ultralytics 8.2.61__py3-none-any.whl → 8.2.63__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +154 -103
- ultralytics/data/annotator.py +16 -12
- ultralytics/data/augment.py +1478 -195
- ultralytics/data/explorer/gui/dash.py +41 -26
- ultralytics/data/loaders.py +1 -1
- ultralytics/engine/model.py +483 -176
- ultralytics/engine/results.py +1035 -256
- ultralytics/models/fastsam/predict.py +18 -73
- ultralytics/models/fastsam/utils.py +0 -42
- ultralytics/models/nas/predict.py +1 -3
- ultralytics/models/rtdetr/predict.py +4 -6
- ultralytics/models/sam/predict.py +1 -3
- ultralytics/models/yolo/classify/predict.py +1 -3
- ultralytics/models/yolo/detect/predict.py +1 -3
- ultralytics/models/yolo/pose/predict.py +1 -3
- ultralytics/models/yolo/segment/predict.py +1 -3
- ultralytics/solutions/streamlit_inference.py +5 -2
- ultralytics/utils/downloads.py +1 -1
- {ultralytics-8.2.61.dist-info → ultralytics-8.2.63.dist-info}/METADATA +1 -1
- {ultralytics-8.2.61.dist-info → ultralytics-8.2.63.dist-info}/RECORD +25 -25
- {ultralytics-8.2.61.dist-info → ultralytics-8.2.63.dist-info}/WHEEL +1 -1
- {ultralytics-8.2.61.dist-info → ultralytics-8.2.63.dist-info}/LICENSE +0 -0
- {ultralytics-8.2.61.dist-info → ultralytics-8.2.63.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.2.61.dist-info → ultralytics-8.2.63.dist-info}/top_level.txt +0 -0
ultralytics/data/augment.py
CHANGED
|
@@ -23,74 +23,252 @@ DEFAULT_STD = (1.0, 1.0, 1.0)
|
|
|
23
23
|
DEFAULT_CROP_FRACTION = 1.0
|
|
24
24
|
|
|
25
25
|
|
|
26
|
-
# TODO: we might need a BaseTransform to make all these augments be compatible with both classification and semantic
|
|
27
26
|
class BaseTransform:
|
|
28
27
|
"""
|
|
29
|
-
Base class for image transformations.
|
|
28
|
+
Base class for image transformations in the Ultralytics library.
|
|
30
29
|
|
|
31
|
-
This
|
|
32
|
-
|
|
30
|
+
This class serves as a foundation for implementing various image processing operations, designed to be
|
|
31
|
+
compatible with both classification and semantic segmentation tasks.
|
|
33
32
|
|
|
34
33
|
Methods:
|
|
35
|
-
|
|
36
|
-
apply_image: Applies image transformation to labels.
|
|
34
|
+
apply_image: Applies image transformations to labels.
|
|
37
35
|
apply_instances: Applies transformations to object instances in labels.
|
|
38
36
|
apply_semantic: Applies semantic segmentation to an image.
|
|
39
37
|
__call__: Applies all label transformations to an image, instances, and semantic masks.
|
|
38
|
+
|
|
39
|
+
Examples:
|
|
40
|
+
>>> transform = BaseTransform()
|
|
41
|
+
>>> labels = {'image': np.array(...), 'instances': [...], 'semantic': np.array(...)}
|
|
42
|
+
>>> transformed_labels = transform(labels)
|
|
40
43
|
"""
|
|
41
44
|
|
|
42
45
|
def __init__(self) -> None:
|
|
43
|
-
"""
|
|
46
|
+
"""
|
|
47
|
+
Initializes the BaseTransform object.
|
|
48
|
+
|
|
49
|
+
This constructor sets up the base transformation object, which can be extended for specific image
|
|
50
|
+
processing tasks. It is designed to be compatible with both classification and semantic segmentation.
|
|
51
|
+
|
|
52
|
+
Examples:
|
|
53
|
+
>>> transform = BaseTransform()
|
|
54
|
+
"""
|
|
44
55
|
pass
|
|
45
56
|
|
|
46
57
|
def apply_image(self, labels):
|
|
47
|
-
"""
|
|
58
|
+
"""
|
|
59
|
+
Applies image transformations to labels.
|
|
60
|
+
|
|
61
|
+
This method is intended to be overridden by subclasses to implement specific image transformation
|
|
62
|
+
logic. In its base form, it returns the input labels unchanged.
|
|
63
|
+
|
|
64
|
+
Args:
|
|
65
|
+
labels (Any): The input labels to be transformed. The exact type and structure of labels may
|
|
66
|
+
vary depending on the specific implementation.
|
|
67
|
+
|
|
68
|
+
Returns:
|
|
69
|
+
(Any): The transformed labels. In the base implementation, this is identical to the input.
|
|
70
|
+
|
|
71
|
+
Examples:
|
|
72
|
+
>>> transform = BaseTransform()
|
|
73
|
+
>>> original_labels = [1, 2, 3]
|
|
74
|
+
>>> transformed_labels = transform.apply_image(original_labels)
|
|
75
|
+
>>> print(transformed_labels)
|
|
76
|
+
[1, 2, 3]
|
|
77
|
+
"""
|
|
48
78
|
pass
|
|
49
79
|
|
|
50
80
|
def apply_instances(self, labels):
|
|
51
|
-
"""
|
|
81
|
+
"""
|
|
82
|
+
Applies transformations to object instances in labels.
|
|
83
|
+
|
|
84
|
+
This method is responsible for applying various transformations to object instances within the given
|
|
85
|
+
labels. It is designed to be overridden by subclasses to implement specific instance transformation
|
|
86
|
+
logic.
|
|
87
|
+
|
|
88
|
+
Args:
|
|
89
|
+
labels (Dict): A dictionary containing label information, including object instances.
|
|
90
|
+
|
|
91
|
+
Returns:
|
|
92
|
+
(Dict): The modified labels dictionary with transformed object instances.
|
|
93
|
+
|
|
94
|
+
Examples:
|
|
95
|
+
>>> transform = BaseTransform()
|
|
96
|
+
>>> labels = {'instances': Instances(xyxy=torch.rand(5, 4), cls=torch.randint(0, 80, (5,)))}
|
|
97
|
+
>>> transformed_labels = transform.apply_instances(labels)
|
|
98
|
+
"""
|
|
52
99
|
pass
|
|
53
100
|
|
|
54
101
|
def apply_semantic(self, labels):
|
|
55
|
-
"""
|
|
102
|
+
"""
|
|
103
|
+
Applies semantic segmentation transformations to an image.
|
|
104
|
+
|
|
105
|
+
This method is intended to be overridden by subclasses to implement specific semantic segmentation
|
|
106
|
+
transformations. In its base form, it does not perform any operations.
|
|
107
|
+
|
|
108
|
+
Args:
|
|
109
|
+
labels (Any): The input labels or semantic segmentation mask to be transformed.
|
|
110
|
+
|
|
111
|
+
Returns:
|
|
112
|
+
(Any): The transformed semantic segmentation mask or labels.
|
|
113
|
+
|
|
114
|
+
Examples:
|
|
115
|
+
>>> transform = BaseTransform()
|
|
116
|
+
>>> semantic_mask = np.zeros((100, 100), dtype=np.uint8)
|
|
117
|
+
>>> transformed_mask = transform.apply_semantic(semantic_mask)
|
|
118
|
+
"""
|
|
56
119
|
pass
|
|
57
120
|
|
|
58
121
|
def __call__(self, labels):
|
|
59
|
-
"""
|
|
122
|
+
"""
|
|
123
|
+
Applies all label transformations to an image, instances, and semantic masks.
|
|
124
|
+
|
|
125
|
+
This method orchestrates the application of various transformations defined in the BaseTransform class
|
|
126
|
+
to the input labels. It sequentially calls the apply_image and apply_instances methods to process the
|
|
127
|
+
image and object instances, respectively.
|
|
128
|
+
|
|
129
|
+
Args:
|
|
130
|
+
labels (Dict): A dictionary containing image data and annotations. Expected keys include 'img' for
|
|
131
|
+
the image data, and 'instances' for object instances.
|
|
132
|
+
|
|
133
|
+
Returns:
|
|
134
|
+
(Dict): The input labels dictionary with transformed image and instances.
|
|
135
|
+
|
|
136
|
+
Examples:
|
|
137
|
+
>>> transform = BaseTransform()
|
|
138
|
+
>>> labels = {'img': np.random.rand(640, 640, 3), 'instances': []}
|
|
139
|
+
>>> transformed_labels = transform(labels)
|
|
140
|
+
"""
|
|
60
141
|
self.apply_image(labels)
|
|
61
142
|
self.apply_instances(labels)
|
|
62
143
|
self.apply_semantic(labels)
|
|
63
144
|
|
|
64
145
|
|
|
65
146
|
class Compose:
|
|
66
|
-
"""
|
|
147
|
+
"""
|
|
148
|
+
A class for composing multiple image transformations.
|
|
149
|
+
|
|
150
|
+
Attributes:
|
|
151
|
+
transforms (List[Callable]): A list of transformation functions to be applied sequentially.
|
|
152
|
+
|
|
153
|
+
Methods:
|
|
154
|
+
__call__: Applies a series of transformations to input data.
|
|
155
|
+
append: Appends a new transform to the existing list of transforms.
|
|
156
|
+
insert: Inserts a new transform at a specified index in the list of transforms.
|
|
157
|
+
__getitem__: Retrieves a specific transform or a set of transforms using indexing.
|
|
158
|
+
__setitem__: Sets a specific transform or a set of transforms using indexing.
|
|
159
|
+
tolist: Converts the list of transforms to a standard Python list.
|
|
160
|
+
|
|
161
|
+
Examples:
|
|
162
|
+
>>> transforms = [RandomFlip(), RandomPerspective(30)]
|
|
163
|
+
>>> compose = Compose(transforms)
|
|
164
|
+
>>> transformed_data = compose(data)
|
|
165
|
+
>>> compose.append(CenterCrop((224, 224)))
|
|
166
|
+
>>> compose.insert(0, RandomFlip())
|
|
167
|
+
"""
|
|
67
168
|
|
|
68
169
|
def __init__(self, transforms):
|
|
69
|
-
"""
|
|
170
|
+
"""
|
|
171
|
+
Initializes the Compose object with a list of transforms.
|
|
172
|
+
|
|
173
|
+
Args:
|
|
174
|
+
transforms (List[Callable]): A list of callable transform objects to be applied sequentially.
|
|
175
|
+
|
|
176
|
+
Examples:
|
|
177
|
+
>>> from ultralytics.data.augment import Compose, RandomHSV, RandomFlip
|
|
178
|
+
>>> transforms = [RandomHSV(), RandomFlip()]
|
|
179
|
+
>>> compose = Compose(transforms)
|
|
180
|
+
"""
|
|
70
181
|
self.transforms = transforms if isinstance(transforms, list) else [transforms]
|
|
71
182
|
|
|
72
183
|
def __call__(self, data):
|
|
73
|
-
"""
|
|
184
|
+
"""
|
|
185
|
+
Applies a series of transformations to input data. This method sequentially applies each transformation in the
|
|
186
|
+
Compose object's list of transforms to the input data.
|
|
187
|
+
|
|
188
|
+
Args:
|
|
189
|
+
data (Any): The input data to be transformed. This can be of any type, depending on the
|
|
190
|
+
transformations in the list.
|
|
191
|
+
|
|
192
|
+
Returns:
|
|
193
|
+
(Any): The transformed data after applying all transformations in sequence.
|
|
194
|
+
|
|
195
|
+
Examples:
|
|
196
|
+
>>> transforms = [Transform1(), Transform2(), Transform3()]
|
|
197
|
+
>>> compose = Compose(transforms)
|
|
198
|
+
>>> transformed_data = compose(input_data)
|
|
199
|
+
"""
|
|
74
200
|
for t in self.transforms:
|
|
75
201
|
data = t(data)
|
|
76
202
|
return data
|
|
77
203
|
|
|
78
204
|
def append(self, transform):
|
|
79
|
-
"""
|
|
205
|
+
"""
|
|
206
|
+
Appends a new transform to the existing list of transforms.
|
|
207
|
+
|
|
208
|
+
Args:
|
|
209
|
+
transform (BaseTransform): The transformation to be added to the composition.
|
|
210
|
+
|
|
211
|
+
Examples:
|
|
212
|
+
>>> compose = Compose([RandomFlip(), RandomPerspective()])
|
|
213
|
+
>>> compose.append(RandomHSV())
|
|
214
|
+
"""
|
|
80
215
|
self.transforms.append(transform)
|
|
81
216
|
|
|
82
217
|
def insert(self, index, transform):
|
|
83
|
-
"""
|
|
218
|
+
"""
|
|
219
|
+
Inserts a new transform at a specified index in the existing list of transforms.
|
|
220
|
+
|
|
221
|
+
Args:
|
|
222
|
+
index (int): The index at which to insert the new transform.
|
|
223
|
+
transform (BaseTransform): The transform object to be inserted.
|
|
224
|
+
|
|
225
|
+
Examples:
|
|
226
|
+
>>> compose = Compose([Transform1(), Transform2()])
|
|
227
|
+
>>> compose.insert(1, Transform3())
|
|
228
|
+
>>> len(compose.transforms)
|
|
229
|
+
3
|
|
230
|
+
"""
|
|
84
231
|
self.transforms.insert(index, transform)
|
|
85
232
|
|
|
86
233
|
def __getitem__(self, index: Union[list, int]) -> "Compose":
|
|
87
|
-
"""
|
|
234
|
+
"""
|
|
235
|
+
Retrieves a specific transform or a set of transforms using indexing.
|
|
236
|
+
|
|
237
|
+
Args:
|
|
238
|
+
index (int | List[int]): Index or list of indices of the transforms to retrieve.
|
|
239
|
+
|
|
240
|
+
Returns:
|
|
241
|
+
(Compose): A new Compose object containing the selected transform(s).
|
|
242
|
+
|
|
243
|
+
Raises:
|
|
244
|
+
AssertionError: If the index is not of type int or list.
|
|
245
|
+
|
|
246
|
+
Examples:
|
|
247
|
+
>>> transforms = [RandomFlip(), RandomPerspective(10), RandomHSV(0.5, 0.5, 0.5)]
|
|
248
|
+
>>> compose = Compose(transforms)
|
|
249
|
+
>>> single_transform = compose[1] # Returns a Compose object with only RandomPerspective
|
|
250
|
+
>>> multiple_transforms = compose[0:2] # Returns a Compose object with RandomFlip and RandomPerspective
|
|
251
|
+
"""
|
|
88
252
|
assert isinstance(index, (int, list)), f"The indices should be either list or int type but got {type(index)}"
|
|
89
253
|
index = [index] if isinstance(index, int) else index
|
|
90
254
|
return Compose([self.transforms[i] for i in index])
|
|
91
255
|
|
|
92
256
|
def __setitem__(self, index: Union[list, int], value: Union[list, int]) -> None:
|
|
93
|
-
"""
|
|
257
|
+
"""
|
|
258
|
+
Sets one or more transforms in the composition using indexing.
|
|
259
|
+
|
|
260
|
+
Args:
|
|
261
|
+
index (int | List[int]): Index or list of indices to set transforms at.
|
|
262
|
+
value (Any | List[Any]): Transform or list of transforms to set at the specified index(es).
|
|
263
|
+
|
|
264
|
+
Raises:
|
|
265
|
+
AssertionError: If index type is invalid, value type doesn't match index type, or index is out of range.
|
|
266
|
+
|
|
267
|
+
Examples:
|
|
268
|
+
>>> compose = Compose([Transform1(), Transform2(), Transform3()])
|
|
269
|
+
>>> compose[1] = NewTransform() # Replace second transform
|
|
270
|
+
>>> compose[0:2] = [NewTransform1(), NewTransform2()] # Replace first two transforms
|
|
271
|
+
"""
|
|
94
272
|
assert isinstance(index, (int, list)), f"The indices should be either list or int type but got {type(index)}"
|
|
95
273
|
if isinstance(index, list):
|
|
96
274
|
assert isinstance(
|
|
@@ -103,29 +281,107 @@ class Compose:
|
|
|
103
281
|
self.transforms[i] = v
|
|
104
282
|
|
|
105
283
|
def tolist(self):
|
|
106
|
-
"""
|
|
284
|
+
"""
|
|
285
|
+
Converts the list of transforms to a standard Python list.
