ultralytics 8.2.69__py3-none-any.whl → 8.2.70__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- ultralytics/__init__.py +3 -2
- ultralytics/cfg/__init__.py +4 -0
- ultralytics/models/__init__.py +2 -1
- ultralytics/models/fastsam/predict.py +1 -0
- ultralytics/models/sam/build.py +2 -2
- ultralytics/models/sam/model.py +10 -2
- ultralytics/models/sam/modules/decoders.py +1 -42
- ultralytics/models/sam/modules/encoders.py +3 -1
- ultralytics/models/sam/modules/sam.py +5 -7
- ultralytics/models/sam/modules/transformer.py +4 -3
- ultralytics/models/sam/predict.py +12 -6
- ultralytics/models/sam2/__init__.py +6 -0
- ultralytics/models/sam2/build.py +156 -0
- ultralytics/models/sam2/model.py +97 -0
- ultralytics/models/sam2/modules/__init__.py +1 -0
- ultralytics/models/sam2/modules/decoders.py +305 -0
- ultralytics/models/sam2/modules/encoders.py +332 -0
- ultralytics/models/sam2/modules/memory_attention.py +170 -0
- ultralytics/models/sam2/modules/sam2.py +804 -0
- ultralytics/models/sam2/modules/sam2_blocks.py +715 -0
- ultralytics/models/sam2/modules/utils.py +191 -0
- ultralytics/models/sam2/predict.py +182 -0
- ultralytics/nn/modules/transformer.py +5 -3
- ultralytics/utils/torch_utils.py +9 -6
- {ultralytics-8.2.69.dist-info → ultralytics-8.2.70.dist-info}/METADATA +1 -1
- {ultralytics-8.2.69.dist-info → ultralytics-8.2.70.dist-info}/RECORD +30 -19
- {ultralytics-8.2.69.dist-info → ultralytics-8.2.70.dist-info}/LICENSE +0 -0
- {ultralytics-8.2.69.dist-info → ultralytics-8.2.70.dist-info}/WHEEL +0 -0
- {ultralytics-8.2.69.dist-info → ultralytics-8.2.70.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.2.69.dist-info → ultralytics-8.2.70.dist-info}/top_level.txt +0 -0
ultralytics/__init__.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
2
|
|
|
3
|
-
__version__ = "8.2.
|
|
3
|
+
__version__ = "8.2.70"
|
|
4
4
|
|
|
5
5
|
import os
|
|
6
6
|
|
|
@@ -8,7 +8,7 @@ import os
|
|
|
8
8
|
os.environ["OMP_NUM_THREADS"] = "1" # reduce CPU utilization during training
|
|
9
9
|
|
|
10
10
|
from ultralytics.data.explorer.explorer import Explorer
|
|
11
|
-
from ultralytics.models import NAS, RTDETR, SAM, YOLO, FastSAM, YOLOWorld
|
|
11
|
+
from ultralytics.models import NAS, RTDETR, SAM, SAM2, YOLO, FastSAM, YOLOWorld
|
|
12
12
|
from ultralytics.utils import ASSETS, SETTINGS
|
|
13
13
|
from ultralytics.utils.checks import check_yolo as checks
|
|
14
14
|
from ultralytics.utils.downloads import download
|
|
@@ -21,6 +21,7 @@ __all__ = (
|
|
|
21
21
|
"YOLOWorld",
|
|
22
22
|
"NAS",
|
|
23
23
|
"SAM",
|
|
24
|
+
"SAM2",
|
|
24
25
|
"FastSAM",
|
|
25
26
|
"RTDETR",
|
|
26
27
|
"checks",
|
ultralytics/cfg/__init__.py
CHANGED
ultralytics/models/__init__.py
CHANGED
|
@@ -4,6 +4,7 @@ from .fastsam import FastSAM
|
|
|
4
4
|
from .nas import NAS
|
|
5
5
|
from .rtdetr import RTDETR
|
|
6
6
|
from .sam import SAM
|
|
7
|
+
from .sam2 import SAM2
|
|
7
8
|
from .yolo import YOLO, YOLOWorld
|
|
8
9
|
|
|
9
|
-
__all__ = "YOLO", "RTDETR", "SAM", "FastSAM", "NAS", "YOLOWorld" # allow simpler import
|
|
10
|
+
__all__ = "YOLO", "RTDETR", "SAM", "FastSAM", "NAS", "YOLOWorld", "SAM2" # allow simpler import
|
|
@@ -21,6 +21,7 @@ class FastSAMPredictor(SegmentationPredictor):
|
|
|
21
21
|
"""
|
|
22
22
|
|
|
23
23
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None):
|
|
24
|
+
"""Initializes a FastSAMPredictor for fast SAM segmentation tasks in Ultralytics YOLO framework."""
