ultralytics 8.1.6__py3-none-any.whl → 8.1.12__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of ultralytics might be problematic. Click here for more details.
- ultralytics/__init__.py +1 -1
- ultralytics/cfg/__init__.py +1 -1
- ultralytics/data/converter.py +5 -2
- ultralytics/data/dataset.py +9 -4
- ultralytics/data/explorer/explorer.py +5 -2
- ultralytics/engine/exporter.py +17 -3
- ultralytics/engine/model.py +355 -81
- ultralytics/engine/results.py +94 -43
- ultralytics/engine/trainer.py +7 -3
- ultralytics/hub/__init__.py +6 -3
- ultralytics/hub/auth.py +2 -2
- ultralytics/hub/session.py +2 -2
- ultralytics/models/sam/amg.py +4 -2
- ultralytics/models/sam/modules/decoders.py +1 -1
- ultralytics/models/sam/modules/tiny_encoder.py +1 -1
- ultralytics/models/yolo/segment/predict.py +1 -1
- ultralytics/models/yolo/segment/val.py +6 -2
- ultralytics/nn/autobackend.py +6 -6
- ultralytics/nn/modules/head.py +11 -10
- ultralytics/nn/tasks.py +11 -2
- ultralytics/solutions/distance_calculation.py +5 -17
- ultralytics/solutions/heatmap.py +2 -1
- ultralytics/solutions/object_counter.py +1 -2
- ultralytics/solutions/speed_estimation.py +1 -1
- ultralytics/trackers/utils/gmc.py +10 -12
- ultralytics/utils/__init__.py +78 -7
- ultralytics/utils/benchmarks.py +1 -2
- ultralytics/utils/callbacks/mlflow.py +6 -2
- ultralytics/utils/checks.py +2 -2
- ultralytics/utils/loss.py +7 -2
- ultralytics/utils/metrics.py +4 -4
- ultralytics/utils/ops.py +0 -1
- ultralytics/utils/plotting.py +63 -5
- ultralytics/utils/tal.py +2 -2
- ultralytics/utils/torch_utils.py +2 -2
- ultralytics/utils/triton.py +1 -1
- ultralytics/utils/tuner.py +1 -1
- {ultralytics-8.1.6.dist-info → ultralytics-8.1.12.dist-info}/METADATA +4 -4
- {ultralytics-8.1.6.dist-info → ultralytics-8.1.12.dist-info}/RECORD +43 -43
- {ultralytics-8.1.6.dist-info → ultralytics-8.1.12.dist-info}/LICENSE +0 -0
- {ultralytics-8.1.6.dist-info → ultralytics-8.1.12.dist-info}/WHEEL +0 -0
- {ultralytics-8.1.6.dist-info → ultralytics-8.1.12.dist-info}/entry_points.txt +0 -0
- {ultralytics-8.1.6.dist-info → ultralytics-8.1.12.dist-info}/top_level.txt +0 -0
ultralytics/engine/model.py
CHANGED
|
@@ -6,60 +6,98 @@ from pathlib import Path
|
|
|
6
6
|
from typing import Union
|
|
7
7
|
|
|
8
8
|
from ultralytics.cfg import TASK2DATA, get_cfg, get_save_dir
|
|
9
|
+
from ultralytics.hub.utils import HUB_WEB_ROOT
|
|
9
10
|
from ultralytics.nn.tasks import attempt_load_one_weight, guess_model_task, nn, yaml_model_load
|
|
10
11
|
from ultralytics.utils import ASSETS, DEFAULT_CFG_DICT, LOGGER, RANK, SETTINGS, callbacks, checks, emojis, yaml_load
|
|
11
|
-
from ultralytics.hub.utils import HUB_WEB_ROOT
|
|
12
12
|
|
|
13
13
|
|
|
14
14
|
class Model(nn.Module):
|
|
15
15
|
"""
|
|
16
|
-
A base class
|
|
16
|
+
A base class for implementing YOLO models, unifying APIs across different model types.
|
|
17
|
+
|
|
18
|
+
This class provides a common interface for various operations related to YOLO models, such as training,
|
|
19
|
+
validation, prediction, exporting, and benchmarking. It handles different types of models, including those
|
|
20
|
+
loaded from local files, Ultralytics HUB, or Triton Server. The class is designed to be flexible and
|
|
21
|
+
extendable for different tasks and model configurations.
|
|
17
22
|
|
|
18
23
|
Args:
|
|
19
|
-
model (str, Path): Path
|
|
20
|
-
|
|
24
|
+
model (Union[str, Path], optional): Path or name of the model to load or create. This can be a local file
|
|
25
|
+
path, a model name from Ultralytics HUB, or a Triton Server model. Defaults to 'yolov8n.pt'.