|
|
286
|
+
|
|
287
|
+
Returns:
|
|
288
|
+
(List): A list containing all the transform objects in the Compose instance.
|
|
289
|
+
|
|
290
|
+
Examples:
|
|
291
|
+
>>> transforms = [RandomFlip(), RandomPerspective(10), CenterCrop()]
|
|
292
|
+
>>> compose = Compose(transforms)
|
|
293
|
+
>>> transform_list = compose.tolist()
|
|
294
|
+
>>> print(len(transform_list))
|
|
295
|
+
3
|
|
296
|
+
"""
|
|
107
297
|
return self.transforms
|
|
108
298
|
|
|
109
299
|
def __repr__(self):
|
|
110
|
-
"""
|
|
300
|
+
"""
|
|
301
|
+
Returns a string representation of the Compose object.
|
|
302
|
+
|
|
303
|
+
Returns:
|
|
304
|
+
(str): A string representation of the Compose object, including the list of transforms.
|
|
305
|
+
|
|
306
|
+
Examples:
|
|
307
|
+
>>> transforms = [RandomFlip(), RandomPerspective(degrees=10, translate=0.1, scale=0.1)]
|
|
308
|
+
>>> compose = Compose(transforms)
|
|
309
|
+
>>> print(compose)
|
|
310
|
+
Compose([
|
|
311
|
+
RandomFlip(),
|
|
312
|
+
RandomPerspective(degrees=10, translate=0.1, scale=0.1)
|
|
313
|
+
])
|
|
314
|
+
"""
|
|
111
315
|
return f"{self.__class__.__name__}({', '.join([f'{t}' for t in self.transforms])})"
|
|
112
316
|
|
|
113
317
|
|
|
114
318
|
class BaseMixTransform:
|
|
115
319
|
"""
|
|
116
|
-
|
|
320
|
+
Base class for mix transformations like MixUp and Mosaic.
|
|
321
|
+
|
|
322
|
+
This class provides a foundation for implementing mix transformations on datasets. It handles the
|
|
323
|
+
probability-based application of transforms and manages the mixing of multiple images and labels.
|
|
324
|
+
|
|
325
|
+
Attributes:
|
|
326
|
+
dataset (Any): The dataset object containing images and labels.
|
|
327
|
+
pre_transform (Callable | None): Optional transform to apply before mixing.
|
|
328
|
+
p (float): Probability of applying the mix transformation.
|
|
117
329
|
|
|
118
|
-
|
|
330
|
+
Methods:
|
|
331
|
+
__call__: Applies the mix transformation to the input labels.
|
|
332
|
+
_mix_transform: Abstract method to be implemented by subclasses for specific mix operations.
|
|
333
|
+
get_indexes: Abstract method to get indexes of images to be mixed.
|
|
334
|
+
_update_label_text: Updates label text for mixed images.
|
|
335
|
+
|
|
336
|
+
Examples:
|
|
337
|
+
>>> class CustomMixTransform(BaseMixTransform):
|
|
338
|
+
... def _mix_transform(self, labels):
|
|
339
|
+
... # Implement custom mix logic here
|
|
340
|
+
... return labels
|
|
341
|
+
... def get_indexes(self):
|
|
342
|
+
... return [random.randint(0, len(self.dataset) - 1) for _ in range(3)]
|
|
343
|
+
>>> dataset = YourDataset()
|
|
344
|
+
>>> transform = CustomMixTransform(dataset, p=0.5)
|
|
345
|
+
>>> mixed_labels = transform(original_labels)
|
|
119
346
|
"""
|
|
120
347
|
|
|
121
348
|
def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
|
|
122
|
-
"""
|
|
349
|
+
"""
|
|
350
|
+
Initializes the BaseMixTransform object for mix transformations like MixUp and Mosaic.
|
|
351
|
+
|
|
352
|
+
This class serves as a base for implementing mix transformations in image processing pipelines.
|
|
353
|
+
|
|
354
|
+
Args:
|
|
355
|
+
dataset (Any): The dataset object containing images and labels for mixing.
|
|
356
|
+
pre_transform (Callable | None): Optional transform to apply before mixing.
|
|
357
|
+
p (float): Probability of applying the mix transformation. Should be in the range [0.0, 1.0].
|
|
358
|
+
|
|
359
|
+
Examples:
|
|
360
|
+
>>> dataset = YOLODataset("path/to/data")
|
|
361
|
+
>>> pre_transform = Compose([RandomFlip(), RandomPerspective()])
|
|
362
|
+
>>> mix_transform = BaseMixTransform(dataset, pre_transform, p=0.5)
|
|
363
|
+
"""
|
|
123
364
|
self.dataset = dataset
|
|
124
365
|
self.pre_transform = pre_transform
|
|
125
366
|
self.p = p
|
|
126
367
|
|
|
127
368
|
def __call__(self, labels):
|
|
128
|
-
"""
|
|
369
|
+
"""
|
|
370
|
+
Applies pre-processing transforms and mixup/mosaic transforms to labels data.
|
|
371
|
+
|
|
372
|
+
This method determines whether to apply the mix transform based on a probability factor. If applied, it
|
|
373
|
+
selects additional images, applies pre-transforms if specified, and then performs the mix transform.
|
|
374
|
+
|
|
375
|
+
Args:
|
|
376
|
+
labels (Dict): A dictionary containing label data for an image.
|
|
377
|
+
|
|
378
|
+
Returns:
|
|
379
|
+
(Dict): The transformed labels dictionary, which may include mixed data from other images.
|
|
380
|
+
|
|
381
|
+
Examples:
|
|
382
|
+
>>> transform = BaseMixTransform(dataset, pre_transform=None, p=0.5)
|
|
383
|
+
>>> result = transform({"image": img, "bboxes": boxes, "cls": classes})
|
|
384
|
+
"""
|
|
129
385
|
if random.uniform(0, 1) > self.p:
|
|
130
386
|
return labels
|
|
131
387
|
|
|
@@ -150,15 +406,73 @@ class BaseMixTransform:
|
|
|
150
406
|
return labels
|
|
151
407
|
|
|
152
408
|
def _mix_transform(self, labels):
|
|
153
|
-
"""
|
|
409
|
+
"""
|
|
410
|
+
Applies MixUp or Mosaic augmentation to the label dictionary.
|
|
411
|
+
|
|
412
|
+
This method should be implemented by subclasses to perform specific mix transformations like MixUp or
|
|
413
|
+
Mosaic. It modifies the input label dictionary in-place with the augmented data.
|
|
414
|
+
|
|
415
|
+
Args:
|
|
416
|
+
labels (Dict): A dictionary containing image and label data. Expected to have a 'mix_labels' key
|
|
417
|
+
with a list of additional image and label data for mixing.
|
|
418
|
+
|
|
419
|
+
Returns:
|
|
420
|
+
(Dict): The modified labels dictionary with augmented data after applying the mix transform.
|
|
421
|
+
|
|
422
|
+
Examples:
|
|
423
|
+
>>> transform = BaseMixTransform(dataset)
|
|
424
|
+
>>> labels = {'image': img, 'bboxes': boxes, 'mix_labels': [{'image': img2, 'bboxes': boxes2}]}
|
|
425
|
+
>>> augmented_labels = transform._mix_transform(labels)
|
|
426
|
+
"""
|
|
154
427
|
raise NotImplementedError
|
|
155
428
|
|
|
156
429
|
def get_indexes(self):
|
|
157
|
-
"""
|
|
430
|
+
"""
|
|
431
|
+
Gets a list of shuffled indexes for mosaic augmentation.
|
|
432
|
+
|
|
433
|
+
Returns:
|
|
434
|
+
(List[int]): A list of shuffled indexes from the dataset.
|
|
435
|
+
|
|
436
|
+
Examples:
|
|
437
|
+
>>> transform = BaseMixTransform(dataset)
|
|
438
|
+
>>> indexes = transform.get_indexes()
|
|
439
|
+
>>> print(indexes) # [3, 18, 7, 2]
|
|
440
|
+
"""
|
|
158
441
|
raise NotImplementedError
|
|
159
442
|
|
|
160
443
|
def _update_label_text(self, labels):
|
|
161
|
-
"""
|
|
444
|
+
"""
|
|
445
|
+
Updates label text and class IDs for mixed labels in image augmentation.
|
|
446
|
+
|
|
447
|
+
This method processes the 'texts' and 'cls' fields of the input labels dictionary and any mixed labels,
|
|
448
|
+
creating a unified set of text labels and updating class IDs accordingly.
|
|
449
|
+
|
|
450
|
+
Args:
|
|
451
|
+
labels (Dict): A dictionary containing label information, including 'texts' and 'cls' fields,
|
|
452
|
+
and optionally a 'mix_labels' field with additional label dictionaries.
|
|
453
|
+
|
|
454
|
+
Returns:
|
|
455
|
+
(Dict): The updated labels dictionary with unified text labels and updated class IDs.
|
|
456
|
+
|
|
457
|
+
Examples:
|
|
458
|
+
>>> labels = {
|
|
459
|
+
... 'texts': [['cat'], ['dog']],
|
|
460
|
+
... 'cls': torch.tensor([[0], [1]]),
|
|
461
|
+
... 'mix_labels': [{
|
|
462
|
+
... 'texts': [['bird'], ['fish']],
|
|
463
|
+
... 'cls': torch.tensor([[0], [1]])
|
|
464
|
+
... }]
|
|
465
|
+
... }
|
|
466
|
+
>>> updated_labels = self._update_label_text(labels)
|
|
467
|
+
>>> print(updated_labels['texts'])
|
|
468
|
+
[['cat'], ['dog'], ['bird'], ['fish']]
|
|
469
|
+
>>> print(updated_labels['cls'])
|
|
470
|
+
tensor([[0],
|
|
471
|
+
[1]])
|
|
472
|
+
>>> print(updated_labels['mix_labels'][0]['cls'])
|
|
473
|
+
tensor([[2],
|
|
474
|
+
[3]])
|
|
475
|
+
"""
|
|
162
476
|
if "texts" not in labels:
|
|
163
477
|
return labels
|
|
164
478
|
|
|
@@ -176,20 +490,52 @@ class BaseMixTransform:
|
|
|
176
490
|
|
|
177
491
|
class Mosaic(BaseMixTransform):
|
|
178
492
|
"""
|
|
179
|
-
Mosaic augmentation.
|
|
493
|
+
Mosaic augmentation for image datasets.
|
|
180
494
|
|
|
181
495
|
This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image.
|
|
182
496
|
The augmentation is applied to a dataset with a given probability.
|
|
183
497
|
|
|
184
498
|
Attributes:
|
|
185
499
|
dataset: The dataset on which the mosaic augmentation is applied.
|
|
186
|
-
imgsz (int
|
|
187
|
-
p (float
|
|
188
|
-
n (int
|
|
500
|
+
imgsz (int): Image size (height and width) after mosaic pipeline of a single image.
|
|
501
|
+
p (float): Probability of applying the mosaic augmentation. Must be in the range 0-1.
|
|
502
|
+
n (int): The grid size, either 4 (for 2x2) or 9 (for 3x3).
|
|
503
|
+
border (Tuple[int, int]): Border size for width and height.
|
|
504
|
+
|
|
505
|
+
Methods:
|
|
506
|
+
get_indexes: Returns a list of random indexes from the dataset.
|
|
507
|
+
_mix_transform: Applies mixup transformation to the input image and labels.
|
|
508
|
+
_mosaic3: Creates a 1x3 image mosaic.
|
|
509
|
+
_mosaic4: Creates a 2x2 image mosaic.
|
|
510
|
+
_mosaic9: Creates a 3x3 image mosaic.
|
|
511
|
+
_update_labels: Updates labels with padding.
|
|
512
|
+
_cat_labels: Concatenates labels and clips mosaic border instances.
|
|
513
|
+
|
|
514
|
+
Examples:
|
|
515
|
+
>>> from ultralytics.data.augment import Mosaic
|
|
516
|
+
>>> dataset = YourDataset(...) # Your image dataset
|
|
517
|
+
>>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)
|
|
518
|
+
>>> augmented_labels = mosaic_aug(original_labels)
|
|
189
519
|
"""
|
|
190
520
|
|
|
191
521
|
def __init__(self, dataset, imgsz=640, p=1.0, n=4):
|
|
192
|
-
"""
|
|
522
|
+
"""
|
|
523
|
+
Initializes the Mosaic augmentation object.
|
|
524
|
+
|
|
525
|
+
This class performs mosaic augmentation by combining multiple (4 or 9) images into a single mosaic image.
|
|
526
|
+
The augmentation is applied to a dataset with a given probability.
|
|
527
|
+
|
|
528
|
+
Args:
|
|
529
|
+
dataset (Any): The dataset on which the mosaic augmentation is applied.
|
|
530
|
+
imgsz (int): Image size (height and width) after mosaic pipeline of a single image.
|
|
531
|
+
p (float): Probability of applying the mosaic augmentation. Must be in the range 0-1.
|
|
532
|
+
n (int): The grid size, either 4 (for 2x2) or 9 (for 3x3).
|
|
533
|
+
|
|
534
|
+
Examples:
|
|
535
|
+
>>> from ultralytics.data.augment import Mosaic
|
|
536
|
+
>>> dataset = YourDataset(...)
|
|
537
|
+
>>> mosaic_aug = Mosaic(dataset, imgsz=640, p=0.5, n=4)
|
|
538
|
+
"""
|
|
193
539
|
assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}."
|
|
194
540
|
assert n in {4, 9}, "grid must be equal to 4 or 9."
|
|
195
541
|
super().__init__(dataset=dataset, p=p)
|
|
@@ -199,14 +545,53 @@ class Mosaic(BaseMixTransform):
|
|
|
199
545
|
self.n = n
|
|
200
546
|
|
|
201
547
|
def get_indexes(self, buffer=True):
|
|
202
|
-
"""
|
|
548
|
+
"""
|
|
549
|
+
Returns a list of random indexes from the dataset for mosaic augmentation.
|
|
550
|
+
|
|
551
|
+
This method selects random image indexes either from a buffer or from the entire dataset, depending on
|
|
552
|
+
the 'buffer' parameter. It is used to choose images for creating mosaic augmentations.
|
|
553
|
+
|
|
554
|
+
Args:
|
|
555
|
+
buffer (bool): If True, selects images from the dataset buffer. If False, selects from the entire
|
|
556
|
+
dataset.
|
|
557
|
+
|
|
558
|
+
Returns:
|
|
559
|
+
(List[int]): A list of random image indexes. The length of the list is n-1, where n is the number
|
|
560
|
+
of images used in the mosaic (either 3 or 8, depending on whether n is 4 or 9).
|
|
561
|
+
|
|
562
|
+
Examples:
|
|
563
|
+
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)
|
|
564
|
+
>>> indexes = mosaic.get_indexes()
|
|
565
|
+
>>> print(len(indexes)) # Output: 3
|
|
566
|
+
"""
|
|
203
567
|
if buffer: # select images from buffer
|
|
204
568
|
return random.choices(list(self.dataset.buffer), k=self.n - 1)
|
|
205
569
|
else: # select any images
|
|
206
570
|
return [random.randint(0, len(self.dataset) - 1) for _ in range(self.n - 1)]
|
|
207
571
|
|
|
208
572
|
def _mix_transform(self, labels):
|
|
209
|
-
"""
|
|
573
|
+
"""
|
|
574
|
+
Applies mosaic augmentation to the input image and labels.
|
|
575
|
+
|
|
576
|
+
This method combines multiple images (3, 4, or 9) into a single mosaic image based on the 'n' attribute.
|
|
577
|
+
It ensures that rectangular annotations are not present and that there are other images available for
|
|
578
|
+
mosaic augmentation.
|
|
579
|
+
|
|
580
|
+
Args:
|
|
581
|
+
labels (Dict): A dictionary containing image data and annotations. Expected keys include:
|
|
582
|
+
- 'rect_shape': Should be None as rect and mosaic are mutually exclusive.
|
|
583
|
+
- 'mix_labels': A list of dictionaries containing data for other images to be used in the mosaic.
|
|
584
|
+
|
|
585
|
+
Returns:
|
|
586
|
+
(Dict): A dictionary containing the mosaic-augmented image and updated annotations.
|
|
587
|
+
|
|
588
|
+
Raises:
|
|
589
|
+
AssertionError: If 'rect_shape' is not None or if 'mix_labels' is empty.
