ultralytics 8.0.237__py3-none-any.whl → 8.0.239__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of ultralytics might be problematic. Click here for more details.

Files changed (137) hide show
  1. ultralytics/__init__.py +2 -2
  2. ultralytics/cfg/__init__.py +241 -138
  3. ultralytics/cfg/datasets/DOTAv1.5.yaml +1 -1
  4. ultralytics/cfg/datasets/DOTAv1.yaml +1 -1
  5. ultralytics/cfg/datasets/dota8.yaml +34 -0
  6. ultralytics/data/__init__.py +9 -2
  7. ultralytics/data/annotator.py +4 -4
  8. ultralytics/data/augment.py +186 -169
  9. ultralytics/data/base.py +54 -48
  10. ultralytics/data/build.py +34 -23
  11. ultralytics/data/converter.py +242 -70
  12. ultralytics/data/dataset.py +117 -95
  13. ultralytics/data/explorer/__init__.py +5 -0
  14. ultralytics/data/explorer/explorer.py +170 -97
  15. ultralytics/data/explorer/gui/__init__.py +1 -0
  16. ultralytics/data/explorer/gui/dash.py +146 -76
  17. ultralytics/data/explorer/utils.py +87 -25
  18. ultralytics/data/loaders.py +75 -62
  19. ultralytics/data/split_dota.py +44 -36
  20. ultralytics/data/utils.py +160 -142
  21. ultralytics/engine/exporter.py +348 -292
  22. ultralytics/engine/model.py +102 -66
  23. ultralytics/engine/predictor.py +74 -55
  24. ultralytics/engine/results.py +63 -40
  25. ultralytics/engine/trainer.py +192 -144
  26. ultralytics/engine/tuner.py +66 -59
  27. ultralytics/engine/validator.py +31 -26
  28. ultralytics/hub/__init__.py +54 -31
  29. ultralytics/hub/auth.py +28 -25
  30. ultralytics/hub/session.py +282 -133
  31. ultralytics/hub/utils.py +64 -42
  32. ultralytics/models/__init__.py +1 -1
  33. ultralytics/models/fastsam/__init__.py +1 -1
  34. ultralytics/models/fastsam/model.py +6 -6
  35. ultralytics/models/fastsam/predict.py +3 -2
  36. ultralytics/models/fastsam/prompt.py +55 -48
  37. ultralytics/models/fastsam/val.py +1 -1
  38. ultralytics/models/nas/__init__.py +1 -1
  39. ultralytics/models/nas/model.py +9 -8
  40. ultralytics/models/nas/predict.py +8 -6
  41. ultralytics/models/nas/val.py +11 -9
  42. ultralytics/models/rtdetr/__init__.py +1 -1
  43. ultralytics/models/rtdetr/model.py +11 -9
  44. ultralytics/models/rtdetr/train.py +18 -16
  45. ultralytics/models/rtdetr/val.py +25 -19
  46. ultralytics/models/sam/__init__.py +1 -1
  47. ultralytics/models/sam/amg.py +13 -14
  48. ultralytics/models/sam/build.py +44 -42
  49. ultralytics/models/sam/model.py +6 -6
  50. ultralytics/models/sam/modules/decoders.py +6 -4
  51. ultralytics/models/sam/modules/encoders.py +37 -35
  52. ultralytics/models/sam/modules/sam.py +5 -4
  53. ultralytics/models/sam/modules/tiny_encoder.py +95 -73
  54. ultralytics/models/sam/modules/transformer.py +3 -2
  55. ultralytics/models/sam/predict.py +39 -27
  56. ultralytics/models/utils/loss.py +99 -95
  57. ultralytics/models/utils/ops.py +34 -31
  58. ultralytics/models/yolo/__init__.py +1 -1
  59. ultralytics/models/yolo/classify/__init__.py +1 -1
  60. ultralytics/models/yolo/classify/predict.py +8 -6
  61. ultralytics/models/yolo/classify/train.py +37 -31
  62. ultralytics/models/yolo/classify/val.py +26 -24
  63. ultralytics/models/yolo/detect/__init__.py +1 -1
  64. ultralytics/models/yolo/detect/predict.py +8 -6
  65. ultralytics/models/yolo/detect/train.py +47 -37
  66. ultralytics/models/yolo/detect/val.py +100 -82
  67. ultralytics/models/yolo/model.py +31 -25
  68. ultralytics/models/yolo/obb/__init__.py +1 -1
  69. ultralytics/models/yolo/obb/predict.py +13 -12
  70. ultralytics/models/yolo/obb/train.py +3 -3
  71. ultralytics/models/yolo/obb/val.py +80 -58
  72. ultralytics/models/yolo/pose/__init__.py +1 -1
  73. ultralytics/models/yolo/pose/predict.py +17 -12
  74. ultralytics/models/yolo/pose/train.py +28 -25
  75. ultralytics/models/yolo/pose/val.py +91 -64
  76. ultralytics/models/yolo/segment/__init__.py +1 -1
  77. ultralytics/models/yolo/segment/predict.py +10 -8
  78. ultralytics/models/yolo/segment/train.py +16 -15
  79. ultralytics/models/yolo/segment/val.py +90 -68
  80. ultralytics/nn/__init__.py +26 -6
  81. ultralytics/nn/autobackend.py +144 -112
  82. ultralytics/nn/modules/__init__.py +96 -13
  83. ultralytics/nn/modules/block.py +28 -7
  84. ultralytics/nn/modules/conv.py +41 -23
  85. ultralytics/nn/modules/head.py +67 -59
  86. ultralytics/nn/modules/transformer.py +49 -32
  87. ultralytics/nn/modules/utils.py +20 -15
  88. ultralytics/nn/tasks.py +215 -141
  89. ultralytics/solutions/ai_gym.py +59 -47
  90. ultralytics/solutions/distance_calculation.py +22 -15
  91. ultralytics/solutions/heatmap.py +76 -54
  92. ultralytics/solutions/object_counter.py +46 -39
  93. ultralytics/solutions/speed_estimation.py +13 -16
  94. ultralytics/trackers/__init__.py +1 -1
  95. ultralytics/trackers/basetrack.py +1 -0
  96. ultralytics/trackers/bot_sort.py +2 -1
  97. ultralytics/trackers/byte_tracker.py +10 -7
  98. ultralytics/trackers/track.py +7 -7
  99. ultralytics/trackers/utils/gmc.py +25 -25
  100. ultralytics/trackers/utils/kalman_filter.py +85 -42
  101. ultralytics/trackers/utils/matching.py +8 -7
  102. ultralytics/utils/__init__.py +173 -151
  103. ultralytics/utils/autobatch.py +10 -10
  104. ultralytics/utils/benchmarks.py +76 -86
  105. ultralytics/utils/callbacks/__init__.py +1 -1
  106. ultralytics/utils/callbacks/base.py +29 -29
  107. ultralytics/utils/callbacks/clearml.py +51 -43
  108. ultralytics/utils/callbacks/comet.py +81 -66
  109. ultralytics/utils/callbacks/dvc.py +33 -26
  110. ultralytics/utils/callbacks/hub.py +44 -26
  111. ultralytics/utils/callbacks/mlflow.py +31 -24
  112. ultralytics/utils/callbacks/neptune.py +35 -25
  113. ultralytics/utils/callbacks/raytune.py +9 -4
  114. ultralytics/utils/callbacks/tensorboard.py +16 -11
  115. ultralytics/utils/callbacks/wb.py +39 -33
  116. ultralytics/utils/checks.py +189 -141
  117. ultralytics/utils/dist.py +15 -12
  118. ultralytics/utils/downloads.py +112 -96
  119. ultralytics/utils/errors.py +1 -1
  120. ultralytics/utils/files.py +11 -11
  121. ultralytics/utils/instance.py +22 -22
  122. ultralytics/utils/loss.py +117 -67
  123. ultralytics/utils/metrics.py +224 -158
  124. ultralytics/utils/ops.py +39 -29
  125. ultralytics/utils/patches.py +3 -3
  126. ultralytics/utils/plotting.py +217 -120
  127. ultralytics/utils/tal.py +19 -13
  128. ultralytics/utils/torch_utils.py +138 -109
  129. ultralytics/utils/triton.py +12 -10
  130. ultralytics/utils/tuner.py +49 -47
  131. {ultralytics-8.0.237.dist-info → ultralytics-8.0.239.dist-info}/METADATA +5 -4
  132. ultralytics-8.0.239.dist-info/RECORD +188 -0
  133. ultralytics-8.0.237.dist-info/RECORD +0 -187
  134. {ultralytics-8.0.237.dist-info → ultralytics-8.0.239.dist-info}/LICENSE +0 -0
  135. {ultralytics-8.0.237.dist-info → ultralytics-8.0.239.dist-info}/WHEEL +0 -0
  136. {ultralytics-8.0.237.dist-info → ultralytics-8.0.239.dist-info}/entry_points.txt +0 -0
  137. {ultralytics-8.0.237.dist-info → ultralytics-8.0.239.dist-info}/top_level.txt +0 -0
@@ -6,12 +6,9 @@ from ultralytics.cfg import TASK2DATA, TASK2METRIC, get_save_dir
6
6
  from ultralytics.utils import DEFAULT_CFG, DEFAULT_CFG_DICT, LOGGER, NUM_THREADS
7
7
 
8
8
 
9
- def run_ray_tune(model,
10
- space: dict = None,
11
- grace_period: int = 10,
12
- gpu_per_trial: int = None,
13
- max_samples: int = 10,
14
- **train_args):
9
+ def run_ray_tune(
10
+ model, space: dict = None, grace_period: int = 10, gpu_per_trial: int = None, max_samples: int = 10, **train_args
11
+ ):
15
12
  """
16
13
  Runs hyperparameter tuning using Ray Tune.
