.where(area_u > 0, area_i / area_u, 1.0)
|
|
266
|
+
return stability_scores
|
|
267
|
+
|
|
268
|
+
def _dynamic_multimask_via_stability(self, all_mask_logits, all_iou_scores):
|
|
269
|
+
"""
|
|
270
|
+
Dynamically selects the most stable mask output based on stability scores and IoU predictions.
|
|
271
|
+
|
|
272
|
+
When outputting a single mask, if the stability score from the current single-mask output (based on output token
|
|
273
|
+
0) falls below a threshold, we instead select from multi-mask outputs (based on output token 1~3) the mask with
|
|
274
|
+
the highest predicted IoU score.
|
|
275
|
+
|
|
276
|
+
This is intended to ensure a valid mask for both clicking and tracking.
|
|
277
|
+
"""
|
|
278
|
+
# The best mask from multimask output tokens (1~3)
|
|
279
|
+
multimask_logits = all_mask_logits[:, 1:, :, :]
|
|
280
|
+
multimask_iou_scores = all_iou_scores[:, 1:]
|
|
281
|
+
best_scores_inds = torch.argmax(multimask_iou_scores, dim=-1)
|
|
282
|
+
batch_inds = torch.arange(multimask_iou_scores.size(0), device=all_iou_scores.device)
|
|
283
|
+
best_multimask_logits = multimask_logits[batch_inds, best_scores_inds]
|
|
284
|
+
best_multimask_logits = best_multimask_logits.unsqueeze(1)
|
|
285
|
+
best_multimask_iou_scores = multimask_iou_scores[batch_inds, best_scores_inds]
|
|
286
|
+
best_multimask_iou_scores = best_multimask_iou_scores.unsqueeze(1)
|
|
287
|
+
|
|
288
|
+
# The mask from singlemask output token 0 and its stability score
|
|
289
|
+
singlemask_logits = all_mask_logits[:, 0:1, :, :]
|
|
290
|
+
singlemask_iou_scores = all_iou_scores[:, 0:1]
|
|
291
|
+
stability_scores = self._get_stability_scores(singlemask_logits)
|
|
292
|
+
is_stable = stability_scores >= self.dynamic_multimask_stability_thresh
|
|
293
|
+
|
|
294
|
+
# Dynamically fall back to best multimask output upon low stability scores.
|
|
295
|
+
mask_logits_out = torch.where(
|
|
296
|
+
is_stable[..., None, None].expand_as(singlemask_logits),
|
|
297
|
+
singlemask_logits,
|
|
298
|
+
best_multimask_logits,
|
|
299
|
+
)
|
|
300
|
+
iou_scores_out = torch.where(
|
|
301
|
+
is_stable.expand_as(singlemask_iou_scores),
|
|
302
|
+
singlemask_iou_scores,
|
|
303
|
+
best_multimask_iou_scores,
|
|
304
|
+
)
|
|
305
|
+
return mask_logits_out, iou_scores_out
|
|
@@ -0,0 +1,332 @@
|
|
|
1
|
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
|
+
|
|
3
|
+
from typing import List, Optional, Tuple
|
|
4
|
+
|
|
5
|
+
import torch
|
|
6
|
+
import torch.nn as nn
|
|
7
|
+
import torch.nn.functional as F
|
|
8
|
+
|
|
9
|
+
from ultralytics.models.sam.modules.encoders import PatchEmbed
|
|
10
|
+
|
|
11
|
+
from .sam2_blocks import CXBlock, Fuser, MaskDownSampler, MultiScaleBlock, PositionEmbeddingSine
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
class MemoryEncoder(nn.Module):
|
|
15
|
+
"""Encodes pixel features and masks into a memory representation for efficient image segmentation."""
|
|
16
|
+
|
|
17
|
+
def __init__(
|
|
18
|
+
self,
|
|
19
|
+
out_dim,
|
|
20
|
+
in_dim=256, # in_dim of pix_feats
|
|
21
|
+
):
|
|
22
|
+
"""Initializes the MemoryEncoder module for encoding pixel features and masks in SAM-like models."""
