ultralytics 8.2.61__py3-none-any.whl → 8.2.63__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +154 -103
- ultralytics/data/annotator.py +16 -12
- ultralytics/data/augment.py +1478 -195
- ultralytics/data/explorer/gui/dash.py +41 -26
- ultralytics/data/loaders.py +1 -1
- ultralytics/engine/model.py +483 -176
- ultralytics/engine/results.py +1035 -256
- ultralytics/models/fastsam/predict.py +18 -73
- ultralytics/models/fastsam/utils.py +0 -42
- ultralytics/models/nas/predict.py +1 -3
- ultralytics/models/rtdetr/predict.py +4 -6
- ultralytics/models/sam/predict.py +1 -3
- ultralytics/models/yolo/classify/predict.py +1 -3
- ultralytics/models/yolo/detect/predict.py +1 -3
- ultralytics/models/yolo/pose/predict.py +1 -3
- ultralytics/models/yolo/segment/predict.py +1 -3
- ultralytics/solutions/streamlit_inference.py +5 -2
- ultralytics/utils/downloads.py +1 -1
- {ultralytics-8.2.61.dist-info → ultralytics-8.2.63.dist-info}/METADATA +1 -1
- {ultralytics-8.2.61.dist-info → ultralytics-8.2.63.dist-info}/RECORD +25 -25
- {ultralytics-8.2.61.dist-info → ultralytics-8.2.63.dist-info}/WHEEL +1 -1
- {ultralytics-8.2.61.dist-info → ultralytics-8.2.63.dist-info}/LICENSE +0 -0
- {ultralytics-8.2.61.dist-info → ultralytics-8.2.63.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.2.61.dist-info → ultralytics-8.2.63.dist-info}/top_level.txt +0 -0
ultralytics/engine/results.py
CHANGED
|
@@ -19,7 +19,28 @@ from ultralytics.utils.torch_utils import smart_inference_mode
|
|
|
19
19
|
|
|
20
20
|
|
|
21
21
|
class BaseTensor(SimpleClass):
|
|
22
|
-
"""
|
|
22
|
+
"""
|
|
23
|
+
Base tensor class with additional methods for easy manipulation and device handling.
|
|
24
|
+
|
|
25
|
+
Attributes:
|
|
26
|
+
data (torch.Tensor | np.ndarray): Prediction data such as bounding boxes, masks, or keypoints.
|
|
27
|
+
orig_shape (Tuple[int, int]): Original shape of the image, typically in the format (height, width).
|
|
28
|
+
|
|
29
|
+
Methods:
|
|
30
|
+
cpu: Return a copy of the tensor stored in CPU memory.
|
|
31
|
+
numpy: Returns a copy of the tensor as a numpy array.
|
|
32
|
+
cuda: Moves the tensor to GPU memory, returning a new instance if necessary.
|
|
33
|
+
to: Return a copy of the tensor with the specified device and dtype.
|
|
34
|
+
|
|
35
|
+
Examples:
|
|
36
|
+
>>> import torch
|
|
37
|
+
>>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
|
|
38
|
+
>>> orig_shape = (720, 1280)
|
|
39
|
+
>>> base_tensor = BaseTensor(data, orig_shape)
|
|
40
|
+
>>> cpu_tensor = base_tensor.cpu()
|
|
41
|
+
>>> numpy_array = base_tensor.numpy()
|
|
42
|
+
>>> gpu_tensor = base_tensor.cuda()
|
|
43
|
+
"""
|
|
23
44
|
|
|
24
45
|
def __init__(self, data, orig_shape) -> None:
|
|
25
46
|
"""
|
|
@@ -27,20 +48,13 @@ class BaseTensor(SimpleClass):
|
|
|
27
48
|
|
|
28
49
|
Args:
|
|
29
50
|
data (torch.Tensor | np.ndarray): Prediction data such as bounding boxes, masks, or keypoints.
|
|
30
|
-
orig_shape (
|
|
31
|
-
|
|
32
|
-
Returns:
|
|
33
|
-
(None)
|
|
34
|
-
|
|
35
|
-
Example:
|
|
36
|
-
```python
|
|
37
|
-
import torch
|
|
38
|
-
from ultralytics.engine.results import BaseTensor
|
|
51
|
+
orig_shape (Tuple[int, int]): Original shape of the image in (height, width) format.
|
|
39
52
|
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
53
|
+
Examples:
|
|
54
|
+
>>> import torch
|
|
55
|
+
>>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
|
|
56
|
+
>>> orig_shape = (720, 1280)
|
|
57
|
+
>>> base_tensor = BaseTensor(data, orig_shape)
|
|
44
58
|
"""
|
|
45
59
|
assert isinstance(data, (torch.Tensor, np.ndarray)), "data must be torch.Tensor or np.ndarray"
|
|
46
60
|
self.data = data
|
|
@@ -48,31 +62,124 @@ class BaseTensor(SimpleClass):
|
|
|
48
62
|
|
|
49
63
|
@property
|
|
50
64
|
def shape(self):
|
|
51
|
-
"""
|
|
65
|
+
"""
|
|
66
|
+
Returns the shape of the underlying data tensor.
|
|
67
|
+
|
|
68
|
+
Returns:
|
|
69
|
+
(Tuple[int, ...]): The shape of the data tensor.
|
|
70
|
+
|
|
71
|
+
Examples:
|
|
72
|
+
>>> data = torch.rand(100, 4)
|
|
73
|
+
>>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
|
|
74
|
+
>>> print(base_tensor.shape)
|
|
75
|
+
(100, 4)
|
|
76
|
+
"""
|
|
52
77
|
return self.data.shape
|
|
53
78
|
|
|
54
79
|
def cpu(self):
|
|
55
|
-
"""
|
|
80
|
+
"""
|
|
81
|
+
Returns a copy of the tensor stored in CPU memory.
|
|
82
|
+
|
|
83
|
+
Returns:
|
|
84
|
+
(BaseTensor): A new BaseTensor object with the data tensor moved to CPU memory.
|
|
85
|
+
|
|
86
|
+
Examples:
|
|
87
|
+
>>> data = torch.tensor([[1, 2, 3], [4, 5, 6]]).cuda()
|
|
88
|
+
>>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
|
|
89
|
+
>>> cpu_tensor = base_tensor.cpu()
|
|
90
|
+
>>> isinstance(cpu_tensor, BaseTensor)
|
|
91
|
+
True
|
|
92
|
+
>>> cpu_tensor.data.device
|
|
93
|
+
device(type='cpu')
|
|
94
|
+
"""
|
|
56
95
|
return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.cpu(), self.orig_shape)
|
|
57
96
|
|
|
58
97
|
def numpy(self):
|
|
59
|
-
"""
|
|
98
|
+
"""
|
|
99
|
+
Returns a copy of the tensor as a numpy array.
|
|
100
|
+
|
|
101
|
+
Returns:
|
|
102
|
+
(np.ndarray): A numpy array containing the same data as the original tensor.
|
|
103
|
+
|
|
104
|
+
Examples:
|
|
105
|
+
>>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
|
|
106
|
+
>>> orig_shape = (720, 1280)
|
|
107
|
+
>>> base_tensor = BaseTensor(data, orig_shape)
|
|
108
|
+
>>> numpy_array = base_tensor.numpy()
|
|
109
|
+
>>> print(type(numpy_array))
|
|
110
|
+
<class 'numpy.ndarray'>
|
|
111
|
+
"""
|
|
60
112
|
return self if isinstance(self.data, np.ndarray) else self.__class__(self.data.numpy(), self.orig_shape)
|
|
61
113
|
|
|
62
114
|
def cuda(self):
|
|
63
|
-
"""
|
|
115
|
+
"""
|
|
116
|
+
Moves the tensor to GPU memory.
|
|
117
|
+
|
|
118
|
+
Returns:
|
|
119
|
+
(BaseTensor): A new BaseTensor instance with the data moved to GPU memory if it's not already a
|
|
120
|
+
numpy array, otherwise returns self.
|
|
121
|
+
|
|
122
|
+
Examples:
|
|
123
|
+
>>> import torch
|
|
124
|
+
>>> from ultralytics.engine.results import BaseTensor
|
|
125
|
+
>>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
|
|
126
|
+
>>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
|
|
127
|
+
>>> gpu_tensor = base_tensor.cuda()
|
|
128
|
+
>>> print(gpu_tensor.data.device)
|
|
129
|
+
cuda:0
|
|
130
|
+
"""
|
|
64
131
|
return self.__class__(torch.as_tensor(self.data).cuda(), self.orig_shape)
|
|
65
132
|
|
|
66
133
|
def to(self, *args, **kwargs):
|
|
67
|
-
"""
|
|
134
|
+
"""
|
|
135
|
+
Return a copy of the tensor with the specified device and dtype.
|
|
136
|
+
|
|
137
|
+
Args:
|
|
138
|
+
*args (Any): Variable length argument list to be passed to torch.Tensor.to().
|
|
139
|
+
**kwargs (Any): Arbitrary keyword arguments to be passed to torch.Tensor.to().
|
|
140
|
+
|
|
141
|
+
Returns:
|
|
142
|
+
(BaseTensor): A new BaseTensor instance with the data moved to the specified device and/or dtype.
|
|
143
|
+
|
|
144
|
+
Examples:
|
|
145
|
+
>>> base_tensor = BaseTensor(torch.randn(3, 4), orig_shape=(480, 640))
|
|
146
|
+
>>> cuda_tensor = base_tensor.to('cuda')
|
|
147
|
+
>>> float16_tensor = base_tensor.to(dtype=torch.float16)
|
|
148
|
+
"""
|
|
68
149
|
return self.__class__(torch.as_tensor(self.data).to(*args, **kwargs), self.orig_shape)
|
|
69
150
|
|
|
70
151
|
def __len__(self): # override len(results)
|
|
71
|
-
"""
|
|
152
|
+
"""
|
|
153
|
+
Returns the length of the underlying data tensor.
|
|
154
|
+
|
|
155
|
+
Returns:
|
|
156
|
+
(int): The number of elements in the first dimension of the data tensor.
|
|
157
|
+
|
|
158
|
+
Examples:
|
|
159
|
+
>>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
|
|
160
|
+
>>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
|
|
161
|
+
>>> len(base_tensor)
|
|
162
|
+
2
|
|
163
|
+
"""
|
|
72
164
|
return len(self.data)
|
|
73
165
|
|
|
74
166
|
def __getitem__(self, idx):
|
|
75
|
-
"""
|
|
167
|
+
"""
|
|
168
|
+
Returns a new BaseTensor instance containing the specified indexed elements of the data tensor.
|
|
169
|
+
|
|
170
|
+
Args:
|
|
171
|
+
idx (int | List[int] | torch.Tensor): Index or indices to select from the data tensor.
|
|
172
|
+
|
|
173
|
+
Returns:
|
|
174
|
+
(BaseTensor): A new BaseTensor instance containing the indexed data.
|
|
175
|
+
|
|
176
|
+
Examples:
|
|
177
|
+
>>> data = torch.tensor([[1, 2, 3], [4, 5, 6]])
|
|
178
|
+
>>> base_tensor = BaseTensor(data, orig_shape=(720, 1280))
|
|
179
|
+
>>> result = base_tensor[0] # Select the first row
|
|
180
|
+
>>> print(result.data)
|
|
181
|
+
tensor([1, 2, 3])
|
|
182
|
+
"""
|
|
76
183
|
return self.__class__(self.data[idx], self.orig_shape)
|
|
77
184
|
|
|
78
185
|
|
|
@@ -80,31 +187,43 @@ class Results(SimpleClass):
|
|
|
80
187
|
"""
|
|
81
188
|
A class for storing and manipulating inference results.
|
|
82
189
|
|
|
190
|
+
This class encapsulates the functionality for handling detection, segmentation, pose estimation,
|
|
191
|
+
and classification results from YOLO models.
|
|
192
|
+
|
|
83
193
|
Attributes:
|
|
84
194
|
orig_img (numpy.ndarray): Original image as a numpy array.
|
|
85
|
-
orig_shape (
|
|
86
|
-
boxes (Boxes
|
|
87
|
-
masks (Masks
|
|
88
|
-
probs (Probs
|
|
89
|
-
keypoints (Keypoints
|
|
90
|
-
|
|
91
|
-
|
|
195
|
+
orig_shape (Tuple[int, int]): Original image shape in (height, width) format.