17
14
 
@@ -38,12 +35,12 @@ def run_ray_tune(model,
38
35
  ```
39
36
  """
40
37
 
41
- LOGGER.info('💡 Learn about RayTune at https://docs.ultralytics.com/integrations/ray-tune')
38
+ LOGGER.info("💡 Learn about RayTune at https://docs.ultralytics.com/integrations/ray-tune")
42
39
  if train_args is None:
43
40
  train_args = {}
44
41
 
45
42
  try:
46
- subprocess.run('pip install ray[tune]'.split(), check=True)
43
+ subprocess.run("pip install ray[tune]".split(), check=True)
47
44
 
48
45
  import ray
49
46
  from ray import tune
@@ -56,33 +53,34 @@ def run_ray_tune(model,
56
53
  try:
57
54
  import wandb
58
55
 
59
- assert hasattr(wandb, '__version__')
56
+ assert hasattr(wandb, "__version__")
60
57
  except (ImportError, AssertionError):
61
58
  wandb = False
62
59
 
63
60
  default_space = {
64
61
  # 'optimizer': tune.choice(['SGD', 'Adam', 'AdamW', 'NAdam', 'RAdam', 'RMSProp']),
65
- 'lr0': tune.uniform(1e-5, 1e-1),
66
- 'lrf': tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
67
- 'momentum': tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1
68
- 'weight_decay': tune.uniform(0.0, 0.001), # optimizer weight decay 5e-4
69
- 'warmup_epochs': tune.uniform(0.0, 5.0), # warmup epochs (fractions ok)
70
- 'warmup_momentum': tune.uniform(0.0, 0.95), # warmup initial momentum
71
- 'box': tune.uniform(0.02, 0.2), # box loss gain
72
- 'cls': tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels)
73
- 'hsv_h': tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction)
74
- 'hsv_s': tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction)
75
- 'hsv_v': tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction)
76
- 'degrees': tune.uniform(0.0, 45.0), # image rotation (+/- deg)
77
- 'translate': tune.uniform(0.0, 0.9), # image translation (+/- fraction)
78
- 'scale': tune.uniform(0.0, 0.9), # image scale (+/- gain)
79
- 'shear': tune.uniform(0.0, 10.0), # image shear (+/- deg)
80
- 'perspective': tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
81
- 'flipud': tune.uniform(0.0, 1.0), # image flip up-down (probability)
82
- 'fliplr': tune.uniform(0.0, 1.0), # image flip left-right (probability)
83
- 'mosaic': tune.uniform(0.0, 1.0), # image mixup (probability)
84
- 'mixup': tune.uniform(0.0, 1.0), # image mixup (probability)
85
- 'copy_paste': tune.uniform(0.0, 1.0)} # segment copy-paste (probability)
62
+ "lr0": tune.uniform(1e-5, 1e-1),
63
+ "lrf": tune.uniform(0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
64
+ "momentum": tune.uniform(0.6, 0.98), # SGD momentum/Adam beta1
65
+ "weight_decay": tune.uniform(0.0, 0.001), # optimizer weight decay 5e-4
66
+ "warmup_epochs": tune.uniform(0.0, 5.0), # warmup epochs (fractions ok)
67
+ "warmup_momentum": tune.uniform(0.0, 0.95), # warmup initial momentum
68
+ "box": tune.uniform(0.02, 0.2), # box loss gain
69
+ "cls": tune.uniform(0.2, 4.0), # cls loss gain (scale with pixels)
70
+ "hsv_h": tune.uniform(0.0, 0.1), # image HSV-Hue augmentation (fraction)
71
+ "hsv_s": tune.uniform(0.0, 0.9), # image HSV-Saturation augmentation (fraction)
72
+ "hsv_v": tune.uniform(0.0, 0.9), # image HSV-Value augmentation (fraction)
73
+ "degrees": tune.uniform(0.0, 45.0), # image rotation (+/- deg)
74
+ "translate": tune.uniform(0.0, 0.9), # image translation (+/- fraction)
75
+ "scale": tune.uniform(0.0, 0.9), # image scale (+/- gain)
76
+ "shear": tune.uniform(0.0, 10.0), # image shear (+/- deg)
77
+ "perspective": tune.uniform(0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
78
+ "flipud": tune.uniform(0.0, 1.0), # image flip up-down (probability)
79
+ "fliplr": tune.uniform(0.0, 1.0), # image flip left-right (probability)
80
+ "mosaic": tune.uniform(0.0, 1.0), # image mixup (probability)
81
+ "mixup": tune.uniform(0.0, 1.0), # image mixup (probability)
82
+ "copy_paste": tune.uniform(0.0, 1.0), # segment copy-paste (probability)
83
+ }
86
84
 
87
85
  # Put the model in ray store
88
86
  task = model.task
@@ -107,35 +105,39 @@ def run_ray_tune(model,
107
105
  # Get search space
108
106
  if not space:
109
107
  space = default_space
110
- LOGGER.warning('WARNING ⚠️ search space not provided, using default search space.')
108
+ LOGGER.warning("WARNING ⚠️ search space not provided, using default search space.")
111
109
 
112
110
  # Get dataset
113
- data = train_args.get('data', TASK2DATA[task])
114
- space['data'] = data
115
- if 'data' not in train_args:
111
+ data = train_args.get("data", TASK2DATA[task])
112
+ space["data"] = data
113
+ if "data" not in train_args:
116
114
  LOGGER.warning(f'WARNING ⚠️ data not provided, using default "data={data}".')
117
115
 
118
116
  # Define the trainable function with allocated resources
119
- trainable_with_resources = tune.with_resources(_tune, {'cpu': NUM_THREADS, 'gpu': gpu_per_trial or 0})
117
+ trainable_with_resources = tune.with_resources(_tune, {"cpu": NUM_THREADS, "gpu": gpu_per_trial or 0})
120
118
 
121
119
  # Define the ASHA scheduler for hyperparameter search
122
- asha_scheduler = ASHAScheduler(time_attr='epoch',
123
- metric=TASK2METRIC[task],
124
- mode='max',
125
- max_t=train_args.get('epochs') or DEFAULT_CFG_DICT['epochs'] or 100,
126
- grace_period=grace_period,
127
- reduction_factor=3)
120
+ asha_scheduler = ASHAScheduler(
121
+ time_attr="epoch",
122
+ metric=TASK2METRIC[task],
123
+ mode="max",
124
+ max_t=train_args.get("epochs") or DEFAULT_CFG_DICT["epochs"] or 100,
125
+ grace_period=grace_period,
126
+ reduction_factor=3,
127
+ )
128
128
 
129
129
  # Define the callbacks for the hyperparameter search
130
- tuner_callbacks = [WandbLoggerCallback(project='YOLOv8-tune')] if wandb else []
130
+ tuner_callbacks = [WandbLoggerCallback(project="YOLOv8-tune")] if wandb else []
131
131
 
132
132
  # Create the Ray Tune hyperparameter search tuner
133
- tune_dir = get_save_dir(DEFAULT_CFG, name='tune').resolve() # must be absolute dir
133
+ tune_dir = get_save_dir(DEFAULT_CFG, name="tune").resolve() # must be absolute dir
134
134
  tune_dir.mkdir(parents=True, exist_ok=True)
135
- tuner = tune.Tuner(trainable_with_resources,
136
- param_space=space,
137
- tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples),
138
- run_config=RunConfig(callbacks=tuner_callbacks, storage_path=tune_dir))
135
+ tuner = tune.Tuner(
136
+ trainable_with_resources,
137
+ param_space=space,
138
+ tune_config=tune.TuneConfig(scheduler=asha_scheduler, num_samples=max_samples),
139
+ run_config=RunConfig(callbacks=tuner_callbacks, storage_path=tune_dir),
140
+ )
139
141
 
140
142
  # Run the hyperparameter search
141
143
  tuner.fit()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: ultralytics
3
- Version: 8.0.237
3
+ Version: 8.0.239
4
4
  Summary: Ultralytics YOLOv8 for SOTA object detection, multi-object tracking, instance segmentation, pose estimation and image classification.
5
5
  Author: Glenn Jocher, Ayush Chaurasia, Jing Qiu
6
6
  Maintainer: Glenn Jocher, Ayush Chaurasia, Jing Qiu
@@ -44,6 +44,7 @@ Requires-Dist: py-cpuinfo
44
44
  Requires-Dist: thop >=0.1.1
45
45
  Requires-Dist: pandas >=1.1.4
46
46
  Requires-Dist: seaborn >=0.11.0
47
+ Requires-Dist: hub-sdk >=0.0.2
47
48
  Provides-Extra: dev
48
49
  Requires-Dist: ipython ; extra == 'dev'
49
50
  Requires-Dist: check-manifest ; extra == 'dev'
@@ -266,9 +267,9 @@ See [Pose Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples wit
266
267
 
267
268
  </details>
268
269
 
269
- <details><summary>Obb (DOTAv1)</summary>
270
+ <details><summary>OBB (DOTAv1)</summary>
270
271
 
271
- See [Obb Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with these models trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), which include 15 pre-trained classes.
272
+ See [OBB Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with these models trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), which include 15 pre-trained classes.