|
|
26
|
+
task (Any, optional): The task type associated with the YOLO model. This can be used to specify the model's
|
|
27
|
+
application domain, such as object detection, segmentation, etc. Defaults to None.
|
|
28
|
+
verbose (bool, optional): If True, enables verbose output during the model's operations. Defaults to False.
|
|
21
29
|
|
|
22
30
|
Attributes:
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
ckpt (
|
|
28
|
-
cfg (str): The model
|
|
29
|
-
ckpt_path (str): The checkpoint file
|
|
30
|
-
overrides (dict):
|
|
31
|
-
metrics (
|
|
31
|
+
callbacks (dict): A dictionary of callback functions for various events during model operations.
|
|
32
|
+
predictor (BasePredictor): The predictor object used for making predictions.
|
|
33
|
+
model (nn.Module): The underlying PyTorch model.
|
|
34
|
+
trainer (BaseTrainer): The trainer object used for training the model.
|
|
35
|
+
ckpt (dict): The checkpoint data if the model is loaded from a *.pt file.
|
|
36
|
+
cfg (str): The configuration of the model if loaded from a *.yaml file.
|
|
37
|
+
ckpt_path (str): The path to the checkpoint file.
|
|
38
|
+
overrides (dict): A dictionary of overrides for model configuration.
|
|
39
|
+
metrics (dict): The latest training/validation metrics.
|
|
40
|
+
session (HUBTrainingSession): The Ultralytics HUB session, if applicable.
|
|
41
|
+
task (str): The type of task the model is intended for.
|
|
42
|
+
model_name (str): The name of the model.
|
|
32
43
|
|
|
33
44
|
Methods:
|
|
34
|
-
__call__
|
|
35
|
-
|
|
36
|
-
|
|
37
|
-
|
|
38
|
-
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
45
|
+
__call__: Alias for the predict method, enabling the model instance to be callable.
|
|
46
|
+
_new: Initializes a new model based on a configuration file.
|
|
47
|
+
_load: Loads a model from a checkpoint file.
|
|
48
|
+
_check_is_pytorch_model: Ensures that the model is a PyTorch model.
|
|
49
|
+
reset_weights: Resets the model's weights to their initial state.
|
|
50
|
+
load: Loads model weights from a specified file.
|
|
51
|
+
save: Saves the current state of the model to a file.
|
|
52
|
+
info: Logs or returns information about the model.
|
|
53
|
+
fuse: Fuses Conv2d and BatchNorm2d layers for optimized inference.
|
|
54
|
+
predict: Performs object detection predictions.
|
|
55
|
+
track: Performs object tracking.
|
|
56
|
+
val: Validates the model on a dataset.
|
|
57
|
+
benchmark: Benchmarks the model on various export formats.
|
|
58
|
+
export: Exports the model to different formats.
|
|
59
|
+
train: Trains the model on a dataset.
|
|
60
|
+
tune: Performs hyperparameter tuning.
|
|
61
|
+
_apply: Applies a function to the model's tensors.
|
|
62
|
+
add_callback: Adds a callback function for an event.
|
|
63
|
+
clear_callback: Clears all callbacks for an event.
|
|
64
|
+
reset_callbacks: Resets all callbacks to their default functions.
|
|
65
|
+
_get_hub_session: Retrieves or creates an Ultralytics HUB session.
|
|
66
|
+
is_triton_model: Checks if a model is a Triton Server model.
|
|
67
|
+
is_hub_model: Checks if a model is an Ultralytics HUB model.
|
|
68
|
+
_reset_ckpt_args: Resets checkpoint arguments when loading a PyTorch model.
|
|
69
|
+
_smart_load: Loads the appropriate module based on the model task.
|
|
70
|
+
task_map: Provides a mapping from model tasks to corresponding classes.
|
|
71
|
+
|
|
72
|
+
Raises:
|
|
73
|
+
FileNotFoundError: If the specified model file does not exist or is inaccessible.
|
|
74
|
+
ValueError: If the model file or configuration is invalid or unsupported.
|
|
75
|
+
ImportError: If required dependencies for specific model types (like HUB SDK) are not installed.
|
|
76
|
+
TypeError: If the model is not a PyTorch model when required.
|
|
77
|
+
AttributeError: If required attributes or methods are not implemented or available.
|
|
78
|
+
NotImplementedError: If a specific model task or mode is not supported.
|
|
53
79
|
"""
|
|
54
80
|
|
|
55
81
|
def __init__(self, model: Union[str, Path] = "yolov8n.pt", task=None, verbose=False) -> None:
|
|
56
82
|
"""
|
|
57
|
-
Initializes the YOLO model.
|
|
83
|
+
Initializes a new instance of the YOLO model class.
