ultralytics 8.1.2__py3-none-any.whl → 8.1.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (61) hide show
  1. ultralytics/__init__.py +1 -1
  2. ultralytics/cfg/datasets/Argoverse.yaml +4 -6
  3. ultralytics/cfg/datasets/DOTAv1.5.yaml +4 -4
  4. ultralytics/cfg/datasets/DOTAv1.yaml +4 -4
  5. ultralytics/cfg/datasets/GlobalWheat2020.yaml +1 -3
  6. ultralytics/cfg/datasets/ImageNet.yaml +4 -6
  7. ultralytics/cfg/datasets/Objects365.yaml +3 -5
  8. ultralytics/cfg/datasets/SKU-110K.yaml +4 -6
  9. ultralytics/cfg/datasets/VOC.yaml +0 -2
  10. ultralytics/cfg/datasets/VisDrone.yaml +4 -6
  11. ultralytics/cfg/datasets/coco-pose.yaml +5 -6
  12. ultralytics/cfg/datasets/coco.yaml +4 -6
  13. ultralytics/cfg/datasets/coco128-seg.yaml +4 -6
  14. ultralytics/cfg/datasets/coco128.yaml +4 -6
  15. ultralytics/cfg/datasets/coco8-pose.yaml +5 -6
  16. ultralytics/cfg/datasets/coco8-seg.yaml +4 -6
  17. ultralytics/cfg/datasets/coco8.yaml +4 -6
  18. ultralytics/cfg/datasets/dota8.yaml +3 -3
  19. ultralytics/cfg/datasets/open-images-v7.yaml +4 -6
  20. ultralytics/cfg/datasets/tiger-pose.yaml +4 -5
  21. ultralytics/cfg/datasets/xView.yaml +3 -5
  22. ultralytics/cfg/default.yaml +103 -103
  23. ultralytics/cfg/models/rt-detr/rtdetr-l.yaml +27 -27
  24. ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml +23 -23
  25. ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml +23 -23
  26. ultralytics/cfg/models/rt-detr/rtdetr-x.yaml +27 -27
  27. ultralytics/cfg/models/v3/yolov3-spp.yaml +18 -18
  28. ultralytics/cfg/models/v3/yolov3-tiny.yaml +16 -16
  29. ultralytics/cfg/models/v3/yolov3.yaml +18 -18
  30. ultralytics/cfg/models/v5/yolov5-p6.yaml +24 -24
  31. ultralytics/cfg/models/v5/yolov5.yaml +18 -19
  32. ultralytics/cfg/models/v6/yolov6.yaml +17 -17
  33. ultralytics/cfg/models/v8/yolov8-cls-resnet101.yaml +25 -0
  34. ultralytics/cfg/models/v8/yolov8-cls-resnet50.yaml +25 -0
  35. ultralytics/cfg/models/v8/yolov8-cls.yaml +7 -7
  36. ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml +26 -26
  37. ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml +27 -27
  38. ultralytics/cfg/models/v8/yolov8-ghost.yaml +23 -23
  39. ultralytics/cfg/models/v8/yolov8-obb.yaml +23 -23
  40. ultralytics/cfg/models/v8/yolov8-p2.yaml +23 -23
  41. ultralytics/cfg/models/v8/yolov8-p6.yaml +24 -24
  42. ultralytics/cfg/models/v8/yolov8-pose-p6.yaml +25 -25
  43. ultralytics/cfg/models/v8/yolov8-pose.yaml +19 -19
  44. ultralytics/cfg/models/v8/yolov8-rtdetr.yaml +23 -23
  45. ultralytics/cfg/models/v8/yolov8-seg-p6.yaml +24 -24
  46. ultralytics/cfg/models/v8/yolov8-seg.yaml +18 -18
  47. ultralytics/cfg/models/v8/yolov8.yaml +23 -23
  48. ultralytics/cfg/trackers/botsort.yaml +7 -7
  49. ultralytics/cfg/trackers/bytetrack.yaml +6 -6
  50. ultralytics/data/build.py +1 -1
  51. ultralytics/engine/model.py +8 -6
  52. ultralytics/engine/trainer.py +1 -4
  53. ultralytics/hub/session.py +1 -1
  54. ultralytics/utils/ops.py +1 -1
  55. ultralytics/utils/plotting.py +1 -1
  56. {ultralytics-8.1.2.dist-info → ultralytics-8.1.3.dist-info}/METADATA +1 -1
  57. {ultralytics-8.1.2.dist-info → ultralytics-8.1.3.dist-info}/RECORD +61 -59
  58. {ultralytics-8.1.2.dist-info → ultralytics-8.1.3.dist-info}/LICENSE +0 -0
  59. {ultralytics-8.1.2.dist-info → ultralytics-8.1.3.dist-info}/WHEEL +0 -0
  60. {ultralytics-8.1.2.dist-info → ultralytics-8.1.3.dist-info}/entry_points.txt +0 -0
  61. {ultralytics-8.1.2.dist-info → ultralytics-8.1.3.dist-info}/top_level.txt +0 -0
ultralytics/__init__.py CHANGED
@@ -1,6 +1,6 @@
1
1
  # Ultralytics YOLO 🚀, AGPL-3.0 license
2
2
 