|
|
196
|
+
boxes (Boxes | None): Object containing detection bounding boxes.
|
|
197
|
+
masks (Masks | None): Object containing detection masks.
|
|
198
|
+
probs (Probs | None): Object containing class probabilities for classification tasks.
|
|
199
|
+
keypoints (Keypoints | None): Object containing detected keypoints for each object.
|
|
200
|
+
obb (OBB | None): Object containing oriented bounding boxes.
|
|
201
|
+
speed (Dict[str, float | None]): Dictionary of preprocess, inference, and postprocess speeds.
|
|
202
|
+
names (Dict[int, str]): Dictionary mapping class IDs to class names.
|
|
92
203
|
path (str): Path to the image file.
|
|
204
|
+
_keys (Tuple[str, ...]): Tuple of attribute names for internal use.
|
|
93
205
|
|
|
94
206
|
Methods:
|
|
95
|
-
update
|
|
96
|
-
cpu
|
|
97
|
-
numpy
|
|
98
|
-
cuda
|
|
99
|
-
to
|
|
100
|
-
new
|
|
101
|
-
plot
|
|
102
|
-
show
|
|
103
|
-
save
|
|
104
|
-
verbose
|
|
105
|
-
save_txt
|
|
106
|
-
save_crop
|
|
107
|
-
tojson
|
|
207
|
+
update: Updates object attributes with new detection results.
|
|
208
|
+
cpu: Returns a copy of the Results object with all tensors on CPU memory.
|
|
209
|
+
numpy: Returns a copy of the Results object with all tensors as numpy arrays.
|
|
210
|
+
cuda: Returns a copy of the Results object with all tensors on GPU memory.
|
|
211
|
+
to: Returns a copy of the Results object with tensors on a specified device and dtype.
|
|
212
|
+
new: Returns a new Results object with the same image, path, and names.
|
|
213
|
+
plot: Plots detection results on an input image, returning an annotated image.
|
|
214
|
+
show: Shows annotated results on screen.
|
|
215
|
+
save: Saves annotated results to file.
|
|
216
|
+
verbose: Returns a log string for each task, detailing detections and classifications.
|
|
217
|
+
save_txt: Saves detection results to a text file.
|
|
218
|
+
save_crop: Saves cropped detection images.
|
|
219
|
+
tojson: Converts detection results to JSON format.
|
|
220
|
+
|
|
221
|
+
Examples:
|
|
222
|
+
>>> results = model("path/to/image.jpg")
|
|
223
|
+
>>> for result in results:
|
|
224
|
+
... print(result.boxes) # Print detection boxes
|
|
225
|
+
... result.show() # Display the annotated image
|
|
226
|
+
... result.save(filename='result.jpg') # Save annotated image
|
|
108
227
|
"""
|
|
109
228
|
|
|
110
229
|
def __init__(
|
|
@@ -116,26 +235,26 @@ class Results(SimpleClass):
|
|
|
116
235
|
Args:
|
|
117
236
|
orig_img (numpy.ndarray): The original image as a numpy array.
|
|
118
237
|
path (str): The path to the image file.
|
|
119
|
-
names (
|
|
120
|
-
boxes (torch.
|
|
121
|
-
masks (torch.
|
|
122
|
-
probs (torch.
|
|
123
|
-
keypoints (torch.
|
|
124
|
-
|
|
125
|
-
|
|
126
|
-
|
|
127
|
-
|
|
128
|
-
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
|
|
132
|
-
|
|
133
|
-
|
|
134
|
-
|
|
135
|
-
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
238
|
+
names (Dict): A dictionary of class names.
|
|
239
|
+
boxes (torch.Tensor | None): A 2D tensor of bounding box coordinates for each detection.
|
|
240
|
+
masks (torch.Tensor | None): A 3D tensor of detection masks, where each mask is a binary image.
|
|
241
|
+
probs (torch.Tensor | None): A 1D tensor of probabilities of each class for classification task.
|
|
242
|
+
keypoints (torch.Tensor | None): A 2D tensor of keypoint coordinates for each detection.
|
|
243
|
+
obb (torch.Tensor | None): A 2D tensor of oriented bounding box coordinates for each detection.
|
|
244
|
+
speed (Dict | None): A dictionary containing preprocess, inference, and postprocess speeds (ms/image).
|
|
245
|
+
|
|
246
|
+
Examples:
|
|
247
|
+
>>> results = model("path/to/image.jpg")
|
|
248
|
+
>>> result = results[0] # Get the first result
|
|
249
|
+
>>> boxes = result.boxes # Get the boxes for the first result
|
|
250
|
+
>>> masks = result.masks # Get the masks for the first result
|
|
251
|
+
|
|
252
|
+
Notes:
|
|
253
|
+
For the default pose model, keypoint indices for human body pose estimation are:
|
|
254
|
+
0: Nose, 1: Left Eye, 2: Right Eye, 3: Left Ear, 4: Right Ear
|
|
255
|
+
5: Left Shoulder, 6: Right Shoulder, 7: Left Elbow, 8: Right Elbow
|
|
256
|
+
9: Left Wrist, 10: Right Wrist, 11: Left Hip, 12: Right Hip
|
|
257
|
+
13: Left Knee, 14: Right Knee, 15: Left Ankle, 16: Right Ankle
|
|
139
258
|
"""
|
|
140
259
|
self.orig_img = orig_img
|
|
141
260
|
self.orig_shape = orig_img.shape[:2]
|
|
@@ -151,18 +270,59 @@ class Results(SimpleClass):
|
|
|
151
270
|
self._keys = "boxes", "masks", "probs", "keypoints", "obb"
|
|
152
271
|
|
|
153
272
|
def __getitem__(self, idx):
|
|
154
|
-
"""
|
|
273
|
+
"""
|
|
274
|
+
Return a Results object for a specific index of inference results.
|
|
275
|
+
|
|
276
|
+
Args:
|
|
277
|
+
idx (int | slice): Index or slice to retrieve from the Results object.
|
|
278
|
+
|
|
279
|
+
Returns:
|
|
280
|
+
(Results): A new Results object containing the specified subset of inference results.
|
|
281
|
+
|
|
282
|
+
Examples:
|
|
283
|
+
>>> results = model('path/to/image.jpg') # Perform inference
|
|
284
|
+
>>> single_result = results[0] # Get the first result
|
|
285
|
+
>>> subset_results = results[1:4] # Get a slice of results
|
|
286
|
+
"""
|
|
155
287
|
return self._apply("__getitem__", idx)
|
|
156
288
|
|
|
157
289
|
def __len__(self):
|
|
158
|
-
"""
|
|
290
|
+
"""
|
|
291
|
+
Return the number of detections in the Results object.
|
|
292
|
+
|
|
293
|
+
Returns:
|
|
294
|
+
(int): The number of detections, determined by the length of the first non-empty attribute
|
|
295
|
+
(boxes, masks, probs, keypoints, or obb).
|
|
296
|
+
|
|
297
|
+
Examples:
|
|
298
|
+
>>> results = Results(orig_img, path, names, boxes=torch.rand(5, 4))
|
|
299
|
+
>>> len(results)
|
|
300
|
+
5
|
|
301
|
+
"""
|
|
159
302
|
for k in self._keys:
|
|
160
303
|
v = getattr(self, k)
|
|
161
304
|
if v is not None:
|
|
162
305
|
return len(v)
|
|
163
306
|
|
|
164
307
|
def update(self, boxes=None, masks=None, probs=None, obb=None):
|
|
165
|
-
"""
|
|
308
|
+
"""
|
|
309
|
+
Updates the Results object with new detection data.
|
|
310
|
+
|
|
311
|
+
This method allows updating the boxes, masks, probabilities, and oriented bounding boxes (OBB) of the
|
|
312
|
+
Results object. It ensures that boxes are clipped to the original image shape.
|
|
313
|
+
|
|
314
|
+
Args:
|
|
315
|
+
boxes (torch.Tensor | None): A tensor of shape (N, 6) containing bounding box coordinates and
|
|
316
|
+
confidence scores. The format is (x1, y1, x2, y2, conf, class).
|
|
317
|
+
masks (torch.Tensor | None): A tensor of shape (N, H, W) containing segmentation masks.
|
|
318
|
+
probs (torch.Tensor | None): A tensor of shape (num_classes,) containing class probabilities.
|
|
319
|
+
obb (torch.Tensor | None): A tensor of shape (N, 5) containing oriented bounding box coordinates.
|
|
320
|
+
|
|
321
|
+
Examples:
|
|
322
|
+
>>> results = model('image.jpg')
|
|
323
|
+
>>> new_boxes = torch.tensor([[100, 100, 200, 200, 0.9, 0]])
|
|
324
|
+
>>> results[0].update(boxes=new_boxes)
|
|
325
|
+
"""
|
|
166
326
|
if boxes is not None:
|
|
167
327
|
self.boxes = Boxes(ops.clip_boxes(boxes, self.orig_shape), self.orig_shape)
|
|
168
328
|
if masks is not None:
|
|
@@ -174,24 +334,23 @@ class Results(SimpleClass):
|
|
|
174
334
|
|
|
175
335
|
def _apply(self, fn, *args, **kwargs):
|
|
176
336
|
"""
|
|
177
|
-
Applies a function to all non-empty attributes and returns a new Results object with modified attributes.
|
|
178
|
-
|
|
337
|
+
Applies a function to all non-empty attributes and returns a new Results object with modified attributes.
|
|
338
|
+
|
|
339
|
+
This method is internally called by methods like .to(), .cuda(), .cpu(), etc.
|
|
179
340
|
|
|
180
341
|
Args:
|
|
181
342
|
fn (str): The name of the function to apply.
|
|
182
|
-
*args: Variable length argument list to pass to the function.
|
|
183
|
-
**kwargs: Arbitrary keyword arguments to pass to the function.
|
|
343
|
+
*args (Any): Variable length argument list to pass to the function.
|
|
344
|
+
**kwargs (Any): Arbitrary keyword arguments to pass to the function.
|
|
184
345
|
|
|
185
346
|
Returns:
|
|
186
347
|
(Results): A new Results object with attributes modified by the applied function.
|
|
187
348
|
|
|
188
|
-
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
|
|
192
|
-
|
|
193
|
-
result_cpu = result.cpu()
|
|
194
|
-
```
|
|
349
|
+
Examples:
|
|
350
|
+
>>> results = model("path/to/image.jpg")
|
|
351
|
+
>>> for result in results:
|
|
352
|
+
... result_cuda = result.cuda()
|
|
353
|
+
... result_cpu = result.cpu()
|
|
195
354
|
"""
|
|
196
355
|
r = self.new()
|
|
197
356
|
for k in self._keys:
|
|
@@ -201,23 +360,86 @@ class Results(SimpleClass):
|
|
|
201
360
|
return r
|
|
202
361
|
|
|
203
362
|
def cpu(self):
|
|
204
|
-
"""
|
|
363
|
+
"""
|
|
364
|
+
Returns a copy of the Results object with all its tensors moved to CPU memory.
|
|
365
|
+
|
|
366
|
+
This method creates a new Results object with all tensor attributes (boxes, masks, probs, keypoints, obb)
|
|
367
|
+
transferred to CPU memory. It's useful for moving data from GPU to CPU for further processing or saving.
|
|
368
|
+
|
|
369
|
+
Returns:
|
|
370
|
+
(Results): A new Results object with all tensor attributes on CPU memory.
|
|
371
|
+
|
|
372
|
+
Examples:
|
|
373
|
+
>>> results = model('path/to/image.jpg') # Perform inference
|
|
374
|
+
>>> cpu_result = results[0].cpu() # Move the first result to CPU
|
|
375
|
+
>>> print(cpu_result.boxes.device) # Output: cpu
|
|
376
|
+
"""
|
|
205
377
|
return self._apply("cpu")
|
|
206
378
|
|
|
207
379
|
def numpy(self):
|
|
208
|
-
"""
|
|
380
|
+
"""
|
|
381
|
+
Converts all tensors in the Results object to numpy arrays.
|
|
382
|
+
|
|
383
|
+
Returns:
|
|
384
|
+
(Results): A new Results object with all tensors converted to numpy arrays.