272
273
 
273
274
  | Model | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
274
275
  | -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
@@ -278,7 +279,7 @@ See [Obb Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with
278
279
  | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8l-obb.pt) | 1024 | 80.7 | 1278.42 | 11.83 | 44.5 | 433.8 |
279
280
  | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8x-obb.pt) | 1024 | 81.36 | 1759.10 | 13.23 | 69.5 | 676.7 |
280
281
 
281
- - **mAP<sup>test</sup>** values are for single-model multi-scale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test`
282
+ - **mAP<sup>test</sup>** values are for single-model multi-scale on [DOTAv1](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
282
283
  - **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`
283
284
 
284
285
  </details>
@@ -0,0 +1,188 @@
1
+ ultralytics/__init__.py,sha256=HhJiJvTjw9BtF4PvoxUMHi0H78bCBN6r7rHKHyIk7H0,531
2
+ ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
3
+ ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
4
+ ultralytics/cfg/__init__.py,sha256=VxZT4VAUAOly8Zc48pPM3pwKNDhRXCKyryS5B5X7Tns,20717
5
+ ultralytics/cfg/default.yaml,sha256=fXBQCccyGRnLePGq-3GSKohK5qJpPyqPqUy7dRLmaGM,8196
6
+ ultralytics/cfg/datasets/Argoverse.yaml,sha256=UDZRtNB-Ia68850fMjodbGTTcvJnopEsZ6DDe2qGbu0,2929
7
+ ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=tFSOTOi3w7lv54Dht0HXtWLqx4jKf_AjpFkwtE2p7Zo,1197
8
+ ultralytics/cfg/datasets/DOTAv1.yaml,sha256=X7iur0KOdDYofKw25FMDQgjPr62DvSRCtxdifSbWebo,1167
9
+ ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=UnNRj348vxherTWaOKwzq7948gPZ4IC9gMHCYa0zi00,2060
10
+ ultralytics/cfg/datasets/ImageNet.yaml,sha256=CQxQkT6LdywQzAMNAtdv5kUTI7z516NocebUMTDcK_I,42513
11
+ ultralytics/cfg/datasets/Objects365.yaml,sha256=nTcfSdc_bBY8uKuyYAZRYjrHSpV4-EcwR7HNZq247lM,9329
12
+ ultralytics/cfg/datasets/SKU-110K.yaml,sha256=mvHmdb0s6dbYifUSxxqtdr9N4-LFPXKr3JWoRNybXwE,2499
13
+ ultralytics/cfg/datasets/VOC.yaml,sha256=9A_FzOCY0iFo61vyVz4erfbtWy44PJWMVjI1xV35Y3w,3657
14
+ ultralytics/cfg/datasets/VisDrone.yaml,sha256=BIrrWOiyhHa00Yo-OCo_v8d0BoBSyRkY4DTPeB2NlQE,3079
15
+ ultralytics/cfg/datasets/coco-pose.yaml,sha256=w3VKlL8M7SjLOdJb3YnIyUlx0KLZw_V_H-FACQibWfk,1608
16
+ ultralytics/cfg/datasets/coco.yaml,sha256=TyO0WciW91SkoeNP6yX-mX8EGQfLHhWrqpC7CKDGWOg,2589
17
+ ultralytics/cfg/datasets/coco128-seg.yaml,sha256=Zi6SR-SGKjgkVhXngvGtd0__Vs4Moe2LcwmKrKgiPzY,1931
18
+ ultralytics/cfg/datasets/coco128.yaml,sha256=UhBuqpROmmhYTLLIXYIhSnT0Uo-pUsWT2x4200rjKBo,1914
19
+ ultralytics/cfg/datasets/coco8-pose.yaml,sha256=mEGAoP_lo26dqXojNUnj7pv7bA4J9l3d7TI9BieZAFk,967
20
+ ultralytics/cfg/datasets/coco8-seg.yaml,sha256=A5WI0oNOmJouOW5NSxlKtfDDw_pORMw3Ofbsugwsaws,1871
21
+ ultralytics/cfg/datasets/coco8.yaml,sha256=zw8H49_J266ymlAGgf4yl4Z2DejA72uaKHMOTCwCloo,1846
22
+ ultralytics/cfg/datasets/dota8.yaml,sha256=gMmuz2hjCLw-GQ649mng5qDdqC5IENrPQwj9X_sNLyQ,1045
23
+ ultralytics/cfg/datasets/open-images-v7.yaml,sha256=-Jt6pLrkxJrsQDIkzxqhCJHW8WoYq9OzKDTXjGuZAQc,12499
24
+ ultralytics/cfg/datasets/tiger-pose.yaml,sha256=WNOaxUM628ewNQbqz1lPRxhYpIDLktgAWwtOaiu3r98,869
25
+ ultralytics/cfg/datasets/xView.yaml,sha256=v3H7uGibhN_RMHPCchqN_CikH1EtGIXTZuhDBKvGpjs,5222
26
+ ultralytics/cfg/models/rt-detr/rtdetr-l.yaml,sha256=Vi0qtzSupvrWQzYWmHCiOc6kEvuKkRbAbqcdanKtEz8,1959
27
+ ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml,sha256=6-D9oVLN-KDAxYMdpl_C5VN_9P9RcqCsgNtNLSlV9b4,1533
28
+ ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml,sha256=vwpY1mazBW2xHcTAparUlXo0cX7_CopcBRRI0ojw2-g,1531
29
+ ultralytics/cfg/models/rt-detr/rtdetr-x.yaml,sha256=pVc1eYW_1VFyTlA_fMfj712CVwmG0_4ZyOEpZbMQwpE,2166
30
+ ultralytics/cfg/models/v3/yolov3-spp.yaml,sha256=SK-lrXpjXlOpod0VJIV_T3kQ_NGRONP6Ma1HFako3NA,1550
31
+ ultralytics/cfg/models/v3/yolov3-tiny.yaml,sha256=RcnGwbby2WtgS9cZ3jBybQuAHBDMpgMADPb0x6_bDM0,1252
32
+ ultralytics/cfg/models/v3/yolov3.yaml,sha256=wXUDtWndgxIFbuaoeuY5tFcYZv87ZqOlrdhLKEToiuw,1537
33
+ ultralytics/cfg/models/v5/yolov5-p6.yaml,sha256=3nY2FYH2lz8pfb3J3kFcY09-075f2ErF_p_i9wlyXqE,1923
34
+ ultralytics/cfg/models/v5/yolov5.yaml,sha256=rsBD3nnBQNMcmV7X-twn2BevDGIChErdIcB-3eR-10Y,1550
35
+ ultralytics/cfg/models/v6/yolov6.yaml,sha256=rXb2qPqpm14WVLV4nh8ib-fEjhRa_nuMiCkGdelXbDo,1735
36
+ ultralytics/cfg/models/v8/yolov8-cls.yaml,sha256=rO8Eq8OuTQUkYMQi2AtNgVvtsPHYNxEXr9xT29k-IG8,920
37
+ ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml,sha256=-lUAC6ZCnqoh6mzxiwHABm4mt9bMZWfcmD3qFKXeeTE,2311
38
+ ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml,sha256=RIOVsIzaTKcB2AqbswRKPEtVEUHvA_GTyCzSGzAQQoc,2380
39
+ ultralytics/cfg/models/v8/yolov8-ghost.yaml,sha256=y2MGNR0_IzbLqUDjG1IYKNHHLcH1MWkwGzc2IczJsVM,2120
40
+ ultralytics/cfg/models/v8/yolov8-obb.yaml,sha256=jDb5KVG64UBeq1BzDLOtOMnve3uPdXPe-yfYi2EAWEI,1923
41
+ ultralytics/cfg/models/v8/yolov8-p2.yaml,sha256=jgBsa0-uNwtDHGHJWLVEwuFwxq_twpl9ihRIc4b6bk8,1751
42
+ ultralytics/cfg/models/v8/yolov8-p6.yaml,sha256=oGN0OQ9TtVnttzLd9frFVav8dPxe3OuUA8p4PFRrQmM,1856
43
+ ultralytics/cfg/models/v8/yolov8-pose-p6.yaml,sha256=4sGjrH3lJ7i19Dq1aedCofUI3RyOsn3v98MzWyGovZ8,1949
44
+ ultralytics/cfg/models/v8/yolov8-pose.yaml,sha256=kfQnVeZK5sfdRGKuBUpNmIUxXO89qWchQUG-xQHkDDk,1580
45
+ ultralytics/cfg/models/v8/yolov8-rtdetr.yaml,sha256=7jfhW8JwL2HojeNR4PYNvsB3rJkiGBMA7VrZ2xdHJRs,1920
46
+ ultralytics/cfg/models/v8/yolov8-seg-p6.yaml,sha256=bSPxw96Az9kibJ4D-5pvuhOMrKe1z7RrPuKqTtLFlOw,1866
47
+ ultralytics/cfg/models/v8/yolov8-seg.yaml,sha256=QvXQOvQsyYj2GAB-ePB48g4N9jW5JdIkeH800Ev64uI,1490
48
+ ultralytics/cfg/models/v8/yolov8.yaml,sha256=A01V3w3qsOBgAAT9e2AwxXhU_SALEI2IvdoqcPOTnxc,1913
49
+ ultralytics/cfg/trackers/botsort.yaml,sha256=N3ddRUl2uOvJI_Q7TBIw88MyaeV240X_wlx5Z6IiUhU,890
50
+ ultralytics/cfg/trackers/bytetrack.yaml,sha256=FFpmCj7E0xpOde7R-W3zUVcy6hKCHAij9qwp9SAp-pI,694
51
+ ultralytics/data/__init__.py,sha256=A3i0n-2MnNzSdYqhM8xynBO2HJNKGSXWhPvRyO0_u1I,409
52