|
|
590
|
+
|
|
591
|
+
Examples:
|
|
592
|
+
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)
|
|
593
|
+
>>> augmented_data = mosaic._mix_transform(labels)
|
|
594
|
+
"""
|
|
210
595
|
assert labels.get("rect_shape", None) is None, "rect and mosaic are mutually exclusive."
|
|
211
596
|
assert len(labels.get("mix_labels", [])), "There are no other images for mosaic augment."
|
|
212
597
|
return (
|
|
@@ -214,7 +599,29 @@ class Mosaic(BaseMixTransform):
|
|
|
214
599
|
) # This code is modified for mosaic3 method.
|
|
215
600
|
|
|
216
601
|
def _mosaic3(self, labels):
|
|
217
|
-
"""
|
|
602
|
+
"""
|
|
603
|
+
Creates a 1x3 image mosaic by combining three images.
|
|
604
|
+
|
|
605
|
+
This method arranges three images in a horizontal layout, with the main image in the center and two
|
|
606
|
+
additional images on either side. It's part of the Mosaic augmentation technique used in object detection.
|
|
607
|
+
|
|
608
|
+
Args:
|
|
609
|
+
labels (Dict): A dictionary containing image and label information for the main (center) image.
|
|
610
|
+
Must include 'img' key with the image array, and 'mix_labels' key with a list of two
|
|
611
|
+
dictionaries containing information for the side images.
|
|
612
|
+
|
|
613
|
+
Returns:
|
|
614
|
+
(Dict): A dictionary with the mosaic image and updated labels. Keys include:
|
|
615
|
+
- 'img' (np.ndarray): The mosaic image array with shape (H, W, C).
|
|
616
|
+
- Other keys from the input labels, updated to reflect the new image dimensions.
|
|
617
|
+
|
|
618
|
+
Examples:
|
|
619
|
+
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=3)
|
|
620
|
+
>>> labels = {'img': np.random.rand(480, 640, 3), 'mix_labels': [{'img': np.random.rand(480, 640, 3)} for _ in range(2)]}
|
|
621
|
+
>>> result = mosaic._mosaic3(labels)
|
|
622
|
+
>>> print(result['img'].shape)
|
|
623
|
+
(640, 640, 3)
|
|
624
|
+
"""
|
|
218
625
|
mosaic_labels = []
|
|
219
626
|
s = self.imgsz
|
|
220
627
|
for i in range(3):
|
|
@@ -248,7 +655,28 @@ class Mosaic(BaseMixTransform):
|
|
|
248
655
|
return final_labels
|
|
249
656
|
|
|
250
657
|
def _mosaic4(self, labels):
|
|
251
|
-
"""
|
|
658
|
+
"""
|
|
659
|
+
Creates a 2x2 image mosaic from four input images.
|
|
660
|
+
|
|
661
|
+
This method combines four images into a single mosaic image by placing them in a 2x2 grid. It also
|
|
662
|
+
updates the corresponding labels for each image in the mosaic.
|
|
663
|
+
|
|
664
|
+
Args:
|
|
665
|
+
labels (Dict): A dictionary containing image data and labels for the base image (index 0) and three
|
|
666
|
+
additional images (indices 1-3) in the 'mix_labels' key.
|
|
667
|
+
|
|
668
|
+
Returns:
|
|
669
|
+
(Dict): A dictionary containing the mosaic image and updated labels. The 'img' key contains the mosaic
|
|
670
|
+
image as a numpy array, and other keys contain the combined and adjusted labels for all four images.
|
|
671
|
+
|
|
672
|
+
Examples:
|
|
673
|
+
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=4)
|
|
674
|
+
>>> labels = {"img": np.random.rand(480, 640, 3), "mix_labels": [
|
|
675
|
+
... {"img": np.random.rand(480, 640, 3)} for _ in range(3)
|
|
676
|
+
... ]}
|
|
677
|
+
>>> result = mosaic._mosaic4(labels)
|
|
678
|
+
>>> assert result["img"].shape == (1280, 1280, 3)
|
|
679
|
+
"""
|
|
252
680
|
mosaic_labels = []
|
|
253
681
|
s = self.imgsz
|
|
254
682
|
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.border) # mosaic center x, y
|
|
@@ -284,7 +712,31 @@ class Mosaic(BaseMixTransform):
|
|
|
284
712
|
return final_labels
|
|
285
713
|
|
|
286
714
|
def _mosaic9(self, labels):
|
|
287
|
-
"""
|
|
715
|
+
"""
|
|
716
|
+
Creates a 3x3 image mosaic from the input image and eight additional images.
|
|
717
|
+
|
|
718
|
+
This method combines nine images into a single mosaic image. The input image is placed at the center,
|
|
719
|
+
and eight additional images from the dataset are placed around it in a 3x3 grid pattern.
|
|
720
|
+
|
|
721
|
+
Args:
|
|
722
|
+
labels (Dict): A dictionary containing the input image and its associated labels. It should have
|
|
723
|
+
the following keys:
|
|
724
|
+
- 'img' (numpy.ndarray): The input image.
|
|
725
|
+
- 'resized_shape' (Tuple[int, int]): The shape of the resized image (height, width).
|
|
726
|
+
- 'mix_labels' (List[Dict]): A list of dictionaries containing information for the additional
|
|
727
|
+
eight images, each with the same structure as the input labels.
|
|
728
|
+
|
|
729
|
+
Returns:
|
|
730
|
+
(Dict): A dictionary containing the mosaic image and updated labels. It includes the following keys:
|
|
731
|
+
- 'img' (numpy.ndarray): The final mosaic image.
|
|
732
|
+
- Other keys from the input labels, updated to reflect the new mosaic arrangement.
|
|
733
|
+
|
|
734
|
+
Examples:
|
|
735
|
+
>>> mosaic = Mosaic(dataset, imgsz=640, p=1.0, n=9)
|
|
736
|
+
>>> input_labels = dataset[0]
|
|
737
|
+
>>> mosaic_result = mosaic._mosaic9(input_labels)
|
|
738
|
+
>>> mosaic_image = mosaic_result['img']
|
|
739
|
+
"""
|
|
288
740
|
mosaic_labels = []
|
|
289
741
|
s = self.imgsz
|
|
290
742
|
hp, wp = -1, -1 # height, width previous
|
|
@@ -333,7 +785,25 @@ class Mosaic(BaseMixTransform):
|
|
|
333
785
|
|
|
334
786
|
@staticmethod
|
|
335
787
|
def _update_labels(labels, padw, padh):
|
|
336
|
-
"""
|
|
788
|
+
"""
|
|
789
|
+
Updates label coordinates with padding values.
|
|
790
|
+
|
|
791
|
+
This method adjusts the bounding box coordinates of object instances in the labels by adding padding
|
|
792
|
+
values. It also denormalizes the coordinates if they were previously normalized.
|
|
793
|
+
|
|
794
|
+
Args:
|
|
795
|
+
labels (Dict): A dictionary containing image and instance information.
|
|
796
|
+
padw (int): Padding width to be added to the x-coordinates.
|
|
797
|
+
padh (int): Padding height to be added to the y-coordinates.
|
|
798
|
+
|
|
799
|
+
Returns:
|
|
800
|
+
(Dict): Updated labels dictionary with adjusted instance coordinates.
|
|
801
|
+
|
|
802
|
+
Examples:
|
|
803
|
+
>>> labels = {"img": np.zeros((100, 100, 3)), "instances": Instances(...)}
|
|
804
|
+
>>> padw, padh = 50, 50
|
|
805
|
+
>>> updated_labels = Mosaic._update_labels(labels, padw, padh)
|
|
806
|
+
"""
|
|
337
807
|
nh, nw = labels["img"].shape[:2]
|
|
338
808
|
labels["instances"].convert_bbox(format="xyxy")
|
|
339
809
|
labels["instances"].denormalize(nw, nh)
|
|
@@ -341,7 +811,32 @@ class Mosaic(BaseMixTransform):
|
|
|
341
811
|
return labels
|
|
342
812
|
|
|
343
813
|
def _cat_labels(self, mosaic_labels):
|
|
344
|
-
"""
|
|
814
|
+
"""
|
|
815
|
+
Concatenates and processes labels for mosaic augmentation.
|
|
816
|
+
|
|
817
|
+
This method combines labels from multiple images used in mosaic augmentation, clips instances to the
|
|
818
|
+
mosaic border, and removes zero-area boxes.
|
|
819
|
+
|
|
820
|
+
Args:
|
|
821
|
+
mosaic_labels (List[Dict]): A list of label dictionaries for each image in the mosaic.
|
|
822
|
+
|
|
823
|
+
Returns:
|
|
824
|
+
(Dict): A dictionary containing concatenated and processed labels for the mosaic image, including:
|
|
825
|
+
- im_file (str): File path of the first image in the mosaic.
|
|
826
|
+
- ori_shape (Tuple[int, int]): Original shape of the first image.
|
|
827
|
+
- resized_shape (Tuple[int, int]): Shape of the mosaic image (imgsz * 2, imgsz * 2).
|
|
828
|
+
- cls (np.ndarray): Concatenated class labels.
|
|
829
|
+
- instances (Instances): Concatenated instance annotations.
|
|
830
|
+
- mosaic_border (Tuple[int, int]): Mosaic border size.
|
|
831
|
+
- texts (List[str], optional): Text labels if present in the original labels.
|
|
832
|
+
|
|
833
|
+
Examples:
|
|
834
|
+
>>> mosaic = Mosaic(dataset, imgsz=640)
|
|
835
|
+
>>> mosaic_labels = [{"cls": np.array([0, 1]), "instances": Instances(...)} for _ in range(4)]
|
|
836
|
+
>>> result = mosaic._cat_labels(mosaic_labels)
|
|
837
|
+
>>> print(result.keys())
|
|
838
|
+
dict_keys(['im_file', 'ori_shape', 'resized_shape', 'cls', 'instances', 'mosaic_border'])
|
|
839
|
+
"""
|
|
345
840
|
if len(mosaic_labels) == 0:
|
|
346
841
|
return {}
|
|
347
842
|
cls = []
|
|
@@ -368,18 +863,82 @@ class Mosaic(BaseMixTransform):
|
|
|
368
863
|
|
|
369
864
|
|
|
370
865
|
class MixUp(BaseMixTransform):
|
|
371
|
-
"""
|
|
866
|
+
"""
|
|
867
|
+
Applies MixUp augmentation to image datasets.
|
|
868
|
+
|
|
869
|
+
This class implements the MixUp augmentation technique as described in the paper "mixup: Beyond Empirical Risk
|
|
870
|
+
Minimization" (https://arxiv.org/abs/1710.09412). MixUp combines two images and their labels using a random weight.
|
|
871
|
+
|
|
872
|
+
Attributes:
|
|
873
|
+
dataset (Any): The dataset to which MixUp augmentation will be applied.
|
|
874
|
+
pre_transform (Callable | None): Optional transform to apply before MixUp.
|
|
875
|
+
p (float): Probability of applying MixUp augmentation.
|
|
876
|
+
|
|
877
|
+
Methods:
|
|
878
|
+
get_indexes: Returns a random index from the dataset.
|
|
879
|
+
_mix_transform: Applies MixUp augmentation to the input labels.
|
|
880
|
+
|
|
881
|
+
Examples:
|
|
882
|
+
>>> from ultralytics.data.augment import MixUp
|
|
883
|
+
>>> dataset = YourDataset(...) # Your image dataset
|
|
884
|
+
>>> mixup = MixUp(dataset, p=0.5)
|
|
885
|
+
>>> augmented_labels = mixup(original_labels)
|
|
886
|
+
"""
|
|
372
887
|
|
|
373
888
|
def __init__(self, dataset, pre_transform=None, p=0.0) -> None:
|
|
374
|
-
"""
|
|
889
|
+
"""
|
|
890
|
+
Initializes the MixUp augmentation object.
|
|
891
|
+
|
|
892
|
+
MixUp is an image augmentation technique that combines two images by taking a weighted sum of their pixel
|
|
893
|
+
values and labels. This implementation is designed for use with the Ultralytics YOLO framework.
|
|
894
|
+
|
|
895
|
+
Args:
|
|
896
|
+
dataset (Any): The dataset to which MixUp augmentation will be applied.
|
|
897
|
+
pre_transform (Callable | None): Optional transform to apply to images before MixUp.
|
|
898
|
+
p (float): Probability of applying MixUp augmentation to an image. Must be in the range [0, 1].
|
|
899
|
+
|
|
900
|
+
Examples:
|
|
901
|
+
>>> from ultralytics.data.dataset import YOLODataset
|
|
902
|
+
>>> dataset = YOLODataset('path/to/data.yaml')
|
|
903
|
+
>>> mixup = MixUp(dataset, pre_transform=None, p=0.5)
|
|
904
|
+
"""
|
|
375
905
|
super().__init__(dataset=dataset, pre_transform=pre_transform, p=p)
|
|
376
906
|
|
|
377
907
|
def get_indexes(self):
|
|
378
|
-
"""
|
|
908
|
+
"""
|
|
909
|
+
Get a random index from the dataset.
|
|
910
|
+
|
|
911
|
+
This method returns a single random index from the dataset, which is used to select an image for MixUp
|
|
912
|
+
augmentation.
|
|
913
|
+
|
|
914
|
+
Returns:
|
|
915
|
+
(int): A random integer index within the range of the dataset length.
|
|
916
|
+
|
|
917
|
+
Examples:
|
|
918
|
+
>>> mixup = MixUp(dataset)
|
|
919
|
+
>>> index = mixup.get_indexes()
|
|
920
|
+
>>> print(index)
|
|
921
|
+
42
|
|
922
|
+
"""
|
|
379
923
|
return random.randint(0, len(self.dataset) - 1)
|
|
380
924
|
|
|
381
925
|
def _mix_transform(self, labels):
|
|
382
|
-
"""
|
|
926
|
+
"""
|
|
927
|
+
Applies MixUp augmentation to the input labels.
|
|
928
|
+
|
|
929
|
+
This method implements the MixUp augmentation technique as described in the paper
|
|
930
|
+
"mixup: Beyond Empirical Risk Minimization" (https://arxiv.org/abs/1710.09412).
|
|
931
|
+
|
|
932
|
+
Args:
|
|
933
|
+
labels (Dict): A dictionary containing the original image and label information.
|
|
934
|
+
|
|
935
|
+
Returns:
|
|
936
|
+
(Dict): A dictionary containing the mixed-up image and combined label information.
|
|
937
|
+
|
|
938
|
+
Examples:
|
|
939
|
+
>>> mixer = MixUp(dataset)
|
|
940
|
+
>>> mixed_labels = mixer._mix_transform(labels)
|
|
941
|
+
"""
|
|
383
942
|
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
|
384
943
|
labels2 = labels["mix_labels"][0]
|
|
385
944
|
labels["img"] = (labels["img"] * r + labels2["img"] * (1 - r)).astype(np.uint8)
|
|
@@ -390,32 +949,61 @@ class MixUp(BaseMixTransform):
|
|
|
390
949
|
|
|
391
950
|
class RandomPerspective:
|
|
392
951
|
"""
|
|
393
|
-
Implements random perspective and affine transformations on images and corresponding
|
|
394
|
-
|
|
395
|
-
|
|
952
|
+
Implements random perspective and affine transformations on images and corresponding annotations.
|
|
953
|
+
|
|
954
|
+
This class applies random rotations, translations, scaling, shearing, and perspective transformations
|
|
955
|
+
to images and their associated bounding boxes, segments, and keypoints. It can be used as part of an
|
|
956
|
+
augmentation pipeline for object detection and instance segmentation tasks.
|
|
396
957
|
|
|
397
958
|
Attributes:
|
|
398
|
-
degrees (float):
|
|
399
|
-
translate (float):
|
|
400
|
-
scale (float): Scaling factor
|
|
401
|
-
shear (float):
|
|
959
|
+
degrees (float): Maximum absolute degree range for random rotations.
|
|
960
|
+
translate (float): Maximum translation as a fraction of the image size.
|
|
961
|
+
scale (float): Scaling factor range, e.g., scale=0.1 means 0.9-1.1.
|
|
962
|
+
shear (float): Maximum shear angle in degrees.
|
|
402
963
|
perspective (float): Perspective distortion factor.