|
|
385
|
+
|
|
386
|
+
Examples:
|
|
387
|
+
>>> results = model('path/to/image.jpg')
|
|
388
|
+
>>> numpy_result = results[0].numpy()
|
|
389
|
+
>>> type(numpy_result.boxes.data)
|
|
390
|
+
<class 'numpy.ndarray'>
|
|
391
|
+
|
|
392
|
+
Notes:
|
|
393
|
+
This method creates a new Results object, leaving the original unchanged. It's useful for
|
|
394
|
+
interoperability with numpy-based libraries or when CPU-based operations are required.
|
|
395
|
+
"""
|
|
209
396
|
return self._apply("numpy")
|
|
210
397
|
|
|
211
398
|
def cuda(self):
|
|
212
|
-
"""
|
|
399
|
+
"""
|
|
400
|
+
Moves all tensors in the Results object to GPU memory.
|
|
401
|
+
|
|
402
|
+
Returns:
|
|
403
|
+
(Results): A new Results object with all tensors moved to CUDA device.
|
|
404
|
+
|
|
405
|
+
Examples:
|
|
406
|
+
>>> results = model("path/to/image.jpg")
|
|
407
|
+
>>> cuda_results = results[0].cuda() # Move first result to GPU
|
|
408
|
+
>>> for result in results:
|
|
409
|
+
... result_cuda = result.cuda() # Move each result to GPU
|
|
410
|
+
"""
|
|
213
411
|
return self._apply("cuda")
|
|
214
412
|
|
|
215
413
|
def to(self, *args, **kwargs):
|
|
216
|
-
"""
|
|
414
|
+
"""
|
|
415
|
+
Moves all tensors in the Results object to the specified device and dtype.
|
|
416
|
+
|
|
417
|
+
Args:
|
|
418
|
+
*args (Any): Variable length argument list to be passed to torch.Tensor.to().
|
|
419
|
+
**kwargs (Any): Arbitrary keyword arguments to be passed to torch.Tensor.to().
|
|
420
|
+
|
|
421
|
+
Returns:
|
|
422
|
+
(Results): A new Results object with all tensors moved to the specified device and dtype.
|
|
423
|
+
|
|
424
|
+
Examples:
|
|
425
|
+
>>> results = model("path/to/image.jpg")
|
|
426
|
+
>>> result_cuda = results[0].to("cuda") # Move first result to GPU
|
|
427
|
+
>>> result_cpu = results[0].to("cpu") # Move first result to CPU
|
|
428
|
+
>>> result_half = results[0].to(dtype=torch.float16) # Convert first result to half precision
|
|
429
|
+
"""
|
|
217
430
|
return self._apply("to", *args, **kwargs)
|
|
218
431
|
|
|
219
432
|
def new(self):
|
|
220
|
-
"""
|
|
433
|
+
"""
|
|
434
|
+
Creates a new Results object with the same image, path, names, and speed attributes.
|
|
435
|
+
|
|
436
|
+
Returns:
|
|
437
|
+
(Results): A new Results object with copied attributes from the original instance.
|
|
438
|
+
|
|
439
|
+
Examples:
|
|
440
|
+
>>> results = model("path/to/image.jpg")
|
|
441
|
+
>>> new_result = results[0].new()
|
|
442
|
+
"""
|
|
221
443
|
return Results(orig_img=self.orig_img, path=self.path, names=self.names, speed=self.speed)
|
|
222
444
|
|
|
223
445
|
def plot(
|
|
@@ -240,42 +462,34 @@ class Results(SimpleClass):
|
|
|
240
462
|
filename=None,
|
|
241
463
|
):
|
|
242
464
|
"""
|
|
243
|
-
Plots
|
|
465
|
+
Plots detection results on an input RGB image.
|
|
244
466
|
|
|
245
467
|
Args:
|
|
246
|
-
conf (bool): Whether to plot
|
|
247
|
-
line_width (float
|
|
248
|
-
font_size (float
|
|
249
|
-
font (str):
|
|
468
|
+
conf (bool): Whether to plot detection confidence scores.
|
|
469
|
+
line_width (float | None): Line width of bounding boxes. If None, scaled to image size.
|
|
470
|
+
font_size (float | None): Font size for text. If None, scaled to image size.
|
|
471
|
+
font (str): Font to use for text.
|
|
250
472
|
pil (bool): Whether to return the image as a PIL Image.
|
|
251
|
-
img (
|
|
252
|
-
im_gpu (torch.Tensor): Normalized image
|
|
253
|
-
kpt_radius (int
|
|
473
|
+
img (np.ndarray | None): Image to plot on. If None, uses original image.
|
|
474
|
+
im_gpu (torch.Tensor | None): Normalized image on GPU for faster mask plotting.
|
|
475
|
+
kpt_radius (int): Radius of drawn keypoints.
|
|
254
476
|
kpt_line (bool): Whether to draw lines connecting keypoints.
|
|
255
|
-
labels (bool): Whether to plot
|
|
256
|
-
boxes (bool): Whether to plot
|
|
257
|
-
masks (bool): Whether to plot
|
|
258
|
-
probs (bool): Whether to plot classification
|
|
259
|
-
show (bool): Whether to display the annotated image
|
|
260
|
-
save (bool): Whether to save the annotated image
|
|
261
|
-
filename (str): Filename to save image
|
|
262
|
-
|
|
263
|
-
Returns:
|
|
264
|
-
(
|
|
265
|
-
|
|
266
|
-
|
|
267
|
-
|
|
268
|
-
|
|
269
|
-
|
|
270
|
-
|
|
271
|
-
model = YOLO('yolov8n.pt')
|
|
272
|
-
results = model('bus.jpg') # results list
|
|
273
|
-
for r in results:
|
|
274
|
-
im_array = r.plot() # plot a BGR numpy array of predictions
|
|
275
|
-
im = Image.fromarray(im_array[..., ::-1]) # RGB PIL image
|
|
276
|
-
im.show() # show image
|
|
277
|
-
im.save('results.jpg') # save image
|
|
278
|
-
```
|
|
477
|
+
labels (bool): Whether to plot labels of bounding boxes.
|
|
478
|
+
boxes (bool): Whether to plot bounding boxes.
|
|
479
|
+
masks (bool): Whether to plot masks.
|
|
480
|
+
probs (bool): Whether to plot classification probabilities.
|
|
481
|
+
show (bool): Whether to display the annotated image.
|
|
482
|
+
save (bool): Whether to save the annotated image.
|
|
483
|
+
filename (str | None): Filename to save image if save is True.
|
|
484
|
+
|
|
485
|
+
Returns:
|
|
486
|
+
(np.ndarray): Annotated image as a numpy array.
|
|
487
|
+
|
|
488
|
+
Examples:
|
|
489
|
+
>>> results = model('image.jpg')
|
|
490
|
+
>>> for result in results:
|
|
491
|
+
... im = result.plot()
|
|
492
|
+
... im.show()
|
|
279
493
|
"""
|
|
280
494
|
if img is None and isinstance(self.orig_img, torch.Tensor):
|
|
281
495
|
img = (self.orig_img[0].detach().permute(1, 2, 0).contiguous() * 255).to(torch.uint8).cpu().numpy()
|
|
@@ -339,18 +553,73 @@ class Results(SimpleClass):
|
|
|
339
553
|
return annotator.result()
|
|
340
554
|
|
|
341
555
|
def show(self, *args, **kwargs):
|
|
342
|
-
"""
|
|
556
|
+
"""
|
|
557
|
+
Display the image with annotated inference results.
|
|
558
|
+
|
|
559
|
+
This method plots the detection results on the original image and displays it. It's a convenient way to
|
|
560
|
+
visualize the model's predictions directly.
|
|
561
|
+
|
|
562
|
+
Args:
|
|
563
|
+
*args (Any): Variable length argument list to be passed to the `plot()` method.
|
|
564
|
+
**kwargs (Any): Arbitrary keyword arguments to be passed to the `plot()` method.
|
|
565
|
+
|
|
566
|
+
Examples:
|
|
567
|
+
>>> results = model('path/to/image.jpg')
|
|
568
|
+
>>> results[0].show() # Display the first result
|
|
569
|
+
>>> for result in results:
|
|
570
|
+
... result.show() # Display all results
|
|
571
|
+
"""
|
|
343
572
|
self.plot(show=True, *args, **kwargs)
|
|
344
573
|
|
|
345
574
|
def save(self, filename=None, *args, **kwargs):
|
|
346
|
-
"""
|
|
575
|
+
"""
|
|
576
|
+
Saves annotated inference results image to file.
|
|
577
|
+
|
|
578
|
+
This method plots the detection results on the original image and saves the annotated image to a file. It
|
|
579
|
+
utilizes the `plot` method to generate the annotated image and then saves it to the specified filename.
|
|
580
|
+
|
|
581
|
+
Args:
|
|
582
|
+
filename (str | Path | None): The filename to save the annotated image. If None, a default filename
|
|
583
|
+
is generated based on the original image path.
|
|
584
|
+
*args (Any): Variable length argument list to be passed to the `plot` method.
|
|
585
|
+
**kwargs (Any): Arbitrary keyword arguments to be passed to the `plot` method.
|
|
586
|
+
|
|
587
|
+
Examples:
|
|
588
|
+
>>> results = model('path/to/image.jpg')
|
|
589
|
+
>>> for result in results:
|
|
590
|
+
... result.save('annotated_image.jpg')
|
|
591
|
+
>>> # Or with custom plot arguments
|
|
592
|
+
>>> for result in results:
|
|
593
|
+
... result.save('annotated_image.jpg', conf=False, line_width=2)
|
|
594
|
+
"""
|
|
347
595
|
if not filename:
|
|
348
596
|
filename = f"results_{Path(self.path).name}"
|
|
349
597
|
self.plot(save=True, filename=filename, *args, **kwargs)
|
|
350
598
|
return filename
|
|
351
599
|
|
|
352
600
|
def verbose(self):
|
|
353
|
-
"""
|
|
601
|
+
"""
|
|
602
|
+
Returns a log string for each task in the results, detailing detection and classification outcomes.
|
|
603
|
+
|
|
604
|
+
This method generates a human-readable string summarizing the detection and classification results. It includes
|
|
605
|
+
the number of detections for each class and the top probabilities for classification tasks.
|
|
606
|
+
|
|
607
|
+
Returns:
|
|
608
|
+
(str): A formatted string containing a summary of the results. For detection tasks, it includes the
|
|
609
|
+
number of detections per class. For classification tasks, it includes the top 5 class probabilities.
|
|
610
|
+
|
|
611
|
+
Examples:
|
|
612
|
+
>>> results = model('path/to/image.jpg')
|
|
613
|
+
>>> for result in results:
|
|
614
|
+
... print(result.verbose())
|
|
615
|
+
2 persons, 1 car, 3 traffic lights,
|
|
616
|
+
dog 0.92, cat 0.78, horse 0.64,
|
|
617
|
+
|
|
618
|
+
Notes:
|
|
619
|
+
- If there are no detections, the method returns "(no detections), " for detection tasks.
|
|
620
|
+
- For classification tasks, it returns the top 5 class probabilities and their corresponding class names.
|
|
621
|
+
- The returned string is comma-separated and ends with a comma and a space.
|
|
622
|
+
"""
|
|
354
623
|
log_string = ""
|
|
355
624
|
probs = self.probs
|
|
356
625
|
boxes = self.boxes
|
|
@@ -369,31 +638,26 @@ class Results(SimpleClass):
|
|
|
369
638
|
Save detection results to a text file.
|
|
370
639
|
|
|
371
640
|
Args:
|
|
372
|
-
txt_file (str): Path to the output text file.
|
|
641
|
+
txt_file (str | Path): Path to the output text file.
|
|
373
642
|
save_conf (bool): Whether to include confidence scores in the output.
|
|
374
643
|
|
|
375
644
|
Returns:
|
|
376
645
|
(str): Path to the saved text file.