|
|
23
|
+
super().__init__()
|
|
24
|
+
|
|
25
|
+
self.mask_downsampler = MaskDownSampler(kernel_size=3, stride=2, padding=1)
|
|
26
|
+
|
|
27
|
+
self.pix_feat_proj = nn.Conv2d(in_dim, in_dim, kernel_size=1)
|
|
28
|
+
self.fuser = Fuser(CXBlock(dim=256), num_layers=2)
|
|
29
|
+
self.position_encoding = PositionEmbeddingSine(num_pos_feats=64)
|
|
30
|
+
self.out_proj = nn.Identity()
|
|
31
|
+
if out_dim != in_dim:
|
|
32
|
+
self.out_proj = nn.Conv2d(in_dim, out_dim, kernel_size=1)
|
|
33
|
+
|
|
34
|
+
def forward(
|
|
35
|
+
self,
|
|
36
|
+
pix_feat: torch.Tensor,
|
|
37
|
+
masks: torch.Tensor,
|
|
38
|
+
skip_mask_sigmoid: bool = False,
|
|
39
|
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
40
|
+
"""Processes pixel features and masks, fusing them to generate encoded memory representations."""
|
|
41
|
+
if not skip_mask_sigmoid:
|
|
42
|
+
masks = F.sigmoid(masks)
|
|
43
|
+
masks = self.mask_downsampler(masks)
|
|
44
|
+
|
|
45
|
+
# Fuse pix_feats and downsampled masks, in case the visual features are on CPU, cast them to CUDA
|
|
46
|
+
pix_feat = pix_feat.to(masks.device)
|
|
47
|
+
|
|
48
|
+
x = self.pix_feat_proj(pix_feat)
|
|
49
|
+
x = x + masks
|
|
50
|
+
x = self.fuser(x)
|
|
51
|
+
x = self.out_proj(x)
|
|
52
|
+
|
|
53
|
+
pos = self.position_encoding(x).to(x.dtype)
|
|
54
|
+
|
|
55
|
+
return {"vision_features": x, "vision_pos_enc": [pos]}
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
class ImageEncoder(nn.Module):
|
|
59
|
+
"""Encodes images using a trunk-neck architecture, producing multiscale features and positional encodings."""
|
|
60
|
+
|
|
61
|
+
def __init__(
|
|
62
|
+
self,
|
|
63
|
+
trunk: nn.Module,
|
|
64
|
+
neck: nn.Module,
|
|
65
|
+
scalp: int = 0,
|
|
66
|
+
):
|
|
67
|
+
"""Initializes an image encoder with a trunk, neck, and optional scalp for feature extraction."""
|
|
68
|
+
super().__init__()
|
|
69
|
+
self.trunk = trunk
|
|
70
|
+
self.neck = neck
|
|
71
|
+
self.scalp = scalp
|
|
72
|
+
assert (
|
|
73
|
+
self.trunk.channel_list == self.neck.backbone_channel_list
|
|
74
|
+
), f"Channel dims of trunk {self.trunk.channel_list} and neck {self.neck.backbone_channel_list} do not match."
|
|
75
|
+
|
|
76
|
+
def forward(self, sample: torch.Tensor):
|
|
77
|
+
"""Processes image input through trunk and neck, returning features, positional encodings, and FPN outputs."""
|
|
78
|
+
features, pos = self.neck(self.trunk(sample))
|
|
79
|
+
if self.scalp > 0:
|
|
80
|
+
# Discard the lowest resolution features
|
|
81
|
+
features, pos = features[: -self.scalp], pos[: -self.scalp]
|
|
82
|
+
|
|
83
|
+
src = features[-1]
|
|
84
|
+
output = {
|
|
85
|
+
"vision_features": src,
|
|
86
|
+
"vision_pos_enc": pos,
|
|
87
|
+
"backbone_fpn": features,
|
|
88
|
+
}
|
|
89
|
+
return output
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
class FpnNeck(nn.Module):
|
|
93
|
+
"""Feature Pyramid Network (FPN) neck variant for multiscale feature fusion in object detection models."""
|
|
94
|
+
|
|
95
|
+
def __init__(
|
|
96
|
+
self,
|
|
97
|
+
d_model: int,
|
|
98
|
+
backbone_channel_list: List[int],
|
|
99
|
+
kernel_size: int = 1,
|
|
100
|
+
stride: int = 1,
|
|
101
|
+
padding: int = 0,
|
|
102
|
+
fpn_interp_model: str = "bilinear",
|
|
103
|
+
fuse_type: str = "sum",
|
|
104
|
+
fpn_top_down_levels: Optional[List[int]] = None,
|
|
105
|
+
):
|
|
106
|
+
"""
|
|
107
|
+
Initializes a modified Feature Pyramid Network (FPN) neck.
|
|
108
|
+
|
|
109
|
+
This FPN variant removes the output convolution and uses bicubic interpolation for feature resizing,
|
|
110
|
+
similar to ViT positional embedding interpolation.
|
|
111
|
+
|
|
112
|
+
Args:
|
|
113
|
+
d_model (int): Dimension of the model.