|
|
403
|
-
border (
|
|
404
|
-
pre_transform (
|
|
964
|
+
border (Tuple[int, int]): Mosaic border size as (x, y).
|
|
965
|
+
pre_transform (Callable | None): Optional transform to apply before the random perspective.
|
|
405
966
|
|
|
406
967
|
Methods:
|
|
407
|
-
affine_transform
|
|
408
|
-
apply_bboxes
|
|
409
|
-
apply_segments
|
|
410
|
-
apply_keypoints
|
|
411
|
-
__call__
|
|
412
|
-
box_candidates
|
|
968
|
+
affine_transform: Applies affine transformations to the input image.
|
|
969
|
+
apply_bboxes: Transforms bounding boxes using the affine matrix.
|
|
970
|
+
apply_segments: Transforms segments and generates new bounding boxes.
|
|
971
|
+
apply_keypoints: Transforms keypoints using the affine matrix.
|
|
972
|
+
__call__: Applies the random perspective transformation to images and annotations.
|
|
973
|
+
box_candidates: Filters transformed bounding boxes based on size and aspect ratio.
|
|
974
|
+
|
|
975
|
+
Examples:
|
|
976
|
+
>>> transform = RandomPerspective(degrees=10, translate=0.1, scale=0.1, shear=10)
|
|
977
|
+
>>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
|
978
|
+
>>> labels = {'img': image, 'cls': np.array([0, 1]), 'instances': Instances(...)}
|
|
979
|
+
>>> result = transform(labels)
|
|
980
|
+
>>> transformed_image = result['img']
|
|
981
|
+
>>> transformed_instances = result['instances']
|
|
413
982
|
"""
|
|
414
983
|
|
|
415
984
|
def __init__(
|
|
416
985
|
self, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, border=(0, 0), pre_transform=None
|
|
417
986
|
):
|
|
418
|
-
"""
|
|
987
|
+
"""
|
|
988
|
+
Initializes RandomPerspective object with transformation parameters.
|
|
989
|
+
|
|
990
|
+
This class implements random perspective and affine transformations on images and corresponding bounding boxes,
|
|
991
|
+
segments, and keypoints. Transformations include rotation, translation, scaling, and shearing.
|
|
992
|
+
|
|
993
|
+
Args:
|
|
994
|
+
degrees (float): Degree range for random rotations.
|
|
995
|
+
translate (float): Fraction of total width and height for random translation.
|
|
996
|
+
scale (float): Scaling factor interval, e.g., a scale factor of 0.5 allows a resize between 50%-150%.
|
|
997
|
+
shear (float): Shear intensity (angle in degrees).
|
|
998
|
+
perspective (float): Perspective distortion factor.
|
|
999
|
+
border (Tuple[int, int]): Tuple specifying mosaic border (top/bottom, left/right).
|
|
1000
|
+
pre_transform (Callable | None): Function/transform to apply to the image before starting the random
|
|
1001
|
+
transformation.
|
|
1002
|
+
|
|
1003
|
+
Examples:
|
|
1004
|
+
>>> transform = RandomPerspective(degrees=10.0, translate=0.1, scale=0.5, shear=5.0)
|
|
1005
|
+
>>> result = transform(labels) # Apply random perspective to labels
|
|
1006
|
+
"""
|
|
419
1007
|
|
|
420
1008
|
self.degrees = degrees
|
|
421
1009
|
self.translate = translate
|
|
@@ -429,14 +1017,25 @@ class RandomPerspective:
|
|
|
429
1017
|
"""
|
|
430
1018
|
Applies a sequence of affine transformations centered around the image center.
|
|
431
1019
|
|
|
1020
|
+
This function performs a series of geometric transformations on the input image, including
|
|
1021
|
+
translation, perspective change, rotation, scaling, and shearing. The transformations are
|
|
1022
|
+
applied in a specific order to maintain consistency.
|
|
1023
|
+
|
|
432
1024
|
Args:
|
|
433
|
-
img (ndarray): Input image.
|
|
434
|
-
border (
|
|
1025
|
+
img (np.ndarray): Input image to be transformed.
|
|
1026
|
+
border (Tuple[int, int]): Border dimensions for the transformed image.
|
|
435
1027
|
|
|
436
1028
|
Returns:
|
|
437
|
-
|
|
438
|
-
|
|
439
|
-
|
|
1029
|
+
(Tuple[np.ndarray, np.ndarray, float]): A tuple containing:
|
|
1030
|
+
- np.ndarray: Transformed image.
|
|
1031
|
+
- np.ndarray: 3x3 transformation matrix.
|
|
1032
|
+
- float: Scale factor applied during the transformation.
|
|
1033
|
+
|
|
1034
|
+
Examples:
|
|
1035
|
+
>>> import numpy as np
|
|
1036
|
+
>>> img = np.random.rand(100, 100, 3)
|
|
1037
|
+
>>> border = (10, 10)
|
|
1038
|
+
>>> transformed_img, matrix, scale = affine_transform(img, border)
|
|
440
1039
|
"""
|
|
441
1040
|
|
|
442
1041
|
# Center
|
|
@@ -480,14 +1079,23 @@ class RandomPerspective:
|
|
|
480
1079
|
|
|
481
1080
|
def apply_bboxes(self, bboxes, M):
|
|
482
1081
|
"""
|
|
483
|
-
Apply affine to
|
|
1082
|
+
Apply affine transformation to bounding boxes.
|
|
1083
|
+
|
|
1084
|
+
This function applies an affine transformation to a set of bounding boxes using the provided
|
|
1085
|
+
transformation matrix.
|
|
484
1086
|
|
|
485
1087
|
Args:
|
|
486
|
-
bboxes (
|
|
487
|
-
|
|
1088
|
+
bboxes (torch.Tensor): Bounding boxes in xyxy format with shape (N, 4), where N is the number
|
|
1089
|
+
of bounding boxes.
|
|
1090
|
+
M (torch.Tensor): Affine transformation matrix with shape (3, 3).
|
|
488
1091
|
|
|
489
1092
|
Returns:
|
|
490
|
-
|
|
1093
|
+
(torch.Tensor): Transformed bounding boxes in xyxy format with shape (N, 4).
|
|
1094
|
+
|
|
1095
|
+
Examples:
|
|
1096
|
+
>>> bboxes = torch.tensor([[10, 10, 20, 20], [30, 30, 40, 40]])
|
|
1097
|
+
>>> M = torch.eye(3)
|
|
1098
|
+
>>> transformed_bboxes = apply_bboxes(bboxes, M)
|
|
491
1099
|
"""
|
|
492
1100
|
n = len(bboxes)
|
|
493
1101
|
if n == 0:
|
|
@@ -505,15 +1113,25 @@ class RandomPerspective:
|
|
|
505
1113
|
|
|
506
1114
|
def apply_segments(self, segments, M):
|
|
507
1115
|
"""
|
|
508
|
-
Apply affine to segments and generate new
|
|
1116
|
+
Apply affine transformations to segments and generate new bounding boxes.
|
|
1117
|
+
|
|
1118
|
+
This function applies affine transformations to input segments and generates new bounding boxes based on
|
|
1119
|
+
the transformed segments. It clips the transformed segments to fit within the new bounding boxes.
|
|
509
1120
|
|
|
510
1121
|
Args:
|
|
511
|
-
segments (ndarray):
|
|
512
|
-
|
|
1122
|
+
segments (np.ndarray): Input segments with shape (N, M, 2), where N is the number of segments and M is the
|
|
1123
|
+
number of points in each segment.
|
|
1124
|
+
M (np.ndarray): Affine transformation matrix with shape (3, 3).
|
|
513
1125
|
|
|
514
1126
|
Returns:
|
|
515
|
-
|
|
516
|
-
|
|
1127
|
+
(Tuple[np.ndarray, np.ndarray]): A tuple containing:
|
|
1128
|
+
- New bounding boxes with shape (N, 4) in xyxy format.
|
|
1129
|
+
- Transformed and clipped segments with shape (N, M, 2).
|
|
1130
|
+
|
|
1131
|
+
Examples:
|
|
1132
|
+
>>> segments = np.random.rand(10, 500, 2) # 10 segments with 500 points each
|
|
1133
|
+
>>> M = np.eye(3) # Identity transformation matrix
|
|
1134
|
+
>>> new_bboxes, new_segments = apply_segments(segments, M)
|
|
517
1135
|
"""
|
|
518
1136
|
n, num = segments.shape[:2]
|
|
519
1137
|
if n == 0:
|
|
@@ -532,14 +1150,25 @@ class RandomPerspective:
|
|
|
532
1150
|
|
|
533
1151
|
def apply_keypoints(self, keypoints, M):
|
|
534
1152
|
"""
|
|
535
|
-
|
|
1153
|
+
Applies affine transformation to keypoints.
|
|
1154
|
+
|
|
1155
|
+
This method transforms the input keypoints using the provided affine transformation matrix. It handles
|
|
1156
|
+
perspective rescaling if necessary and updates the visibility of keypoints that fall outside the image
|
|
1157
|
+
boundaries after transformation.
|
|
536
1158
|
|
|
537
1159
|
Args:
|
|
538
|
-
keypoints (ndarray): keypoints
|
|
539
|
-
|
|
1160
|
+
keypoints (np.ndarray): Array of keypoints with shape (N, 17, 3), where N is the number of instances,
|
|
1161
|
+
17 is the number of keypoints per instance, and 3 represents (x, y, visibility).
|
|
1162
|
+
M (np.ndarray): 3x3 affine transformation matrix.
|
|
540
1163
|
|
|
541
1164
|
Returns:
|
|
542
|
-
|
|
1165
|
+
(np.ndarray): Transformed keypoints array with the same shape as input (N, 17, 3).
|
|
1166
|
+
|
|
1167
|
+
Examples:
|
|
1168
|
+
>>> random_perspective = RandomPerspective()
|
|
1169
|
+
>>> keypoints = np.random.rand(5, 17, 3) # 5 instances, 17 keypoints each
|
|
1170
|
+
>>> M = np.eye(3) # Identity transformation
|
|
1171
|
+
>>> transformed_keypoints = random_perspective.apply_keypoints(keypoints, M)
|
|
543
1172
|
"""
|
|
544
1173
|
n, nkpt = keypoints.shape[:2]
|
|
545
1174
|
if n == 0:
|
|
@@ -555,10 +1184,38 @@ class RandomPerspective:
|
|
|
555
1184
|
|
|
556
1185
|
def __call__(self, labels):
|
|
557
1186
|
"""
|
|
558
|
-
|
|
1187
|
+
Applies random perspective and affine transformations to an image and its associated labels.
|
|
1188
|
+
|
|
1189
|
+
This method performs a series of transformations including rotation, translation, scaling, shearing,
|
|
1190
|
+
and perspective distortion on the input image and adjusts the corresponding bounding boxes, segments,
|
|
1191
|
+
and keypoints accordingly.
|
|
559
1192
|
|
|
560
1193
|
Args:
|
|
561
|
-
labels (
|
|
1194
|
+
labels (Dict): A dictionary containing image data and annotations.
|
|
1195
|
+
Must include:
|
|
1196
|
+
'img' (ndarray): The input image.
|
|
1197
|
+
'cls' (ndarray): Class labels.
|
|
1198
|
+
'instances' (Instances): Object instances with bounding boxes, segments, and keypoints.
|
|
1199
|
+
May include:
|
|
1200
|
+
'mosaic_border' (Tuple[int, int]): Border size for mosaic augmentation.
|
|
1201
|
+
|
|
1202
|
+
Returns:
|
|
1203
|
+
(Dict): Transformed labels dictionary containing:
|
|
1204
|
+
- 'img' (np.ndarray): The transformed image.
|
|
1205
|
+
- 'cls' (np.ndarray): Updated class labels.
|
|
1206
|
+
- 'instances' (Instances): Updated object instances.
|
|
1207
|
+
- 'resized_shape' (Tuple[int, int]): New image shape after transformation.
|
|
1208
|
+
|
|
1209
|
+
Examples:
|
|
1210
|
+
>>> transform = RandomPerspective()
|
|
1211
|
+
>>> image = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
|
1212
|
+
>>> labels = {
|
|
1213
|
+
... 'img': image,
|
|
1214
|
+
... 'cls': np.array([0, 1, 2]),
|
|
1215
|
+
... 'instances': Instances(bboxes=np.array([[10, 10, 50, 50], [100, 100, 150, 150]]))
|
|
1216
|
+
... }
|
|
1217
|
+
>>> result = transform(labels)
|
|
1218
|
+
>>> assert result['img'].shape[:2] == result['resized_shape']
|
|
562
1219
|
"""
|
|
563
1220
|
if self.pre_transform and "mosaic_border" not in labels:
|
|
564
1221
|
labels = self.pre_transform(labels)
|
|
@@ -605,19 +1262,36 @@ class RandomPerspective:
|
|
|
605
1262
|
|
|
606
1263
|
def box_candidates(self, box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16):
|
|
607
1264
|
"""
|
|
608
|
-
Compute
|
|
609
|
-
|
|
1265
|
+
Compute candidate boxes for further processing based on size and aspect ratio criteria.
|
|
1266
|
+
|
|
1267
|
+
This method compares boxes before and after augmentation to determine if they meet specified
|
|
1268
|
+
thresholds for width, height, aspect ratio, and area. It's used to filter out boxes that have
|
|
1269
|
+
been overly distorted or reduced by the augmentation process.
|
|
610
1270
|
|
|
611
1271
|
Args:
|
|
612
|
-
box1 (numpy.ndarray):
|
|
613
|
-
|
|
614
|
-
|
|
615
|
-
|
|
616
|
-
|
|
617
|
-
|
|
1272
|
+
box1 (numpy.ndarray): Original boxes before augmentation, shape (4, N) where n is the
|
|
1273
|
+
number of boxes. Format is [x1, y1, x2, y2] in absolute coordinates.
|
|
1274
|
+
box2 (numpy.ndarray): Augmented boxes after transformation, shape (4, N). Format is
|
|
1275
|
+
[x1, y1, x2, y2] in absolute coordinates.
|
|
1276
|
+
wh_thr (float): Width and height threshold in pixels. Boxes smaller than this in either
|
|
1277
|
+
dimension are rejected.
|
|
1278
|
+
ar_thr (float): Aspect ratio threshold. Boxes with an aspect ratio greater than this
|
|
1279
|
+
value are rejected.
|
|
1280
|
+
area_thr (float): Area ratio threshold. Boxes with an area ratio (new/old) less than
|
|
1281
|
+
this value are rejected.
|
|
1282
|
+
eps (float): Small epsilon value to prevent division by zero.
|
|
618
1283
|
|
|
619
1284
|
Returns:
|
|
620
|
-
(numpy.ndarray):
|
|
1285
|
+
(numpy.ndarray): Boolean array of shape (n,) indicating which boxes are candidates.
|
|
1286
|
+
True values correspond to boxes that meet all criteria.
|
|
1287
|
+
|
|
1288
|
+
Examples:
|
|
1289
|
+
>>> random_perspective = RandomPerspective()
|
|
1290
|
+
>>> box1 = np.array([[0, 0, 100, 100], [0, 0, 50, 50]]).T
|
|
1291
|
+
>>> box2 = np.array([[10, 10, 90, 90], [5, 5, 45, 45]]).T
|
|
1292
|
+
>>> candidates = random_perspective.box_candidates(box1, box2)
|
|
1293
|
+
>>> print(candidates)
|
|
1294
|
+
[True True]
|
|
621
1295
|
"""
|
|
622
1296
|
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
|
623
1297
|
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
|
@@ -627,20 +1301,42 @@ class RandomPerspective:
|
|
|
627
1301
|
|
|
628
1302
|
class RandomHSV:
|
|
629
1303
|
"""
|
|
630
|
-
|
|
631
|
-
|
|
1304
|
+
Randomly adjusts the Hue, Saturation, and Value (HSV) channels of an image.
|
|
1305
|
+
|
|
1306
|
+
This class applies random HSV augmentation to images within predefined limits set by hgain, sgain, and vgain.
|
|
1307
|
+
|
|
1308
|
+
Attributes:
|
|
1309
|
+
hgain (float): Maximum variation for hue. Range is typically [0, 1].
|
|
1310
|
+
sgain (float): Maximum variation for saturation. Range is typically [0, 1].
|
|
1311
|
+
vgain (float): Maximum variation for value. Range is typically [0, 1].