|
|
24
25
|
super().__init__(cfg, overrides, _callbacks)
|
|
25
26
|
self.prompts = {}
|
|
26
27
|
|
ultralytics/models/sam/build.py
CHANGED
|
@@ -14,7 +14,7 @@ from ultralytics.utils.downloads import attempt_download_asset
|
|
|
14
14
|
|
|
15
15
|
from .modules.decoders import MaskDecoder
|
|
16
16
|
from .modules.encoders import ImageEncoderViT, PromptEncoder
|
|
17
|
-
from .modules.sam import
|
|
17
|
+
from .modules.sam import SAMModel
|
|
18
18
|
from .modules.tiny_encoder import TinyViT
|
|
19
19
|
from .modules.transformer import TwoWayTransformer
|
|
20
20
|
|
|
@@ -105,7 +105,7 @@ def _build_sam(
|
|
|
105
105
|
out_chans=prompt_embed_dim,
|
|
106
106
|
)
|
|
107
107
|
)
|
|
108
|
-
sam =
|
|
108
|
+
sam = SAMModel(
|
|
109
109
|
image_encoder=image_encoder,
|
|
110
110
|
prompt_encoder=PromptEncoder(
|
|
111
111
|
embed_dim=prompt_embed_dim,
|
ultralytics/models/sam/model.py
CHANGED
|
@@ -44,6 +44,7 @@ class SAM(Model):
|
|
|
44
44
|
"""
|
|
45
45
|
if model and Path(model).suffix not in {".pt", ".pth"}:
|
|
46
46
|
raise NotImplementedError("SAM prediction requires pre-trained *.pt or *.pth model.")
|
|
47
|
+
self.is_sam2 = "sam2" in Path(model).stem
|
|
47
48
|
super().__init__(model=model, task="segment")
|
|
48
49
|
|
|
49
50
|
def _load(self, weights: str, task=None):
|
|
@@ -54,7 +55,12 @@ class SAM(Model):
|
|
|
54
55
|
weights (str): Path to the weights file.
|
|
55
56
|
task (str, optional): Task name. Defaults to None.
|
|
56
57
|
"""
|
|
57
|
-
self.
|
|
58
|
+
if self.is_sam2:
|
|
59
|
+
from ..sam2.build import build_sam2
|
|
60
|
+
|
|
61
|
+
self.model = build_sam2(weights)
|
|
62
|
+
else:
|
|
63
|
+
self.model = build_sam(weights)
|
|
58
64
|
|
|
59
65
|
def predict(self, source, stream=False, bboxes=None, points=None, labels=None, **kwargs):
|
|
60
66
|
"""
|
|
@@ -112,4 +118,6 @@ class SAM(Model):
|
|
|
112
118
|
Returns:
|
|
113
119
|
(dict): A dictionary mapping the 'segment' task to its corresponding 'Predictor'.