3
- __version__ = "8.1.2"
3
+ __version__ = "8.1.3"
4
4
 
5
5
  from ultralytics.data.explorer.explorer import Explorer
6
6
  from ultralytics.models import RTDETR, SAM, YOLO
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── Argoverse ← downloads here (31.5 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/Argoverse # dataset root dir
13
- train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
14
- val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
15
- test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
11
+ path: ../datasets/Argoverse # dataset root dir
12
+ train: Argoverse-1.1/images/train/ # train images (relative to 'path') 39384 images
13
+ val: Argoverse-1.1/images/val/ # val images (relative to 'path') 15062 images
14
+ test: Argoverse-1.1/images/test/ # test images (optional) https://eval.ai/web/challenges/challenge-page/800/overview
16
15
 
17
16
  # Classes
18
17
  names:
@@ -25,7 +24,6 @@ names:
25
24
  6: traffic_light
26
25
  7: stop_sign
27
26
 
28
-
29
27
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
30
28
  download: |
31
29
  import json
@@ -8,10 +8,10 @@
8
8
  # └── dota1.5 ← downloads here (2GB)
9
9
 
10
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/DOTAv1.5 # dataset root dir
12
- train: images/train # train images (relative to 'path') 1411 images
13
- val: images/val # val images (relative to 'path') 458 images
14
- test: images/test # test images (optional) 937 images
11
+ path: ../datasets/DOTAv1.5 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 1411 images
13
+ val: images/val # val images (relative to 'path') 458 images
14
+ test: images/test # test images (optional) 937 images
15
15
 
16
16
  # Classes for DOTA 1.5
17
17
  names:
@@ -8,10 +8,10 @@
8
8
  # └── dota1 ← downloads here (2GB)
9
9
 
10
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/DOTAv1 # dataset root dir
12
- train: images/train # train images (relative to 'path') 1411 images
13
- val: images/val # val images (relative to 'path') 458 images
14
- test: images/test # test images (optional) 937 images
11
+ path: ../datasets/DOTAv1 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 1411 images
13
+ val: images/val # val images (relative to 'path') 458 images
14
+ test: images/test # test images (optional) 937 images
15
15
 
16
16
  # Classes for DOTA 1.0
17
17
  names:
@@ -7,9 +7,8 @@
7
7
  # └── datasets
8
8
  # └── GlobalWheat2020 ← downloads here (7.0 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/GlobalWheat2020 # dataset root dir
11
+ path: ../datasets/GlobalWheat2020 # dataset root dir
13
12
  train: # train images (relative to 'path') 3422 images
14
13
  - images/arvalis_1
15
14
  - images/arvalis_2
@@ -30,7 +29,6 @@ test: # test images (optional) 1276 images
30
29
  names:
31
30
  0: wheat_head
32
31
 