|
|
377
646
|
|
|
378
|
-
|
|
379
|
-
|
|
380
|
-
|
|
381
|
-
|
|
382
|
-
|
|
383
|
-
|
|
384
|
-
for result in results:
|
|
385
|
-
result.save_txt("output.txt")
|
|
386
|
-
```
|
|
647
|
+
Examples:
|
|
648
|
+
>>> from ultralytics import YOLO
|
|
649
|
+
>>> model = YOLO('yolov8n.pt')
|
|
650
|
+
>>> results = model("path/to/image.jpg")
|
|
651
|
+
>>> for result in results:
|
|
652
|
+
... result.save_txt("output.txt")
|
|
387
653
|
|
|
388
654
|
Notes:
|
|
389
655
|
- The file will contain one line per detection or classification with the following structure:
|
|
390
|
-
|
|
391
|
-
|
|
392
|
-
|
|
393
|
-
|
|
656
|
+
- For detections: `class confidence x_center y_center width height`
|
|
657
|
+
- For classifications: `confidence class_name`
|
|
658
|
+
- For masks and keypoints, the specific formats will vary accordingly.
|
|
394
659
|
- The function will create the output directory if it does not exist.
|
|
395
660
|
- If save_conf is False, the confidence scores will be excluded from the output.
|
|
396
|
-
|
|
397
661
|
- Existing contents of the file will not be overwritten; new results will be appended.
|
|
398
662
|
"""
|
|
399
663
|
is_obb = self.obb is not None
|
|
@@ -426,27 +690,25 @@ class Results(SimpleClass):
|
|
|
426
690
|
|
|
427
691
|
def save_crop(self, save_dir, file_name=Path("im.jpg")):
|
|
428
692
|
"""
|
|
429
|
-
|
|
693
|
+
Saves cropped detection images to specified directory.
|
|
694
|
+
|
|
695
|
+
This method saves cropped images of detected objects to a specified directory. Each crop is saved in a
|
|
696
|
+
subdirectory named after the object's class, with the filename based on the input file_name.
|
|
430
697
|
|
|
431
698
|
Args:
|
|
432
|
-
save_dir (str |
|
|
433
|
-
file_name (str |
|
|
699
|
+
save_dir (str | Path): Directory path where cropped images will be saved.
|
|
700
|
+
file_name (str | Path): Base filename for the saved cropped images. Default is Path("im.jpg").
|
|
434
701
|
|
|
435
702
|
Notes:
|
|
436
|
-
This
|
|
437
|
-
|
|
438
|
-
|
|
439
|
-
|
|
440
|
-
|
|
441
|
-
|
|
442
|
-
|
|
443
|
-
|
|
444
|
-
|
|
445
|
-
|
|
446
|
-
# Save cropped images to the specified directory
|
|
447
|
-
for result in results:
|
|
448
|
-
result.save_crop(save_dir="path/to/save/crops", file_name="crop")
|
|
449
|
-
```
|
|
703
|
+
- This method does not support Classify or Oriented Bounding Box (OBB) tasks.
|
|
704
|
+
- Crops are saved as 'save_dir/class_name/file_name.jpg'.
|
|
705
|
+
- The method will create necessary subdirectories if they don't exist.
|
|
706
|
+
- Original image is copied before cropping to avoid modifying the original.
|
|
707
|
+
|
|
708
|
+
Examples:
|
|
709
|
+
>>> results = model("path/to/image.jpg")
|
|
710
|
+
>>> for result in results:
|
|
711
|
+
... result.save_crop(save_dir="path/to/crops", file_name="detection")
|
|
450
712
|
"""
|
|
451
713
|
if self.probs is not None:
|
|
452
714
|
LOGGER.warning("WARNING ⚠️ Classify task do not support `save_crop`.")
|
|
@@ -463,7 +725,28 @@ class Results(SimpleClass):
|
|
|
463
725
|
)
|
|
464
726
|
|
|
465
727
|
def summary(self, normalize=False, decimals=5):
|
|
466
|
-
"""
|
|
728
|
+
"""
|
|
729
|
+
Converts inference results to a summarized dictionary with optional normalization for box coordinates.
|
|
730
|
+
|
|
731
|
+
This method creates a list of detection dictionaries, each containing information about a single
|
|
732
|
+
detection or classification result. For classification tasks, it returns the top class and its
|
|
733
|
+
confidence. For detection tasks, it includes class information, bounding box coordinates, and
|
|
734
|
+
optionally mask segments and keypoints.
|
|
735
|
+
|
|
736
|
+
Args:
|
|
737
|
+
normalize (bool): Whether to normalize bounding box coordinates by image dimensions. Defaults to False.
|
|
738
|
+
decimals (int): Number of decimal places to round the output values to. Defaults to 5.
|
|
739
|
+
|
|
740
|
+
Returns:
|
|
741
|
+
(List[Dict]): A list of dictionaries, each containing summarized information for a single
|
|
742
|
+
detection or classification result. The structure of each dictionary varies based on the
|
|
743
|
+
task type (classification or detection) and available information (boxes, masks, keypoints).
|
|
744
|
+
|
|
745
|
+
Examples:
|
|
746
|
+
>>> results = model('image.jpg')
|
|
747
|
+
>>> summary = results[0].summary()
|
|
748
|
+
>>> print(summary)
|
|
749
|
+
"""
|
|
467
750
|
# Create list of detection dictionaries
|
|
468
751
|
results = []
|
|
469
752
|
if self.probs is not None:
|
|
@@ -507,7 +790,34 @@ class Results(SimpleClass):
|
|
|
507
790
|
return results
|
|
508
791
|
|
|
509
792
|
def tojson(self, normalize=False, decimals=5):
|
|
510
|
-
"""
|
|
793
|
+
"""
|
|
794
|
+
Converts detection results to JSON format.
|
|
795
|
+
|
|
796
|
+
This method serializes the detection results into a JSON-compatible format. It includes information
|
|
797
|
+
about detected objects such as bounding boxes, class names, confidence scores, and optionally
|
|
798
|
+
segmentation masks and keypoints.
|
|
799
|
+
|
|
800
|
+
Args:
|
|
801
|
+
normalize (bool): Whether to normalize the bounding box coordinates by the image dimensions.
|
|
802
|
+
If True, coordinates will be returned as float values between 0 and 1. Defaults to False.
|
|
803
|
+
decimals (int): Number of decimal places to round the output values to. Defaults to 5.
|
|
804
|
+
|
|
805
|
+
Returns:
|
|
806
|
+
(str): A JSON string containing the serialized detection results.
|
|
807
|
+
|
|
808
|
+
Examples:
|
|
809
|
+
>>> results = model("path/to/image.jpg")
|
|
810
|
+
>>> json_result = results[0].tojson()
|
|
811
|
+
>>> print(json_result)
|
|
812
|
+
|
|
813
|
+
Notes:
|
|
814
|
+
- For classification tasks, the JSON will contain class probabilities instead of bounding boxes.
|
|
815
|
+
- For object detection tasks, the JSON will include bounding box coordinates, class names, and
|
|
816
|
+
confidence scores.
|
|
817
|
+
- If available, segmentation masks and keypoints will also be included in the JSON output.
|
|
818
|
+
- The method uses the `summary` method internally to generate the data structure before
|
|
819
|
+
converting it to JSON.
|
|
820
|
+
"""
|
|
511
821
|
import json
|
|
512
822
|
|
|
513
823
|
return json.dumps(self.summary(normalize=normalize, decimals=decimals), indent=2)
|
|
@@ -515,43 +825,67 @@ class Results(SimpleClass):
|
|
|
515
825
|
|
|
516
826
|
class Boxes(BaseTensor):
|
|
517
827
|
"""
|
|
518
|
-
|
|
519
|
-
identifiers, and optional tracking IDs. Supports multiple formats for box coordinates, including both absolute and
|
|
520
|
-
normalized forms.
|
|
828
|
+
A class for managing and manipulating detection boxes.
|
|
521
829
|
|
|
522
|
-
|
|
523
|
-
|
|
524
|
-
|
|
525
|
-
is_track (bool): Indicates whether tracking IDs are included in the box data.
|
|
830
|
+
This class provides functionality for handling detection boxes, including their coordinates, confidence scores,
|
|
831
|
+
class labels, and optional tracking IDs. It supports various box formats and offers methods for easy manipulation
|
|
832
|
+
and conversion between different coordinate systems.
|
|
526
833
|
|
|
527
834
|
Attributes:
|
|
835
|
+
data (torch.Tensor | numpy.ndarray): The raw tensor containing detection boxes and associated data.
|
|
836
|
+
orig_shape (Tuple[int, int]): The original image dimensions (height, width).
|
|
837
|
+
is_track (bool): Indicates whether tracking IDs are included in the box data.
|
|
528
838
|
xyxy (torch.Tensor | numpy.ndarray): Boxes in [x1, y1, x2, y2] format.
|
|
529
839
|
conf (torch.Tensor | numpy.ndarray): Confidence scores for each box.
|
|
530
840
|
cls (torch.Tensor | numpy.ndarray): Class labels for each box.
|
|
531
|
-
id (torch.Tensor | numpy.ndarray
|
|
532
|
-
xywh (torch.Tensor | numpy.ndarray): Boxes in [x, y, width, height] format
|
|
533
|
-
xyxyn (torch.Tensor | numpy.ndarray): Normalized [x1, y1, x2, y2] boxes
|
|
534
|
-
xywhn (torch.Tensor | numpy.ndarray): Normalized [x, y, width, height] boxes
|
|
841
|
+
id (torch.Tensor | numpy.ndarray): Tracking IDs for each box (if available).
|
|
842
|
+
xywh (torch.Tensor | numpy.ndarray): Boxes in [x, y, width, height] format.
|
|
843
|
+
xyxyn (torch.Tensor | numpy.ndarray): Normalized [x1, y1, x2, y2] boxes relative to orig_shape.
|
|
844
|
+
xywhn (torch.Tensor | numpy.ndarray): Normalized [x, y, width, height] boxes relative to orig_shape.
|
|
535
845
|
|
|
536
846
|
Methods:
|
|
537
|
-
cpu():
|
|
538
|
-
numpy():
|
|
539
|
-
cuda():
|
|
540
|
-
to(
|
|
847
|
+
cpu(): Returns a copy of the object with all tensors on CPU memory.
|
|
848
|
+
numpy(): Returns a copy of the object with all tensors as numpy arrays.
|
|
849
|
+
cuda(): Returns a copy of the object with all tensors on GPU memory.
|
|
850
|
+
to(*args, **kwargs): Returns a copy of the object with tensors on specified device and dtype.
|
|
851
|
+
|
|
852
|
+
Examples:
|
|
853
|
+
>>> import torch
|
|
854
|
+
>>> boxes_data = torch.tensor([[100, 50, 150, 100, 0.9, 0], [200, 150, 300, 250, 0.8, 1]])
|
|
855
|
+
>>> orig_shape = (480, 640) # height, width
|
|
856
|
+
>>> boxes = Boxes(boxes_data, orig_shape)
|
|
857
|
+
>>> print(boxes.xyxy)
|
|
858
|
+
>>> print(boxes.conf)
|
|
859
|
+
>>> print(boxes.cls)
|
|
860
|
+
>>> print(boxes.xywhn)
|
|
541
861
|
"""
|
|
542
862
|
|
|
543
863
|
def __init__(self, boxes, orig_shape) -> None:
|
|
544
864
|
"""
|
|
545
865
|
Initialize the Boxes class with detection box data and the original image shape.
|
|
546
866
|
|
|
547
|
-
|
|
548
|
-
|
|
549
|
-
|
|
550
|
-
The track ID column is included if present.
|
|
551
|
-
orig_shape (tuple): The original image shape as (height, width). Used for normalization.
|
|
867
|
+
This class manages detection boxes, providing easy access and manipulation of box coordinates,
|
|
868
|
+
confidence scores, class identifiers, and optional tracking IDs. It supports multiple formats
|
|
869
|
+
for box coordinates, including both absolute and normalized forms.
|
|
552
870
|
|
|
553
|
-
|
|
554
|
-
(
|
|
871
|
+
Args:
|
|
872
|
+
boxes (torch.Tensor | np.ndarray): A tensor or numpy array with detection boxes of shape
|
|
873
|
+
(num_boxes, 6) or (num_boxes, 7). Columns should contain
|
|
874
|
+
[x1, y1, x2, y2, confidence, class, (optional) track_id].
|
|
875
|
+
orig_shape (Tuple[int, int]): The original image shape as (height, width). Used for normalization.
|
|
876
|
+
|
|
877
|
+
Attributes:
|
|
878
|
+
data (torch.Tensor): The raw tensor containing detection boxes and their associated data.
|
|
879
|
+
orig_shape (Tuple[int, int]): The original image size, used for normalization.