|
|
114
120
|
"""
|
|
115
|
-
|
|
121
|
+
from ..sam2.predict import SAM2Predictor
|
|
122
|
+
|
|
123
|
+
return {"segment": {"predictor": SAM2Predictor if self.is_sam2 else Predictor}}
|
|
@@ -4,9 +4,8 @@ from typing import List, Tuple, Type
|
|
|
4
4
|
|
|
5
5
|
import torch
|
|
6
6
|
from torch import nn
|
|
7
|
-
from torch.nn import functional as F
|
|
8
7
|
|
|
9
|
-
from ultralytics.nn.modules import LayerNorm2d
|
|
8
|
+
from ultralytics.nn.modules import MLP, LayerNorm2d
|
|
10
9
|
|
|
11
10
|
|
|
12
11
|
class MaskDecoder(nn.Module):
|
|
@@ -28,7 +27,6 @@ class MaskDecoder(nn.Module):
|
|
|
28
27
|
|
|
29
28
|
def __init__(
|
|
30
29
|
self,
|
|
31
|
-
*,
|
|
32
30
|
transformer_dim: int,
|
|
33
31
|
transformer: nn.Module,
|
|
34
32
|
num_multimask_outputs: int = 3,
|
|
@@ -149,42 +147,3 @@ class MaskDecoder(nn.Module):
|
|
|
149
147
|
iou_pred = self.iou_prediction_head(iou_token_out)
|
|
150
148
|
|
|
151
149
|
return masks, iou_pred
|
|
152
|
-
|
|
153
|
-
|
|
154
|
-
class MLP(nn.Module):
|
|
155
|
-
"""
|
|
156
|
-
MLP (Multi-Layer Perceptron) model lightly adapted from
|
|
157
|
-
https://github.com/facebookresearch/MaskFormer/blob/main/mask_former/modeling/transformer/transformer_predictor.py
|
|
158
|
-
"""
|
|
159
|
-
|
|
160
|
-
def __init__(
|
|
161
|
-
self,
|
|
162
|
-
input_dim: int,
|
|
163
|
-
hidden_dim: int,
|
|
164
|
-
output_dim: int,
|
|
165
|
-
num_layers: int,
|
|
166
|
-
sigmoid_output: bool = False,
|
|
167
|
-
) -> None:
|
|
168
|
-
"""
|
|
169
|
-
Initializes the MLP (Multi-Layer Perceptron) model.
|
|
170
|
-
|
|
171
|
-
Args:
|
|
172
|
-
input_dim (int): The dimensionality of the input features.
|
|
173
|
-
hidden_dim (int): The dimensionality of the hidden layers.
|
|
174
|
-
output_dim (int): The dimensionality of the output layer.
|
|
175
|
-
num_layers (int): The number of hidden layers.
|
|
176
|
-
sigmoid_output (bool, optional): Apply a sigmoid activation to the output layer. Defaults to False.
|
|
177
|
-
"""
|
|
178
|
-
super().__init__()
|
|
179
|
-
self.num_layers = num_layers
|
|
180
|
-
h = [hidden_dim] * (num_layers - 1)
|
|
181
|
-
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
|
|
182
|
-
self.sigmoid_output = sigmoid_output
|
|
183
|
-
|
|
184
|
-
def forward(self, x):
|
|
185
|
-
"""Executes feedforward within the neural network module and applies activation."""
|
|
186
|
-
for i, layer in enumerate(self.layers):
|
|
187
|
-
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
|
|
188
|
-
if self.sigmoid_output:
|
|
189
|
-
x = torch.sigmoid(x)
|
|
190
|
-
return x
|
|
@@ -211,6 +211,8 @@ class PromptEncoder(nn.Module):
|
|
|
211
211
|
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
|
212
212
|
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
|
213
213
|
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
|
214
|
+
point_embedding[labels == 2] += self.point_embeddings[2].weight
|
|
215
|
+
point_embedding[labels == 3] += self.point_embeddings[3].weight
|
|
214
216
|
return point_embedding
|
|
215
217
|
|
|
216
218
|
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
|
@@ -226,8 +228,8 @@ class PromptEncoder(nn.Module):
|
|
|
226
228
|
"""Embeds mask inputs."""
|
|
227
229
|
return self.mask_downscaling(masks)
|
|
228
230
|
|
|
231
|
+
@staticmethod
|
|
229
232
|
def _get_batch_size(
|
|
230
|
-
self,
|
|
231
233
|
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
|
232
234
|
boxes: Optional[torch.Tensor],
|
|
233
235
|
masks: Optional[torch.Tensor],
|
|
@@ -15,15 +15,14 @@ from .decoders import MaskDecoder
|
|
|
15
15
|
from .encoders import ImageEncoderViT, PromptEncoder
|
|
16
16
|
|
|
17
17
|
|
|
18
|
-
class
|
|
18
|
+
class SAMModel(nn.Module):
|
|
19
19
|
"""
|
|
20
|
-
|
|
21
|
-
embeddings, and prompt encoders to encode various types of input prompts. These embeddings are then used by
|
|
22
|
-
decoder to predict object masks.
|
|
20
|
+
SAMModel (Segment Anything Model) is designed for object segmentation tasks. It uses image encoders to generate
|
|
21
|
+
image embeddings, and prompt encoders to encode various types of input prompts. These embeddings are then used by
|
|
22
|
+
the mask decoder to predict object masks.