|
|
632
1312
|
|
|
633
|
-
|
|
1313
|
+
Methods:
|
|
1314
|
+
__call__: Applies random HSV augmentation to an image.
|
|
1315
|
+
|
|
1316
|
+
Examples:
|
|
1317
|
+
>>> import numpy as np
|
|
1318
|
+
>>> from ultralytics.data.augment import RandomHSV
|
|
1319
|
+
>>> augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
|
|
1320
|
+
>>> image = np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)
|
|
1321
|
+
>>> labels = {"img": image}
|
|
1322
|
+
>>> augmented_labels = augmenter(labels)
|
|
1323
|
+
>>> augmented_image = augmented_labels["img"]
|
|
634
1324
|
"""
|
|
635
1325
|
|
|
636
1326
|
def __init__(self, hgain=0.5, sgain=0.5, vgain=0.5) -> None:
|
|
637
1327
|
"""
|
|
638
|
-
|
|
1328
|
+
Initializes the RandomHSV object for random HSV (Hue, Saturation, Value) augmentation.
|
|
1329
|
+
|
|
1330
|
+
This class applies random adjustments to the HSV channels of an image within specified limits.
|
|
639
1331
|
|
|
640
1332
|
Args:
|
|
641
|
-
hgain (float
|
|
642
|
-
sgain (float
|
|
643
|
-
vgain (float
|
|
1333
|
+
hgain (float): Maximum variation for hue. Should be in the range [0, 1].
|
|
1334
|
+
sgain (float): Maximum variation for saturation. Should be in the range [0, 1].
|
|
1335
|
+
vgain (float): Maximum variation for value. Should be in the range [0, 1].
|
|
1336
|
+
|
|
1337
|
+
Examples:
|
|
1338
|
+
>>> hsv_aug = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
|
|
1339
|
+
>>> augmented_image = hsv_aug(image)
|
|
644
1340
|
"""
|
|
645
1341
|
self.hgain = hgain
|
|
646
1342
|
self.sgain = sgain
|
|
@@ -648,9 +1344,24 @@ class RandomHSV:
|
|
|
648
1344
|
|
|
649
1345
|
def __call__(self, labels):
|
|
650
1346
|
"""
|
|
651
|
-
Applies random HSV augmentation to an image within
|
|
1347
|
+
Applies random HSV augmentation to an image within predefined limits.
|
|
652
1348
|
|
|
653
|
-
|
|
1349
|
+
This method modifies the input image by randomly adjusting its Hue, Saturation, and Value (HSV) channels.
|
|
1350
|
+
The adjustments are made within the limits set by hgain, sgain, and vgain during initialization.
|
|
1351
|
+
|
|
1352
|
+
Args:
|
|
1353
|
+
labels (Dict): A dictionary containing image data and metadata. Must include an 'img' key with
|
|
1354
|
+
the image as a numpy array.
|
|
1355
|
+
|
|
1356
|
+
Returns:
|
|
1357
|
+
(None): The function modifies the input 'labels' dictionary in-place, updating the 'img' key
|
|
1358
|
+
with the HSV-augmented image.
|
|
1359
|
+
|
|
1360
|
+
Examples:
|
|
1361
|
+
>>> hsv_augmenter = RandomHSV(hgain=0.5, sgain=0.5, vgain=0.5)
|
|
1362
|
+
>>> labels = {'img': np.random.randint(0, 255, (100, 100, 3), dtype=np.uint8)}
|
|
1363
|
+
>>> hsv_augmenter(labels)
|
|
1364
|
+
>>> augmented_img = labels['img']
|
|
654
1365
|
"""
|
|
655
1366
|
img = labels["img"]
|
|
656
1367
|
if self.hgain or self.sgain or self.vgain:
|
|
@@ -672,18 +1383,42 @@ class RandomFlip:
|
|
|
672
1383
|
"""
|
|
673
1384
|
Applies a random horizontal or vertical flip to an image with a given probability.
|
|
674
1385
|
|
|
675
|
-
|
|
1386
|
+
This class performs random image flipping and updates corresponding instance annotations such as
|
|
1387
|
+
bounding boxes and keypoints.
|
|
1388
|
+
|
|
1389
|
+
Attributes:
|
|
1390
|
+
p (float): Probability of applying the flip. Must be between 0 and 1.
|
|
1391
|
+
direction (str): Direction of flip, either 'horizontal' or 'vertical'.
|
|
1392
|
+
flip_idx (array-like): Index mapping for flipping keypoints, if applicable.
|
|
1393
|
+
|
|
1394
|
+
Methods:
|
|
1395
|
+
__call__: Applies the random flip transformation to an image and its annotations.
|
|
1396
|
+
|
|
1397
|
+
Examples:
|
|
1398
|
+
>>> transform = RandomFlip(p=0.5, direction='horizontal')
|
|
1399
|
+
>>> result = transform({"img": image, "instances": instances})
|
|
1400
|
+
>>> flipped_image = result["img"]
|
|
1401
|
+
>>> flipped_instances = result["instances"]
|
|
676
1402
|
"""
|
|
677
1403
|
|
|
678
1404
|
def __init__(self, p=0.5, direction="horizontal", flip_idx=None) -> None:
|
|
679
1405
|
"""
|
|
680
1406
|
Initializes the RandomFlip class with probability and direction.
|
|
681
1407
|
|
|
1408
|
+
This class applies a random horizontal or vertical flip to an image with a given probability.
|
|
1409
|
+
It also updates any instances (bounding boxes, keypoints, etc.) accordingly.
|
|
1410
|
+
|
|
682
1411
|
Args:
|
|
683
|
-
p (float
|
|
684
|
-
direction (str
|
|
685
|
-
|
|
686
|
-
|
|
1412
|
+
p (float): The probability of applying the flip. Must be between 0 and 1.
|
|
1413
|
+
direction (str): The direction to apply the flip. Must be 'horizontal' or 'vertical'.
|
|
1414
|
+
flip_idx (List[int] | None): Index mapping for flipping keypoints, if any.
|
|
1415
|
+
|
|
1416
|
+
Raises:
|
|
1417
|
+
AssertionError: If direction is not 'horizontal' or 'vertical', or if p is not between 0 and 1.
|
|
1418
|
+
|
|
1419
|
+
Examples:
|
|
1420
|
+
>>> flip = RandomFlip(p=0.5, direction='horizontal')
|
|
1421
|
+
>>> flip = RandomFlip(p=0.7, direction='vertical', flip_idx=[1, 0, 3, 2, 5, 4])
|
|
687
1422
|
"""
|
|
688
1423
|
assert direction in {"horizontal", "vertical"}, f"Support direction `horizontal` or `vertical`, got {direction}"
|
|
689
1424
|
assert 0 <= p <= 1.0, f"The probability should be in range [0, 1], but got {p}."
|
|
@@ -696,12 +1431,25 @@ class RandomFlip:
|
|
|
696
1431
|
"""
|
|
697
1432
|
Applies random flip to an image and updates any instances like bounding boxes or keypoints accordingly.
|
|
698
1433
|
|
|
1434
|
+
This method randomly flips the input image either horizontally or vertically based on the initialized
|
|
1435
|
+
probability and direction. It also updates the corresponding instances (bounding boxes, keypoints) to
|
|
1436
|
+
match the flipped image.
|
|
1437
|
+
|
|
699
1438
|
Args:
|
|
700
|
-
labels (
|
|
701
|
-
|
|
1439
|
+
labels (Dict): A dictionary containing the following keys:
|
|
1440
|
+
'img' (numpy.ndarray): The image to be flipped.
|
|
1441
|
+
'instances' (ultralytics.utils.instance.Instances): An object containing bounding boxes and
|
|
1442
|
+
optionally keypoints.
|
|
702
1443
|
|
|
703
1444
|
Returns:
|
|
704
|
-
(
|
|
1445
|
+
(Dict): The same dictionary with the flipped image and updated instances:
|
|
1446
|
+
'img' (numpy.ndarray): The flipped image.
|
|
1447
|
+
'instances' (ultralytics.utils.instance.Instances): Updated instances matching the flipped image.
|
|
1448
|
+
|
|
1449
|
+
Examples:
|
|
1450
|
+
>>> labels = {'img': np.random.rand(640, 640, 3), 'instances': Instances(...)}
|
|
1451
|
+
>>> random_flip = RandomFlip(p=0.5, direction='horizontal')
|
|
1452
|
+
>>> flipped_labels = random_flip(labels)
|
|
705
1453
|
"""
|
|
706
1454
|
img = labels["img"]
|
|
707
1455
|
instances = labels.pop("instances")
|
|
@@ -726,10 +1474,56 @@ class RandomFlip:
|
|
|
726
1474
|
|
|
727
1475
|
|
|
728
1476
|
class LetterBox:
|
|
729
|
-
"""
|
|
1477
|
+
"""
|
|
1478
|
+
Resize image and padding for detection, instance segmentation, pose.
|
|
1479
|
+
|
|
1480
|
+
This class resizes and pads images to a specified shape while preserving aspect ratio. It also updates
|
|
1481
|
+
corresponding labels and bounding boxes.
|
|
1482
|
+
|
|
1483
|
+
Attributes:
|
|
1484
|
+
new_shape (tuple): Target shape (height, width) for resizing.
|
|
1485
|
+
auto (bool): Whether to use minimum rectangle.
|
|
1486
|
+
scaleFill (bool): Whether to stretch the image to new_shape.
|
|
1487
|
+
scaleup (bool): Whether to allow scaling up. If False, only scale down.
|
|
1488
|
+
stride (int): Stride for rounding padding.
|
|
1489
|
+
center (bool): Whether to center the image or align to top-left.
|
|
1490
|
+
|
|
1491
|
+
Methods:
|
|
1492
|
+
__call__: Resize and pad image, update labels and bounding boxes.
|
|
1493
|
+
|
|
1494
|
+
Examples:
|
|
1495
|
+
>>> transform = LetterBox(new_shape=(640, 640))
|
|
1496
|
+
>>> result = transform(labels)
|
|
1497
|
+
>>> resized_img = result['img']
|
|
1498
|
+
>>> updated_instances = result['instances']
|
|
1499
|
+
"""
|
|
730
1500
|
|
|
731
1501
|
def __init__(self, new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, center=True, stride=32):
|
|
732
|
-
"""
|
|
1502
|
+
"""
|
|
1503
|
+
Initialize LetterBox object for resizing and padding images.
|
|
1504
|
+
|
|
1505
|
+
This class is designed to resize and pad images for object detection, instance segmentation, and pose estimation
|
|
1506
|
+
tasks. It supports various resizing modes including auto-sizing, scale-fill, and letterboxing.
|
|
1507
|
+
|
|
1508
|
+
Args:
|
|
1509
|
+
new_shape (Tuple[int, int]): Target size (height, width) for the resized image.
|
|
1510
|
+
auto (bool): If True, use minimum rectangle to resize. If False, use new_shape directly.
|
|
1511
|
+
scaleFill (bool): If True, stretch the image to new_shape without padding.
|
|
1512
|
+
scaleup (bool): If True, allow scaling up. If False, only scale down.
|
|
1513
|
+
center (bool): If True, center the placed image. If False, place image in top-left corner.
|
|
1514
|
+
stride (int): Stride of the model (e.g., 32 for YOLOv5).
|
|
1515
|
+
|
|
1516
|
+
Attributes:
|
|
1517
|
+
new_shape (Tuple[int, int]): Target size for the resized image.
|
|
1518
|
+
auto (bool): Flag for using minimum rectangle resizing.
|
|
1519
|
+
scaleFill (bool): Flag for stretching image without padding.
|
|
1520
|
+
scaleup (bool): Flag for allowing upscaling.
|
|
1521
|
+
stride (int): Stride value for ensuring image size is divisible by stride.
|
|
1522
|
+
|
|
1523
|
+
Examples:
|
|
1524
|
+
>>> letterbox = LetterBox(new_shape=(640, 640), auto=False, scaleFill=False, scaleup=True, stride=32)
|
|
1525
|
+
>>> resized_img = letterbox(original_img)
|
|
1526
|
+
"""
|
|
733
1527
|
self.new_shape = new_shape
|
|
734
1528
|
self.auto = auto
|
|
735
1529
|
self.scaleFill = scaleFill
|
|
@@ -738,7 +1532,27 @@ class LetterBox:
|
|
|
738
1532
|
self.center = center # Put the image in the middle or top-left
|
|
739
1533
|
|
|
740
1534
|
def __call__(self, labels=None, image=None):
|
|
741
|
-
"""
|
|
1535
|
+
"""
|
|
1536
|
+
Resizes and pads an image for object detection, instance segmentation, or pose estimation tasks.
|
|
1537
|
+
|
|
1538
|
+
This method applies letterboxing to the input image, which involves resizing the image while maintaining its
|
|
1539
|
+
aspect ratio and adding padding to fit the new shape. It also updates any associated labels accordingly.
|
|
1540
|
+
|
|
1541
|
+
Args:
|
|
1542
|
+
labels (Dict | None): A dictionary containing image data and associated labels, or empty dict if None.
|
|
1543
|
+
image (np.ndarray | None): The input image as a numpy array. If None, the image is taken from 'labels'.
|
|
1544
|
+
|
|
1545
|
+
Returns:
|
|
1546
|
+
(Dict | Tuple): If 'labels' is provided, returns an updated dictionary with the resized and padded image,
|
|
1547
|
+
updated labels, and additional metadata. If 'labels' is empty, returns a tuple containing the resized
|
|
1548
|
+
and padded image, and a tuple of (ratio, (left_pad, top_pad)).
|
|
1549
|
+
|
|
1550
|
+
Examples:
|
|
1551
|
+
>>> letterbox = LetterBox(new_shape=(640, 640))
|
|
1552
|
+
>>> result = letterbox(labels={'img': np.zeros((480, 640, 3)), 'instances': Instances(...)})
|
|
1553
|
+
>>> resized_img = result['img']
|
|
1554
|
+
>>> updated_instances = result['instances']
|
|
1555
|
+
"""
|
|
742
1556
|
if labels is None:
|
|
743
1557
|
labels = {}
|
|
744
1558
|
img = labels.get("img") if image is None else image
|
|
@@ -786,7 +1600,28 @@ class LetterBox:
|
|
|
786
1600
|
return img
|
|
787
1601
|
|
|
788
1602
|
def _update_labels(self, labels, ratio, padw, padh):
|
|
789
|
-
"""
|
|
1603
|
+
"""
|
|
1604
|
+
Updates labels after applying letterboxing to an image.
|
|
1605
|
+
|
|
1606
|
+
This method modifies the bounding box coordinates of instances in the labels
|
|
1607
|
+
to account for resizing and padding applied during letterboxing.
|
|
1608
|
+
|
|
1609
|
+
Args:
|
|
1610
|
+
labels (Dict): A dictionary containing image labels and instances.
|
|
1611
|
+
ratio (Tuple[float, float]): Scaling ratios (width, height) applied to the image.
|
|
1612
|
+
padw (float): Padding width added to the image.
|
|
1613
|
+
padh (float): Padding height added to the image.
|
|
1614
|
+
|
|
1615
|
+
Returns:
|
|
1616
|
+
(Dict): Updated labels dictionary with modified instance coordinates.
|
|
1617
|
+
|
|
1618
|
+
Examples:
|
|
1619
|
+
>>> letterbox = LetterBox(new_shape=(640, 640))
|
|
1620
|
+
>>> labels = {'instances': Instances(...)}
|
|
1621
|
+
>>> ratio = (0.5, 0.5)
|
|
1622
|
+
>>> padw, padh = 10, 20
|
|
1623
|
+
>>> updated_labels = letterbox._update_labels(labels, ratio, padw, padh)
|
|
1624
|
+
"""
|
|
790
1625
|
labels["instances"].convert_bbox(format="xyxy")
|
|
791
1626
|
labels["instances"].denormalize(*labels["img"].shape[:2][::-1])
|
|
792
1627
|
labels["instances"].scale(*ratio)
|
|
@@ -796,36 +1631,59 @@ class LetterBox:
|
|
|
796
1631
|
|
|
797
1632
|
class CopyPaste:
|
|
798
1633
|
"""
|
|
799
|
-
Implements
|
|
800
|
-
|
|
1634
|
+
Implements Copy-Paste augmentation as described in https://arxiv.org/abs/2012.07177.
|
|
1635
|
+
|
|
1636
|
+
This class applies Copy-Paste augmentation on images and their corresponding instances.