|
|
880
|
+
is_track (bool): Indicates whether tracking IDs are included in the box data.
|
|
881
|
+
|
|
882
|
+
Examples:
|
|
883
|
+
>>> import torch
|
|
884
|
+
>>> boxes = torch.tensor([[100, 50, 150, 100, 0.9, 0]])
|
|
885
|
+
>>> orig_shape = (480, 640)
|
|
886
|
+
>>> detection_boxes = Boxes(boxes, orig_shape)
|
|
887
|
+
>>> print(detection_boxes.xyxy)
|
|
888
|
+
tensor([[100., 50., 150., 100.]])
|
|
555
889
|
"""
|
|
556
890
|
if boxes.ndim == 1:
|
|
557
891
|
boxes = boxes[None, :]
|
|
@@ -563,34 +897,119 @@ class Boxes(BaseTensor):
|
|
|
563
897
|
|
|
564
898
|
@property
|
|
565
899
|
def xyxy(self):
|
|
566
|
-
"""
|
|
900
|
+
"""
|
|
901
|
+
Returns bounding boxes in [x1, y1, x2, y2] format.
|
|
902
|
+
|
|
903
|
+
Returns:
|
|
904
|
+
(torch.Tensor | numpy.ndarray): A tensor or numpy array of shape (n, 4) containing bounding box
|
|
905
|
+
coordinates in [x1, y1, x2, y2] format, where n is the number of boxes.
|
|
906
|
+
|
|
907
|
+
Examples:
|
|
908
|
+
>>> results = model('image.jpg')
|
|
909
|
+
>>> boxes = results[0].boxes
|
|
910
|
+
>>> xyxy = boxes.xyxy
|
|
911
|
+
>>> print(xyxy)
|
|
912
|
+
"""
|
|
567
913
|
return self.data[:, :4]
|
|
568
914
|
|
|
569
915
|
@property
|
|
570
916
|
def conf(self):
|
|
571
|
-
"""
|
|
917
|
+
"""
|
|
918
|
+
Returns the confidence scores for each detection box.
|
|
919
|
+
|
|
920
|
+
Returns:
|
|
921
|
+
(torch.Tensor | numpy.ndarray): A 1D tensor or array containing confidence scores for each detection,
|
|
922
|
+
with shape (N,) where N is the number of detections.
|
|
923
|
+
|
|
924
|
+
Examples:
|
|
925
|
+
>>> boxes = Boxes(torch.tensor([[10, 20, 30, 40, 0.9, 0]]), orig_shape=(100, 100))
|
|
926
|
+
>>> conf_scores = boxes.conf
|
|
927
|
+
>>> print(conf_scores)
|
|
928
|
+
tensor([0.9000])
|
|
929
|
+
"""
|
|
572
930
|
return self.data[:, -2]
|
|
573
931
|
|
|
574
932
|
@property
|
|
575
933
|
def cls(self):
|
|
576
|
-
"""
|
|
934
|
+
"""
|
|
935
|
+
Returns the class ID tensor representing category predictions for each bounding box.
|
|
936
|
+
|
|
937
|
+
Returns:
|
|
938
|
+
(torch.Tensor | numpy.ndarray): A tensor or numpy array containing the class IDs for each detection box.
|
|
939
|
+
The shape is (N,), where N is the number of boxes.
|
|
940
|
+
|
|
941
|
+
Examples:
|
|
942
|
+
>>> results = model('image.jpg')
|
|
943
|
+
>>> boxes = results[0].boxes
|
|
944
|
+
>>> class_ids = boxes.cls
|
|
945
|
+
>>> print(class_ids) # tensor([0., 2., 1.])
|
|
946
|
+
"""
|
|
577
947
|
return self.data[:, -1]
|
|
578
948
|
|
|
579
949
|
@property
|
|
580
950
|
def id(self):
|
|
581
|
-
"""
|
|
951
|
+
"""
|
|
952
|
+
Returns the tracking IDs for each detection box if available.
|
|
953
|
+
|
|
954
|
+
Returns:
|
|
955
|
+
(torch.Tensor | None): A tensor containing tracking IDs for each box if tracking is enabled,
|
|
956
|
+
otherwise None. Shape is (N,) where N is the number of boxes.
|
|
957
|
+
|
|
958
|
+
Examples:
|
|
959
|
+
>>> results = model.track('path/to/video.mp4')
|
|
960
|
+
>>> for result in results:
|
|
961
|
+
... boxes = result.boxes
|
|
962
|
+
... if boxes.is_track:
|
|
963
|
+
... track_ids = boxes.id
|
|
964
|
+
... print(f"Tracking IDs: {track_ids}")
|
|
965
|
+
... else:
|
|
966
|
+
... print("Tracking is not enabled for these boxes.")
|
|
967
|
+
|
|
968
|
+
Notes:
|
|
969
|
+
- This property is only available when tracking is enabled (i.e., when `is_track` is True).
|
|
970
|
+
- The tracking IDs are typically used to associate detections across multiple frames in video analysis.
|
|
971
|
+
"""
|
|
582
972
|
return self.data[:, -3] if self.is_track else None
|
|
583
973
|
|
|
584
974
|
@property
|
|
585
975
|
@lru_cache(maxsize=2) # maxsize 1 should suffice
|
|
586
976
|
def xywh(self):
|
|
587
|
-
"""
|
|
977
|
+
"""
|
|
978
|
+
Convert bounding boxes from [x1, y1, x2, y2] format to [x, y, width, height] format.
|
|
979
|
+
|
|
980
|
+
Returns:
|
|
981
|
+
(torch.Tensor | numpy.ndarray): Boxes in [x, y, width, height] format, where x, y are the coordinates of
|
|
982
|
+
the top-left corner of the bounding box, width, height are the dimensions of the bounding box and the
|
|
983
|
+
shape of the returned tensor is (N, 4), where N is the number of boxes.
|
|
984
|
+
|
|
985
|
+
Examples:
|
|
986
|
+
>>> boxes = Boxes(torch.tensor([[100, 50, 150, 100], [200, 150, 300, 250]]), orig_shape=(480, 640))
|
|
987
|
+
>>> xywh = boxes.xywh
|
|
988
|
+
>>> print(xywh)
|
|
989
|
+
tensor([[100.0000, 50.0000, 50.0000, 50.0000],
|
|
990
|
+
[200.0000, 150.0000, 100.0000, 100.0000]])
|
|
991
|
+
"""
|
|
588
992
|
return ops.xyxy2xywh(self.xyxy)
|
|
589
993
|
|
|
590
994
|
@property
|
|
591
995
|
@lru_cache(maxsize=2)
|
|
592
996
|
def xyxyn(self):
|
|
593
|
-
"""
|
|
997
|
+
"""
|
|
998
|
+
Returns normalized bounding box coordinates relative to the original image size.
|
|
999
|
+
|
|
1000
|
+
This property calculates and returns the bounding box coordinates in [x1, y1, x2, y2] format,
|
|
1001
|
+
normalized to the range [0, 1] based on the original image dimensions.
|
|
1002
|
+
|
|
1003
|
+
Returns:
|
|
1004
|
+
(torch.Tensor | numpy.ndarray): Normalized bounding box coordinates with shape (N, 4), where N is
|
|
1005
|
+
the number of boxes. Each row contains [x1, y1, x2, y2] values normalized to [0, 1].
|
|
1006
|
+
|
|
1007
|
+
Examples:
|
|
1008
|
+
>>> boxes = Boxes(torch.tensor([[100, 50, 300, 400, 0.9, 0]]), orig_shape=(480, 640))
|
|
1009
|
+
>>> normalized = boxes.xyxyn
|
|
1010
|
+
>>> print(normalized)
|
|
1011
|
+
tensor([[0.1562, 0.1042, 0.4688, 0.8333]])
|
|
1012
|
+
"""
|
|
594
1013
|
xyxy = self.xyxy.clone() if isinstance(self.xyxy, torch.Tensor) else np.copy(self.xyxy)
|
|
595
1014
|
xyxy[..., [0, 2]] /= self.orig_shape[1]
|
|
596
1015
|
xyxy[..., [1, 3]] /= self.orig_shape[0]
|
|
@@ -599,7 +1018,23 @@ class Boxes(BaseTensor):
|
|
|
599
1018
|
@property
|
|
600
1019
|
@lru_cache(maxsize=2)
|
|
601
1020
|
def xywhn(self):
|
|
602
|
-
"""
|
|
1021
|
+
"""
|
|
1022
|
+
Returns normalized bounding boxes in [x, y, width, height] format.
|
|
1023
|
+
|
|
1024
|
+
This property calculates and returns the normalized bounding box coordinates in the format
|
|
1025
|
+
[x_center, y_center, width, height], where all values are relative to the original image dimensions.
|
|
1026
|
+
|
|
1027
|
+
Returns:
|
|
1028
|
+
(torch.Tensor | numpy.ndarray): Normalized bounding boxes with shape (N, 4), where N is the
|
|
1029
|
+
number of boxes. Each row contains [x_center, y_center, width, height] values normalized
|
|
1030
|
+
to [0, 1] based on the original image dimensions.
|
|
1031
|
+
|
|
1032
|
+
Examples:
|
|
1033
|
+
>>> boxes = Boxes(torch.tensor([[100, 50, 150, 100, 0.9, 0]]), orig_shape=(480, 640))
|
|
1034
|
+
>>> normalized = boxes.xywhn
|
|
1035
|
+
>>> print(normalized)
|
|
1036
|
+
tensor([[0.1953, 0.1562, 0.0781, 0.1042]])
|
|
1037
|
+
"""
|
|
603
1038
|
xywh = ops.xyxy2xywh(self.xyxy)
|
|
604
1039
|
xywh[..., [0, 2]] /= self.orig_shape[1]
|
|
605
1040
|
xywh[..., [1, 3]] /= self.orig_shape[0]
|
|
@@ -610,19 +1045,44 @@ class Masks(BaseTensor):
|
|
|
610
1045
|
"""
|
|
611
1046
|
A class for storing and manipulating detection masks.
|
|
612
1047
|
|
|
1048
|
+
This class extends BaseTensor and provides functionality for handling segmentation masks,
|
|
1049
|
+
including methods for converting between pixel and normalized coordinates.
|
|
1050
|
+
|
|
613
1051
|
Attributes:
|
|
614
|
-
|
|
615
|
-
|
|
1052
|
+
data (torch.Tensor | numpy.ndarray): The raw tensor or array containing mask data.
|
|
1053
|
+
orig_shape (tuple): Original image shape in (height, width) format.
|
|
1054
|
+
xy (List[numpy.ndarray]): A list of segments in pixel coordinates.
|
|
1055
|
+
xyn (List[numpy.ndarray]): A list of normalized segments.
|
|
616
1056
|
|
|
617
1057
|
Methods:
|
|
618
|
-
cpu(): Returns the
|
|
619
|
-
numpy(): Returns the
|
|
620
|
-
cuda(): Returns the
|
|
621
|
-
to(
|
|
1058
|
+
cpu(): Returns a copy of the Masks object with the mask tensor on CPU memory.
|
|
1059
|
+
numpy(): Returns a copy of the Masks object with the mask tensor as a numpy array.
|
|
1060
|
+
cuda(): Returns a copy of the Masks object with the mask tensor on GPU memory.
|
|
1061
|
+
to(*args, **kwargs): Returns a copy of the Masks object with the mask tensor on specified device and dtype.
|
|
1062
|
+
|
|
1063
|
+
Examples:
|
|
1064
|
+
>>> masks_data = torch.rand(1, 160, 160)
|
|
1065
|
+
>>> orig_shape = (720, 1280)
|
|
1066
|
+
>>> masks = Masks(masks_data, orig_shape)
|
|
1067
|
+
>>> pixel_coords = masks.xy
|
|
1068
|
+
>>> normalized_coords = masks.xyn
|
|
622
1069
|
"""
|
|
623
1070
|
|
|
624
1071
|
def __init__(self, masks, orig_shape) -> None:
|
|
625
|
-
"""
|
|
1072
|
+
"""
|
|
1073
|
+
Initialize the Masks class with detection mask data and the original image shape.
|
|
1074
|
+
|
|
1075
|
+
Args:
|
|
1076
|
+
masks (torch.Tensor | np.ndarray): Detection masks with shape (num_masks, height, width).