|
|
23
23
|
|
|
24
24
|
Attributes:
|
|
25
25
|
mask_threshold (float): Threshold value for mask prediction.
|
|
26
|
-
image_format (str): Format of the input image, default is 'RGB'.
|
|
27
26
|
image_encoder (ImageEncoderViT): The backbone used to encode the image into embeddings.
|
|
28
27
|
prompt_encoder (PromptEncoder): Encodes various types of input prompts.
|
|
29
28
|
mask_decoder (MaskDecoder): Predicts object masks from the image and prompt embeddings.
|
|
@@ -32,7 +31,6 @@ class Sam(nn.Module):
|
|
|
32
31
|
"""
|
|
33
32
|
|
|
34
33
|
mask_threshold: float = 0.0
|
|
35
|
-
image_format: str = "RGB"
|
|
36
34
|
|
|
37
35
|
def __init__(
|
|
38
36
|
self,
|
|
@@ -43,7 +41,7 @@ class Sam(nn.Module):
|
|
|
43
41
|
pixel_std: List[float] = (58.395, 57.12, 57.375),
|
|
44
42
|
) -> None:
|
|
45
43
|
"""
|
|
46
|
-
Initialize the
|
|
44
|
+
Initialize the SAMModel class to predict object masks from an image and input prompts.
|
|
47
45
|
|
|
48
46
|
Note:
|
|
49
47
|
All forward() operations moved to SAMPredictor.
|
|
@@ -86,7 +86,6 @@ class TwoWayTransformer(nn.Module):
|
|
|
86
86
|
(torch.Tensor): the processed image_embedding
|
|
87
87
|
"""
|
|
88
88
|
# BxCxHxW -> BxHWxC == B x N_image_tokens x C
|
|
89
|
-
bs, c, h, w = image_embedding.shape
|
|
90
89
|
image_embedding = image_embedding.flatten(2).permute(0, 2, 1)
|
|
91
90
|
image_pe = image_pe.flatten(2).permute(0, 2, 1)
|
|
92
91
|
|
|
@@ -212,6 +211,7 @@ class Attention(nn.Module):
|
|
|
212
211
|
embedding_dim: int,
|
|
213
212
|
num_heads: int,
|
|
214
213
|
downsample_rate: int = 1,
|
|
214
|
+
kv_in_dim: int = None,
|
|
215
215
|
) -> None:
|
|
216
216
|
"""
|
|
217
217
|
Initializes the Attention model with the given dimensions and settings.
|
|
@@ -226,13 +226,14 @@ class Attention(nn.Module):
|
|
|
226
226
|
"""
|
|
227
227
|
super().__init__()
|
|
228
228
|
self.embedding_dim = embedding_dim
|
|
229
|
+
self.kv_in_dim = kv_in_dim if kv_in_dim is not None else embedding_dim
|
|
229
230
|
self.internal_dim = embedding_dim // downsample_rate
|
|
230
231
|
self.num_heads = num_heads
|
|
231
232
|
assert self.internal_dim % num_heads == 0, "num_heads must divide embedding_dim."
|
|
232
233
|
|
|
233
234
|
self.q_proj = nn.Linear(embedding_dim, self.internal_dim)
|
|
234
|
-
self.k_proj = nn.Linear(
|
|
235
|
-
self.v_proj = nn.Linear(
|
|
235
|
+
self.k_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
|
|
236
|
+
self.v_proj = nn.Linear(self.kv_in_dim, self.internal_dim)
|
|
236
237
|
self.out_proj = nn.Linear(self.internal_dim, embedding_dim)
|
|
237
238
|
|
|
238
239
|
@staticmethod
|
|
@@ -168,7 +168,7 @@ class Predictor(BasePredictor):
|
|
|
168
168
|
- np.ndarray: An array of length C containing quality scores predicted by the model for each mask.
|
|
169
169
|
- np.ndarray: Low-resolution logits of shape CxHxW for subsequent inference, where H=W=256.
|
|
170
170
|
"""
|
|
171
|
-
features = self.