|
|
114
|
+
backbone_channel_list (List[int]): List of channel dimensions from the backbone.
|
|
115
|
+
kernel_size (int): Kernel size for the convolutional layers.
|
|
116
|
+
stride (int): Stride for the convolutional layers.
|
|
117
|
+
padding (int): Padding for the convolutional layers.
|
|
118
|
+
fpn_interp_model (str): Interpolation mode for FPN feature resizing.
|
|
119
|
+
fuse_type (str): Type of feature fusion, either 'sum' or 'avg'.
|
|
120
|
+
fpn_top_down_levels (Optional[List[int]]): Levels to have top-down features in outputs.
|
|
121
|
+
|
|
122
|
+
Attributes:
|
|
123
|
+
position_encoding (PositionEmbeddingSine): Sinusoidal positional encoding.
|
|
124
|
+
convs (nn.ModuleList): List of convolutional layers for each backbone level.
|
|
125
|
+
backbone_channel_list (List[int]): List of channel dimensions from the backbone.
|
|
126
|
+
fpn_interp_model (str): Interpolation mode for FPN feature resizing.
|
|
127
|
+
fuse_type (str): Type of feature fusion.
|
|
128
|
+
fpn_top_down_levels (List[int]): Levels with top-down feature propagation.
|
|
129
|
+
|
|
130
|
+
Examples:
|
|
131
|
+
>>> backbone_channels = [64, 128, 256, 512]
|
|
132
|
+
>>> fpn_neck = FpnNeck(256, backbone_channels)
|
|
133
|
+
>>> print(fpn_neck)
|
|
134
|
+
"""
|
|
135
|
+
super().__init__()
|
|
136
|
+
self.position_encoding = PositionEmbeddingSine(num_pos_feats=256)
|
|
137
|
+
self.convs = nn.ModuleList()
|
|
138
|
+
self.backbone_channel_list = backbone_channel_list
|
|
139
|
+
for dim in backbone_channel_list:
|
|
140
|
+
current = nn.Sequential()
|
|
141
|
+
current.add_module(
|
|
142
|
+
"conv",
|
|
143
|
+
nn.Conv2d(
|
|
144
|
+
in_channels=dim,
|
|
145
|
+
out_channels=d_model,
|
|
146
|
+
kernel_size=kernel_size,
|
|
147
|
+
stride=stride,
|
|
148
|
+
padding=padding,
|
|
149
|
+
),
|
|
150
|
+
)
|
|
151
|
+
|
|
152
|
+
self.convs.append(current)
|
|
153
|
+
self.fpn_interp_model = fpn_interp_model
|
|
154
|
+
assert fuse_type in ["sum", "avg"]
|
|
155
|
+
self.fuse_type = fuse_type
|
|
156
|
+
|
|
157
|
+
# levels to have top-down features in its outputs
|
|
158
|
+
# e.g. if fpn_top_down_levels is [2, 3], then only outputs of level 2 and 3
|
|
159
|
+
# have top-down propagation, while outputs of level 0 and level 1 have only
|
|
160
|
+
# lateral features from the same backbone level.
|
|
161
|
+
if fpn_top_down_levels is None:
|
|
162
|
+
# default is to have top-down features on all levels
|
|
163
|
+
fpn_top_down_levels = range(len(self.convs))
|
|
164
|
+
self.fpn_top_down_levels = list(fpn_top_down_levels)
|
|
165
|
+
|
|
166
|
+
def forward(self, xs: List[torch.Tensor]):
|
|
167
|
+
"""
|
|
168
|
+
Performs forward pass through the Feature Pyramid Network (FPN) neck.
|
|
169
|
+
|
|
170
|
+
Args:
|
|
171
|
+
xs (List[torch.Tensor]): List of input tensors from the backbone, with shape (B, C, H, W) for each tensor.
|
|
172
|
+
|
|
173
|
+
Returns:
|
|
174
|
+
(Tuple[List[torch.Tensor], List[torch.Tensor]]): A tuple containing two lists:
|
|
175
|
+
- out: List of output feature maps after FPN processing, with shape (B, d_model, H, W) for each tensor.
|
|
176
|
+
- pos: List of positional encodings corresponding to each output feature map.