+ ultralytics/data/annotator.py,sha256=jPiNaHf701zYt_Wy2PKvzFBsDGAF34elvGYMO_H7r-U,2122
53
+ ultralytics/data/augment.py,sha256=3GAt-oU2yPXioj4oUDwKPJ6Dpp3img0VoHz2YOUPjTE,52003
54
+ ultralytics/data/base.py,sha256=_xuqvUJVVbxKYZMk0RmHot52vZVT6Q9BIybsPASJH5Q,13217
55
+ ultralytics/data/build.py,sha256=1zpiak_KZC0yeYHvLSRRaaWx7_H4Rcc7M8LbhBI1He0,6448
56
+ ultralytics/data/converter.py,sha256=sju4NdjyKAtdKHMgYDD7yBKmP0gd3Q96PI4UInyi2Q0,13840
57
+ ultralytics/data/dataset.py,sha256=giPQlRLbT8bsbqyTx5rNd5BXrIWGz8lFccQfiT8AzB0,16505
58
+ ultralytics/data/loaders.py,sha256=loSxGXzfzxrxuL3pPqTcCXoqhI3BP5RrvjIjBnaK7Dk,22300
59
+ ultralytics/data/split_dota.py,sha256=wmT2MpwwxY5LUN_3g4nqEm2Gqv5LpbnjexfLDpenRLw,10134
60
+ ultralytics/data/utils.py,sha256=DHP14WwUF7uFPOpdUkH-gEC8Dgzl1E0Z_DXiLHx-gPE,29509
61
+ ultralytics/data/explorer/__init__.py,sha256=-Y3m1ZedepOQUv_KW82zaGxvU_PSHcuwUTFqG9BhAr4,113
62
+ ultralytics/data/explorer/explorer.py,sha256=ilMP5Yj5OojMav5Q5JpZfZPKWHIcLv5H3VrVTojlTIg,18643
63
+ ultralytics/data/explorer/utils.py,sha256=JZRk9LHHZLgknWPUDBQn-90xNpkujK0yKryC3d1O1Cw,7068
64
+ ultralytics/data/explorer/gui/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
65
+ ultralytics/data/explorer/gui/dash.py,sha256=O6TGD3y0DWZuwaRUkSKpB5mXf-tSw7p-O_KE8kiZP2k,8903
66
+ ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
67
+ ultralytics/engine/exporter.py,sha256=iNzyKvBXLyZDwkauKp6CnUpTNRb8p6ulxv5xYWwhXq0,51352
68
+ ultralytics/engine/model.py,sha256=RVumHGOBFpBFjjFAeyErxq00Vi_rRbYXMuEeUK7xmUw,21144
69
+ ultralytics/engine/predictor.py,sha256=ADoOz15V7AGHpqHqUZY_6kZHEw0pjbbZh5UlHwfpVFU,17716
70
+ ultralytics/engine/results.py,sha256=S4T2EqTeRrxUzR3ZcI5XJO_bWSaWO_roqGfqf2hCdZo,27345
71
+ ultralytics/engine/trainer.py,sha256=RHWzp1xe7ZFulVC6WroATjBnnr_53EBB3KXl6a9Jjro,34296
72
+ ultralytics/engine/tuner.py,sha256=yJTecrgsZbeE4XC8iJWoUA_DKACUnDSt8N1V_PTeCcc,11758
73
+ ultralytics/engine/validator.py,sha256=U7PHoPE_j3tqgO5s3GW0BzGO3MOAROANZmophpfpL-0,14443
74
+ ultralytics/hub/__init__.py,sha256=d1XiZjFITamSPVVj-XuSxf33AVYc8HDtX0XW9eMtnS8,4959
75
+ ultralytics/hub/auth.py,sha256=7HmomgpGk0s0WvseCSkU6p9FyP3ah6oxZ6VFohKzPYM,5385
76
+ ultralytics/hub/session.py,sha256=0AJio1r3Ii2G1LTONtydYceyXQR1lAfFDgI51qukocY,13525
77
+ ultralytics/hub/utils.py,sha256=4pcoMotOCUETmTt0uUgecqdBIPBprnmZVFfDAVCbno8,9557
78
+ ultralytics/models/__init__.py,sha256=-i1eeXMAglo0zMRGG3phmdoJNO7OJQZgyj8j0t7eiDE,173
79
+ ultralytics/models/fastsam/__init__.py,sha256=0dt65jZ_5b7Q-mdXN8MSEkgnFRA0FIwlel_LS2RaOlU,254
80
+ ultralytics/models/fastsam/model.py,sha256=uKzkxu3RUhYZScqXS6Gc0cNIQ6E2PykbceRc52s7hn8,1055
81
+ ultralytics/models/fastsam/predict.py,sha256=0WHUFrqHUNy1cTNpLKsN0FKqLKCvr7fHU6pp91_QVg0,4121
82
+ ultralytics/models/fastsam/prompt.py,sha256=vVBpYQfJswDYRrHpQpWObMAyYcPD-OurEyTxna7J7K4,16190
83
+ ultralytics/models/fastsam/utils.py,sha256=r-b362Wb7P2ZAlOwWckPJM6HLvg-eFDDz4wkA0ymLd0,2157
84
+ ultralytics/models/fastsam/val.py,sha256=ILKmw3U8FYmmQsO9wk9-bJ9Pyp_ZthJM36b61L75s3Y,1967
85
+ ultralytics/models/nas/__init__.py,sha256=d6-WTrYLXvbPs58ebA0-583ODi-VyzXc-t4aGIDQK6M,179
86
+ ultralytics/models/nas/model.py,sha256=DheQlP2m_-_OLoLUFw8k4OQ1Fr0g8gS8I0PwkmqIBBs,2865
87
+ ultralytics/models/nas/predict.py,sha256=O7f92KE6hi5DENTRzXiMsm-qK-ndVoO1Bs3dugp8aLA,2136
88
+ ultralytics/models/nas/val.py,sha256=u35kVTVgGxK_rbHytUvFB4F3_nZn4MPv3PbZLFWSmkQ,1680
89
+ ultralytics/models/rtdetr/__init__.py,sha256=AZga1C3qlGTtgpAupDW4doijq5aZlQeF8e55_DP2Uas,197
90
+ ultralytics/models/rtdetr/model.py,sha256=fVrj6Jgav6M5ZNRR6QQupQuXBmmbDQZgq9KKfEifBL0,2167
91
+ ultralytics/models/rtdetr/predict.py,sha256=pmjUlcUTqxoBNa5tW_EuFjh7ldXSm99Qnk5MEaJF0DQ,3425
92
+ ultralytics/models/rtdetr/train.py,sha256=20AFYVW9NPxw0-cp-sRdIovWidFL0IIhJRv2oZjkPlM,3685
93
+ ultralytics/models/rtdetr/val.py,sha256=hds9DKp3QTPZAmxfPdqGlv_TjR1iyneM-4fayQDuEXo,5441
94
+ ultralytics/models/sam/__init__.py,sha256=9A1iyfPN_ncqq3TMExe_-uPoARjEX3psoHEI1xMG2VE,144
95
+ ultralytics/models/sam/amg.py,sha256=w7mLxojmI50t6yPzx034WdQJUipMpEtHyvhXxFBo46A,7915
96
+ ultralytics/models/sam/build.py,sha256=-i-vj0egQ2idBZUf3Xf-H89QeToM3ky0HTxKP_KEXTs,4944
97
+ ultralytics/models/sam/model.py,sha256=t4J6OcpbQdLM1h92O4MZ6ono_ITF-TlGCNSy561Tpvc,4707
98
+ ultralytics/models/sam/predict.py,sha256=k7rZnQJjPxRhGr80uu4buBjWW9OZcbYy1qXSyIsSdOs,23633
99
+ ultralytics/models/sam/modules/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
100
+ ultralytics/models/sam/modules/decoders.py,sha256=Axv7aPWJmGCe4APNNUky8ZK8zxPj6TpvuW5qL24Z47Y,7815
101
+ ultralytics/models/sam/modules/encoders.py,sha256=CSCgE59R0WM08FxpzOyGsYqbllcOBtkBPn2e6BXrGPA,24785
102
+ ultralytics/models/sam/modules/sam.py,sha256=zC4l4kcrIQD_ekczjl2l6dgaABqqjROZxQ-FDb-itt0,2783
103
+ ultralytics/models/sam/modules/tiny_encoder.py,sha256=PRHsOHKMNfi5SLtPkJQeU49s7SDTkhmN3RHh3J2Bt24,29136
104
+ ultralytics/models/sam/modules/transformer.py,sha256=-wboK4gNKOJMP8J8ACN2JoK-xze40NZG696HsxdYObs,11170
105
+ ultralytics/models/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
106
+ ultralytics/models/utils/loss.py,sha256=SC3hbnIt_cQNNtdeMWpTgfl4tlIsPsQacUANDXrC-Cc,15135
107
+ ultralytics/models/utils/ops.py,sha256=sn1vdwIK2LaCvxvuuP31Yw2HXEMAmQdo7KD9JVh4GM4,13244
108
+ ultralytics/models/yolo/__init__.py,sha256=QjNcjG9I6pQAV2xONRP_t3PkyZtpgy-a6yR3Ef4R7ok,207
109
+ ultralytics/models/yolo/model.py,sha256=DdisvtV1Hjj37X5kObjwTwrFzxX3Xb-oB2WBPmh9tpM,1729
110
+ ultralytics/models/yolo/classify/__init__.py,sha256=t-4pUHmgI2gjhc-l3bqNEcEtKD1dO40nD4Vc6Y2xD6o,355
111
+ ultralytics/models/yolo/classify/predict.py,sha256=wFY4GIlWxe7idMndEw1RnDI63o53MTfiHKz0s2fOjAY,2513
112
+ ultralytics/models/yolo/classify/train.py,sha256=-DOLOM7OCN3RvH6iv8k7mMh7BDehsfJCO2LiwXMM0vU,6832
113
+ ultralytics/models/yolo/classify/val.py,sha256=EP_hjRExXgdI4xojTKvj_YeNdaz_i2CoUzorl55r0OA,4861
114
+ ultralytics/models/yolo/detect/__init__.py,sha256=JR8gZJWn7wMBbh-0j_073nxJVZTMFZVWTOG5Wnvk6w0,229
115
+ ultralytics/models/yolo/detect/predict.py,sha256=_a9vH3DmKFY6eeztFTdj3nkfu_MKG6n7zb5rRKGjs9I,1510
116