|
|
171
|
+
features = self.get_im_features(im) if self.features is None else self.features
|
|
172
172
|
|
|
173
173
|
src_shape, dst_shape = self.batch[1][0].shape[:2], im.shape[2:]
|
|
174
174
|
r = 1.0 if self.segment_all else min(dst_shape[0] / src_shape[0], dst_shape[1] / src_shape[1])
|
|
@@ -334,7 +334,7 @@ class Predictor(BasePredictor):
|
|
|
334
334
|
"""
|
|
335
335
|
device = select_device(self.args.device, verbose=verbose)
|
|
336
336
|
if model is None:
|
|
337
|
-
model =
|
|
337
|
+
model = self.get_model()
|
|
338
338
|
model.eval()
|
|
339
339
|
self.model = model.to(device)
|
|
340
340
|
self.device = device
|
|
@@ -348,6 +348,10 @@ class Predictor(BasePredictor):
|
|
|
348
348
|
self.model.fp16 = False
|
|
349
349
|
self.done_warmup = True
|
|
350
350
|
|
|
351
|
+
def get_model(self):
|
|
352
|
+
"""Built Segment Anything Model (SAM) model."""
|
|
353
|
+
return build_sam(self.args.model)
|
|
354
|
+
|
|
351
355
|
def postprocess(self, preds, img, orig_imgs):
|
|
352
356
|
"""
|
|
353
357
|
Post-processes SAM's inference outputs to generate object detection masks and bounding boxes.
|
|
@@ -412,16 +416,18 @@ class Predictor(BasePredictor):
|
|
|
412
416
|
AssertionError: If more than one image is set.
|
|
413
417
|
"""
|
|
414
418
|
if self.model is None:
|
|
415
|
-
|
|
416
|
-
self.setup_model(model)
|
|
419
|
+
self.setup_model(model=None)
|
|
417
420
|
self.setup_source(image)
|
|
418
421
|
assert len(self.dataset) == 1, "`set_image` only supports setting one image!"
|
|
419
422
|
for batch in self.dataset:
|
|
420
423
|
im = self.preprocess(batch[1])
|
|
421
|
-
self.features = self.
|
|
422
|
-
self.im = im
|
|
424
|
+
self.features = self.get_im_features(im)
|
|
423
425
|
break
|
|
424
426
|
|
|
427
|
+
def get_im_features(self, im):
|
|
428
|
+
"""Get image features from the SAM image encoder."""
|
|
429
|
+
return self.model.image_encoder(im)
|
|
430
|
+
|
|
425
431
|
def set_prompts(self, prompts):
|
|
426
432
|
"""Set prompts in advance."""
|
|
427
433
|
self.prompts = prompts
|
|
@@ -0,0 +1,156 @@
|
|
|
1
|
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
|
|
5
|
+
from ultralytics.utils.downloads import attempt_download_asset
|
|
6
|
+
|
|
7
|
+
from .modules.encoders import FpnNeck, Hiera, ImageEncoder, MemoryEncoder
|
|
8
|
+
from .modules.memory_attention import MemoryAttention, MemoryAttentionLayer
|
|
9
|
+
from .modules.sam2 import SAM2Model
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def build_sam2_t(checkpoint=None):
|
|
13
|
+
"""Build and return a Segment Anything Model (SAM2) tiny-size model with specified architecture parameters."""
|
|
14
|
+
return _build_sam2(
|
|
15
|
+
encoder_embed_dim=96,
|
|
16
|
+
encoder_stages=[1, 2, 7, 2],
|
|
17
|
+
encoder_num_heads=1,
|
|
18
|
+
encoder_global_att_blocks=[5, 7, 9],
|
|
19
|
+
encoder_window_spec=[8, 4, 14, 7],
|
|
20
|
+
encoder_backbone_channel_list=[768, 384, 192, 96],
|
|
21
|
+
checkpoint=checkpoint,
|
|
22
|
+
)
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def build_sam2_s(checkpoint=None):
|
|
26
|
+
"""Builds and returns a small-size Segment Anything Model (SAM2) with specified architecture parameters."""
|
|
27
|
+
return _build_sam2(
|
|
28
|
+
encoder_embed_dim=96,
|
|
29
|
+
encoder_stages=[1, 2, 11, 2],
|
|
30
|
+
encoder_num_heads=1,
|
|
31
|
+
encoder_global_att_blocks=[7, 10, 13],
|
|
32
|
+
encoder_window_spec=[8, 4, 14, 7],
|
|
33
|
+
encoder_backbone_channel_list=[768, 384, 192, 96],
|
|
34
|
+
checkpoint=checkpoint,
|
|
35
|
+
)
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
def build_sam2_b(checkpoint=None):
|
|
39
|
+
"""Builds and returns a Segment Anything Model (SAM2) base-size model with specified architecture parameters."""