|
|
84
|
+
|
|
85
|
+
This constructor sets up the model based on the provided model path or name. It handles various types of model
|
|
86
|
+
sources, including local files, Ultralytics HUB models, and Triton Server models. The method initializes several
|
|
87
|
+
important attributes of the model and prepares it for operations like training, prediction, or export.
|
|
58
88
|
|
|
59
89
|
Args:
|
|
60
|
-
model (Union[str, Path], optional):
|
|
61
|
-
|
|
62
|
-
|
|
90
|
+
model (Union[str, Path], optional): The path or model file to load or create. This can be a local
|
|
91
|
+
file path, a model name from Ultralytics HUB, or a Triton Server model. Defaults to 'yolov8n.pt'.
|
|
92
|
+
task (Any, optional): The task type associated with the YOLO model, specifying its application domain.
|
|
93
|
+
Defaults to None.
|
|
94
|
+
verbose (bool, optional): If True, enables verbose output during the model's initialization and subsequent
|
|
95
|
+
operations. Defaults to False.
|
|
96
|
+
|
|
97
|
+
Raises:
|
|
98
|
+
FileNotFoundError: If the specified model file does not exist or is inaccessible.
|
|
99
|
+
ValueError: If the model file or configuration is invalid or unsupported.
|
|
100
|
+
ImportError: If required dependencies for specific model types (like HUB SDK) are not installed.
|
|
63
101
|
"""
|
|
64
102
|
super().__init__()
|
|
65
103
|
self.callbacks = callbacks.get_default_callbacks()
|
|
@@ -98,7 +136,22 @@ class Model(nn.Module):
|
|
|
98
136
|
self.model_name = model
|
|
99
137
|
|
|
100
138
|
def __call__(self, source=None, stream=False, **kwargs):
|
|
101
|
-
"""
|
|
139
|
+
"""
|
|
140
|
+
An alias for the predict method, enabling the model instance to be callable.
|
|
141
|
+
|
|
142
|
+
This method simplifies the process of making predictions by allowing the model instance to be called directly
|
|
143
|
+
with the required arguments for prediction.
|
|
144
|
+
|
|
145
|
+
Args:
|
|
146
|
+
source (str | int | PIL.Image | np.ndarray, optional): The source of the image for making predictions.
|
|
147
|
+
Accepts various types, including file paths, URLs, PIL images, and numpy arrays. Defaults to None.
|
|
148
|
+
stream (bool, optional): If True, treats the input source as a continuous stream for predictions.
|
|
149
|
+
Defaults to False.
|
|
150
|
+
**kwargs (dict): Additional keyword arguments for configuring the prediction process.
|
|
151
|
+
|
|
152
|
+
Returns:
|
|
153
|
+
(List[ultralytics.engine.results.Results]): A list of prediction results, encapsulated in the Results class.
|
|
154
|
+
"""
|
|
102
155
|
return self.predict(source, stream, **kwargs)
|
|
103
156
|
|
|
104
157
|
@staticmethod
|
|
@@ -185,7 +238,19 @@ class Model(nn.Module):
|
|
|
185
238
|
)
|
|
186
239
|
|
|
187
240
|
def reset_weights(self):
|
|
188
|
-
"""
|
|
241
|
+
"""
|
|
242
|
+
Resets the model parameters to randomly initialized values, effectively discarding all training information.
|
|
243
|
+
|
|
244
|
+
This method iterates through all modules in the model and resets their parameters if they have a
|
|
245
|
+
'reset_parameters' method. It also ensures that all parameters have 'requires_grad' set to True, enabling them
|
|
246
|
+
to be updated during training.
|
|
247
|
+
|
|
248
|
+
Returns:
|
|
249
|
+
self (ultralytics.engine.model.Model): The instance of the class with reset weights.
|
|
250
|
+
|
|
251
|
+
Raises:
|
|
252
|
+
AssertionError: If the model is not a PyTorch model.
|
|
253
|
+
"""
|
|
189
254
|
self._check_is_pytorch_model()
|
|
190
255
|
for m in self.model.modules():
|
|
191
256
|
if hasattr(m, "reset_parameters"):
|
|
@@ -195,42 +260,94 @@ class Model(nn.Module):
|
|
|
195
260
|
return self
|
|
196
261
|
|
|
197
262
|
def load(self, weights="yolov8n.pt"):
|
|
198
|
-
"""
|
|
263
|
+
"""
|
|
264
|
+
Loads parameters from the specified weights file into the model.
|
|
265
|
+
|
|
266
|
+
This method supports loading weights from a file or directly from a weights object. It matches parameters by
|
|
267
|
+
name and shape and transfers them to the model.
|
|
268
|
+
|
|
269
|
+
Args:
|
|
270
|
+
weights (str | Path): Path to the weights file or a weights object. Defaults to 'yolov8n.pt'.