|
|
1077
|
+
orig_shape (tuple): The original image shape as (height, width). Used for normalization.
|
|
1078
|
+
|
|
1079
|
+
Examples:
|
|
1080
|
+
>>> import torch
|
|
1081
|
+
>>> from ultralytics.engine.results import Masks
|
|
1082
|
+
>>> masks = torch.rand(10, 160, 160) # 10 masks of 160x160 resolution
|
|
1083
|
+
>>> orig_shape = (720, 1280) # Original image shape
|
|
1084
|
+
>>> mask_obj = Masks(masks, orig_shape)
|
|
1085
|
+
"""
|
|
626
1086
|
if masks.ndim == 2:
|
|
627
1087
|
masks = masks[None, :]
|
|
628
1088
|
super().__init__(masks, orig_shape)
|
|
@@ -630,7 +1090,23 @@ class Masks(BaseTensor):
|
|
|
630
1090
|
@property
|
|
631
1091
|
@lru_cache(maxsize=1)
|
|
632
1092
|
def xyn(self):
|
|
633
|
-
"""
|
|
1093
|
+
"""
|
|
1094
|
+
Returns normalized xy-coordinates of the segmentation masks.
|
|
1095
|
+
|
|
1096
|
+
This property calculates and caches the normalized xy-coordinates of the segmentation masks. The coordinates
|
|
1097
|
+
are normalized relative to the original image shape.
|
|
1098
|
+
|
|
1099
|
+
Returns:
|
|
1100
|
+
(List[numpy.ndarray]): A list of numpy arrays, where each array contains the normalized xy-coordinates
|
|
1101
|
+
of a single segmentation mask. Each array has shape (N, 2), where N is the number of points in the
|
|
1102
|
+
mask contour.
|
|
1103
|
+
|
|
1104
|
+
Examples:
|
|
1105
|
+
>>> results = model('image.jpg')
|
|
1106
|
+
>>> masks = results[0].masks
|
|
1107
|
+
>>> normalized_coords = masks.xyn
|
|
1108
|
+
>>> print(normalized_coords[0]) # Normalized coordinates of the first mask
|
|
1109
|
+
"""
|
|
634
1110
|
return [
|
|
635
1111
|
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=True)
|
|
636
1112
|
for x in ops.masks2segments(self.data)
|
|
@@ -639,7 +1115,24 @@ class Masks(BaseTensor):
|
|
|
639
1115
|
@property
|
|
640
1116
|
@lru_cache(maxsize=1)
|
|
641
1117
|
def xy(self):
|
|
642
|
-
"""
|
|
1118
|
+
"""
|
|
1119
|
+
Returns the [x, y] pixel coordinates for each segment in the mask tensor.
|
|
1120
|
+
|
|
1121
|
+
This property calculates and returns a list of pixel coordinates for each segmentation mask in the
|
|
1122
|
+
Masks object. The coordinates are scaled to match the original image dimensions.
|
|
1123
|
+
|
|
1124
|
+
Returns:
|
|
1125
|
+
(List[numpy.ndarray]): A list of numpy arrays, where each array contains the [x, y] pixel
|
|
1126
|
+
coordinates for a single segmentation mask. Each array has shape (N, 2), where N is the
|
|
1127
|
+
number of points in the segment.
|
|
1128
|
+
|
|
1129
|
+
Examples:
|
|
1130
|
+
>>> results = model('image.jpg')
|
|
1131
|
+
>>> masks = results[0].masks
|
|
1132
|
+
>>> xy_coords = masks.xy
|
|
1133
|
+
>>> print(len(xy_coords)) # Number of masks
|
|
1134
|
+
>>> print(xy_coords[0].shape) # Shape of first mask's coordinates
|
|
1135
|
+
"""
|
|
643
1136
|
return [
|
|
644
1137
|
ops.scale_coords(self.data.shape[1:], x, self.orig_shape, normalize=False)
|
|
645
1138
|
for x in ops.masks2segments(self.data)
|
|
@@ -650,21 +1143,53 @@ class Keypoints(BaseTensor):
|
|
|
650
1143
|
"""
|
|
651
1144
|
A class for storing and manipulating detection keypoints.
|
|
652
1145
|
|
|
653
|
-
|
|
654
|
-
|
|
655
|
-
|
|
656
|
-
|
|
1146
|
+
This class encapsulates functionality for handling keypoint data, including coordinate manipulation,
|
|
1147
|
+
normalization, and confidence values.
|
|
1148
|
+
|
|
1149
|
+
Attributes:
|
|
1150
|
+
data (torch.Tensor): The raw tensor containing keypoint data.
|
|
1151
|
+
orig_shape (Tuple[int, int]): The original image dimensions (height, width).
|
|
1152
|
+
has_visible (bool): Indicates whether visibility information is available for keypoints.
|
|
1153
|
+
xy (torch.Tensor): Keypoint coordinates in [x, y] format.
|
|
1154
|
+
xyn (torch.Tensor): Normalized keypoint coordinates in [x, y] format, relative to orig_shape.
|
|
1155
|
+
conf (torch.Tensor): Confidence values for each keypoint, if available.
|
|
657
1156
|
|
|
658
1157
|
Methods:
|
|
659
1158
|
cpu(): Returns a copy of the keypoints tensor on CPU memory.
|
|
660
1159
|
numpy(): Returns a copy of the keypoints tensor as a numpy array.
|
|
661
1160
|
cuda(): Returns a copy of the keypoints tensor on GPU memory.
|
|
662
|
-
to(
|
|
1161
|
+
to(*args, **kwargs): Returns a copy of the keypoints tensor with specified device and dtype.
|
|
1162
|
+
|
|
1163
|
+
Examples:
|
|
1164
|
+
>>> import torch
|
|
1165
|
+
>>> from ultralytics.engine.results import Keypoints
|
|
1166
|
+
>>> keypoints_data = torch.rand(1, 17, 3) # 1 detection, 17 keypoints, (x, y, conf)
|
|
1167
|
+
>>> orig_shape = (480, 640) # Original image shape (height, width)
|
|
1168
|
+
>>> keypoints = Keypoints(keypoints_data, orig_shape)
|
|
1169
|
+
>>> print(keypoints.xy.shape) # Access xy coordinates
|
|
1170
|
+
>>> print(keypoints.conf) # Access confidence values
|
|
1171
|
+
>>> keypoints_cpu = keypoints.cpu() # Move keypoints to CPU
|
|
663
1172
|
"""
|
|
664
1173
|
|
|
665
1174
|
@smart_inference_mode() # avoid keypoints < conf in-place error
|
|
666
1175
|
def __init__(self, keypoints, orig_shape) -> None:
|
|
667
|
-
"""
|
|
1176
|
+
"""
|
|
1177
|
+
Initializes the Keypoints object with detection keypoints and original image dimensions.
|
|
1178
|
+
|
|
1179
|
+
This method processes the input keypoints tensor, handling both 2D and 3D formats. For 3D tensors
|
|
1180
|
+
(x, y, confidence), it masks out low-confidence keypoints by setting their coordinates to zero.
|
|
1181
|
+
|
|
1182
|
+
Args:
|
|
1183
|
+
keypoints (torch.Tensor): A tensor containing keypoint data. Shape can be either:
|
|
1184
|
+
- (num_objects, num_keypoints, 2) for x, y coordinates only
|
|
1185
|
+
- (num_objects, num_keypoints, 3) for x, y coordinates and confidence scores
|
|
1186
|
+
orig_shape (Tuple[int, int]): The original image dimensions (height, width).
|
|
1187
|
+
|
|
1188
|
+
Examples:
|
|
1189
|
+
>>> kpts = torch.rand(1, 17, 3) # 1 object, 17 keypoints (COCO format), x,y,conf
|
|
1190
|
+
>>> orig_shape = (720, 1280) # Original image height, width
|
|
1191
|
+
>>> keypoints = Keypoints(kpts, orig_shape)
|
|
1192
|
+
"""
|
|
668
1193
|
if keypoints.ndim == 2:
|
|
669
1194
|
keypoints = keypoints[None, :]
|
|
670
1195
|
if keypoints.shape[2] == 3: # x, y, conf
|
|
@@ -676,13 +1201,44 @@ class Keypoints(BaseTensor):
|
|
|
676
1201
|
@property
|
|
677
1202
|
@lru_cache(maxsize=1)
|
|
678
1203
|
def xy(self):
|
|
679
|
-
"""
|
|
1204
|
+
"""
|
|
1205
|
+
Returns x, y coordinates of keypoints.
|
|
1206
|
+
|
|
1207
|
+
Returns:
|
|
1208
|
+
(torch.Tensor): A tensor containing the x, y coordinates of keypoints with shape (N, K, 2), where N is
|
|
1209
|
+
the number of detections and K is the number of keypoints per detection.
|
|
1210
|
+
|
|
1211
|
+
Examples:
|
|
1212
|
+
>>> results = model('image.jpg')
|
|
1213
|
+
>>> keypoints = results[0].keypoints
|
|
1214
|
+
>>> xy = keypoints.xy
|
|
1215
|
+
>>> print(xy.shape) # (N, K, 2)
|
|
1216
|
+
>>> print(xy[0]) # x, y coordinates of keypoints for first detection
|
|
1217
|
+
|
|
1218
|
+
Notes:
|
|
1219
|
+
- The returned coordinates are in pixel units relative to the original image dimensions.
|
|
1220
|
+
- If keypoints were initialized with confidence values, only keypoints with confidence >= 0.5 are returned.
|
|
1221
|
+
- This property uses LRU caching to improve performance on repeated access.
|
|
1222
|
+
"""
|
|
680
1223
|
return self.data[..., :2]
|
|
681
1224
|
|
|
682
1225
|
@property
|
|
683
1226
|
@lru_cache(maxsize=1)
|
|
684
1227
|
def xyn(self):
|
|
685
|
-
"""
|
|
1228
|
+
"""
|
|
1229
|
+
Returns normalized coordinates (x, y) of keypoints relative to the original image size.
|
|
1230
|
+
|
|
1231
|
+
Returns:
|
|
1232
|
+
(torch.Tensor | numpy.ndarray): A tensor or array of shape (N, K, 2) containing normalized keypoint
|
|
1233
|
+
coordinates, where N is the number of instances, K is the number of keypoints, and the last
|
|
1234
|
+
dimension contains [x, y] values in the range [0, 1].
|
|
1235
|
+
|
|
1236
|
+
Examples:
|
|
1237
|
+
>>> keypoints = Keypoints(torch.rand(1, 17, 2), orig_shape=(480, 640))
|
|
1238
|
+
>>> normalized_kpts = keypoints.xyn
|
|
1239
|
+
>>> print(normalized_kpts.shape)
|
|
1240
|
+
torch.Size([1, 17, 2])
|
|
1241
|
+
"""
|
|
686
1242
|
xy = self.xy.clone() if isinstance(self.xy, torch.Tensor) else np.copy(self.xy)
|
|
687
1243
|
xy[..., 0] /= self.orig_shape[1]
|
|
688
1244
|
xy[..., 1] /= self.orig_shape[0]
|
|
@@ -691,53 +1247,160 @@ class Keypoints(BaseTensor):
|
|
|
691
1247
|
@property
|
|
692
1248
|
@lru_cache(maxsize=1)
|
|
693
1249
|
def conf(self):
|
|
694
|
-
"""
|
|
1250
|
+
"""
|
|
1251
|
+
Returns confidence values for each keypoint.
|
|
1252
|
+
|
|
1253
|
+
Returns:
|
|
1254
|
+
(torch.Tensor | None): A tensor containing confidence scores for each keypoint if available,
|
|
1255
|
+
otherwise None. Shape is (num_detections, num_keypoints) for batched data or (num_keypoints,)
|
|
1256
|
+
for single detection.
|
|
1257
|
+
|
|
1258
|
+
Examples:
|
|
1259
|
+
>>> keypoints = Keypoints(torch.rand(1, 17, 3), orig_shape=(640, 640)) # 1 detection, 17 keypoints
|
|
1260
|
+
>>> conf = keypoints.conf
|
|
1261
|
+
>>> print(conf.shape) # torch.Size([1, 17])
|
|
1262
|
+
"""
|
|
695
1263
|
return self.data[..., 2] if self.has_visible else None
|
|
696
1264
|
|
|
697
1265
|
|
|
698
1266
|
class Probs(BaseTensor):
|
|
699
1267
|
"""
|
|
700
|
-
A class for storing and manipulating classification
|
|
1268
|
+
A class for storing and manipulating classification probabilities.