|
|
1637
|
+
|
|
1638
|
+
Attributes:
|
|
1639
|
+
p (float): Probability of applying the Copy-Paste augmentation. Must be between 0 and 1.
|
|
1640
|
+
|
|
1641
|
+
Methods:
|
|
1642
|
+
__call__: Applies Copy-Paste augmentation to given image and instances.
|
|
1643
|
+
|
|
1644
|
+
Examples:
|
|
1645
|
+
>>> copypaste = CopyPaste(p=0.5)
|
|
1646
|
+
>>> augmented_labels = copypaste(labels)
|
|
1647
|
+
>>> augmented_image = augmented_labels['img']
|
|
801
1648
|
"""
|
|
802
1649
|
|
|
803
1650
|
def __init__(self, p=0.5) -> None:
|
|
804
1651
|
"""
|
|
805
|
-
Initializes the CopyPaste
|
|
1652
|
+
Initializes the CopyPaste augmentation object.
|
|
1653
|
+
|
|
1654
|
+
This class implements the Copy-Paste augmentation as described in the paper "Simple Copy-Paste is a Strong Data
|
|
1655
|
+
Augmentation Method for Instance Segmentation" (https://arxiv.org/abs/2012.07177). It applies the Copy-Paste
|
|
1656
|
+
augmentation on images and their corresponding instances with a given probability.
|
|
806
1657
|
|
|
807
1658
|
Args:
|
|
808
|
-
p (float
|
|
809
|
-
|
|
1659
|
+
p (float): The probability of applying the Copy-Paste augmentation. Must be between 0 and 1.
|
|
1660
|
+
|
|
1661
|
+
Attributes:
|
|
1662
|
+
p (float): Stores the probability of applying the augmentation.
|
|
1663
|
+
|
|
1664
|
+
Examples:
|
|
1665
|
+
>>> augment = CopyPaste(p=0.7)
|
|
1666
|
+
>>> augmented_data = augment(original_data)
|
|
810
1667
|
"""
|
|
811
1668
|
self.p = p
|
|
812
1669
|
|
|
813
1670
|
def __call__(self, labels):
|
|
814
1671
|
"""
|
|
815
|
-
Applies
|
|
1672
|
+
Applies Copy-Paste augmentation to an image and its instances.
|
|
816
1673
|
|
|
817
1674
|
Args:
|
|
818
|
-
labels (
|
|
819
|
-
|
|
820
|
-
|
|
821
|
-
|
|
1675
|
+
labels (Dict): A dictionary containing:
|
|
1676
|
+
- 'img' (np.ndarray): The image to augment.
|
|
1677
|
+
- 'cls' (np.ndarray): Class labels for the instances.
|
|
1678
|
+
- 'instances' (ultralytics.engine.results.Instances): Object containing bounding boxes, segments, etc.
|
|
822
1679
|
|
|
823
1680
|
Returns:
|
|
824
|
-
(
|
|
1681
|
+
(Dict): Dictionary with augmented image and updated instances under 'img', 'cls', and 'instances' keys.
|
|
825
1682
|
|
|
826
|
-
|
|
827
|
-
|
|
828
|
-
|
|
1683
|
+
Examples:
|
|
1684
|
+
>>> labels = {'img': np.random.rand(640, 640, 3), 'cls': np.array([0, 1, 2]), 'instances': Instances(...)}
|
|
1685
|
+
>>> augmenter = CopyPaste(p=0.5)
|
|
1686
|
+
>>> augmented_labels = augmenter(labels)
|
|
829
1687
|
"""
|
|
830
1688
|
im = labels["img"]
|
|
831
1689
|
cls = labels["cls"]
|
|
@@ -862,15 +1720,61 @@ class CopyPaste:
|
|
|
862
1720
|
|
|
863
1721
|
class Albumentations:
|
|
864
1722
|
"""
|
|
865
|
-
Albumentations transformations.
|
|
1723
|
+
Albumentations transformations for image augmentation.
|
|
1724
|
+
|
|
1725
|
+
This class applies various image transformations using the Albumentations library. It includes operations such as
|
|
1726
|
+
Blur, Median Blur, conversion to grayscale, Contrast Limited Adaptive Histogram Equalization (CLAHE), random changes
|
|
1727
|
+
in brightness and contrast, RandomGamma, and image quality reduction through compression.
|
|
1728
|
+
|
|
1729
|
+
Attributes:
|
|
1730
|
+
p (float): Probability of applying the transformations.
|
|
1731
|
+
transform (albumentations.Compose): Composed Albumentations transforms.
|
|
1732
|
+
contains_spatial (bool): Indicates if the transforms include spatial operations.
|
|
1733
|
+
|
|
1734
|
+
Methods:
|
|
1735
|
+
__call__: Applies the Albumentations transformations to the input labels.
|
|
866
1736
|
|
|
867
|
-
|
|
868
|
-
|
|
869
|
-
|
|
1737
|
+
Examples:
|
|
1738
|
+
>>> transform = Albumentations(p=0.5)
|
|
1739
|
+
>>> augmented_labels = transform(labels)
|
|
1740
|
+
|
|
1741
|
+
Notes:
|
|
1742
|
+
- The Albumentations package must be installed to use this class.
|
|
1743
|
+
- If the package is not installed or an error occurs during initialization, the transform will be set to None.
|
|
1744
|
+
- Spatial transforms are handled differently and require special processing for bounding boxes.
|
|
870
1745
|
"""
|
|
871
1746
|
|
|
872
1747
|
def __init__(self, p=1.0):
|
|
873
|
-
"""
|
|
1748
|
+
"""
|
|
1749
|
+
Initialize the Albumentations transform object for YOLO bbox formatted parameters.
|
|
1750
|
+
|
|
1751
|
+
This class applies various image augmentations using the Albumentations library, including Blur, Median Blur,
|
|
1752
|
+
conversion to grayscale, Contrast Limited Adaptive Histogram Equalization, random changes of brightness and
|
|
1753
|
+
contrast, RandomGamma, and image quality reduction through compression.
|
|
1754
|
+
|
|
1755
|
+
Args:
|
|
1756
|
+
p (float): Probability of applying the augmentations. Must be between 0 and 1.
|
|
1757
|
+
|
|
1758
|
+
Attributes:
|
|
1759
|
+
p (float): Probability of applying the augmentations.
|
|
1760
|
+
transform (albumentations.Compose): Composed Albumentations transforms.
|
|
1761
|
+
contains_spatial (bool): Indicates if the transforms include spatial transformations.
|
|
1762
|
+
|
|
1763
|
+
Raises:
|
|
1764
|
+
ImportError: If the Albumentations package is not installed.
|
|
1765
|
+
Exception: For any other errors during initialization.
|
|
1766
|
+
|
|
1767
|
+
Examples:
|
|
1768
|
+
>>> transform = Albumentations(p=0.5)
|
|
1769
|
+
>>> augmented = transform(image=image, bboxes=bboxes, class_labels=classes)
|
|
1770
|
+
>>> augmented_image = augmented['image']
|
|
1771
|
+
>>> augmented_bboxes = augmented['bboxes']
|
|
1772
|
+
|
|
1773
|
+
Notes:
|
|
1774
|
+
- Requires Albumentations version 1.0.3 or higher.
|
|
1775
|
+
- Spatial transforms are handled differently to ensure bbox compatibility.
|
|
1776
|
+
- Some transforms are applied with very low probability (0.01) by default.
|
|
1777
|
+
"""
|
|
874
1778
|
self.p = p
|
|
875
1779
|
self.transform = None
|
|
876
1780
|
prefix = colorstr("albumentations: ")
|
|
@@ -949,7 +1853,36 @@ class Albumentations:
|
|
|
949
1853
|
LOGGER.info(f"{prefix}{e}")
|
|
950
1854
|
|
|
951
1855
|
def __call__(self, labels):
|
|
952
|
-
"""
|
|
1856
|
+
"""
|
|
1857
|
+
Applies Albumentations transformations to input labels.
|
|
1858
|
+
|
|
1859
|
+
This method applies a series of image augmentations using the Albumentations library. It can perform both
|
|
1860
|
+
spatial and non-spatial transformations on the input image and its corresponding labels.
|
|
1861
|
+
|
|
1862
|
+
Args:
|
|
1863
|
+
labels (Dict): A dictionary containing image data and annotations. Expected keys are:
|
|
1864
|
+
- 'img': numpy.ndarray representing the image
|
|
1865
|
+
- 'cls': numpy.ndarray of class labels
|
|
1866
|
+
- 'instances': object containing bounding boxes and other instance information
|
|
1867
|
+
|
|
1868
|
+
Returns:
|
|
1869
|
+
(Dict): The input dictionary with augmented image and updated annotations.
|
|
1870
|
+
|
|
1871
|
+
Examples:
|
|
1872
|
+
>>> transform = Albumentations(p=0.5)
|
|
1873
|
+
>>> labels = {
|
|
1874
|
+
... "img": np.random.rand(640, 640, 3),
|
|
1875
|
+
... "cls": np.array([0, 1]),
|
|
1876
|
+
... "instances": Instances(bboxes=np.array([[0, 0, 1, 1], [0.5, 0.5, 0.8, 0.8]]))
|
|
1877
|
+
... }
|
|
1878
|
+
>>> augmented = transform(labels)
|
|
1879
|
+
>>> assert augmented["img"].shape == (640, 640, 3)
|
|
1880
|
+
|
|
1881
|
+
Notes:
|
|
1882
|
+
- The method applies transformations with probability self.p.
|
|
1883
|
+
- Spatial transforms update bounding boxes, while non-spatial transforms only modify the image.
|
|
1884
|
+
- Requires the Albumentations library to be installed.
|
|
1885
|
+
"""
|
|
953
1886
|
if self.transform is None or random.random() > self.p:
|
|
954
1887
|
return labels
|
|
955
1888
|
|
|
@@ -975,18 +1908,32 @@ class Albumentations:
|
|
|
975
1908
|
|
|
976
1909
|
class Format:
|
|
977
1910
|
"""
|
|
978
|
-
|
|
979
|
-
|
|
1911
|
+
A class for formatting image annotations for object detection, instance segmentation, and pose estimation tasks.
|
|
1912
|
+
|
|
1913
|
+
This class standardizes image and instance annotations to be used by the `collate_fn` in PyTorch DataLoader.
|
|
980
1914
|
|
|
981
1915
|
Attributes:
|
|
982
|
-
bbox_format (str): Format for bounding boxes.
|
|
983
|
-
normalize (bool): Whether to normalize bounding boxes.
|
|
984
|
-
return_mask (bool):
|
|
985
|
-
return_keypoint (bool):
|
|
986
|
-
|
|
987
|
-
|
|
988
|
-
|
|
989
|
-
|
|
1916
|
+
bbox_format (str): Format for bounding boxes. Options are 'xywh' or 'xyxy'.
|
|
1917
|
+
normalize (bool): Whether to normalize bounding boxes.
|
|
1918
|
+
return_mask (bool): Whether to return instance masks for segmentation.
|
|
1919
|
+
return_keypoint (bool): Whether to return keypoints for pose estimation.
|
|
1920
|
+
return_obb (bool): Whether to return oriented bounding boxes.
|
|
1921
|
+
mask_ratio (int): Downsample ratio for masks.
|
|
1922
|
+
mask_overlap (bool): Whether to overlap masks.
|
|
1923
|
+
batch_idx (bool): Whether to keep batch indexes.
|
|
1924
|
+
bgr (float): The probability to return BGR images.
|
|
1925
|
+
|
|
1926
|
+
Methods:
|
|
1927
|
+
__call__: Formats labels dictionary with image, classes, bounding boxes, and optionally masks and keypoints.
|
|
1928
|
+
_format_img: Converts image from Numpy array to PyTorch tensor.
|
|
1929
|
+
_format_segments: Converts polygon points to bitmap masks.
|
|
1930
|
+
|
|
1931
|
+
Examples:
|
|
1932
|
+
>>> formatter = Format(bbox_format='xywh', normalize=True, return_mask=True)
|
|
1933
|
+
>>> formatted_labels = formatter(labels)
|
|
1934
|
+
>>> img = formatted_labels['img']
|
|
1935
|
+
>>> bboxes = formatted_labels['bboxes']
|
|
1936
|
+
>>> masks = formatted_labels['masks']
|
|
990
1937
|
"""
|
|
991
1938
|
|
|
992
1939
|
def __init__(
|
|
@@ -1001,7 +1948,39 @@ class Format:
|
|
|
1001
1948
|
batch_idx=True,
|
|
1002
1949
|
bgr=0.0,
|
|
1003
1950
|
):
|
|
1004
|
-
"""
|
|
1951
|
+
"""
|
|
1952
|
+
Initializes the Format class with given parameters for image and instance annotation formatting.
|
|
1953
|
+
|
|
1954
|
+
This class standardizes image and instance annotations for object detection, instance segmentation, and pose
|
|
1955
|
+
estimation tasks, preparing them for use in PyTorch DataLoader's `collate_fn`.
|
|
1956
|
+
|
|
1957
|
+
Args:
|
|
1958
|
+
bbox_format (str): Format for bounding boxes. Options are 'xywh', 'xyxy', etc.
|
|
1959
|
+
normalize (bool): Whether to normalize bounding boxes to [0,1].
|
|
1960
|
+
return_mask (bool): If True, returns instance masks for segmentation tasks.
|
|
1961
|
+
return_keypoint (bool): If True, returns keypoints for pose estimation tasks.
|
|
1962
|
+
return_obb (bool): If True, returns oriented bounding boxes.
|
|
1963
|
+
mask_ratio (int): Downsample ratio for masks.
|
|
1964
|
+
mask_overlap (bool): If True, allows mask overlap.
|
|
1965
|
+
batch_idx (bool): If True, keeps batch indexes.
|
|
1966
|
+
bgr (float): Probability of returning BGR images instead of RGB.
|
|
1967
|
+
|
|
1968
|
+
Attributes:
|
|
1969
|
+
bbox_format (str): Format for bounding boxes.
|
|
1970
|
+
normalize (bool): Whether bounding boxes are normalized.
|
|
1971
|
+
return_mask (bool): Whether to return instance masks.
|
|
1972
|
+
return_keypoint (bool): Whether to return keypoints.
|
|
1973
|
+
return_obb (bool): Whether to return oriented bounding boxes.
|
|
1974
|
+
mask_ratio (int): Downsample ratio for masks.
|
|
1975
|
+
mask_overlap (bool): Whether masks can overlap.
|
|
1976
|
+
batch_idx (bool): Whether to keep batch indexes.
|
|
1977
|
+
bgr (float): The probability to return BGR images.
|
|
1978
|
+
|
|
1979
|
+
Examples:
|
|
1980
|
+
>>> format = Format(bbox_format='xyxy', return_mask=True, return_keypoint=False)
|
|
1981
|
+
>>> print(format.bbox_format)
|
|
1982
|
+
xyxy
|
|
1983
|
+
"""
|
|
1005
1984
|
self.bbox_format = bbox_format
|
|
1006
1985
|
self.normalize = normalize
|
|
1007
1986
|
self.return_mask = return_mask # set False when training detection only
|
|
@@ -1013,7 +1992,34 @@ class Format:
|
|
|
1013
1992
|
self.bgr = bgr
|
|
1014
1993
|
|
|
1015
1994
|
def __call__(self, labels):
|
|
1016
|
-
"""
|
|
1995
|
+
"""
|
|
1996
|
+
Formats image annotations for object detection, instance segmentation, and pose estimation tasks.
|
|
1997
|
+
|
|
1998
|
+
This method standardizes the image and instance annotations to be used by the `collate_fn` in PyTorch
|
|
1999
|
+
DataLoader. It processes the input labels dictionary, converting annotations to the specified format and
|
|
2000
|
+
applying normalization if required.
|
|
2001
|
+
|
|
2002
|
+
Args:
|
|
2003
|
+
labels (Dict): A dictionary containing image and annotation data with the following keys:
|
|
2004
|
+
- 'img': The input image as a numpy array.
|
|
2005
|
+
- 'cls': Class labels for instances.
|
|
2006
|
+
- 'instances': An Instances object containing bounding boxes, segments, and keypoints.
|
|
2007
|
+
|
|
2008
|
+
Returns:
|
|
2009
|
+
(Dict): A dictionary with formatted data, including:
|
|
2010
|
+
- 'img': Formatted image tensor.