|
|
177
|
+
|
|
178
|
+
Examples:
|
|
179
|
+
>>> fpn_neck = FpnNeck(d_model=256, backbone_channel_list=[64, 128, 256, 512])
|
|
180
|
+
>>> inputs = [torch.rand(1, c, 32, 32) for c in [64, 128, 256, 512]]
|
|
181
|
+
>>> outputs, positions = fpn_neck(inputs)
|
|
182
|
+
"""
|
|
183
|
+
out = [None] * len(self.convs)
|
|
184
|
+
pos = [None] * len(self.convs)
|
|
185
|
+
assert len(xs) == len(self.convs)
|
|
186
|
+
# fpn forward pass
|
|
187
|
+
# see https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/fpn.py
|
|
188
|
+
prev_features = None
|
|
189
|
+
# forward in top-down order (from low to high resolution)
|
|
190
|
+
n = len(self.convs) - 1
|
|
191
|
+
for i in range(n, -1, -1):
|
|
192
|
+
x = xs[i]
|
|
193
|
+
lateral_features = self.convs[n - i](x)
|
|
194
|
+
if i in self.fpn_top_down_levels and prev_features is not None:
|
|
195
|
+
top_down_features = F.interpolate(
|
|
196
|
+
prev_features.to(dtype=torch.float32),
|
|
197
|
+
scale_factor=2.0,
|
|
198
|
+
mode=self.fpn_interp_model,
|
|
199
|
+
align_corners=(None if self.fpn_interp_model == "nearest" else False),
|
|
200
|
+
antialias=False,
|
|
201
|
+
)
|
|
202
|
+
prev_features = lateral_features + top_down_features
|
|
203
|
+
if self.fuse_type == "avg":
|
|
204
|
+
prev_features /= 2
|
|
205
|
+
else:
|
|
206
|
+
prev_features = lateral_features
|
|
207
|
+
x_out = prev_features
|
|
208
|
+
out[i] = x_out
|
|
209
|
+
pos[i] = self.position_encoding(x_out).to(x_out.dtype)
|
|
210
|
+
|
|
211
|
+
return out, pos
|
|
212
|
+
|
|
213
|
+
|
|
214
|
+
class Hiera(nn.Module):
|
|
215
|
+
"""Hierarchical vision transformer for efficient multiscale feature extraction in image processing tasks."""
|
|
216
|
+
|
|
217
|
+
def __init__(
|
|
218
|
+
self,
|
|
219
|
+
embed_dim: int = 96, # initial embed dim
|
|
220
|
+
num_heads: int = 1, # initial number of heads
|
|
221
|
+
drop_path_rate: float = 0.0, # stochastic depth
|
|
222
|
+
q_pool: int = 3, # number of q_pool stages
|
|
223
|
+
q_stride: Tuple[int, int] = (2, 2), # downsample stride bet. stages
|
|
224
|
+
stages: Tuple[int, ...] = (2, 3, 16, 3), # blocks per stage
|
|
225
|
+
dim_mul: float = 2.0, # dim_mul factor at stage shift
|
|
226
|
+
head_mul: float = 2.0, # head_mul factor at stage shift
|
|
227
|
+
window_pos_embed_bkg_spatial_size: Tuple[int, int] = (14, 14),
|
|
228
|
+
# window size per stage, when not using global att.
|
|
229
|
+
window_spec: Tuple[int, ...] = (
|
|
230
|
+
8,
|
|
231
|
+
4,
|
|
232
|
+
14,
|
|
233
|
+
7,
|
|
234
|
+
),
|
|
235
|
+
# global attn in these blocks
|
|
236
|
+
global_att_blocks: Tuple[int, ...] = (
|
|
237
|
+
12,
|
|
238
|
+
16,
|
|
239
|
+
20,
|
|
240
|
+
),
|
|
241
|
+
return_interm_layers=True, # return feats from every stage
|
|
242
|
+
):
|
|
243
|
+
"""Initializes a Hiera model with configurable architecture for hierarchical vision transformers."""
|
|
244
|
+
super().__init__()
|
|
245
|
+
|
|
246
|
+
assert len(stages) == len(window_spec)
|
|
247
|
+
self.window_spec = window_spec
|
|
248
|
+
|
|
249
|
+
depth = sum(stages)
|
|
250
|
+
self.q_stride = q_stride
|
|
251
|
+
self.stage_ends = [sum(stages[:i]) - 1 for i in range(1, len(stages) + 1)]
|
|
252
|
+
assert 0 <= q_pool <= len(self.stage_ends[:-1])
|
|
253
|
+
self.q_pool_blocks = [x + 1 for x in self.stage_ends[:-1]][:q_pool]
|
|
254
|
+
self.return_interm_layers = return_interm_layers
|
|
255
|
+
|
|
256
|
+
self.patch_embed = PatchEmbed(
|
|
257
|
+
embed_dim=embed_dim,
|
|
258
|
+
kernel_size=(7, 7),
|
|
259
|
+
stride=(4, 4),
|
|
260
|
+
padding=(3, 3),
|
|
261
|
+
)