|
|
271
|
+
|
|
272
|
+
Returns:
|
|
273
|
+
self (ultralytics.engine.model.Model): The instance of the class with loaded weights.
|
|
274
|
+
|
|
275
|
+
Raises:
|
|
276
|
+
AssertionError: If the model is not a PyTorch model.
|
|
277
|
+
"""
|
|
199
278
|
self._check_is_pytorch_model()
|
|
200
279
|
if isinstance(weights, (str, Path)):
|
|
201
280
|
weights, self.ckpt = attempt_load_one_weight(weights)
|
|
202
281
|
self.model.load(weights)
|
|
203
282
|
return self
|
|
204
283
|
|
|
284
|
+
def save(self, filename="model.pt"):
|
|
285
|
+
"""
|
|
286
|
+
Saves the current model state to a file.
|
|
287
|
+
|
|
288
|
+
This method exports the model's checkpoint (ckpt) to the specified filename.
|
|
289
|
+
|
|
290
|
+
Args:
|
|
291
|
+
filename (str): The name of the file to save the model to. Defaults to 'model.pt'.
|
|
292
|
+
|
|
293
|
+
Raises:
|
|
294
|
+
AssertionError: If the model is not a PyTorch model.
|
|
295
|
+
"""
|
|
296
|
+
self._check_is_pytorch_model()
|
|
297
|
+
import torch
|
|
298
|
+
|
|
299
|
+
torch.save(self.ckpt, filename)
|
|
300
|
+
|
|
205
301
|
def info(self, detailed=False, verbose=True):
|
|
206
302
|
"""
|
|
207
|
-
Logs model
|
|
303
|
+
Logs or returns model information.
|
|
304
|
+
|
|
305
|
+
This method provides an overview or detailed information about the model, depending on the arguments passed.
|
|
306
|
+
It can control the verbosity of the output.
|
|
208
307
|
|
|
209
308
|
Args:
|
|
210
|
-
detailed (bool):
|
|
211
|
-
verbose (bool):
|
|
309
|
+
detailed (bool): If True, shows detailed information about the model. Defaults to False.
|
|
310
|
+
verbose (bool): If True, prints the information. If False, returns the information. Defaults to True.
|
|
311
|
+
|
|
312
|
+
Returns:
|
|
313
|
+
(list): Various types of information about the model, depending on the 'detailed' and 'verbose' parameters.
|
|
314
|
+
|
|
315
|
+
Raises:
|
|
316
|
+
AssertionError: If the model is not a PyTorch model.
|
|
212
317
|
"""
|
|
213
318
|
self._check_is_pytorch_model()
|
|
214
319
|
return self.model.info(detailed=detailed, verbose=verbose)
|
|
215
320
|
|
|
216
321
|
def fuse(self):
|
|
217
|
-
"""
|
|
322
|
+
"""
|
|
323
|
+
Fuses Conv2d and BatchNorm2d layers in the model.
|
|
324
|
+
|
|
325
|
+
This method optimizes the model by fusing Conv2d and BatchNorm2d layers, which can improve inference speed.
|
|
326
|
+
|
|
327
|
+
Raises:
|
|
328
|
+
AssertionError: If the model is not a PyTorch model.
|
|
329
|
+
"""
|
|
218
330
|
self._check_is_pytorch_model()
|
|
219
331
|
self.model.fuse()
|
|
220
332
|
|
|
221
333
|
def embed(self, source=None, stream=False, **kwargs):
|
|
222
334
|
"""
|
|
223
|
-
|
|
335
|
+
Generates image embeddings based on the provided source.
|
|
336
|
+
|
|
337
|
+
This method is a wrapper around the 'predict()' method, focusing on generating embeddings from an image source.
|
|
338
|
+
It allows customization of the embedding process through various keyword arguments.
|
|
224
339
|
|
|
225
340
|
Args:
|
|
226
|
-
source (str | int | PIL | np.ndarray): The source of the image
|
|
227
|
-
|
|
228
|
-
stream (bool):
|
|
229
|
-
**kwargs : Additional keyword arguments
|
|
230
|
-
Check the 'configuration' section in the documentation for all available options.
|
|
341
|
+
source (str | int | PIL.Image | np.ndarray): The source of the image for generating embeddings.
|
|
342
|
+
The source can be a file path, URL, PIL image, numpy array, etc. Defaults to None.
|
|
343
|
+
stream (bool): If True, predictions are streamed. Defaults to False.
|
|
344
|
+
**kwargs (dict): Additional keyword arguments for configuring the embedding process.
|
|
231
345
|
|
|
232
346
|
Returns:
|
|
233
|
-
(List[torch.Tensor]): A list
|
|
347
|
+
(List[torch.Tensor]): A list containing the image embeddings.