+ ultralytics/models/yolo/detect/train.py,sha256=zvxmevSiWNq8rdlGYeM3SZkMCcFh0qFQN9HjwxcGjJw,6306
117
+ ultralytics/models/yolo/detect/val.py,sha256=6t2uxz1Vg4DYcCDWlpMDvWndthWd3ud2QAJqzJQmQac,13631
118
+ ultralytics/models/yolo/obb/__init__.py,sha256=txWbPGLY1_M7ZwlLQjrwGjTBOlsv9P3yk5ZEgysTinU,193
119
+ ultralytics/models/yolo/obb/predict.py,sha256=faS941nIeEdiCapQBtP80C2lGv9TYwzTFt7Vxd3-Ti8,1977
120
+ ultralytics/models/yolo/obb/train.py,sha256=ay4Z83CyWtw8GeKyhFvfg94iZHUDz0qmCPCAFc2xJhU,1477
121
+ ultralytics/models/yolo/obb/val.py,sha256=b2_h_ZiUehemrPyGZ3L79AEE0ROvtXVOpwDoOrTjV84,9154
122
+ ultralytics/models/yolo/pose/__init__.py,sha256=OGvxN3LqJot2h8GX1csJ1KErsHnDKsm33Ce6ZBU9Lr4,199
123
+ ultralytics/models/yolo/pose/predict.py,sha256=illk4qyZvybc_XMo9TKT54FIkizx91MYviE5c5OwBTQ,2404
124
+ ultralytics/models/yolo/pose/train.py,sha256=ki8bkT8WfIFjTKf1ofeRDqeIqmk6A8a7AFog7nM-otM,2926
125
+ ultralytics/models/yolo/pose/val.py,sha256=w_VIKzGcj_0CRNObPqk0NnDOfRN-xl2C6uwpFOkJH3Q,10607
126
+ ultralytics/models/yolo/segment/__init__.py,sha256=mSbKOE8BnHL7PL2nCOVG7dRM7CI6hJezFPPwZFjEmy8,247
127
+ ultralytics/models/yolo/segment/predict.py,sha256=ycT8Z6U8N-4x94YQxM1nZc6rBWbF2-ErGmO7akMNtXM,2491
128
+ ultralytics/models/yolo/segment/train.py,sha256=aOQpDIptZfKSl9mFa6B-3W3QccMRlmBINBkI9K8-3sQ,2298
129
+ ultralytics/models/yolo/segment/val.py,sha256=OPLzdhD5VFuIVjQObExwEdjR7OxDrj0hqNailh3XnkI,11709
130
+ ultralytics/nn/__init__.py,sha256=4BPLHY89xEM_al5uK0aOmFgiML6CMGEZbezxOvTjOEs,587
131
+ ultralytics/nn/autobackend.py,sha256=42BYn6nKan5TaOjYa3sKg24RbaEWdSUVljRtqD7pyGA,27088
132
+ ultralytics/nn/tasks.py,sha256=O_ti6RM0kN66Cn0Nlg6qfGJ3HYHaLuATqemmeo9K_ug,38371
133
+ ultralytics/nn/modules/__init__.py,sha256=ejmeNK9L-yGUX3pGr_1-HlPcCdrf7XPLFVZ3OR0mmno,1954
134
+ ultralytics/nn/modules/block.py,sha256=1bi5rRzHNTg10VlRdpRP_xjTJHEIfMQ1FY2nIgHKmws,14488
135
+ ultralytics/nn/modules/conv.py,sha256=ndUYNL2f9DK41y1vVbtEusMByXy-LMMsBKlcWjRQ9Z8,12722
136
+ ultralytics/nn/modules/head.py,sha256=lLI7oZEQybT_iBMHRYWEqAOZ3wOOMxm9adRnDJyIMHQ,19536
137
+ ultralytics/nn/modules/transformer.py,sha256=GiHdW306OcsUilSwSOtMufvwK798Sc9pG9MiFAt2Ay4,17920
138
+ ultralytics/nn/modules/utils.py,sha256=ogkQJdpgsMwAR_6HzpPIbmnkxGxJscughWltxlaOgnw,3198
139
+ ultralytics/solutions/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
140
+ ultralytics/solutions/ai_gym.py,sha256=lzNYFRhHTgpRpcvm_wo8IiJSyWuWepcwQuMQhjf3x8U,5691
141
+ ultralytics/solutions/distance_calculation.py,sha256=_giqHm26K4fHHTc2rLWbs_f5DrX53OgmqXRoxpSQ_KI,6888
142
+ ultralytics/solutions/heatmap.py,sha256=2Ubj03kP1Xt4ltWHmzRLw-3Wq5xIFjT8xHSQwm4LkIw,10983
143
+ ultralytics/solutions/object_counter.py,sha256=OCWaOzEuYoRura4JkBEJ8ykQ0VSylNTVJkxeQ9mAuuo,10236
144
+ ultralytics/solutions/speed_estimation.py,sha256=k8gwZszYfxyoN0WNYc1kuDQuJHG4J5b3v-xwrFjal1c,6762
145
+ ultralytics/trackers/__init__.py,sha256=j72IgH2dZHQArMPK4YwcV5ieIw94fYvlGdQjB9cOQKw,227
146
+ ultralytics/trackers/basetrack.py,sha256=L-PNIwA6c4XRzVXKKVQVZFV6eNxnwMqRZvUN5__2Z4E,3671
147
+ ultralytics/trackers/bot_sort.py,sha256=39AvhYVbT7izF3--rX_e6Lhgb5czTA23gw6AgnNcRds,8601
148
+ ultralytics/trackers/byte_tracker.py,sha256=OHChGJWNyl0yhtxd2hj7di2j2z3orY1GSIVrGDVRaL8,18350
149
+ ultralytics/trackers/track.py,sha256=-fyy5Xem5e7CkoVM1XWqht2LaBQj6TcHwRq_l1-WviM,2997
150
+ ultralytics/trackers/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
151
+ ultralytics/trackers/utils/gmc.py,sha256=CWCskJJeB6cKMXABl2MhBw3M2kdeM-_RAHyj5QR7vrU,13949
152
+ ultralytics/trackers/utils/kalman_filter.py,sha256=JN1sAcfJZy8fTZxc8w3jUJnGQDKtgAL__p4nTR6RM2I,15168
153
+ ultralytics/trackers/utils/matching.py,sha256=FC3qZ5VIJov5F3A1coUB5b80s9kNF_9sunFeprtJD1Y,5038
154
+ ultralytics/utils/__init__.py,sha256=WphOGqOoNGBGh5QBL6yQxS3eQIKahKkMPaUszvGXack,34272
155
+ ultralytics/utils/autobatch.py,sha256=ygZ3f2ByIkcujB89ENcTnGWWnAQw5Pbg6nBuShg-5t4,3863
156
+ ultralytics/utils/benchmarks.py,sha256=wF0oWMM2satUASGyqdmnFt5Gixe0Twd9KQbeXkpB9gg,17527
157
+ ultralytics/utils/checks.py,sha256=NbjVW3vH48aExgK2TYTDcxFe3OsSwxIRyZFcOI-N2Qk,27580
158
+ ultralytics/utils/dist.py,sha256=3HeNbY2gp7vYhcvVhsrvTrQXpQmgT8tpmnzApf3eQRA,2267
159
+ ultralytics/utils/downloads.py,sha256=JTL4Y97vrolcqDeHAszPcTxVKE6ohDNLiJB399q1MNg,21189
160
+ ultralytics/utils/errors.py,sha256=GqP_Jgj_n0paxn8OMhn3DTCgoNkB2WjUcUaqs-M6SQk,816
161
+ ultralytics/utils/files.py,sha256=V1cD9sC3hGd5uNVdOa4uZGySGjnsXC6Lh7mjqI_UDxo,5275
162
+ ultralytics/utils/instance.py,sha256=fPClvPPtTk8VeXWiRv90DrFk1j1lTUKdYJtpZKUDDtA,15575
163
+ ultralytics/utils/loss.py,sha256=aMi7OBZS2c63KSeiWsYvDaykbLu5iTy3rR2Wt13-NCg,32575
164
+ ultralytics/utils/metrics.py,sha256=h0aQNyW2_eud3M-7KT8C1P15GeJkf9Sw9KoASXMPim0,53176
165
+ ultralytics/utils/ops.py,sha256=55SHUZL_BWNs6lRar9Nm_loJyDxNeDZQuQl5aCXsxgQ,32478
166
+ ultralytics/utils/patches.py,sha256=vFhjxtoZTT1zfj7ZkifAlZpFH2i_gEkz9svR1U3ZCEI,2233
167
+ ultralytics/utils/plotting.py,sha256=ByJ-2f9HXojmA5jWZhn71u6MMiMkIQyfCRUSqW6MHwc,42806
168
+ ultralytics/utils/tal.py,sha256=ADnEiWNV2-sb0ZVwgg6EbdFBgNCDiUrX2aG0zjMh2dM,16032
169
+ ultralytics/utils/torch_utils.py,sha256=Byij6JEKJeQE_G00wWpRJi0eorSo0xwXbwHJKzt_Jsk,25141
170
+ ultralytics/utils/triton.py,sha256=tX3iEHFVBLJctnn9gybVk7PHk5kMkkLxwwAyfeWiT8s,3934
171
+ ultralytics/utils/tuner.py,sha256=S5xet_s0K8T2pP71YVEFVGJnm0YoGDqJP0Ycr9PDlfY,6004
172
+ ultralytics/utils/callbacks/__init__.py,sha256=YrWqC3BVVaTLob4iCPR6I36mUxIUOpPJW7B_LjT78Qw,214
173
+ ultralytics/utils/callbacks/base.py,sha256=A8H6jXnPQJfOxA1ByTBWF2ePDs5ldccUabXG0u5BfRI,5776
174
+ ultralytics/utils/callbacks/clearml.py,sha256=K7bDf5tS8xL4KeFMkoVDL2kKkil3f4qoKy8KfZkD854,5897
175
+ ultralytics/utils/callbacks/comet.py,sha256=eLTIGTdsAdZYiXAhPhCToW0k4l7qqn_7I6wfW9-EOkg,13886
176
+ ultralytics/utils/callbacks/dvc.py,sha256=WIClMsuvhiiyrwRv5BsZLxjsxYNJ3Y8Vq7zN0Bthtro,5045
177
+ ultralytics/utils/callbacks/hub.py,sha256=bbtJLMTFADXFQXqu8k2xdqjUzvaW3CcCCNd8uE6m8R8,3431
178
+ ultralytics/utils/callbacks/mlflow.py,sha256=x3_au37OP23MeWNncoBFO2NIiwWRzZAQ0KdZ-Q0sRkg,4848