33
-
34
32
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
35
33
  download: |
36
34
  from ultralytics.utils.downloads import download
@@ -8,12 +8,11 @@
8
8
  # └── datasets
9
9
  # └── imagenet ← downloads here (144 GB)
10
10
 
11
-
12
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
13
- path: ../datasets/imagenet # dataset root dir
14
- train: train # train images (relative to 'path') 1281167 images
15
- val: val # val images (relative to 'path') 50000 images
16
- test: # test images (optional)
12
+ path: ../datasets/imagenet # dataset root dir
13
+ train: train # train images (relative to 'path') 1281167 images
14
+ val: val # val images (relative to 'path') 50000 images
15
+ test: # test images (optional)
17
16
 
18
17
  # Classes
19
18
  names:
@@ -2021,6 +2020,5 @@ map:
2021
2020
  n13133613: ear
2022
2021
  n15075141: toilet_tissue
2023
2022
 
2024
-
2025
2023
  # Download script/URL (optional)
2026
2024
  download: yolo/data/scripts/get_imagenet.sh
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── Objects365 ← downloads here (712 GB = 367G data + 345G zips)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/Objects365 # dataset root dir
13
- train: images/train # train images (relative to 'path') 1742289 images
11
+ path: ../datasets/Objects365 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 1742289 images
14
13
  val: images/val # val images (relative to 'path') 80000 images
15
- test: # test images (optional)
14
+ test: # test images (optional)
16
15
 
17
16
  # Classes
18
17
  names:
@@ -382,7 +381,6 @@ names:
382
381
  363: Curling
383
382
  364: Table Tennis
384
383
 
385
-
386
384
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
387
385
  download: |
388
386
  from tqdm import tqdm
@@ -7,18 +7,16 @@
7
7
  # └── datasets
8
8
  # └── SKU-110K ← downloads here (13.6 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/SKU-110K # dataset root dir
13
- train: train.txt # train images (relative to 'path') 8219 images
14
- val: val.txt # val images (relative to 'path') 588 images
15
- test: test.txt # test images (optional) 2936 images
11
+ path: ../datasets/SKU-110K # dataset root dir
12
+ train: train.txt # train images (relative to 'path') 8219 images
13
+ val: val.txt # val images (relative to 'path') 588 images
14
+ test: test.txt # test images (optional) 2936 images
16
15
 
17
16
  # Classes
18
17
  names:
19
18
  0: object
20
19
 
21
-
22
20
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
23
21
  download: |
24
22
  import shutil
@@ -7,7 +7,6 @@
7
7
  # └── datasets
8
8
  # └── VOC ← downloads here (2.8 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
11
  path: ../datasets/VOC
13
12
  train: # train images (relative to 'path') 16551 images
@@ -43,7 +42,6 @@ names:
43
42
  18: train
44
43
  19: tvmonitor
45
44
 
46
-
47
45
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
48
46
  download: |
49
47
  import xml.etree.ElementTree as ET
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── VisDrone ← downloads here (2.3 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/VisDrone # dataset root dir
13
- train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
14
- val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
15
- test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
11
+ path: ../datasets/VisDrone # dataset root dir
12
+ train: VisDrone2019-DET-train/images # train images (relative to 'path') 6471 images
13
+ val: VisDrone2019-DET-val/images # val images (relative to 'path') 548 images
14
+ test: VisDrone2019-DET-test-dev/images # test images (optional) 1610 images
16
15
 
17
16
  # Classes
18
17
  names:
@@ -27,7 +26,6 @@ names:
27
26
  8: bus
28
27
  9: motor
29
28
 
30
-
31
29
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
32
30
  download: |
33
31
  import os
@@ -7,15 +7,14 @@
7
7
  # └── datasets
8
8
  # └── coco-pose ← downloads here (20.1 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco-pose # dataset root dir
13
- train: train2017.txt # train images (relative to 'path') 118287 images
14
- val: val2017.txt # val images (relative to 'path') 5000 images
15
- test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
11
+ path: ../datasets/coco-pose # dataset root dir
12
+ train: train2017.txt # train images (relative to 'path') 118287 images
13
+ val: val2017.txt # val images (relative to 'path') 5000 images
14
+ test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
16
15
 