|
|
262
|
+
# Which blocks have global att?
|
|
263
|
+
self.global_att_blocks = global_att_blocks
|
|
264
|
+
|
|
265
|
+
# Windowed positional embedding (https://arxiv.org/abs/2311.05613)
|
|
266
|
+
self.window_pos_embed_bkg_spatial_size = window_pos_embed_bkg_spatial_size
|
|
267
|
+
self.pos_embed = nn.Parameter(torch.zeros(1, embed_dim, *self.window_pos_embed_bkg_spatial_size))
|
|
268
|
+
self.pos_embed_window = nn.Parameter(torch.zeros(1, embed_dim, self.window_spec[0], self.window_spec[0]))
|
|
269
|
+
|
|
270
|
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
|
|
271
|
+
|
|
272
|
+
cur_stage = 1
|
|
273
|
+
self.blocks = nn.ModuleList()
|
|
274
|
+
|
|
275
|
+
for i in range(depth):
|
|
276
|
+
dim_out = embed_dim
|
|
277
|
+
# lags by a block, so first block of
|
|
278
|
+
# next stage uses an initial window size
|
|
279
|
+
# of previous stage and final window size of current stage
|
|
280
|
+
window_size = self.window_spec[cur_stage - 1]
|
|
281
|
+
|
|
282
|
+
if self.global_att_blocks is not None:
|
|
283
|
+
window_size = 0 if i in self.global_att_blocks else window_size
|
|
284
|
+
|
|
285
|
+
if i - 1 in self.stage_ends:
|
|
286
|
+
dim_out = int(embed_dim * dim_mul)
|
|
287
|
+
num_heads = int(num_heads * head_mul)
|
|
288
|
+
cur_stage += 1
|
|
289
|
+
|
|
290
|
+
block = MultiScaleBlock(
|
|
291
|
+
dim=embed_dim,
|
|
292
|
+
dim_out=dim_out,
|
|
293
|
+
num_heads=num_heads,
|
|
294
|
+
drop_path=dpr[i],
|
|
295
|
+
q_stride=self.q_stride if i in self.q_pool_blocks else None,
|
|
296
|
+
window_size=window_size,
|
|
297
|
+
)
|
|
298
|
+
|
|
299
|
+
embed_dim = dim_out
|
|
300
|
+
self.blocks.append(block)
|
|
301
|
+
|
|
302
|
+
self.channel_list = (
|
|
303
|
+
[self.blocks[i].dim_out for i in self.stage_ends[::-1]]
|
|
304
|
+
if return_interm_layers
|
|
305
|
+
else [self.blocks[-1].dim_out]
|
|
306
|
+
)
|
|
307
|
+
|
|
308
|
+
def _get_pos_embed(self, hw: Tuple[int, int]) -> torch.Tensor:
|
|
309
|
+
"""Generate positional embeddings by interpolating and combining window and background embeddings."""
|
|
310
|
+
h, w = hw
|
|
311
|
+
window_embed = self.pos_embed_window
|
|
312
|
+
pos_embed = F.interpolate(self.pos_embed, size=(h, w), mode="bicubic")
|
|
313
|
+
pos_embed = pos_embed + window_embed.tile([x // y for x, y in zip(pos_embed.shape, window_embed.shape)])
|
|
314
|
+
pos_embed = pos_embed.permute(0, 2, 3, 1)
|
|
315
|
+
return pos_embed
|
|
316
|
+
|
|
317
|
+
def forward(self, x: torch.Tensor) -> List[torch.Tensor]:
|
|
318
|
+
"""Performs hierarchical vision transformer forward pass, returning multiscale feature maps."""
|
|
319
|
+
x = self.patch_embed(x)
|
|
320
|
+
# x: (B, H, W, C)
|
|
321
|
+
|
|
322
|
+
# Add pos embed
|
|
323
|
+
x = x + self._get_pos_embed(x.shape[1:3])
|
|
324
|
+
|
|
325
|
+
outputs = []
|
|
326
|
+
for i, blk in enumerate(self.blocks):
|
|
327
|
+
x = blk(x)
|
|
328
|
+
if (i == self.stage_ends[-1]) or (i in self.stage_ends and self.return_interm_layers):
|
|
329
|
+
feats = x.permute(0, 3, 1, 2)
|
|
330
|
+
outputs.append(feats)
|
|
331
|
+
|
|
332
|
+
return outputs
|