179
+ ultralytics/utils/callbacks/neptune.py,sha256=aU8xfwWSW-I6cPFSP-6eCcPeS1kIFTvOlZyqr-uhbfw,3783
180
+ ultralytics/utils/callbacks/raytune.py,sha256=6OgGNuC35F29lw8Dl_d0lue4-iBR6dqrBVQnIRQDx4E,632
181
+ ultralytics/utils/callbacks/tensorboard.py,sha256=duA3_g-avX14n0x5dCDNRlcwDujERemvlU4ZaRXW93Y,2934
182
+ ultralytics/utils/callbacks/wb.py,sha256=03ACY2YwpTRigD0ZQH7_zlpwMdGw0lt23zX4d5Zaz28,6650
183
+ ultralytics-8.0.239.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
184
+ ultralytics-8.0.239.dist-info/METADATA,sha256=AoAI-slVaGdo0F5if-r3LjBjBPFvvU31o_3yOMuVLX4,39414
185
+ ultralytics-8.0.239.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
186
+ ultralytics-8.0.239.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
187
+ ultralytics-8.0.239.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
188
+ ultralytics-8.0.239.dist-info/RECORD,,
@@ -1,187 +0,0 @@
1
- ultralytics/__init__.py,sha256=bueG2XVjIsolaBkaN87tMVBniO8AVoqkI-WJTdfQqdc,531
2
- ultralytics/assets/bus.jpg,sha256=wCAZxJecGR63Od3ZRERe9Aja1Weayrb9Ug751DS_vGM,137419
3
- ultralytics/assets/zidane.jpg,sha256=Ftc4aeMmen1O0A3o6GCDO9FlfBslLpTAw0gnetx7bts,50427
4
- ultralytics/cfg/__init__.py,sha256=123UY_uf8JEj2qIRkAJt-C3EMGnTQrdW5xei77_JUS4,20441
5
- ultralytics/cfg/default.yaml,sha256=fXBQCccyGRnLePGq-3GSKohK5qJpPyqPqUy7dRLmaGM,8196
6
- ultralytics/cfg/datasets/Argoverse.yaml,sha256=UDZRtNB-Ia68850fMjodbGTTcvJnopEsZ6DDe2qGbu0,2929
7
- ultralytics/cfg/datasets/DOTAv1.5.yaml,sha256=d5uYn46EIApPIOqXdXh96xjHS-dFzXxRHyXzMdMX8x0,1195
8
- ultralytics/cfg/datasets/DOTAv1.yaml,sha256=7CSyAa6cUZqS3XHbQJnpUBPpIsdjxm5HTvrwVz_gv7I,1167
9
- ultralytics/cfg/datasets/GlobalWheat2020.yaml,sha256=UnNRj348vxherTWaOKwzq7948gPZ4IC9gMHCYa0zi00,2060
10
- ultralytics/cfg/datasets/ImageNet.yaml,sha256=CQxQkT6LdywQzAMNAtdv5kUTI7z516NocebUMTDcK_I,42513
11
- ultralytics/cfg/datasets/Objects365.yaml,sha256=nTcfSdc_bBY8uKuyYAZRYjrHSpV4-EcwR7HNZq247lM,9329
12
- ultralytics/cfg/datasets/SKU-110K.yaml,sha256=mvHmdb0s6dbYifUSxxqtdr9N4-LFPXKr3JWoRNybXwE,2499
13
- ultralytics/cfg/datasets/VOC.yaml,sha256=9A_FzOCY0iFo61vyVz4erfbtWy44PJWMVjI1xV35Y3w,3657
14
- ultralytics/cfg/datasets/VisDrone.yaml,sha256=BIrrWOiyhHa00Yo-OCo_v8d0BoBSyRkY4DTPeB2NlQE,3079
15
- ultralytics/cfg/datasets/coco-pose.yaml,sha256=w3VKlL8M7SjLOdJb3YnIyUlx0KLZw_V_H-FACQibWfk,1608
16
- ultralytics/cfg/datasets/coco.yaml,sha256=TyO0WciW91SkoeNP6yX-mX8EGQfLHhWrqpC7CKDGWOg,2589
17
- ultralytics/cfg/datasets/coco128-seg.yaml,sha256=Zi6SR-SGKjgkVhXngvGtd0__Vs4Moe2LcwmKrKgiPzY,1931
18
- ultralytics/cfg/datasets/coco128.yaml,sha256=UhBuqpROmmhYTLLIXYIhSnT0Uo-pUsWT2x4200rjKBo,1914
19
- ultralytics/cfg/datasets/coco8-pose.yaml,sha256=mEGAoP_lo26dqXojNUnj7pv7bA4J9l3d7TI9BieZAFk,967
20
- ultralytics/cfg/datasets/coco8-seg.yaml,sha256=A5WI0oNOmJouOW5NSxlKtfDDw_pORMw3Ofbsugwsaws,1871
21
- ultralytics/cfg/datasets/coco8.yaml,sha256=zw8H49_J266ymlAGgf4yl4Z2DejA72uaKHMOTCwCloo,1846
22
- ultralytics/cfg/datasets/open-images-v7.yaml,sha256=-Jt6pLrkxJrsQDIkzxqhCJHW8WoYq9OzKDTXjGuZAQc,12499
23
- ultralytics/cfg/datasets/tiger-pose.yaml,sha256=WNOaxUM628ewNQbqz1lPRxhYpIDLktgAWwtOaiu3r98,869
24
- ultralytics/cfg/datasets/xView.yaml,sha256=v3H7uGibhN_RMHPCchqN_CikH1EtGIXTZuhDBKvGpjs,5222
25
- ultralytics/cfg/models/rt-detr/rtdetr-l.yaml,sha256=Vi0qtzSupvrWQzYWmHCiOc6kEvuKkRbAbqcdanKtEz8,1959
26
- ultralytics/cfg/models/rt-detr/rtdetr-resnet101.yaml,sha256=6-D9oVLN-KDAxYMdpl_C5VN_9P9RcqCsgNtNLSlV9b4,1533
27
- ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml,sha256=vwpY1mazBW2xHcTAparUlXo0cX7_CopcBRRI0ojw2-g,1531
28
- ultralytics/cfg/models/rt-detr/rtdetr-x.yaml,sha256=pVc1eYW_1VFyTlA_fMfj712CVwmG0_4ZyOEpZbMQwpE,2166
29
- ultralytics/cfg/models/v3/yolov3-spp.yaml,sha256=SK-lrXpjXlOpod0VJIV_T3kQ_NGRONP6Ma1HFako3NA,1550
30
- ultralytics/cfg/models/v3/yolov3-tiny.yaml,sha256=RcnGwbby2WtgS9cZ3jBybQuAHBDMpgMADPb0x6_bDM0,1252
31
- ultralytics/cfg/models/v3/yolov3.yaml,sha256=wXUDtWndgxIFbuaoeuY5tFcYZv87ZqOlrdhLKEToiuw,1537
32
- ultralytics/cfg/models/v5/yolov5-p6.yaml,sha256=3nY2FYH2lz8pfb3J3kFcY09-075f2ErF_p_i9wlyXqE,1923
33
- ultralytics/cfg/models/v5/yolov5.yaml,sha256=rsBD3nnBQNMcmV7X-twn2BevDGIChErdIcB-3eR-10Y,1550
34
- ultralytics/cfg/models/v6/yolov6.yaml,sha256=rXb2qPqpm14WVLV4nh8ib-fEjhRa_nuMiCkGdelXbDo,1735
35
- ultralytics/cfg/models/v8/yolov8-cls.yaml,sha256=rO8Eq8OuTQUkYMQi2AtNgVvtsPHYNxEXr9xT29k-IG8,920
36
- ultralytics/cfg/models/v8/yolov8-ghost-p2.yaml,sha256=-lUAC6ZCnqoh6mzxiwHABm4mt9bMZWfcmD3qFKXeeTE,2311
37
- ultralytics/cfg/models/v8/yolov8-ghost-p6.yaml,sha256=RIOVsIzaTKcB2AqbswRKPEtVEUHvA_GTyCzSGzAQQoc,2380
38
- ultralytics/cfg/models/v8/yolov8-ghost.yaml,sha256=y2MGNR0_IzbLqUDjG1IYKNHHLcH1MWkwGzc2IczJsVM,2120
39
- ultralytics/cfg/models/v8/yolov8-obb.yaml,sha256=jDb5KVG64UBeq1BzDLOtOMnve3uPdXPe-yfYi2EAWEI,1923
40
- ultralytics/cfg/models/v8/yolov8-p2.yaml,sha256=jgBsa0-uNwtDHGHJWLVEwuFwxq_twpl9ihRIc4b6bk8,1751
41
- ultralytics/cfg/models/v8/yolov8-p6.yaml,sha256=oGN0OQ9TtVnttzLd9frFVav8dPxe3OuUA8p4PFRrQmM,1856
42
- ultralytics/cfg/models/v8/yolov8-pose-p6.yaml,sha256=4sGjrH3lJ7i19Dq1aedCofUI3RyOsn3v98MzWyGovZ8,1949
43
- ultralytics/cfg/models/v8/yolov8-pose.yaml,sha256=kfQnVeZK5sfdRGKuBUpNmIUxXO89qWchQUG-xQHkDDk,1580
44
- ultralytics/cfg/models/v8/yolov8-rtdetr.yaml,sha256=7jfhW8JwL2HojeNR4PYNvsB3rJkiGBMA7VrZ2xdHJRs,1920
45
- ultralytics/cfg/models/v8/yolov8-seg-p6.yaml,sha256=bSPxw96Az9kibJ4D-5pvuhOMrKe1z7RrPuKqTtLFlOw,1866
46
- ultralytics/cfg/models/v8/yolov8-seg.yaml,sha256=QvXQOvQsyYj2GAB-ePB48g4N9jW5JdIkeH800Ev64uI,1490
47
- ultralytics/cfg/models/v8/yolov8.yaml,sha256=A01V3w3qsOBgAAT9e2AwxXhU_SALEI2IvdoqcPOTnxc,1913
48
- ultralytics/cfg/trackers/botsort.yaml,sha256=N3ddRUl2uOvJI_Q7TBIw88MyaeV240X_wlx5Z6IiUhU,890
49
- ultralytics/cfg/trackers/bytetrack.yaml,sha256=FFpmCj7E0xpOde7R-W3zUVcy6hKCHAij9qwp9SAp-pI,694
50
- ultralytics/data/__init__.py,sha256=TWN-3tE7pPBkGkvAFZoSexBkCw24Fp49swcKeIylHlE,389
51
- ultralytics/data/annotator.py,sha256=8Ui_4H4dAU09BQ-gDwW4uqDVMxiKZzNIfF1s5ZvhGk0,2122