17
16
  # Keypoints
18
- kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
17
+ kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
19
18
  flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
20
19
 
21
20
  # Classes
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── coco ← downloads here (20.1 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco # dataset root dir
13
- train: train2017.txt # train images (relative to 'path') 118287 images
14
- val: val2017.txt # val images (relative to 'path') 5000 images
15
- test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
11
+ path: ../datasets/coco # dataset root dir
12
+ train: train2017.txt # train images (relative to 'path') 118287 images
13
+ val: val2017.txt # val images (relative to 'path') 5000 images
14
+ test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
16
15
 
17
16
  # Classes
18
17
  names:
@@ -97,7 +96,6 @@ names:
97
96
  78: hair drier
98
97
  79: toothbrush
99
98
 
100
-
101
99
  # Download script/URL (optional)
102
100
  download: |
103
101
  from ultralytics.utils.downloads import download
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── coco128-seg ← downloads here (7 MB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco128-seg # dataset root dir
13
- train: images/train2017 # train images (relative to 'path') 128 images
14
- val: images/train2017 # val images (relative to 'path') 128 images
15
- test: # test images (optional)
11
+ path: ../datasets/coco128-seg # dataset root dir
12
+ train: images/train2017 # train images (relative to 'path') 128 images
13
+ val: images/train2017 # val images (relative to 'path') 128 images
14
+ test: # test images (optional)
16
15
 
17
16
  # Classes
18
17
  names:
@@ -97,6 +96,5 @@ names:
97
96
  78: hair drier
98
97
  79: toothbrush
99
98
 
100
-
101
99
  # Download script/URL (optional)
102
100
  download: https://ultralytics.com/assets/coco128-seg.zip
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── coco128 ← downloads here (7 MB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco128 # dataset root dir
13
- train: images/train2017 # train images (relative to 'path') 128 images
14
- val: images/train2017 # val images (relative to 'path') 128 images
15
- test: # test images (optional)
11
+ path: ../datasets/coco128 # dataset root dir
12
+ train: images/train2017 # train images (relative to 'path') 128 images
13
+ val: images/train2017 # val images (relative to 'path') 128 images
14
+ test: # test images (optional)
16
15
 
17
16
  # Classes
18
17
  names:
@@ -97,6 +96,5 @@ names:
97
96
  78: hair drier
98
97
  79: toothbrush
99
98
 
100
-
101
99
  # Download script/URL (optional)
102
100
  download: https://ultralytics.com/assets/coco128.zip
@@ -7,15 +7,14 @@
7
7
  # └── datasets
8
8
  # └── coco8-pose ← downloads here (1 MB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8-pose # dataset root dir
13
- train: images/train # train images (relative to 'path') 4 images
14
- val: images/val # val images (relative to 'path') 4 images
15
- test: # test images (optional)
11
+ path: ../datasets/coco8-pose # dataset root dir
12
+ train: images/train # train images (relative to 'path') 4 images
13
+ val: images/val # val images (relative to 'path') 4 images
14
+ test: # test images (optional)
16
15
 
17
16
  # Keypoints
18
- kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
17
+ kpt_shape: [17, 3] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
19
18
  flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15]
20
19
 
21
20
  # Classes
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── coco8-seg ← downloads here (1 MB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8-seg # dataset root dir
13
- train: images/train # train images (relative to 'path') 4 images
14
- val: images/val # val images (relative to 'path') 4 images
15
- test: # test images (optional)
11
+ path: ../datasets/coco8-seg # dataset root dir
12
+ train: images/train # train images (relative to 'path') 4 images
13
+ val: images/val # val images (relative to 'path') 4 images
14
+ test: # test images (optional)
16
15
 