|
|
40
|
+
return _build_sam2(
|
|
41
|
+
encoder_embed_dim=112,
|
|
42
|
+
encoder_stages=[2, 3, 16, 3],
|
|
43
|
+
encoder_num_heads=2,
|
|
44
|
+
encoder_global_att_blocks=[12, 16, 20],
|
|
45
|
+
encoder_window_spec=[8, 4, 14, 7],
|
|
46
|
+
encoder_window_spatial_size=[14, 14],
|
|
47
|
+
encoder_backbone_channel_list=[896, 448, 224, 112],
|
|
48
|
+
checkpoint=checkpoint,
|
|
49
|
+
)
|
|
50
|
+
|
|
51
|
+
|
|
52
|
+
def build_sam2_l(checkpoint=None):
|
|
53
|
+
"""Build and return a Segment Anything Model (SAM2) large-size model with specified architecture parameters."""
|
|
54
|
+
return _build_sam2(
|
|
55
|
+
encoder_embed_dim=144,
|
|
56
|
+
encoder_stages=[2, 6, 36, 4],
|
|
57
|
+
encoder_num_heads=2,
|
|
58
|
+
encoder_global_att_blocks=[23, 33, 43],
|
|
59
|
+
encoder_window_spec=[8, 4, 16, 8],
|
|
60
|
+
encoder_backbone_channel_list=[1152, 576, 288, 144],
|
|
61
|
+
checkpoint=checkpoint,
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
|
|
65
|
+
def _build_sam2(
|
|
66
|
+
encoder_embed_dim=1280,
|
|
67
|
+
encoder_stages=[2, 6, 36, 4],
|
|
68
|
+
encoder_num_heads=2,
|
|
69
|
+
encoder_global_att_blocks=[7, 15, 23, 31],
|
|
70
|
+
encoder_backbone_channel_list=[1152, 576, 288, 144],
|
|
71
|
+
encoder_window_spatial_size=[7, 7],
|
|
72
|
+
encoder_window_spec=[8, 4, 16, 8],
|
|
73
|
+
checkpoint=None,
|
|
74
|
+
):
|
|
75
|
+
"""Builds a SAM2 model with specified architecture parameters and optional checkpoint loading."""
|
|
76
|
+
image_encoder = ImageEncoder(
|
|
77
|
+
trunk=Hiera(
|
|
78
|
+
embed_dim=encoder_embed_dim,
|
|
79
|
+
num_heads=encoder_num_heads,
|
|
80
|
+
stages=encoder_stages,
|
|
81
|
+
global_att_blocks=encoder_global_att_blocks,
|
|
82
|
+
window_pos_embed_bkg_spatial_size=encoder_window_spatial_size,
|
|
83
|
+
window_spec=encoder_window_spec,
|
|
84
|
+
),
|
|
85
|
+
neck=FpnNeck(
|
|
86
|
+
d_model=256,
|
|
87
|
+
backbone_channel_list=encoder_backbone_channel_list,
|
|
88
|
+
fpn_top_down_levels=[2, 3],
|
|
89
|
+
fpn_interp_model="nearest",
|
|
90
|
+
),
|
|
91
|
+
scalp=1,
|
|
92
|
+
)
|
|
93
|
+
memory_attention = MemoryAttention(d_model=256, pos_enc_at_input=True, num_layers=4, layer=MemoryAttentionLayer())
|
|
94
|
+
memory_encoder = MemoryEncoder(out_dim=64)
|
|
95
|
+
|
|
96
|
+
sam2 = SAM2Model(
|
|
97
|
+
image_encoder=image_encoder,
|
|
98
|
+
memory_attention=memory_attention,
|
|
99
|
+
memory_encoder=memory_encoder,
|
|
100
|
+
num_maskmem=7,
|
|
101
|
+
image_size=1024,
|
|
102
|
+
sigmoid_scale_for_mem_enc=20.0,
|
|
103
|
+
sigmoid_bias_for_mem_enc=-10.0,
|
|
104
|
+
use_mask_input_as_output_without_sam=True,
|
|
105
|
+
directly_add_no_mem_embed=True,
|
|
106
|
+
use_high_res_features_in_sam=True,
|
|
107
|
+
multimask_output_in_sam=True,
|
|
108
|
+
iou_prediction_use_sigmoid=True,
|
|
109
|
+
use_obj_ptrs_in_encoder=True,
|
|
110
|
+
add_tpos_enc_to_obj_ptrs=True,
|
|
111
|
+
only_obj_ptrs_in_the_past_for_eval=True,