|
|
701
1269
|
|
|
702
|
-
|
|
703
|
-
|
|
704
|
-
|
|
705
|
-
|
|
706
|
-
|
|
1270
|
+
This class extends BaseTensor and provides methods for accessing and manipulating
|
|
1271
|
+
classification probabilities, including top-1 and top-5 predictions.
|
|
1272
|
+
|
|
1273
|
+
Attributes:
|
|
1274
|
+
data (torch.Tensor | numpy.ndarray): The raw tensor or array containing classification probabilities.
|
|
1275
|
+
orig_shape (tuple | None): The original image shape as (height, width). Not used in this class.
|
|
1276
|
+
top1 (int): Index of the class with the highest probability.
|
|
1277
|
+
top5 (List[int]): Indices of the top 5 classes by probability.
|
|
1278
|
+
top1conf (torch.Tensor | numpy.ndarray): Confidence score of the top 1 class.
|
|
1279
|
+
top5conf (torch.Tensor | numpy.ndarray): Confidence scores of the top 5 classes.
|
|
707
1280
|
|
|
708
1281
|
Methods:
|
|
709
|
-
cpu(): Returns a copy of the
|
|
710
|
-
numpy(): Returns a copy of the
|
|
711
|
-
cuda(): Returns a copy of the
|
|
712
|
-
to(): Returns a copy of the
|
|
1282
|
+
cpu(): Returns a copy of the probabilities tensor on CPU memory.
|
|
1283
|
+
numpy(): Returns a copy of the probabilities tensor as a numpy array.
|
|
1284
|
+
cuda(): Returns a copy of the probabilities tensor on GPU memory.
|
|
1285
|
+
to(*args, **kwargs): Returns a copy of the probabilities tensor with specified device and dtype.
|
|
1286
|
+
|
|
1287
|
+
Examples:
|
|
1288
|
+
>>> probs = torch.tensor([0.1, 0.3, 0.6])
|
|
1289
|
+
>>> p = Probs(probs)
|
|
1290
|
+
>>> print(p.top1)
|
|
1291
|
+
2
|
|
1292
|
+
>>> print(p.top5)
|
|
1293
|
+
[2, 1, 0]
|
|
1294
|
+
>>> print(p.top1conf)
|
|
1295
|
+
tensor(0.6000)
|
|
1296
|
+
>>> print(p.top5conf)
|
|
1297
|
+
tensor([0.6000, 0.3000, 0.1000])
|
|
713
1298
|
"""
|
|
714
1299
|
|
|
715
1300
|
def __init__(self, probs, orig_shape=None) -> None:
|
|
716
|
-
"""
|
|
1301
|
+
"""
|
|
1302
|
+
Initialize the Probs class with classification probabilities.
|
|
1303
|
+
|
|
1304
|
+
This class stores and manages classification probabilities, providing easy access to top predictions and their
|
|
1305
|
+
confidences.
|
|
1306
|
+
|
|
1307
|
+
Args:
|
|
1308
|
+
probs (torch.Tensor | np.ndarray): A 1D tensor or array of classification probabilities.
|
|
1309
|
+
orig_shape (tuple | None): The original image shape as (height, width). Not used in this class but kept for
|
|
1310
|
+
consistency with other result classes.
|
|
1311
|
+
|
|
1312
|
+
Attributes:
|
|
1313
|
+
data (torch.Tensor | np.ndarray): The raw tensor or array containing classification probabilities.
|
|
1314
|
+
top1 (int): Index of the top 1 class.
|
|
1315
|
+
top5 (List[int]): Indices of the top 5 classes.
|
|
1316
|
+
top1conf (torch.Tensor | np.ndarray): Confidence of the top 1 class.
|
|
1317
|
+
top5conf (torch.Tensor | np.ndarray): Confidences of the top 5 classes.
|
|
1318
|
+
|
|
1319
|
+
Examples:
|
|
1320
|
+
>>> import torch
|
|
1321
|
+
>>> probs = torch.tensor([0.1, 0.3, 0.2, 0.4])
|
|
1322
|
+
>>> p = Probs(probs)
|
|
1323
|
+
>>> print(p.top1)
|
|
1324
|
+
3
|
|
1325
|
+
>>> print(p.top1conf)
|
|
1326
|
+
tensor(0.4000)
|
|
1327
|
+
>>> print(p.top5)
|
|
1328
|
+
[3, 1, 2, 0]
|
|
1329
|
+
"""
|
|
717
1330
|
super().__init__(probs, orig_shape)
|
|
718
1331
|
|
|
719
1332
|
@property
|
|
720
1333
|
@lru_cache(maxsize=1)
|
|
721
1334
|
def top1(self):
|
|
722
|
-
"""
|
|
1335
|
+
"""
|
|
1336
|
+
Returns the index of the class with the highest probability.
|
|
1337
|
+
|
|
1338
|
+
Returns:
|
|
1339
|
+
(int): Index of the class with the highest probability.
|
|
1340
|
+
|
|
1341
|
+
Examples:
|
|
1342
|
+
>>> probs = Probs(torch.tensor([0.1, 0.3, 0.6]))
|
|
1343
|
+
>>> probs.top1
|
|
1344
|
+
2
|
|
1345
|
+
"""
|
|
723
1346
|
return int(self.data.argmax())
|
|
724
1347
|
|
|
725
1348
|
@property
|
|
726
1349
|
@lru_cache(maxsize=1)
|
|
727
1350
|
def top5(self):
|
|
728
|
-
"""
|
|
1351
|
+
"""
|
|
1352
|
+
Returns the indices of the top 5 class probabilities.
|
|
1353
|
+
|
|
1354
|
+
Returns:
|
|
1355
|
+
(List[int]): A list containing the indices of the top 5 class probabilities, sorted in descending order.
|
|
1356
|
+
|
|
1357
|
+
Examples:
|
|
1358
|
+
>>> probs = Probs(torch.tensor([0.1, 0.2, 0.3, 0.4, 0.5]))
|
|
1359
|
+
>>> print(probs.top5)
|
|
1360
|
+
[4, 3, 2, 1, 0]
|
|
1361
|
+
"""
|
|
729
1362
|
return (-self.data).argsort(0)[:5].tolist() # this way works with both torch and numpy.
|
|
730
1363
|
|
|
731
1364
|
@property
|
|
732
1365
|
@lru_cache(maxsize=1)
|
|
733
1366
|
def top1conf(self):
|
|
734
|
-
"""
|
|
1367
|
+
"""
|
|
1368
|
+
Returns the confidence score of the highest probability class.
|
|
1369
|
+
|
|
1370
|
+
This property retrieves the confidence score (probability) of the class with the highest predicted probability
|
|
1371
|
+
from the classification results.
|
|
1372
|
+
|
|
1373
|
+
Returns:
|
|
1374
|
+
(torch.Tensor | numpy.ndarray): A tensor containing the confidence score of the top 1 class.
|
|
1375
|
+
|
|
1376
|
+
Examples:
|
|
1377
|
+
>>> results = model('image.jpg') # classify an image
|
|
1378
|
+
>>> probs = results[0].probs # get classification probabilities
|
|
1379
|
+
>>> top1_confidence = probs.top1conf # get confidence of top 1 class
|
|
1380
|
+
>>> print(f"Top 1 class confidence: {top1_confidence.item():.4f}")
|
|
1381
|
+
"""
|
|
735
1382
|
return self.data[self.top1]
|
|
736
1383
|
|
|
737
1384
|
@property
|
|
738
1385
|
@lru_cache(maxsize=1)
|
|
739
1386
|
def top5conf(self):
|
|
740
|
-
"""
|
|
1387
|
+
"""
|
|
1388
|
+
Returns confidence scores for the top 5 classification predictions.
|
|
1389
|
+
|
|
1390
|
+
This property retrieves the confidence scores corresponding to the top 5 class probabilities
|
|
1391
|
+
predicted by the model. It provides a quick way to access the most likely class predictions
|
|
1392
|
+
along with their associated confidence levels.
|
|
1393
|
+
|
|
1394
|
+
Returns:
|
|
1395
|
+
(torch.Tensor | numpy.ndarray): A tensor or array containing the confidence scores for the
|
|
1396
|
+
top 5 predicted classes, sorted in descending order of probability.
|
|
1397
|
+
|
|
1398
|
+
Examples:
|
|
1399
|
+
>>> results = model('image.jpg')
|
|
1400
|
+
>>> probs = results[0].probs
|
|
1401
|
+
>>> top5_conf = probs.top5conf
|
|
1402
|
+
>>> print(top5_conf) # Prints confidence scores for top 5 classes
|
|
1403
|
+
"""
|
|
741
1404
|
return self.data[self.top5]
|
|
742
1405
|
|
|
743
1406
|
|
|
@@ -745,31 +1408,63 @@ class OBB(BaseTensor):
|
|
|
745
1408
|
"""
|
|
746
1409
|
A class for storing and manipulating Oriented Bounding Boxes (OBB).
|
|
747
1410
|
|
|
748
|
-
|
|
749
|
-
|
|
750
|
-
|
|
751
|
-
|
|
752
|
-
|
|
753
|
-
|
|
754
|
-
|
|
755
|
-
xywhr (torch.Tensor | numpy.ndarray):
|
|
756
|
-
conf (torch.Tensor | numpy.ndarray):
|
|
757
|
-
cls (torch.Tensor | numpy.ndarray):
|
|
758
|
-
id (torch.Tensor | numpy.ndarray):
|
|
759
|
-
|
|
760
|
-
|
|
761
|
-
xyxy (torch.Tensor | numpy.ndarray):
|
|
762
|
-
data (torch.Tensor): The raw OBB tensor (alias for `boxes`).
|
|
1411
|
+
This class provides functionality to handle oriented bounding boxes, including conversion between
|
|
1412
|
+
different formats, normalization, and access to various properties of the boxes.
|
|
1413
|
+
|
|
1414
|
+
Attributes:
|
|
1415
|
+
data (torch.Tensor): The raw OBB tensor containing box coordinates and associated data.
|
|
1416
|
+
orig_shape (tuple): Original image size as (height, width).
|
|
1417
|
+
is_track (bool): Indicates whether tracking IDs are included in the box data.
|
|
1418
|
+
xywhr (torch.Tensor | numpy.ndarray): Boxes in [x_center, y_center, width, height, rotation] format.
|
|
1419
|
+
conf (torch.Tensor | numpy.ndarray): Confidence scores for each box.
|
|
1420
|
+
cls (torch.Tensor | numpy.ndarray): Class labels for each box.
|
|
1421
|
+
id (torch.Tensor | numpy.ndarray): Tracking IDs for each box, if available.
|
|
1422
|
+
xyxyxyxy (torch.Tensor | numpy.ndarray): Boxes in 8-point [x1, y1, x2, y2, x3, y3, x4, y4] format.
|
|
1423
|
+
xyxyxyxyn (torch.Tensor | numpy.ndarray): Normalized 8-point coordinates relative to orig_shape.
|
|
1424
|
+
xyxy (torch.Tensor | numpy.ndarray): Axis-aligned bounding boxes in [x1, y1, x2, y2] format.
|
|
763
1425
|
|
|
764
1426
|
Methods:
|
|
765
|
-
cpu():
|
|
766
|
-
numpy():
|
|
767
|
-
cuda():
|
|
768
|
-
to(*args, **kwargs):
|
|
1427
|
+
cpu(): Returns a copy of the OBB object with all tensors on CPU memory.
|
|
1428
|
+
numpy(): Returns a copy of the OBB object with all tensors as numpy arrays.
|
|
1429
|
+
cuda(): Returns a copy of the OBB object with all tensors on GPU memory.
|
|
1430
|
+
to(*args, **kwargs): Returns a copy of the OBB object with tensors on specified device and dtype.