|
|
348
|
+
|
|
349
|
+
Raises:
|
|
350
|
+
AssertionError: If the model is not a PyTorch model.
|
|
234
351
|
"""
|
|
235
352
|
if not kwargs.get("embed"):
|
|
236
353
|
kwargs["embed"] = [len(self.model.model) - 2] # embed second-to-last layer if no indices passed
|
|
@@ -238,18 +355,32 @@ class Model(nn.Module):
|
|
|
238
355
|
|
|
239
356
|
def predict(self, source=None, stream=False, predictor=None, **kwargs):
|
|
240
357
|
"""
|
|
241
|
-
|
|
358
|
+
Performs predictions on the given image source using the YOLO model.
|
|
359
|
+
|
|
360
|
+
This method facilitates the prediction process, allowing various configurations through keyword arguments.
|
|
361
|
+
It supports predictions with custom predictors or the default predictor method. The method handles different
|
|
362
|
+
types of image sources and can operate in a streaming mode. It also provides support for SAM-type models
|
|
363
|
+
through 'prompts'.
|
|
364
|
+
|
|
365
|
+
The method sets up a new predictor if not already present and updates its arguments with each call.
|
|
366
|
+
It also issues a warning and uses default assets if the 'source' is not provided. The method determines if it
|
|
367
|
+
is being called from the command line interface and adjusts its behavior accordingly, including setting defaults
|
|
368
|
+
for confidence threshold and saving behavior.
|
|
242
369
|
|
|
243
370
|
Args:
|
|
244
|
-
source (str | int | PIL | np.ndarray): The source of the image
|
|
245
|
-
Accepts
|
|
246
|
-
stream (bool):
|
|
247
|
-
predictor (BasePredictor):
|
|
248
|
-
|
|
249
|
-
|
|
371
|
+
source (str | int | PIL.Image | np.ndarray, optional): The source of the image for making predictions.
|
|
372
|
+
Accepts various types, including file paths, URLs, PIL images, and numpy arrays. Defaults to ASSETS.
|
|
373
|
+
stream (bool, optional): Treats the input source as a continuous stream for predictions. Defaults to False.
|
|
374
|
+
predictor (BasePredictor, optional): An instance of a custom predictor class for making predictions.
|
|
375
|
+
If None, the method uses a default predictor. Defaults to None.
|
|
376
|
+
**kwargs (dict): Additional keyword arguments for configuring the prediction process. These arguments allow
|
|
377
|
+
for further customization of the prediction behavior.
|
|
250
378
|
|
|
251
379
|
Returns:
|
|
252
|
-
(List[ultralytics.engine.results.Results]):
|
|
380
|
+
(List[ultralytics.engine.results.Results]): A list of prediction results, encapsulated in the Results class.
|
|
381
|
+
|
|
382
|
+
Raises:
|
|
383
|
+
AttributeError: If the predictor is not properly set up.
|
|
253
384
|
"""
|
|
254
385
|
if source is None:
|
|
255
386
|
source = ASSETS
|
|
@@ -276,16 +407,28 @@ class Model(nn.Module):
|
|
|
276
407
|
|
|
277
408
|
def track(self, source=None, stream=False, persist=False, **kwargs):
|
|
278
409
|
"""
|
|
279
|
-
|
|
410
|
+
Conducts object tracking on the specified input source using the registered trackers.
|
|
411
|
+
|
|
412
|
+
This method performs object tracking using the model's predictors and optionally registered trackers. It is
|
|
413
|
+
capable of handling different types of input sources such as file paths or video streams. The method supports
|
|
414
|
+
customization of the tracking process through various keyword arguments. It registers trackers if they are not
|
|
415
|
+
already present and optionally persists them based on the 'persist' flag.
|
|
416
|
+
|
|
417
|
+
The method sets a default confidence threshold specifically for ByteTrack-based tracking, which requires low
|
|
418
|
+
confidence predictions as input. The tracking mode is explicitly set in the keyword arguments.
|
|
280
419
|
|
|
281
420
|
Args:
|
|
282
|
-
source (str, optional): The input source for object tracking.
|
|
283
|
-
stream (bool, optional):
|
|
284
|
-
persist (bool, optional):
|
|
285
|
-
**kwargs (
|
|
421
|
+
source (str, optional): The input source for object tracking. It can be a file path, URL, or video stream.
|
|
422
|
+
stream (bool, optional): Treats the input source as a continuous video stream. Defaults to False.
|
|
423
|
+
persist (bool, optional): Persists the trackers between different calls to this method. Defaults to False.
|
|
424
|
+
**kwargs (dict): Additional keyword arguments for configuring the tracking process. These arguments allow
|
|
425
|
+
for further customization of the tracking behavior.