|
|
2011
|
+
- 'cls': Class labels tensor.
|
|
2012
|
+
- 'bboxes': Bounding boxes tensor in the specified format.
|
|
2013
|
+
- 'masks': Instance masks tensor (if return_mask is True).
|
|
2014
|
+
- 'keypoints': Keypoints tensor (if return_keypoint is True).
|
|
2015
|
+
- 'batch_idx': Batch index tensor (if batch_idx is True).
|
|
2016
|
+
|
|
2017
|
+
Examples:
|
|
2018
|
+
>>> formatter = Format(bbox_format='xywh', normalize=True, return_mask=True)
|
|
2019
|
+
>>> labels = {'img': np.random.rand(640, 640, 3), 'cls': np.array([0, 1]), 'instances': Instances(...)}
|
|
2020
|
+
>>> formatted_labels = formatter(labels)
|
|
2021
|
+
>>> print(formatted_labels.keys())
|
|
2022
|
+
"""
|
|
1017
2023
|
img = labels.pop("img")
|
|
1018
2024
|
h, w = img.shape[:2]
|
|
1019
2025
|
cls = labels.pop("cls")
|
|
@@ -1053,7 +2059,29 @@ class Format:
|
|
|
1053
2059
|
return labels
|
|
1054
2060
|
|
|
1055
2061
|
def _format_img(self, img):
|
|
1056
|
-
"""
|
|
2062
|
+
"""
|
|
2063
|
+
Formats an image for YOLO from a Numpy array to a PyTorch tensor.
|
|
2064
|
+
|
|
2065
|
+
This function performs the following operations:
|
|
2066
|
+
1. Ensures the image has 3 dimensions (adds a channel dimension if needed).
|
|
2067
|
+
2. Transposes the image from HWC to CHW format.
|
|
2068
|
+
3. Optionally flips the color channels from RGB to BGR.
|
|
2069
|
+
4. Converts the image to a contiguous array.
|
|
2070
|
+
5. Converts the Numpy array to a PyTorch tensor.
|
|
2071
|
+
|
|
2072
|
+
Args:
|
|
2073
|
+
img (np.ndarray): Input image as a Numpy array with shape (H, W, C) or (H, W).
|
|
2074
|
+
|
|
2075
|
+
Returns:
|
|
2076
|
+
(torch.Tensor): Formatted image as a PyTorch tensor with shape (C, H, W).
|
|
2077
|
+
|
|
2078
|
+
Examples:
|
|
2079
|
+
>>> import numpy as np
|
|
2080
|
+
>>> img = np.random.rand(100, 100, 3)
|
|
2081
|
+
>>> formatted_img = self._format_img(img)
|
|
2082
|
+
>>> print(formatted_img.shape)
|
|
2083
|
+
torch.Size([3, 100, 100])
|
|
2084
|
+
"""
|
|
1057
2085
|
if len(img.shape) < 3:
|
|
1058
2086
|
img = np.expand_dims(img, -1)
|
|
1059
2087
|
img = img.transpose(2, 0, 1)
|
|
@@ -1062,7 +2090,26 @@ class Format:
|
|
|
1062
2090
|
return img
|
|
1063
2091
|
|
|
1064
2092
|
def _format_segments(self, instances, cls, w, h):
|
|
1065
|
-
"""
|
|
2093
|
+
"""
|
|
2094
|
+
Converts polygon segments to bitmap masks.
|
|
2095
|
+
|
|
2096
|
+
Args:
|
|
2097
|
+
instances (Instances): Object containing segment information.
|
|
2098
|
+
cls (numpy.ndarray): Class labels for each instance.
|
|
2099
|
+
w (int): Width of the image.
|
|
2100
|
+
h (int): Height of the image.
|
|
2101
|
+
|
|
2102
|
+
Returns:
|
|
2103
|
+
(tuple): Tuple containing:
|
|
2104
|
+
masks (numpy.ndarray): Bitmap masks with shape (N, H, W) or (1, H, W) if mask_overlap is True.
|
|
2105
|
+
instances (Instances): Updated instances object with sorted segments if mask_overlap is True.
|
|
2106
|
+
cls (numpy.ndarray): Updated class labels, sorted if mask_overlap is True.
|
|
2107
|
+
|
|
2108
|
+
Notes:
|
|
2109
|
+
- If self.mask_overlap is True, masks are overlapped and sorted by area.
|
|
2110
|
+
- If self.mask_overlap is False, each mask is represented separately.
|
|
2111
|
+
- Masks are downsampled according to self.mask_ratio.
|
|
2112
|
+
"""
|
|
1066
2113
|
segments = instances.segments
|
|
1067
2114
|
if self.mask_overlap:
|
|
1068
2115
|
masks, sorted_idx = polygons2masks_overlap((h, w), segments, downsample_ratio=self.mask_ratio)
|
|
@@ -1077,14 +2124,28 @@ class Format:
|
|
|
1077
2124
|
|
|
1078
2125
|
class RandomLoadText:
|
|
1079
2126
|
"""
|
|
1080
|
-
Randomly
|
|
2127
|
+
Randomly samples positive and negative texts and updates class indices accordingly.
|
|
2128
|
+
|
|
2129
|
+
This class is responsible for sampling texts from a given set of class texts, including both positive
|
|
2130
|
+
(present in the image) and negative (not present in the image) samples. It updates the class indices
|
|
2131
|
+
to reflect the sampled texts and can optionally pad the text list to a fixed length.
|
|
1081
2132
|
|
|
1082
2133
|
Attributes:
|
|
1083
|
-
prompt_format (str): Format for
|
|
1084
|
-
neg_samples (
|
|
1085
|
-
max_samples (int):
|
|
1086
|
-
padding (bool): Whether to pad texts to max_samples.
|
|
1087
|
-
padding_value (str): The padding
|
|
2134
|
+
prompt_format (str): Format string for text prompts.
|
|
2135
|
+
neg_samples (Tuple[int, int]): Range for randomly sampling negative texts.
|
|
2136
|
+
max_samples (int): Maximum number of different text samples in one image.
|
|
2137
|
+
padding (bool): Whether to pad texts to max_samples.
|
|
2138
|
+
padding_value (str): The text used for padding when padding is True.
|
|
2139
|
+
|
|
2140
|
+
Methods:
|
|
2141
|
+
__call__: Processes the input labels and returns updated classes and texts.
|
|
2142
|
+
|
|
2143
|
+
Examples:
|
|
2144
|
+
>>> loader = RandomLoadText(prompt_format="Object: {}", neg_samples=(5, 10), max_samples=20)
|
|
2145
|
+
>>> labels = {"cls": [0, 1, 2], "texts": [["cat"], ["dog"], ["bird"]], "instances": [...]}
|
|
2146
|
+
>>> updated_labels = loader(labels)
|
|
2147
|
+
>>> print(updated_labels["texts"])
|
|
2148
|
+
['Object: cat', 'Object: dog', 'Object: bird', 'Object: elephant', 'Object: car']
|
|
1088
2149
|
"""
|
|
1089
2150
|
|
|
1090
2151
|
def __init__(
|
|
@@ -1095,7 +2156,39 @@ class RandomLoadText:
|
|
|
1095
2156
|
padding: bool = False,
|
|
1096
2157
|
padding_value: str = "",
|
|
1097
2158
|
) -> None:
|
|
1098
|
-
"""
|
|
2159
|
+
"""
|
|
2160
|
+
Initializes the RandomLoadText class for randomly sampling positive and negative texts.
|
|
2161
|
+
|
|
2162
|
+
This class is designed to randomly sample positive texts and negative texts, and update the class
|
|
2163
|
+
indices accordingly to the number of samples. It can be used for text-based object detection tasks.
|
|
2164
|
+
|
|
2165
|
+
Args:
|
|
2166
|
+
prompt_format (str): Format string for the prompt. Default is '{}'. The format string should
|
|
2167
|
+
contain a single pair of curly braces {} where the text will be inserted.
|
|
2168
|
+
neg_samples (Tuple[int, int]): A range to randomly sample negative texts. The first integer
|
|
2169
|
+
specifies the minimum number of negative samples, and the second integer specifies the
|
|
2170
|
+
maximum. Default is (80, 80).
|
|
2171
|
+
max_samples (int): The maximum number of different text samples in one image. Default is 80.
|
|
2172
|
+
padding (bool): Whether to pad texts to max_samples. If True, the number of texts will always
|
|
2173
|
+
be equal to max_samples. Default is False.
|
|
2174
|
+
padding_value (str): The padding text to use when padding is True. Default is an empty string.
|
|
2175
|
+
|
|
2176
|
+
Attributes:
|
|
2177
|
+
prompt_format (str): The format string for the prompt.
|
|
2178
|
+
neg_samples (Tuple[int, int]): The range for sampling negative texts.
|
|
2179
|
+
max_samples (int): The maximum number of text samples.
|
|
2180
|
+
padding (bool): Whether padding is enabled.
|
|
2181
|
+
padding_value (str): The value used for padding.
|
|
2182
|
+
|
|
2183
|
+
Examples:
|
|
2184
|
+
>>> random_load_text = RandomLoadText(prompt_format="Object: {}", neg_samples=(50, 100), max_samples=120)
|
|
2185
|
+
>>> random_load_text.prompt_format
|
|
2186
|
+
'Object: {}'
|
|
2187
|
+
>>> random_load_text.neg_samples
|
|
2188
|
+
(50, 100)
|
|
2189
|
+
>>> random_load_text.max_samples
|
|
2190
|
+
120
|
|
2191
|
+
"""
|
|
1099
2192
|
self.prompt_format = prompt_format
|
|
1100
2193
|
self.neg_samples = neg_samples
|
|
1101
2194
|
self.max_samples = max_samples
|
|
@@ -1103,7 +2196,24 @@ class RandomLoadText:
|
|
|
1103
2196
|
self.padding_value = padding_value
|
|
1104
2197
|
|
|
1105
2198
|
def __call__(self, labels: dict) -> dict:
|
|
1106
|
-
"""
|
|
2199
|
+
"""
|
|
2200
|
+
Randomly samples positive and negative texts and updates class indices accordingly.
|
|
2201
|
+
|
|
2202
|
+
This method samples positive texts based on the existing class labels in the image, and randomly
|
|
2203
|
+
selects negative texts from the remaining classes. It then updates the class indices to match the
|
|
2204
|
+
new sampled text order.
|
|
2205
|
+
|
|
2206
|
+
Args:
|
|
2207
|
+
labels (Dict): A dictionary containing image labels and metadata. Must include 'texts' and 'cls' keys.
|
|
2208
|
+
|
|
2209
|
+
Returns:
|
|
2210
|
+
(Dict): Updated labels dictionary with new 'cls' and 'texts' entries.
|
|
2211
|
+
|
|
2212
|
+
Examples:
|
|
2213
|
+
>>> loader = RandomLoadText(prompt_format="A photo of {}", neg_samples=(5, 10), max_samples=20)
|
|
2214
|
+
>>> labels = {"cls": np.array([[0], [1], [2]]), "texts": [["dog"], ["cat"], ["bird"]]}
|
|
2215
|
+
>>> updated_labels = loader(labels)
|
|
2216
|
+
"""
|
|
1107
2217
|
assert "texts" in labels, "No texts found in labels."
|
|
1108
2218
|
class_texts = labels["texts"]
|
|
1109
2219
|
num_classes = len(class_texts)
|
|
@@ -1150,7 +2260,28 @@ class RandomLoadText:
|
|
|
1150
2260
|
|
|
1151
2261
|
|
|
1152
2262
|
def v8_transforms(dataset, imgsz, hyp, stretch=False):
|
|
1153
|
-
"""
|
|
2263
|
+
"""
|
|
2264
|
+
Applies a series of image transformations for YOLOv8 training.
|
|
2265
|
+
|
|
2266
|
+
This function creates a composition of image augmentation techniques to prepare images for YOLOv8 training.
|
|
2267
|
+
It includes operations such as mosaic, copy-paste, random perspective, mixup, and various color adjustments.
|
|
2268
|
+
|
|
2269
|
+
Args:
|
|
2270
|
+
dataset (Dataset): The dataset object containing image data and annotations.
|
|
2271
|
+
imgsz (int): The target image size for resizing.
|
|
2272
|
+
hyp (Dict): A dictionary of hyperparameters controlling various aspects of the transformations.
|
|
2273
|
+
stretch (bool): If True, applies stretching to the image. If False, uses LetterBox resizing.
|
|
2274
|
+
|
|
2275
|
+
Returns:
|
|
2276
|
+
(Compose): A composition of image transformations to be applied to the dataset.
|
|
2277
|
+
|
|
2278
|
+
Examples:
|
|
2279
|
+
>>> from ultralytics.data.dataset import YOLODataset
|
|
2280
|
+
>>> dataset = YOLODataset(img_path='path/to/images', imgsz=640)
|
|
2281
|
+
>>> hyp = {'mosaic': 1.0, 'copy_paste': 0.5, 'degrees': 10.0, 'translate': 0.2, 'scale': 0.9}
|
|
2282
|
+
>>> transforms = v8_transforms(dataset, imgsz=640, hyp=hyp)
|
|
2283
|
+
>>> augmented_data = transforms(dataset[0])
|
|
2284
|
+
"""
|
|
1154
2285
|
pre_transform = Compose(
|
|
1155
2286
|
[
|
|
1156
2287
|
Mosaic(dataset, imgsz=imgsz, p=hyp.mosaic),
|
|
@@ -1195,17 +2326,27 @@ def classify_transforms(
|
|
|
1195
2326
|
crop_fraction: float = DEFAULT_CROP_FRACTION,
|
|
1196
2327
|
):
|
|
1197
2328
|
"""
|
|
1198
|
-
|
|
2329
|
+
Creates a composition of image transforms for classification tasks.
|
|
2330
|
+
|
|
2331
|
+
This function generates a sequence of torchvision transforms suitable for preprocessing images
|
|
2332
|
+
for classification models during evaluation or inference. The transforms include resizing,
|
|
2333
|
+
center cropping, conversion to tensor, and normalization.
|
|
1199
2334
|
|
|
1200
2335
|
Args:
|
|
1201
|
-
size (int): image
|
|
1202
|
-
|
|
1203
|
-
|
|
1204
|
-
|
|
1205
|
-
|
|
2336
|
+
size (int | tuple): The target size for the transformed image. If an int, it defines the shortest edge. If a
|
|
2337
|
+
tuple, it defines (height, width).
|
|
2338
|
+
mean (tuple): Mean values for each RGB channel used in normalization.
|
|
2339
|
+
std (tuple): Standard deviation values for each RGB channel used in normalization.
|
|
2340
|
+
interpolation (int): Interpolation method for resizing.
|
|
2341
|
+
crop_fraction (float): Fraction of the image to be cropped.
|
|
1206
2342
|
|
|
1207
2343
|
Returns:
|
|
1208
|
-
(
|
|
2344
|
+
(torchvision.transforms.Compose): A composition of torchvision transforms.
|
|
2345
|
+
|
|
2346
|
+
Examples:
|
|
2347
|
+
>>> transforms = classify_transforms(size=224)
|
|
2348
|
+
>>> img = Image.open('path/to/image.jpg')
|
|
2349
|
+
>>> transformed_img = transforms(img)
|
|
1209
2350
|
"""
|
|
1210
2351
|
import torchvision.transforms as T # scope for faster 'import ultralytics'
|
|
1211
2352
|
|
|
@@ -1251,26 +2392,33 @@ def classify_augmentations(
|
|
|
1251
2392
|
interpolation=Image.BILINEAR,
|
|
1252
2393
|
):
|
|
1253
2394
|
"""
|
|
1254
|
-
|
|
2395
|
+
Creates a composition of image augmentation transforms for classification tasks.
|
|
2396
|
+
|
|
2397
|
+
This function generates a set of image transformations suitable for training classification models. It includes
|
|
2398
|
+
options for resizing, flipping, color jittering, auto augmentation, and random erasing.
|
|
1255
2399
|
|
|
1256
2400
|
Args:
|
|
1257
|
-
size (int): image
|
|
1258
|
-
|
|
1259
|
-
|
|
1260
|
-
|
|
1261
|
-
|
|
1262
|
-
hflip (float):
|
|
1263
|
-
vflip (float):
|
|
1264
|
-
auto_augment (str):
|
|
1265
|
-
hsv_h (float):
|
|
1266
|
-
hsv_s (float):
|
|
1267
|
-
hsv_v (float):
|
|
1268
|
-
force_color_jitter (bool):
|
|
1269
|
-
erasing (float):
|
|
1270
|
-
interpolation (
|
|
2401
|
+
size (int): Target size for the image after transformations.