|
|
1431
|
+
|
|
1432
|
+
Examples:
|
|
1433
|
+
>>> boxes = torch.tensor([[100, 50, 150, 100, 30, 0.9, 0]]) # xywhr, conf, cls
|
|
1434
|
+
>>> obb = OBB(boxes, orig_shape=(480, 640))
|
|
1435
|
+
>>> print(obb.xyxyxyxy)
|
|
1436
|
+
>>> print(obb.conf)
|
|
1437
|
+
>>> print(obb.cls)
|
|
769
1438
|
"""
|
|
770
1439
|
|
|
771
1440
|
def __init__(self, boxes, orig_shape) -> None:
|
|
772
|
-
"""
|
|
1441
|
+
"""
|
|
1442
|
+
Initialize an OBB (Oriented Bounding Box) instance with oriented bounding box data and original image shape.
|
|
1443
|
+
|
|
1444
|
+
This class stores and manipulates Oriented Bounding Boxes (OBB) for object detection tasks. It provides
|
|
1445
|
+
various properties and methods to access and transform the OBB data.
|
|
1446
|
+
|
|
1447
|
+
Args:
|
|
1448
|
+
boxes (torch.Tensor | numpy.ndarray): A tensor or numpy array containing the detection boxes,
|
|
1449
|
+
with shape (num_boxes, 7) or (num_boxes, 8). The last two columns contain confidence and class values.
|
|
1450
|
+
If present, the third last column contains track IDs, and the fifth column contains rotation.
|
|
1451
|
+
orig_shape (Tuple[int, int]): Original image size, in the format (height, width).
|
|
1452
|
+
|
|
1453
|
+
Attributes:
|
|
1454
|
+
data (torch.Tensor | numpy.ndarray): The raw OBB tensor.
|
|
1455
|
+
orig_shape (Tuple[int, int]): The original image shape.
|
|
1456
|
+
is_track (bool): Whether the boxes include tracking IDs.
|
|
1457
|
+
|
|
1458
|
+
Raises:
|
|
1459
|
+
AssertionError: If the number of values per box is not 7 or 8.
|
|
1460
|
+
|
|
1461
|
+
Examples:
|
|
1462
|
+
>>> import torch
|
|
1463
|
+
>>> boxes = torch.rand(3, 7) # 3 boxes with 7 values each
|
|
1464
|
+
>>> orig_shape = (640, 480)
|
|
1465
|
+
>>> obb = OBB(boxes, orig_shape)
|
|
1466
|
+
>>> print(obb.xywhr) # Access the boxes in xywhr format
|
|
1467
|
+
"""
|
|
773
1468
|
if boxes.ndim == 1:
|
|
774
1469
|
boxes = boxes[None, :]
|
|
775
1470
|
n = boxes.shape[-1]
|
|
@@ -780,34 +1475,115 @@ class OBB(BaseTensor):
|
|
|
780
1475
|
|
|
781
1476
|
@property
|
|
782
1477
|
def xywhr(self):
|
|
783
|
-
"""
|
|
1478
|
+
"""
|
|
1479
|
+
Returns boxes in [x_center, y_center, width, height, rotation] format.
|
|
1480
|
+
|
|
1481
|
+
Returns:
|
|
1482
|
+
(torch.Tensor | numpy.ndarray): A tensor or numpy array containing the oriented bounding boxes with format
|
|
1483
|
+
[x_center, y_center, width, height, rotation]. The shape is (N, 5) where N is the number of boxes.
|
|
1484
|
+
|
|
1485
|
+
Examples:
|
|
1486
|
+
>>> results = model('image.jpg')
|
|
1487
|
+
>>> obb = results[0].obb
|
|
1488
|
+
>>> xywhr = obb.xywhr
|
|
1489
|
+
>>> print(xywhr.shape)
|
|
1490
|
+
torch.Size([3, 5])
|
|
1491
|
+
"""
|
|
784
1492
|
return self.data[:, :5]
|
|
785
1493
|
|
|
786
1494
|
@property
|
|
787
1495
|
def conf(self):
|
|
788
|
-
"""
|
|
1496
|
+
"""
|
|
1497
|
+
Returns the confidence scores for Oriented Bounding Boxes (OBBs).
|
|
1498
|
+
|
|
1499
|
+
This property retrieves the confidence values associated with each OBB detection. The confidence score
|
|
1500
|
+
represents the model's certainty in the detection.
|
|
1501
|
+
|
|
1502
|
+
Returns:
|
|
1503
|
+
(torch.Tensor | numpy.ndarray): A tensor or numpy array of shape (N,) containing confidence scores
|
|
1504
|
+
for N detections, where each score is in the range [0, 1].
|
|
1505
|
+
|
|
1506
|
+
Examples:
|
|
1507
|
+
>>> results = model('image.jpg')
|
|
1508
|
+
>>> obb_result = results[0].obb
|
|
1509
|
+
>>> confidence_scores = obb_result.conf
|
|
1510
|
+
>>> print(confidence_scores)
|
|
1511
|
+
"""
|
|
789
1512
|
return self.data[:, -2]
|
|
790
1513
|
|
|
791
1514
|
@property
|
|
792
1515
|
def cls(self):
|
|
793
|
-
"""
|
|
1516
|
+
"""
|
|
1517
|
+
Returns the class values of the oriented bounding boxes.
|
|
1518
|
+
|
|
1519
|
+
Returns:
|
|
1520
|
+
(torch.Tensor | numpy.ndarray): A tensor or numpy array containing the class values for each oriented
|
|
1521
|
+
bounding box. The shape is (N,), where N is the number of boxes.
|
|
1522
|
+
|
|
1523
|
+
Examples:
|
|
1524
|
+
>>> results = model('image.jpg')
|
|
1525
|
+
>>> result = results[0]
|
|
1526
|
+
>>> obb = result.obb
|
|
1527
|
+
>>> class_values = obb.cls
|
|
1528
|
+
>>> print(class_values)
|
|
1529
|
+
"""
|
|
794
1530
|
return self.data[:, -1]
|
|
795
1531
|
|
|
796
1532
|
@property
|
|
797
1533
|
def id(self):
|
|
798
|
-
"""
|
|
1534
|
+
"""
|
|
1535
|
+
Returns the tracking IDs of the oriented bounding boxes (if available).
|
|
1536
|
+
|
|
1537
|
+
Returns:
|
|
1538
|
+
(torch.Tensor | numpy.ndarray | None): A tensor or numpy array containing the tracking IDs for each
|
|
1539
|
+
oriented bounding box. Returns None if tracking IDs are not available.
|
|
1540
|
+
|
|
1541
|
+
Examples:
|
|
1542
|
+
>>> results = model('image.jpg', tracker=True) # Run inference with tracking
|
|
1543
|
+
>>> for result in results:
|
|
1544
|
+
... if result.obb is not None:
|
|
1545
|
+
... track_ids = result.obb.id
|
|
1546
|
+
... if track_ids is not None:
|
|
1547
|
+
... print(f"Tracking IDs: {track_ids}")
|
|
1548
|
+
"""
|
|
799
1549
|
return self.data[:, -3] if self.is_track else None
|
|
800
1550
|
|
|
801
1551
|
@property
|
|
802
1552
|
@lru_cache(maxsize=2)
|
|
803
1553
|
def xyxyxyxy(self):
|
|
804
|
-
"""
|
|
1554
|
+
"""
|
|
1555
|
+
Converts OBB format to 8-point (xyxyxyxy) coordinate format for rotated bounding boxes.
|
|
1556
|
+
|
|
1557
|
+
Returns:
|
|
1558
|
+
(torch.Tensor | numpy.ndarray): Rotated bounding boxes in xyxyxyxy format with shape (N, 4, 2), where N is
|
|
1559
|
+
the number of boxes. Each box is represented by 4 points (x, y), starting from the top-left corner and
|
|
1560
|
+
moving clockwise.
|
|
1561
|
+
|
|
1562
|
+
Examples:
|
|
1563
|
+
>>> obb = OBB(torch.tensor([[100, 100, 50, 30, 0.5, 0.9, 0]]), orig_shape=(640, 640))
|
|
1564
|
+
>>> xyxyxyxy = obb.xyxyxyxy
|
|
1565
|
+
>>> print(xyxyxyxy.shape)
|
|
1566
|
+
torch.Size([1, 4, 2])
|
|
1567
|
+
"""
|
|
805
1568
|
return ops.xywhr2xyxyxyxy(self.xywhr)
|
|
806
1569
|
|
|
807
1570
|
@property
|
|
808
1571
|
@lru_cache(maxsize=2)
|
|
809
1572
|
def xyxyxyxyn(self):
|
|
810
|
-
"""
|
|
1573
|
+
"""
|
|
1574
|
+
Converts rotated bounding boxes to normalized xyxyxyxy format.
|
|
1575
|
+
|
|
1576
|
+
Returns:
|
|
1577
|
+
(torch.Tensor | numpy.ndarray): Normalized rotated bounding boxes in xyxyxyxy format with shape (N, 4, 2),
|
|
1578
|
+
where N is the number of boxes. Each box is represented by 4 points (x, y), normalized relative to
|
|
1579
|
+
the original image dimensions.
|
|
1580
|
+
|
|
1581
|
+
Examples:
|
|
1582
|
+
>>> obb = OBB(torch.rand(10, 7), orig_shape=(640, 480)) # 10 random OBBs
|
|
1583
|
+
>>> normalized_boxes = obb.xyxyxyxyn
|
|
1584
|
+
>>> print(normalized_boxes.shape)
|
|
1585
|
+
torch.Size([10, 4, 2])
|
|
1586
|
+
"""
|
|
811
1587
|
xyxyxyxyn = self.xyxyxyxy.clone() if isinstance(self.xyxyxyxy, torch.Tensor) else np.copy(self.xyxyxyxy)
|
|
812
1588
|
xyxyxyxyn[..., 0] /= self.orig_shape[1]
|
|
813
1589
|
xyxyxyxyn[..., 1] /= self.orig_shape[0]
|
|
@@ -817,28 +1593,31 @@ class OBB(BaseTensor):
|
|
|
817
1593
|
@lru_cache(maxsize=2)
|
|
818
1594
|
def xyxy(self):
|
|
819
1595
|
"""
|
|
820
|
-
|
|
1596
|
+
Converts oriented bounding boxes (OBB) to axis-aligned bounding boxes in xyxy format.
|
|
821
1597
|
|
|
822
|
-
|
|
823
|
-
|
|
824
|
-
|
|
825
|
-
Example:
|
|
826
|
-
```python
|
|
827
|
-
import torch
|
|
828
|
-
from ultralytics import YOLO
|
|
1598
|
+
This property calculates the minimal enclosing rectangle for each oriented bounding box and returns it in
|
|
1599
|
+
xyxy format (x1, y1, x2, y2). This is useful for operations that require axis-aligned bounding boxes, such
|
|
1600
|
+
as IoU calculation with non-rotated boxes.
|
|
829
1601
|
|
|
830
|
-
|
|
831
|
-
|
|
832
|
-
|
|
833
|
-
|
|
834
|
-
|
|
835
|
-
|
|
836
|
-
|
|
837
|
-
|
|
1602
|
+
Returns:
|
|
1603
|
+
(torch.Tensor | numpy.ndarray): Axis-aligned bounding boxes in xyxy format with shape (N, 4), where N
|
|
1604
|
+
is the number of boxes. Each row contains [x1, y1, x2, y2] coordinates.
|
|
1605
|
+
|
|
1606
|
+
Examples:
|
|
1607
|
+
>>> import torch
|
|
1608
|
+
>>> from ultralytics import YOLO
|
|
1609
|
+
>>> model = YOLO('yolov8n-obb.pt')
|
|
1610
|
+
>>> results = model('path/to/image.jpg')
|
|
1611
|
+
>>> for result in results:
|
|
1612
|
+
... obb = result.obb
|
|
1613
|
+
... if obb is not None:
|
|
1614
|
+
... xyxy_boxes = obb.xyxy
|
|
1615
|
+
... print(xyxy_boxes.shape) # (N, 4)
|
|
838
1616
|
|
|
839
|
-
|
|
840
|
-
This method
|
|
841
|
-
|
|
1617
|
+
Notes:
|
|
1618
|
+
- This method approximates the OBB by its minimal enclosing rectangle.
|
|
1619
|
+
- The returned format is compatible with standard object detection metrics and visualization tools.
|
|
1620
|
+
- The property uses caching to improve performance for repeated access.
|
|
842
1621
|
"""
|
|
843
1622
|
x = self.xyxyxyxy[..., 0]
|
|
844
1623
|
y = self.xyxyxyxy[..., 1]
|