|
|
286
426
|
|
|
287
427
|
Returns:
|
|
288
|
-
(List[ultralytics.engine.results.Results]):
|
|
428
|
+
(List[ultralytics.engine.results.Results]): A list of tracking results, encapsulated in the Results class.
|
|
429
|
+
|
|
430
|
+
Raises:
|
|
431
|
+
AttributeError: If the predictor does not have registered trackers.
|
|
289
432
|
"""
|
|
290
433
|
if not hasattr(self.predictor, "trackers"):
|
|
291
434
|
from ultralytics.trackers import register_tracker
|
|
@@ -297,11 +440,28 @@ class Model(nn.Module):
|
|
|
297
440
|
|
|
298
441
|
def val(self, validator=None, **kwargs):
|
|
299
442
|
"""
|
|
300
|
-
|
|
443
|
+
Validates the model using a specified dataset and validation configuration.
|
|
444
|
+
|
|
445
|
+
This method facilitates the model validation process, allowing for a range of customization through various
|
|
446
|
+
settings and configurations. It supports validation with a custom validator or the default validation approach.
|
|
447
|
+
The method combines default configurations, method-specific defaults, and user-provided arguments to configure
|
|
448
|
+
the validation process. After validation, it updates the model's metrics with the results obtained from the
|
|
449
|
+
validator.
|
|
450
|
+
|
|
451
|
+
The method supports various arguments that allow customization of the validation process. For a comprehensive
|
|
452
|
+
list of all configurable options, users should refer to the 'configuration' section in the documentation.
|
|
301
453
|
|
|
302
454
|
Args:
|
|
303
|
-
validator (BaseValidator):
|
|
304
|
-
|
|
455
|
+
validator (BaseValidator, optional): An instance of a custom validator class for validating the model. If
|
|
456
|
+
None, the method uses a default validator. Defaults to None.
|
|
457
|
+
**kwargs (dict): Arbitrary keyword arguments representing the validation configuration. These arguments are
|
|
458
|
+
used to customize various aspects of the validation process.
|
|
459
|
+
|
|
460
|
+
Returns:
|
|
461
|
+
(dict): Validation metrics obtained from the validation process.
|
|
462
|
+
|
|
463
|
+
Raises:
|
|
464
|
+
AssertionError: If the model is not a PyTorch model.
|
|
305
465
|
"""
|
|
306
466
|
custom = {"rect": True} # method defaults
|
|
307
467
|
args = {**self.overrides, **custom, **kwargs, "mode": "val"} # highest priority args on the right
|
|
@@ -313,10 +473,26 @@ class Model(nn.Module):
|
|
|
313
473
|
|
|
314
474
|
def benchmark(self, **kwargs):
|
|
315
475
|
"""
|
|
316
|
-
|
|
476
|
+
Benchmarks the model across various export formats to evaluate performance.
|
|
477
|
+
|
|
478
|
+
This method assesses the model's performance in different export formats, such as ONNX, TorchScript, etc.
|
|
479
|
+
It uses the 'benchmark' function from the ultralytics.utils.benchmarks module. The benchmarking is configured
|
|
480
|
+
using a combination of default configuration values, model-specific arguments, method-specific defaults, and
|
|
481
|
+
any additional user-provided keyword arguments.
|
|
482
|
+
|
|
483
|
+
The method supports various arguments that allow customization of the benchmarking process, such as dataset
|
|
484
|
+
choice, image size, precision modes, device selection, and verbosity. For a comprehensive list of all
|
|
485
|
+
configurable options, users should refer to the 'configuration' section in the documentation.
|
|
317
486
|
|
|
318
487
|
Args:
|
|
319
|
-
**kwargs :
|
|
488
|
+
**kwargs (dict): Arbitrary keyword arguments to customize the benchmarking process. These are combined with
|
|
489
|
+
default configurations, model-specific arguments, and method defaults.
|
|
490
|
+
|
|
491
|
+
Returns:
|
|
492
|
+
(dict): A dictionary containing the results of the benchmarking process.
|
|
493
|
+
|
|
494
|
+
Raises:
|
|
495
|
+
AssertionError: If the model is not a PyTorch model.
|
|
320
496
|
"""
|
|
321
497
|
self._check_is_pytorch_model()
|
|
322
498
|
from ultralytics.utils.benchmarks import benchmark
|
|
@@ -335,10 +511,24 @@ class Model(nn.Module):
|
|
|
335
511
|
|
|
336
512
|
def export(self, **kwargs):
|
|
337
513
|
"""
|
|
338
|
-
|
|
514
|
+
Exports the model to a different format suitable for deployment.