|
|
112
|
+
pred_obj_scores=True,
|
|
113
|
+
pred_obj_scores_mlp=True,
|
|
114
|
+
fixed_no_obj_ptr=True,
|
|
115
|
+
multimask_output_for_tracking=True,
|
|
116
|
+
use_multimask_token_for_obj_ptr=True,
|
|
117
|
+
multimask_min_pt_num=0,
|
|
118
|
+
multimask_max_pt_num=1,
|
|
119
|
+
use_mlp_for_obj_ptr_proj=True,
|
|
120
|
+
compile_image_encoder=False,
|
|
121
|
+
sam_mask_decoder_extra_args=dict(
|
|
122
|
+
dynamic_multimask_via_stability=True,
|
|
123
|
+
dynamic_multimask_stability_delta=0.05,
|
|
124
|
+
dynamic_multimask_stability_thresh=0.98,
|
|
125
|
+
),
|
|
126
|
+
)
|
|
127
|
+
|
|
128
|
+
if checkpoint is not None:
|
|
129
|
+
checkpoint = attempt_download_asset(checkpoint)
|
|
130
|
+
with open(checkpoint, "rb") as f:
|
|
131
|
+
state_dict = torch.load(f)["model"]
|
|
132
|
+
sam2.load_state_dict(state_dict)
|
|
133
|
+
sam2.eval()
|
|
134
|
+
return sam2
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
sam_model_map = {
|
|
138
|
+
"sam2_t.pt": build_sam2_t,
|
|
139
|
+
"sam2_s.pt": build_sam2_s,
|
|
140
|
+
"sam2_b.pt": build_sam2_b,
|
|
141
|
+
"sam2_l.pt": build_sam2_l,
|
|
142
|
+
}
|
|
143
|
+
|
|
144
|
+
|
|
145
|
+
def build_sam2(ckpt="sam_b.pt"):
|
|
146
|
+
"""Constructs a Segment Anything Model (SAM2) based on the specified checkpoint, with various size options."""
|
|
147
|
+
model_builder = None
|
|
148
|
+
ckpt = str(ckpt) # to allow Path ckpt types
|
|
149
|
+
for k in sam_model_map.keys():
|
|
150
|
+
if ckpt.endswith(k):
|
|
151
|
+
model_builder = sam_model_map.get(k)
|
|
152
|
+
|
|
153
|
+
if not model_builder:
|
|
154
|
+
raise FileNotFoundError(f"{ckpt} is not a supported SAM model. Available models are: \n {sam_model_map.keys()}")
|
|
155
|
+
|
|
156
|
+
return model_builder(ckpt)
|
|
@@ -0,0 +1,97 @@
|
|
|
1
|
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|
|
2
|
+
"""
|
|
3
|
+
SAM2 model interface.
|
|
4
|
+
|
|
5
|
+
This module provides an interface to the Segment Anything Model (SAM2) from Ultralytics, designed for real-time image
|
|
6
|
+
segmentation tasks. The SAM2 model allows for promptable segmentation with unparalleled versatility in image analysis,
|
|
7
|
+
and has been trained on the SA-1B dataset. It features zero-shot performance capabilities, enabling it to adapt to new
|
|
8
|
+
image distributions and tasks without prior knowledge.
|
|
9
|
+
|
|
10
|
+
Key Features:
|
|
11
|
+
- Promptable segmentation
|
|
12
|
+
- Real-time performance
|
|
13
|
+
- Zero-shot transfer capabilities
|
|
14
|
+
- Trained on SA-1B dataset
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
from ultralytics.models.sam import SAM
|
|
18
|
+
|
|
19
|
+
from .build import build_sam2
|
|
20
|
+
from .predict import SAM2Predictor
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class SAM2(SAM):
|
|
24
|
+
"""
|
|
25
|
+
SAM2 class for real-time image segmentation using the Segment Anything Model (SAM2).