52
- ultralytics/data/augment.py,sha256=nUfV9F4FeE3rbMe8qeAi6xirOnntdcbs7yBXeOP1sGw,51951
53
- ultralytics/data/base.py,sha256=ltqBt-UFnnPlK_2E4nVvYjIAUkR9PAgW1kNdGN101m4,13309
54
- ultralytics/data/build.py,sha256=fEfECMKU1jBXAetVQ4KftLKc0GrKeF0BqT8mUstCSBI,6608
55
- ultralytics/data/converter.py,sha256=tbV_LVvkr4gkLTuNM2v0dQPBuOBH2pknKlB3ivagzQU,12505
56
- ultralytics/data/dataset.py,sha256=1Mp9pNuAaXrhidQryBnyuZegGHrmy1WJp33i5G744Fo,16616
57
- ultralytics/data/loaders.py,sha256=yDI0Xtb6IxpkU-fxdlPiBOY1FYDPEPDahre0rcgy2T8,22200
58
- ultralytics/data/split_dota.py,sha256=ksPKf972nAV2C0_OVJVcQKGJeJqFSroIhg7hste9ob0,10079
59
- ultralytics/data/utils.py,sha256=fVCAV86yyd1ANZKs9R4936BT0trmc5NI9bj6E4AYfIc,29529
60
- ultralytics/data/explorer/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
61
- ultralytics/data/explorer/explorer.py,sha256=T4MaZN91zAAI7rOzbj_bWPeZ3_Nzds6o1GSb_hW1-ZU,15553
62
- ultralytics/data/explorer/utils.py,sha256=rdUXFY-N4UWM3iWqyck6-TabyQnq1WoJDA8Pb2TUP74,3928
63
- ultralytics/data/explorer/gui/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
64
- ultralytics/data/explorer/gui/dash.py,sha256=nyzCCUOmpX2cIxp0wayIqiKRY7iGXKHLa0dMe_7g8pI,6700
65
- ultralytics/engine/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
66
- ultralytics/engine/exporter.py,sha256=5Lv_xWGHtrqa7QZr7l2J0lzJdPf-mz2Y98AXLwlMsjs,51308
67
- ultralytics/engine/model.py,sha256=L1irDV83yBT2aWu053ukhsFGh5hZlsqKyJb_9-d5D0I,20107
68
- ultralytics/engine/predictor.py,sha256=d6WBp4UaQZIoeyhytiferu1GPsYsSxG5m_86nMoyIyg,17833
69
- ultralytics/engine/results.py,sha256=BxLiNemM4b6jCeUDTylxv51wEG6Wb6tsv7dDsH8XVQE,26618
70
- ultralytics/engine/trainer.py,sha256=7bx8oYg6XtgUD6OKRWLbXREvpewQdVXaQAnaSKVoS4A,34233
71
- ultralytics/engine/tuner.py,sha256=_9MAsXQwDtmDznqb6_cgk1DIo8FTwLgM3OTEifCxRp0,11715
72
- ultralytics/engine/validator.py,sha256=1-N1Fh563A4sD-sB1c3MiYX9PtJliZ-ta0c-sObUDfc,14453
73
- ultralytics/hub/__init__.py,sha256=iZzEg98gDEr2bfPZopHwnFIfDVDZ9a-yuAAkPKnn2hw,3685
74
- ultralytics/hub/auth.py,sha256=D_ffQgmWNfp-ccJ2guc76UgOcMRPEKzcOJI8AALZesk,5364
75
- ultralytics/hub/session.py,sha256=tnUz6R2JHxTBSSBMwCoEDteMNGARDay1Ecp6FN1ieEc,8423
76
- ultralytics/hub/utils.py,sha256=3zQhBCl8zHrqgHHOzVrcw7SoHtBj-GEynX2pNkLH6YU,9581
77
- ultralytics/models/__init__.py,sha256=RRIwQXcNlY3adevQs6mzD00OqejzASHro9TCSLNkwac,173
78
- ultralytics/models/fastsam/__init__.py,sha256=c3N-XQAJ9Mkw1WGw5gev4xXCUNiOp-_IgxonvqeYSVM,254
79
- ultralytics/models/fastsam/model.py,sha256=g3usRQyZgzGz06YIri1tB9FdSWJsXq195D6Ll2AAGpY,1055
80
- ultralytics/models/fastsam/predict.py,sha256=VKOI55m6mMNKD9Ox1gJLavWHvWKa9OFjaLdy3zQXtF4,4111
81
- ultralytics/models/fastsam/prompt.py,sha256=W1CeudGMVGmP5CLy9Wq_hMJzpkD8Vk1qIbGiQ-g5IdQ,16279
82
- ultralytics/models/fastsam/utils.py,sha256=r-b362Wb7P2ZAlOwWckPJM6HLvg-eFDDz4wkA0ymLd0,2157
83
- ultralytics/models/fastsam/val.py,sha256=q6CowEk9Ob5Hvzbtz_H4dpXQOxMfuIJNPUG3L2A1qdw,1967
84
- ultralytics/models/nas/__init__.py,sha256=O7qvgqJqoLB1NXwjTNHMJHJRhDwNHS2P_oyUV_b1qq8,179
85
- ultralytics/models/nas/model.py,sha256=FvsafZK-3bJ5hCjUDdXQeNv-TI-7B-rjzWKP_K0PrLY,2864
86
- ultralytics/models/nas/predict.py,sha256=Ac8gwfzIdOFf6JKj261aLTcz5DOPOTpFH2JWTB69li0,2253
87
- ultralytics/models/nas/val.py,sha256=cgOWsKloCYYpzL94vzM6ENYRnAN0MeLGdHZ5OAUIBN4,1846
88
- ultralytics/models/rtdetr/__init__.py,sha256=1Zpc6ZcizFO0EMhP8X4m3DG27vDBX4aM4RX0rMSeo6E,197
89
- ultralytics/models/rtdetr/model.py,sha256=KhZ-smEQKpmZdEaSHft_EnRd-OZaebiVSz6Ue1tzipQ,2144
90
- ultralytics/models/rtdetr/predict.py,sha256=pmjUlcUTqxoBNa5tW_EuFjh7ldXSm99Qnk5MEaJF0DQ,3425
91
- ultralytics/models/rtdetr/train.py,sha256=9zoMg1kKik1DGUmeoekx2u25uPZVqIpCVBeUC3dOHJY,3798
92
- ultralytics/models/rtdetr/val.py,sha256=gSVynpopUMPZwn247w587597Ox1d_yhmpkQhn2bxNdg,5228
93
- ultralytics/models/sam/__init__.py,sha256=uPcWRJO8p5YlMZyxc6bmaT5W4kZWw4oyFgu_rEX9ie0,144
94
- ultralytics/models/sam/amg.py,sha256=j2UE-EELjre_904vkevrw6kiDcacxDN20G8o1Q-9zA8,8107
95
- ultralytics/models/sam/build.py,sha256=icGv7lT7XmxoMkI6ViI5HKvl_l8rstR5BO_WSXEuotU,4871
96
- ultralytics/models/sam/model.py,sha256=IXLp5G_FP3BjfjLuBdDFmGJipAGaQL-Hj3ahieQzQlE,4707
97
- ultralytics/models/sam/predict.py,sha256=oDUmLkA0eLL3IEvgVZI5iQILcPkoC_6W6l5oQocfVMc,23719
98
- ultralytics/models/sam/modules/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
99
- ultralytics/models/sam/modules/decoders.py,sha256=3A9tjYUI_AL61ZhGkdJXfXoaziG194keUBjUPAcXWrc,7795
100
- ultralytics/models/sam/modules/encoders.py,sha256=ETAWp0j_pH_ZzKT61xXeFglRtKfswpfqzn7QnYXHDfY,25003
101
- ultralytics/models/sam/modules/sam.py,sha256=gO5T9sLry0ZrpGewIzZfmlLqdpH0-Q3-gwEKft6Rn9o,2781
102
- ultralytics/models/sam/modules/tiny_encoder.py,sha256=4NmTVqMJsJTdqaFqXCurgK5qvoGLEPMwkCMAKrAPs5k,28980
103
- ultralytics/models/sam/modules/transformer.py,sha256=94thnK3t33GSw_I1M6AA4uHv6ow4btVu__L7HPbYrro,11157
104
- ultralytics/models/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
105
- ultralytics/models/utils/loss.py,sha256=3fHny9zGZUykRhDjzTvBNp8Y5fDhXxOKaWTSx4Fmriw,15961
106
- ultralytics/models/utils/ops.py,sha256=I-ajy0ME9PgXYd_3mbV8EQpOSDJRSO6VK5famdVhKSY,13283
107
- ultralytics/models/yolo/__init__.py,sha256=ttjTrFQhjxLkv8fRZM9JuxfiKP979o5FreDIsRF67lw,207
108
- ultralytics/models/yolo/model.py,sha256=h-JMrOn_UdyCNeHV_UrLFXtoNjA4HDnzRPFa2nfQ6OU,1661
109
- ultralytics/models/yolo/classify/__init__.py,sha256=377bRZtp3zOFJKZKiAME8K_OJ_IuDlkR2CawJ1CM3t0,355
110
- ultralytics/models/yolo/classify/predict.py,sha256=FWBR2q03ATdch7bfGZQF_FvGH2T0l75evOd1NVhNbu4,2517
111
- ultralytics/models/yolo/classify/train.py,sha256=0cVfR4Qw5VoWi-iozt4wwF04OG-iQhnO3T-VImsbynM,6765
112
- ultralytics/models/yolo/classify/val.py,sha256=0kl4uG26XOlkGjx2RlpKJzMXhMO4_EHx3e3A4o2jfWs,4959
113
- ultralytics/models/yolo/detect/__init__.py,sha256=XaRS_yfJHZ1UdeaTSve1d7eGYSYwXBJRp6PXM0fZgyQ,229
114
- ultralytics/models/yolo/detect/predict.py,sha256=ukb3YJSTW95fIUyf-52aykgKcK1WSzQTBGwYHVFq4zY,1627
115