|
|
515
|
+
|
|
516
|
+
This method facilitates the export of the model to various formats (e.g., ONNX, TorchScript) for deployment
|
|
517
|
+
purposes. It uses the 'Exporter' class for the export process, combining model-specific overrides, method
|
|
518
|
+
defaults, and any additional arguments provided. The combined arguments are used to configure export settings.
|
|
519
|
+
|
|
520
|
+
The method supports a wide range of arguments to customize the export process. For a comprehensive list of all
|
|
521
|
+
possible arguments, refer to the 'configuration' section in the documentation.
|
|
339
522
|
|
|
340
523
|
Args:
|
|
341
|
-
**kwargs :
|
|
524
|
+
**kwargs (dict): Arbitrary keyword arguments to customize the export process. These are combined with the
|
|
525
|
+
model's overrides and method defaults.
|
|
526
|
+
|
|
527
|
+
Returns:
|
|
528
|
+
(object): The exported model in the specified format, or an object related to the export process.
|
|
529
|
+
|
|
530
|
+
Raises:
|
|
531
|
+
AssertionError: If the model is not a PyTorch model.
|
|
342
532
|
"""
|
|
343
533
|
self._check_is_pytorch_model()
|
|
344
534
|
from .exporter import Exporter
|
|
@@ -349,11 +539,31 @@ class Model(nn.Module):
|
|
|
349
539
|
|
|
350
540
|
def train(self, trainer=None, **kwargs):
|
|
351
541
|
"""
|
|
352
|
-
Trains the model
|
|
542
|
+
Trains the model using the specified dataset and training configuration.
|
|
543
|
+
|
|
544
|
+
This method facilitates model training with a range of customizable settings and configurations. It supports
|
|
545
|
+
training with a custom trainer or the default training approach defined in the method. The method handles
|
|
546
|
+
different scenarios, such as resuming training from a checkpoint, integrating with Ultralytics HUB, and
|
|
547
|
+
updating model and configuration after training.
|
|
548
|
+
|
|
549
|
+
When using Ultralytics HUB, if the session already has a loaded model, the method prioritizes HUB training
|
|
550
|
+
arguments and issues a warning if local arguments are provided. It checks for pip updates and combines default
|
|
551
|
+
configurations, method-specific defaults, and user-provided arguments to configure the training process. After
|
|
552
|
+
training, it updates the model and its configurations, and optionally attaches metrics.
|
|
353
553
|
|
|
354
554
|
Args:
|
|
355
|
-
trainer (BaseTrainer, optional):
|
|
356
|
-
|
|
555
|
+
trainer (BaseTrainer, optional): An instance of a custom trainer class for training the model. If None, the
|
|
556
|
+
method uses a default trainer. Defaults to None.
|
|
557
|
+
**kwargs (dict): Arbitrary keyword arguments representing the training configuration. These arguments are
|
|
558
|
+
used to customize various aspects of the training process.
|
|
559
|
+
|
|
560
|
+
Returns:
|
|
561
|
+
(dict | None): Training metrics if available and training is successful; otherwise, None.
|
|
562
|
+
|
|
563
|
+
Raises:
|
|
564
|
+
AssertionError: If the model is not a PyTorch model.
|
|
565
|
+
PermissionError: If there is a permission issue with the HUB session.
|
|
566
|
+
ModuleNotFoundError: If the HUB SDK is not installed.
|
|
357
567
|
"""
|
|
358
568
|
self._check_is_pytorch_model()
|
|
359
569
|
if hasattr(self.session, "model") and self.session.model.id: # Ultralytics HUB session with loaded model
|
|
@@ -399,10 +609,24 @@ class Model(nn.Module):
|
|
|
399
609
|
|
|
400
610
|
def tune(self, use_ray=False, iterations=10, *args, **kwargs):
|
|
401
611
|
"""
|
|
402
|
-
|
|
612
|
+
Conducts hyperparameter tuning for the model, with an option to use Ray Tune.
|
|
613
|
+
|
|
614
|
+
This method supports two modes of hyperparameter tuning: using Ray Tune or a custom tuning method.
|
|
615
|
+
When Ray Tune is enabled, it leverages the 'run_ray_tune' function from the ultralytics.utils.tuner module.
|
|
616
|
+
Otherwise, it uses the internal 'Tuner' class for tuning. The method combines default, overridden, and
|
|
617
|
+
custom arguments to configure the tuning process.
|
|
618
|
+
|
|
619
|
+
Args:
|
|
620
|
+
use_ray (bool): If True, uses Ray Tune for hyperparameter tuning. Defaults to False.
|
|
621
|
+
iterations (int): The number of tuning iterations to perform. Defaults to 10.
|
|
622
|
+
*args (list): Variable length argument list for additional arguments.
|
|
623
|
+
**kwargs (dict): Arbitrary keyword arguments. These are combined with the model's overrides and defaults.
|
|
403
624
|
|
|
404
625
|
Returns:
|
|
405
626
|
(dict): A dictionary containing the results of the hyperparameter search.