17
16
  # Classes
18
17
  names:
@@ -97,6 +96,5 @@ names:
97
96
  78: hair drier
98
97
  79: toothbrush
99
98
 
100
-
101
99
  # Download script/URL (optional)
102
100
  download: https://ultralytics.com/assets/coco8-seg.zip
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── coco8 ← downloads here (1 MB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/coco8 # dataset root dir
13
- train: images/train # train images (relative to 'path') 4 images
14
- val: images/val # val images (relative to 'path') 4 images
15
- test: # test images (optional)
11
+ path: ../datasets/coco8 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 4 images
13
+ val: images/val # val images (relative to 'path') 4 images
14
+ test: # test images (optional)
16
15
 
17
16
  # Classes
18
17
  names:
@@ -97,6 +96,5 @@ names:
97
96
  78: hair drier
98
97
  79: toothbrush
99
98
 
100
-
101
99
  # Download script/URL (optional)
102
100
  download: https://ultralytics.com/assets/coco8.zip
@@ -8,9 +8,9 @@
8
8
  # └── dota8 ← downloads here (1MB)
9
9
 
10
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
11
- path: ../datasets/dota8 # dataset root dir
12
- train: images/train # train images (relative to 'path') 4 images
13
- val: images/val # val images (relative to 'path') 4 images
11
+ path: ../datasets/dota8 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 4 images
13
+ val: images/val # val images (relative to 'path') 4 images
14
14
 
15
15
  # Classes for DOTA 1.0
16
16
  names:
@@ -7,12 +7,11 @@
7
7
  # └── datasets
8
8
  # └── open-images-v7 ← downloads here (561 GB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/open-images-v7 # dataset root dir
13
- train: images/train # train images (relative to 'path') 1743042 images
14
- val: images/val # val images (relative to 'path') 41620 images
15
- test: # test images (optional)
11
+ path: ../datasets/open-images-v7 # dataset root dir
12
+ train: images/train # train images (relative to 'path') 1743042 images
13
+ val: images/val # val images (relative to 'path') 41620 images
14
+ test: # test images (optional)
16
15
 
17
16
  # Classes
18
17
  names:
@@ -618,7 +617,6 @@ names:
618
617
  599: Zebra
619
618
  600: Zucchini
620
619
 
621
-
622
620
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
623
621
  download: |
624
622
  from ultralytics.utils import LOGGER, SETTINGS, Path, is_ubuntu, get_ubuntu_version
@@ -7,14 +7,13 @@
7
7
  # └── datasets
8
8
  # └── tiger-pose ← downloads here (75.3 MB)
9
9
 
10
-
11
10
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
12
- path: ../datasets/tiger-pose # dataset root dir
13
- train: train # train images (relative to 'path') 210 images
14
- val: val # val images (relative to 'path') 53 images
11
+ path: ../datasets/tiger-pose # dataset root dir
12
+ train: train # train images (relative to 'path') 210 images
13
+ val: val # val images (relative to 'path') 53 images
15
14
 
16
15
  # Keypoints
17
- kpt_shape: [12, 2] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
16
+ kpt_shape: [12, 2] # number of keypoints, number of dims (2 for x,y or 3 for x,y,visible)
18
17
  flip_idx: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
19
18
 
20
19
  # Classes
@@ -8,11 +8,10 @@
8
8
  # └── datasets
9
9
  # └── xView ← downloads here (20.7 GB)
10
10
 
11
-
12
11
  # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
13
- path: ../datasets/xView # dataset root dir
14
- train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
15
- val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
12
+ path: ../datasets/xView # dataset root dir
13
+ train: images/autosplit_train.txt # train images (relative to 'path') 90% of 847 train images
14
+ val: images/autosplit_val.txt # train images (relative to 'path') 10% of 847 train images
16
15
 
17
16
  # Classes
18
17
  names:
@@ -77,7 +76,6 @@ names:
77
76
  58: Pylon
78
77
  59: Tower
79
78
 
80
-
81
79
  # Download script/URL (optional) ---------------------------------------------------------------------------------------
82
80
  download: |
83
81
  import json