|
|
2402
|
+
mean (tuple): Mean values for normalization, one per channel.
|
|
2403
|
+
std (tuple): Standard deviation values for normalization, one per channel.
|
|
2404
|
+
scale (tuple | None): Range of size of the origin size cropped.
|
|
2405
|
+
ratio (tuple | None): Range of aspect ratio of the origin aspect ratio cropped.
|
|
2406
|
+
hflip (float): Probability of horizontal flip.
|
|
2407
|
+
vflip (float): Probability of vertical flip.
|
|
2408
|
+
auto_augment (str | None): Auto augmentation policy. Can be 'randaugment', 'augmix', 'autoaugment' or None.
|
|
2409
|
+
hsv_h (float): Image HSV-Hue augmentation factor.
|
|
2410
|
+
hsv_s (float): Image HSV-Saturation augmentation factor.
|
|
2411
|
+
hsv_v (float): Image HSV-Value augmentation factor.
|
|
2412
|
+
force_color_jitter (bool): Whether to apply color jitter even if auto augment is enabled.
|
|
2413
|
+
erasing (float): Probability of random erasing.
|
|
2414
|
+
interpolation (int): Interpolation method.
|
|
1271
2415
|
|
|
1272
2416
|
Returns:
|
|
1273
|
-
(
|
|
2417
|
+
(torchvision.transforms.Compose): A composition of image augmentation transforms.
|
|
2418
|
+
|
|
2419
|
+
Examples:
|
|
2420
|
+
>>> transforms = classify_augmentations(size=224, auto_augment='randaugment')
|
|
2421
|
+
>>> augmented_image = transforms(original_image)
|
|
1274
2422
|
"""
|
|
1275
2423
|
# Transforms to apply if Albumentations not installed
|
|
1276
2424
|
import torchvision.transforms as T # scope for faster 'import ultralytics'
|
|
@@ -1332,24 +2480,53 @@ def classify_augmentations(
|
|
|
1332
2480
|
# NOTE: keep this class for backward compatibility
|
|
1333
2481
|
class ClassifyLetterBox:
|
|
1334
2482
|
"""
|
|
1335
|
-
|
|
1336
|
-
|
|
2483
|
+
A class for resizing and padding images for classification tasks.
|
|
2484
|
+
|
|
2485
|
+
This class is designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]).
|
|
2486
|
+
It resizes and pads images to a specified size while maintaining the original aspect ratio.
|
|
1337
2487
|
|
|
1338
2488
|
Attributes:
|
|
1339
2489
|
h (int): Target height of the image.
|
|
1340
2490
|
w (int): Target width of the image.
|
|
1341
|
-
auto (bool): If True, automatically
|
|
2491
|
+
auto (bool): If True, automatically calculates the short side using stride.
|
|
1342
2492
|
stride (int): The stride value, used when 'auto' is True.
|
|
2493
|
+
|
|
2494
|
+
Methods:
|
|
2495
|
+
__call__: Applies the letterbox transformation to an input image.
|
|
2496
|
+
|
|
2497
|
+
Examples:
|
|
2498
|
+
>>> transform = ClassifyLetterBox(size=(640, 640), auto=False, stride=32)
|
|
2499
|
+
>>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
|
|
2500
|
+
>>> result = transform(img)
|
|
2501
|
+
>>> print(result.shape)
|
|
2502
|
+
(640, 640, 3)
|
|
1343
2503
|
"""
|
|
1344
2504
|
|
|
1345
2505
|
def __init__(self, size=(640, 640), auto=False, stride=32):
|
|
1346
2506
|
"""
|
|
1347
|
-
Initializes the ClassifyLetterBox
|
|
2507
|
+
Initializes the ClassifyLetterBox object for image preprocessing.
|
|
2508
|
+
|
|
2509
|
+
This class is designed to be part of a transformation pipeline for image classification tasks. It resizes and
|
|
2510
|
+
pads images to a specified size while maintaining the original aspect ratio.
|
|
1348
2511
|
|
|
1349
2512
|
Args:
|
|
1350
|
-
size (
|
|
1351
|
-
|
|
1352
|
-
|
|
2513
|
+
size (int | Tuple[int, int]): Target size for the letterboxed image. If an int, a square image of
|
|
2514
|
+
(size, size) is created. If a tuple, it should be (height, width).
|
|
2515
|
+
auto (bool): If True, automatically calculates the short side based on stride. Default is False.
|
|
2516
|
+
stride (int): The stride value, used when 'auto' is True. Default is 32.
|
|
2517
|
+
|
|
2518
|
+
Attributes:
|
|
2519
|
+
h (int): Target height of the letterboxed image.
|
|
2520
|
+
w (int): Target width of the letterboxed image.
|
|
2521
|
+
auto (bool): Flag indicating whether to automatically calculate short side.
|
|
2522
|
+
stride (int): Stride value for automatic short side calculation.
|
|
2523
|
+
|
|
2524
|
+
Examples:
|
|
2525
|
+
>>> transform = ClassifyLetterBox(size=224)
|
|
2526
|
+
>>> img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
|
|
2527
|
+
>>> result = transform(img)
|
|
2528
|
+
>>> print(result.shape)
|
|
2529
|
+
(224, 224, 3)
|
|
1353
2530
|
"""
|
|
1354
2531
|
super().__init__()
|
|
1355
2532
|
self.h, self.w = (size, size) if isinstance(size, int) else size
|
|
@@ -1358,13 +2535,24 @@ class ClassifyLetterBox:
|
|
|
1358
2535
|
|
|
1359
2536
|
def __call__(self, im):
|
|
1360
2537
|
"""
|
|
1361
|
-
Resizes
|
|
2538
|
+
Resizes and pads an image using the letterbox method.
|
|
2539
|
+
|
|
2540
|
+
This method resizes the input image to fit within the specified dimensions while maintaining its aspect ratio,
|
|
2541
|
+
then pads the resized image to match the target size.
|
|
1362
2542
|
|
|
1363
2543
|
Args:
|
|
1364
|
-
im (numpy.ndarray):
|
|
2544
|
+
im (numpy.ndarray): Input image as a numpy array with shape (H, W, C).
|
|
1365
2545
|
|
|
1366
2546
|
Returns:
|
|
1367
|
-
(numpy.ndarray):
|
|
2547
|
+
(numpy.ndarray): Resized and padded image as a numpy array with shape (hs, ws, 3), where hs and ws are
|
|
2548
|
+
the target height and width respectively.
|
|
2549
|
+
|
|
2550
|
+
Examples:
|
|
2551
|
+
>>> letterbox = ClassifyLetterBox(size=(640, 640))
|
|
2552
|
+
>>> image = np.random.randint(0, 255, (720, 1280, 3), dtype=np.uint8)
|
|
2553
|
+
>>> resized_image = letterbox(image)
|
|
2554
|
+
>>> print(resized_image.shape)
|
|
2555
|
+
(640, 640, 3)
|
|
1368
2556
|
"""
|
|
1369
2557
|
imh, imw = im.shape[:2]
|
|
1370
2558
|
r = min(self.h / imh, self.w / imw) # ratio of new/old dimensions
|
|
@@ -1382,24 +2570,70 @@ class ClassifyLetterBox:
|
|
|
1382
2570
|
|
|
1383
2571
|
# NOTE: keep this class for backward compatibility
|
|
1384
2572
|
class CenterCrop:
|
|
1385
|
-
"""
|
|
1386
|
-
|
|
2573
|
+
"""
|
|
2574
|
+
Applies center cropping to images for classification tasks.
|
|
2575
|
+
|
|
2576
|
+
This class performs center cropping on input images, resizing them to a specified size while maintaining the aspect
|
|
2577
|
+
ratio. It is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]).
|
|
2578
|
+
|
|
2579
|
+
Attributes:
|
|
2580
|
+
h (int): Target height of the cropped image.
|
|
2581
|
+
w (int): Target width of the cropped image.
|
|
2582
|
+
|
|
2583
|
+
Methods:
|
|
2584
|
+
__call__: Applies the center crop transformation to an input image.
|
|
2585
|
+
|
|
2586
|
+
Examples:
|
|
2587
|
+
>>> transform = CenterCrop(640)
|
|
2588
|
+
>>> image = np.random.randint(0, 255, (1080, 1920, 3), dtype=np.uint8)
|
|
2589
|
+
>>> cropped_image = transform(image)
|
|
2590
|
+
>>> print(cropped_image.shape)
|
|
2591
|
+
(640, 640, 3)
|
|
1387
2592
|
"""
|
|
1388
2593
|
|
|
1389
2594
|
def __init__(self, size=640):
|
|
1390
|
-
"""
|
|
2595
|
+
"""
|
|
2596
|
+
Initializes the CenterCrop object for image preprocessing.
|
|
2597
|
+
|
|
2598
|
+
This class is designed to be part of a transformation pipeline, e.g., T.Compose([CenterCrop(size), ToTensor()]).
|
|
2599
|
+
It performs a center crop on input images to a specified size.
|
|
2600
|
+
|
|
2601
|
+
Args:
|
|
2602
|
+
size (int | Tuple[int, int]): The desired output size of the crop. If size is an int, a square crop
|
|
2603
|
+
(size, size) is made. If size is a sequence like (h, w), it is used as the output size.
|
|
2604
|
+
|
|
2605
|
+
Returns:
|
|
2606
|
+
(None): This method initializes the object and does not return anything.
|
|
2607
|
+
|
|
2608
|
+
Examples:
|
|
2609
|
+
>>> transform = CenterCrop(224)
|
|
2610
|
+
>>> img = np.random.rand(300, 300, 3)
|
|
2611
|
+
>>> cropped_img = transform(img)
|
|
2612
|
+
>>> print(cropped_img.shape)
|
|
2613
|
+
(224, 224, 3)
|
|
2614
|
+
"""
|
|
1391
2615
|
super().__init__()
|
|
1392
2616
|
self.h, self.w = (size, size) if isinstance(size, int) else size
|
|
1393
2617
|
|
|
1394
2618
|
def __call__(self, im):
|
|
1395
2619
|
"""
|
|
1396
|
-
|
|
2620
|
+
Applies center cropping to an input image.
|
|
2621
|
+
|
|
2622
|
+
This method resizes and crops the center of the image using a letterbox method. It maintains the aspect
|
|
2623
|
+
ratio of the original image while fitting it into the specified dimensions.
|
|
1397
2624
|
|
|
1398
2625
|
Args:
|
|
1399
|
-
im (numpy.ndarray): The input image as a numpy array of shape
|
|
2626
|
+
im (numpy.ndarray | PIL.Image.Image): The input image as a numpy array of shape (H, W, C) or a
|
|
2627
|
+
PIL Image object.
|
|
1400
2628
|
|
|
1401
2629
|
Returns:
|
|
1402
|
-
(numpy.ndarray): The center-cropped and resized image as a numpy array.
|
|
2630
|
+
(numpy.ndarray): The center-cropped and resized image as a numpy array of shape (self.h, self.w, C).
|
|
2631
|
+
|
|
2632
|
+
Examples:
|
|
2633
|
+
>>> transform = CenterCrop(size=224)
|
|
2634
|
+
>>> image = np.random.randint(0, 255, (640, 480, 3), dtype=np.uint8)
|
|
2635
|
+
>>> cropped_image = transform(image)
|
|
2636
|
+
>>> assert cropped_image.shape == (224, 224, 3)
|
|
1403
2637
|
"""
|
|
1404
2638
|
if isinstance(im, Image.Image): # convert from PIL to numpy array if required
|
|
1405
2639
|
im = np.asarray(im)
|
|
@@ -1411,22 +2645,71 @@ class CenterCrop:
|
|
|
1411
2645
|
|
|
1412
2646
|
# NOTE: keep this class for backward compatibility
|
|
1413
2647
|
class ToTensor:
|
|
1414
|
-
"""
|
|
2648
|
+
"""
|
|
2649
|
+
Converts an image from a numpy array to a PyTorch tensor.
|
|
2650
|
+
|
|
2651
|
+
This class is designed to be part of a transformation pipeline, e.g., T.Compose([LetterBox(size), ToTensor()]).
|
|
2652
|
+
|
|
2653
|
+
Attributes:
|
|
2654
|
+
half (bool): If True, converts the image to half precision (float16).
|
|
2655
|
+
|
|
2656
|
+
Methods:
|
|
2657
|
+
__call__: Applies the tensor conversion to an input image.
|
|
2658
|
+
|
|
2659
|
+
Examples:
|
|
2660
|
+
>>> transform = ToTensor(half=True)
|
|
2661
|
+
>>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
|
2662
|
+
>>> tensor_img = transform(img)
|
|
2663
|
+
>>> print(tensor_img.shape, tensor_img.dtype)
|
|
2664
|
+
torch.Size([3, 640, 640]) torch.float16
|
|
2665
|
+
|
|
2666
|
+
Notes:
|
|
2667
|
+
The input image is expected to be in BGR format with shape (H, W, C).
|
|
2668
|
+
The output tensor will be in RGB format with shape (C, H, W), normalized to [0, 1].
|
|
2669
|
+
"""
|
|
1415
2670
|
|
|
1416
2671
|
def __init__(self, half=False):
|
|
1417
|
-
"""
|
|
2672
|
+
"""
|
|
2673
|
+
Initializes the ToTensor object for converting images to PyTorch tensors.
|
|
2674
|
+
|
|
2675
|
+
This class is designed to be used as part of a transformation pipeline for image preprocessing in the
|
|
2676
|
+
Ultralytics YOLO framework. It converts numpy arrays or PIL Images to PyTorch tensors, with an option
|
|
2677
|
+
for half-precision (float16) conversion.
|
|
2678
|
+
|
|
2679
|
+
Args:
|
|
2680
|
+
half (bool): If True, converts the tensor to half precision (float16). Default is False.
|
|
2681
|
+
|
|
2682
|
+
Examples:
|
|
2683
|
+
>>> transform = ToTensor(half=True)
|
|
2684
|
+
>>> img = np.random.rand(640, 640, 3)
|
|
2685
|
+
>>> tensor_img = transform(img)
|
|
2686
|
+
>>> print(tensor_img.dtype)
|
|
2687
|
+
torch.float16
|
|
2688
|
+
"""
|
|
1418
2689
|
super().__init__()
|
|
1419
2690
|
self.half = half
|
|
1420
2691
|
|
|
1421
2692
|
def __call__(self, im):
|
|
1422
2693
|
"""
|
|
1423
|
-
Transforms an image from a numpy array to a PyTorch tensor
|
|
2694
|
+
Transforms an image from a numpy array to a PyTorch tensor.
|
|
2695
|
+
|
|
2696
|
+
This method converts the input image from a numpy array to a PyTorch tensor, applying optional
|
|
2697
|
+
half-precision conversion and normalization. The image is transposed from HWC to CHW format and
|
|
2698
|
+
the color channels are reversed from BGR to RGB.
|
|
1424
2699
|
|
|
1425
2700
|
Args:
|
|
1426
2701
|
im (numpy.ndarray): Input image as a numpy array with shape (H, W, C) in BGR order.
|
|
1427
2702
|
|
|
1428
2703
|
Returns:
|
|
1429
|
-
(torch.Tensor): The transformed image as a PyTorch tensor in float32 or float16, normalized
|
|
2704
|
+
(torch.Tensor): The transformed image as a PyTorch tensor in float32 or float16, normalized
|
|
2705
|
+
to [0, 1] with shape (C, H, W) in RGB order.
|
|
2706
|
+
|
|
2707
|
+
Examples:
|
|
2708
|
+
>>> transform = ToTensor(half=True)
|
|
2709
|
+
>>> img = np.random.randint(0, 255, (640, 640, 3), dtype=np.uint8)
|
|
2710
|
+
>>> tensor_img = transform(img)
|
|
2711
|
+
>>> print(tensor_img.shape, tensor_img.dtype)
|
|
2712
|
+
torch.Size([3, 640, 640]) torch.float16
|
|
1430
2713
|
"""
|
|
1431
2714
|
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
|
|
1432
2715
|
im = torch.from_numpy(im) # to torch
|