|
|
26
|
+
|
|
27
|
+
This class extends the SAM base class, providing an interface to the SAM2 model for promptable segmentation
|
|
28
|
+
tasks. It supports loading pre-trained weights and offers zero-shot performance capabilities.
|
|
29
|
+
|
|
30
|
+
Attributes:
|
|
31
|
+
model (torch.nn.Module): The loaded SAM2 model.
|
|
32
|
+
task_map (Dict[str, Type[SAM2Predictor]]): Mapping of 'segment' task to SAM2Predictor.
|
|
33
|
+
|
|
34
|
+
Methods:
|
|
35
|
+
__init__: Initializes the SAM2 model with pre-trained weights.
|
|
36
|
+
_load: Loads specified weights into the SAM2 model.
|
|
37
|
+
|
|
38
|
+
Examples:
|
|
39
|
+
>>> sam2 = SAM2("sam2_b.pt")
|
|
40
|
+
>>> sam2._load('path/to/sam2_weights.pt')
|
|
41
|
+
>>> task_map = sam2.task_map
|
|
42
|
+
>>> print(task_map)
|
|
43
|
+
{'segment': SAM2Predictor}
|
|
44
|
+
|
|
45
|
+
Notes:
|
|
46
|
+
- Supports .pt and .pth file extensions for model weights.
|
|
47
|
+
- Offers zero-shot transfer capabilities for new image distributions and tasks.
|
|
48
|
+
"""
|
|
49
|
+
|
|
50
|
+
def __init__(self, model="sam2_b.pt") -> None:
|
|
51
|
+
"""
|
|
52
|
+
Initializes the SAM2 model with a pre-trained model file.
|
|
53
|
+
|
|
54
|
+
Args:
|
|
55
|
+
model (str): Path to the pre-trained SAM2 model file. File should have a .pt or .pth extension.
|
|
56
|
+
|
|
57
|
+
Raises:
|
|
58
|
+
NotImplementedError: If the model file extension is not .pt or .pth.
|
|
59
|
+
|
|
60
|
+
Examples:
|
|
61
|
+
>>> sam2 = SAM2("sam2_b.pt")
|
|
62
|
+
"""
|
|
63
|
+
super().__init__(model=model)
|
|
64
|
+
|
|
65
|
+
def _load(self, weights: str, task=None):
|
|
66
|
+
"""
|
|
67
|
+
Loads the specified weights into the SAM2 model.
|
|
68
|
+
|
|
69
|
+
This method is responsible for loading pre-trained weights into the SAM2 model. It supports loading
|
|
70
|
+
weights from files with .pt or .pth extensions.
|
|
71
|
+
|
|
72
|
+
Args:
|
|
73
|
+
weights (str): Path to the weights file. Should be a file with .pt or .pth extension.
|
|
74
|
+
task (str | None): Task name. If provided, it may be used to configure model-specific settings.
|
|
75
|
+
|
|
76
|
+
Examples:
|
|
77
|
+
>>> sam2_model = SAM2()
|
|
78
|
+
>>> sam2_model._load('path/to/sam2_weights.pt')
|
|
79
|
+
"""
|
|
80
|
+
self.model = build_sam2(weights)
|
|
81
|
+
|
|
82
|
+
@property
|
|
83
|
+
def task_map(self):
|
|
84
|
+
"""
|
|
85
|
+
Provides a mapping from the 'segment' task to its corresponding 'Predictor'.
|
|
86
|
+
|
|
87
|
+
Returns:
|
|
88
|
+
(Dict[str, Type[SAM2Predictor]]): A dictionary mapping the 'segment' task to its corresponding
|
|
89
|
+
SAM2Predictor class.
|
|
90
|
+
|
|
91
|
+
Examples:
|
|
92
|
+
>>> sam2 = SAM2()
|
|
93
|
+
>>> task_map = sam2.task_map
|
|
94
|
+
>>> print(task_map)
|
|
95
|
+
{'segment': SAM2Predictor}
|
|
96
|
+
"""
|
|
97
|
+
return {"segment": {"predictor": SAM2Predictor}}
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
# Ultralytics YOLO 🚀, AGPL-3.0 license
|