|
|
627
|
+
|
|
628
|
+
Raises:
|
|
629
|
+
AssertionError: If the model is not a PyTorch model.
|
|
406
630
|
"""
|
|
407
631
|
self._check_is_pytorch_model()
|
|
408
632
|
if use_ray:
|
|
@@ -426,31 +650,81 @@ class Model(nn.Module):
|
|
|
426
650
|
|
|
427
651
|
@property
|
|
428
652
|
def names(self):
|
|
429
|
-
"""
|
|
653
|
+
"""
|
|
654
|
+
Retrieves the class names associated with the loaded model.
|
|
655
|
+
|
|
656
|
+
This property returns the class names if they are defined in the model. It checks the class names for validity
|
|
657
|
+
using the 'check_class_names' function from the ultralytics.nn.autobackend module.
|
|
658
|
+
|
|
659
|
+
Returns:
|
|
660
|
+
(list | None): The class names of the model if available, otherwise None.
|
|
661
|
+
"""
|
|
430
662
|
from ultralytics.nn.autobackend import check_class_names
|
|
431
663
|
|
|
432
664
|
return check_class_names(self.model.names) if hasattr(self.model, "names") else None
|
|
433
665
|
|
|
434
666
|
@property
|
|
435
667
|
def device(self):
|
|
436
|
-
"""
|
|
668
|
+
"""
|
|
669
|
+
Retrieves the device on which the model's parameters are allocated.
|
|
670
|
+
|
|
671
|
+
This property is used to determine whether the model's parameters are on CPU or GPU. It only applies to models
|
|
672
|
+
that are instances of nn.Module.
|
|
673
|
+
|
|
674
|
+
Returns:
|
|
675
|
+
(torch.device | None): The device (CPU/GPU) of the model if it is a PyTorch model, otherwise None.
|
|
676
|
+
"""
|
|
437
677
|
return next(self.model.parameters()).device if isinstance(self.model, nn.Module) else None
|
|
438
678
|
|
|
439
679
|
@property
|
|
440
680
|
def transforms(self):
|
|
441
|
-
"""
|
|
681
|
+
"""
|
|
682
|
+
Retrieves the transformations applied to the input data of the loaded model.
|
|
683
|
+
|
|
684
|
+
This property returns the transformations if they are defined in the model.
|
|
685
|
+
|
|
686
|
+
Returns:
|
|
687
|
+
(object | None): The transform object of the model if available, otherwise None.
|
|
688
|
+
"""
|
|
442
689
|
return self.model.transforms if hasattr(self.model, "transforms") else None
|
|
443
690
|
|
|
444
691
|
def add_callback(self, event: str, func):
|
|
445
|
-
"""
|
|
692
|
+
"""
|
|
693
|
+
Adds a callback function for a specified event.
|
|
694
|
+
|
|
695
|
+
This method allows the user to register a custom callback function that is triggered on a specific event during
|
|
696
|
+
model training or inference.
|
|
697
|
+
|
|
698
|
+
Args:
|
|
699
|
+
event (str): The name of the event to attach the callback to.
|
|
700
|
+
func (callable): The callback function to be registered.
|
|
701
|
+
|
|
702
|
+
Raises:
|
|
703
|
+
ValueError: If the event name is not recognized.
|
|
704
|
+
"""
|
|
446
705
|
self.callbacks[event].append(func)
|
|
447
706
|
|
|
448
707
|
def clear_callback(self, event: str):
|
|
449
|
-
"""
|
|
708
|
+
"""
|
|
709
|
+
Clears all callback functions registered for a specified event.
|
|
710
|
+
|
|
711
|
+
This method removes all custom and default callback functions associated with the given event.
|
|
712
|
+
|
|
713
|
+
Args:
|
|
714
|
+
event (str): The name of the event for which to clear the callbacks.
|
|
715
|
+
|
|
716
|
+
Raises:
|
|
717
|
+
ValueError: If the event name is not recognized.
|
|
718
|
+
"""
|
|
450
719
|
self.callbacks[event] = []
|
|
451
720
|
|
|
452
721
|
def reset_callbacks(self):
|
|
453
|
-
"""
|
|
722
|
+
"""
|
|
723
|
+
Resets all callbacks to their default functions.
|
|
724
|
+
|
|
725
|
+
This method reinstates the default callback functions for all events, removing any custom callbacks that were
|
|
726
|
+
added previously.
|
|
727
|
+
"""
|
|
454
728
|
for event in callbacks.default_callbacks.keys():
|
|
455
729
|
self.callbacks[event] = [callbacks.default_callbacks[event][0]]
|
|
456
730
|
|