- ultralytics/models/yolo/detect/train.py,sha256=faO82SB_9bBqy8Ov4dtai8IMK2L9dV-GBC7VHgOyZLc,6332
116
- ultralytics/models/yolo/detect/val.py,sha256=ZKf4NN_2DdoU6cRJeBS6_WfX1ZJqeeCoYYdTlCEs2-o,13634
117
- ultralytics/models/yolo/obb/__init__.py,sha256=JfdGn4zSyLyR5KjphgqF6gyF2smWoqe9Q2slQDdntQA,193
118
- ultralytics/models/yolo/obb/predict.py,sha256=G8r4sJo6cQKDti1e3GaccuvGjl2_90L1sucWcq3pOqE,2080
119
- ultralytics/models/yolo/obb/train.py,sha256=6NYsEYXbxlvaP2-5EeIjGm9i-hlWPXlQMEswdExybPM,1477
120
- ultralytics/models/yolo/obb/val.py,sha256=ll2NT0YssdK1W0K_OCcyIcdycPERO5yP62KvZ8Y3tn0,8472
121
- ultralytics/models/yolo/pose/__init__.py,sha256=zzdVWRgbHSvJF2xTeGB62VhHZM5y-7Yq9YwVGczvB_o,199
122
- ultralytics/models/yolo/pose/predict.py,sha256=-BMzGZOxC6LrCDjj8g-c8JPzLLCEgZHOebcXrq6Vabw,2517
123
- ultralytics/models/yolo/pose/train.py,sha256=nN_ZqU34COAyW0GWSLR0QlQeYvP2xmmecGT3sDaF3JI,3035
124
- ultralytics/models/yolo/pose/val.py,sha256=PzAQZxIF8HMsixWwvV8oorGqevwGrTCfsGqT4gtXsX8,10445
125
- ultralytics/models/yolo/segment/__init__.py,sha256=2-fAGrEWcnOZDlspSWOfsyYfIAcDE3sUgbv8QTUgnRM,247
126
- ultralytics/models/yolo/segment/predict.py,sha256=yUs60HFBn7PZ3mErtUAnT69ijPBzFdTs7JH-v7-rAZY,2612
127
- ultralytics/models/yolo/segment/train.py,sha256=SeV0P7R8c6z-8rhhHHYlQnIr1OxF1Dt9T1dSZRvXOEQ,2453
128
- ultralytics/models/yolo/segment/val.py,sha256=CwTbz7dIEuiJTpBxJ93bLwrdURmsI71Kd3cFr362sbU,11784
129
- ultralytics/nn/__init__.py,sha256=7T_GW3YsPg1kA-74UklF2UcabcRyttRZYrCOXiNnJqU,555
130
- ultralytics/nn/autobackend.py,sha256=BRiDYbLrsIOF9DHoVB-IbLUZ1NOtzBdSy9xb420c2FQ,27022
131
- ultralytics/nn/tasks.py,sha256=FJj5wycHQ3-Gn11oFoIn_8tQSa5fZai3Ymb8aPl4dBg,38090
132
- ultralytics/nn/modules/__init__.py,sha256=4xJL1FShMrNR1pljKHjLlR8zDN1hsp-0QmFL1yHAUks,1721
133
- ultralytics/nn/modules/block.py,sha256=_A24bZ1xSWvrvqk5RODeobBZL6ReI6ICk-vwilERTZs,14475
134
- ultralytics/nn/modules/conv.py,sha256=z_OQka9s5h0p3k1yWrq7SHg1BsA6PfN5lDSQubW2I_k,12774
135
- ultralytics/nn/modules/head.py,sha256=xnbIm2Xu8cGTcNdEPEQYqJ1do1Mwe4ht69oB-UvHubM,19802
136
- ultralytics/nn/modules/transformer.py,sha256=R7K_3r4aTlvghiTTRzh69NmNzlO_1SiiifbevHGllEE,17895
137
- ultralytics/nn/modules/utils.py,sha256=q-qfebnMD2iqZyTslZTHsZYW7hyrX62VRgUmHX683-U,3436
138
- ultralytics/solutions/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
139
- ultralytics/solutions/ai_gym.py,sha256=YnBeC8Vf3-ai4OQIebEXl5yDho6uRspY2XVL8Ipr-h8,6235
140
- ultralytics/solutions/distance_calculation.py,sha256=KoxfNUdT3BanYAcbRYBY52yjEabWwGNDWf1_EV0QAR0,6760
141
- ultralytics/solutions/heatmap.py,sha256=18RgS-it6JzMGmmECrQPQbAoLXU8QgklWUP0CXxVPys,10259
142
- ultralytics/solutions/object_counter.py,sha256=KmdRXipFS5wk9RXA-4d45jLo3m6RggL-bQSWyqKKULY,10394
143
- ultralytics/solutions/speed_estimation.py,sha256=icTk1846yo7QqkfQRLaqZMPxq2uLrnOvLesw4WjN7Jk,6776
144
- ultralytics/trackers/__init__.py,sha256=dR9unDaRBd6MgMnTKxqJZ0KsJ8BeFGg-LTYQvC7BnIY,227
145
- ultralytics/trackers/basetrack.py,sha256=Vbs76Zue_jYdJFudztTJaUnGgMMUwVqoa0BSOhyBh0o,3580
146
- ultralytics/trackers/bot_sort.py,sha256=orTkrMj2yHfEQVKaQVWbguTx98S2gvLnaOB0D2JN1Gc,8602
147
- ultralytics/trackers/byte_tracker.py,sha256=3dAh-h6dN1-d0-88mBr04BD_Gq6NvhPOy4FeD3PRnzI,18422
148
- ultralytics/trackers/track.py,sha256=-djBk0crrL0g3jjIdJmPo_CO_XD509JqAlPof6GCusM,2997
149
- ultralytics/trackers/utils/__init__.py,sha256=mHtJuK4hwF8cuV-VHDc7tp6u6D1gHz2Z7JI8grmQDTs,42
150
- ultralytics/trackers/utils/gmc.py,sha256=hjQX7VolfjGJMOC9r1pZFHEvVYFFz2TQJso7NiGT17o,14070
151
- ultralytics/trackers/utils/kalman_filter.py,sha256=vQZ7oui0eDeeRzJlBD9SlicHVoMjKdnaCsiuXGGXrN4,14830
152
- ultralytics/trackers/utils/matching.py,sha256=1VWQK9BQgGV_hyOgUN05gZAksciMdwpAhUXaPhkK-38,5064
153
- ultralytics/utils/__init__.py,sha256=c9N9uzWyRLbXZRVSDo21V9bZf3FT5BLv4Zm5piXxlVk,34073
154
- ultralytics/utils/autobatch.py,sha256=mZjJerTi6WTzGq1_0JiU8XNHi70b1psCOAE-feZROgs,3862
155
- ultralytics/utils/benchmarks.py,sha256=ct6g9UyfHPi6a7_EuppbTrVeu_ePiCLF7Kib8RZKRgw,18217
156
- ultralytics/utils/checks.py,sha256=lXpovrtUgjpv6axCoSsxYDCCugXAIZ4OQ0PD2-Sovcw,27526
157
- ultralytics/utils/dist.py,sha256=egR2Z6Xlg75v72hddTut0q0-BIYvF-YCn_HE7PByuK8,2396
158
- ultralytics/utils/downloads.py,sha256=m563hzrSfQlJ8CVu2AAFVkkOBERK-QQB1zqp462jjI0,21582
159
- ultralytics/utils/errors.py,sha256=wcNM8Yc0ln4X868kUM6pIsjKT_W67Kez4Vm72Xe-tYo,816
160
- ultralytics/utils/files.py,sha256=bDBjjEjlsgDvbn0DWxBGIs90GJM-XKLsYuJ83pPmk-c,5277
161
- ultralytics/utils/instance.py,sha256=z08sAPcguogK-GUbVilAIh72uk0yCXvEF_7Tmcm8k_g,15573
162
- ultralytics/utils/loss.py,sha256=GrZyJLpzIVMYFFIjcHetr-PUEBRzilYeUB-M6pgIhu4,32515
163
- ultralytics/utils/metrics.py,sha256=rTuD6-35D3c5YI72rFfuSPg5EyT4B1MRc0XfxNRDT0o,53701
164
- ultralytics/utils/ops.py,sha256=8q2yx6pE6TKxQ-sdm90Mx3aB6x8fWwkAXJWBxriq1_A,32419
165
- ultralytics/utils/patches.py,sha256=V3ARuy0sg-_yn6nzL7iOWSzR_RzFOuzsICy4P6qUegc,2233
166
- ultralytics/utils/plotting.py,sha256=bdtzjAkzbO-2TfFBcTj2BvTeYG5l_BuxDNHtY08M6kM,42086
167
- ultralytics/utils/tal.py,sha256=TVAVirGJI2qh8KUEhzB1eQfIPCb8qwwgLJbW6aSQw9c,16040
168
- ultralytics/utils/torch_utils.py,sha256=bp71tJB1UiR1McY9fnv7CLy5Ldb0iDiCLHj8eZjn0D4,25238
169
- ultralytics/utils/triton.py,sha256=opbB1ndgwfmUJzyvUH9vvMe2SrDW6FqmFxKEeNDaALQ,3932
170
- ultralytics/utils/tuner.py,sha256=8QfeoYdVtPZHSkg7o06DTlwFKQS-f_5XemDa1vKkums,6227
171
- ultralytics/utils/callbacks/__init__.py,sha256=nhrnMPpPDb5fgqw42w8e7fC5TjEPC-jp04dpQtaQtkU,214
172
- ultralytics/utils/callbacks/base.py,sha256=yh4yWvwOgPY2RoLYfDU6-rwpndKvaox7hsd49G-Gkjc,5775
173
- ultralytics/utils/callbacks/clearml.py,sha256=x6vZoDriszWDUyR0xGz30hGnONo1Np3l94IkuRnzkmY,6275
174
- ultralytics/utils/callbacks/comet.py,sha256=58KW2zaqxFnn7Uab1fDBE5p89A1KKi2bjqTFK95sFkI,13870
175
- ultralytics/utils/callbacks/dvc.py,sha256=pfywO1UqXTcXqo7WdvjPfhSKu8KmoMr0meu5LEh0rrY,4997
176
- ultralytics/utils/callbacks/hub.py,sha256=ViiYhxTUxrWW9KXp0NhjXYoK8vxJoFa8gIxZRtmQT1o,3350
177
- ultralytics/utils/callbacks/mlflow.py,sha256=0Rpblb_AioGFqgrKdV4xUhPjXdXHTutXFoy3hZdPMWc,4828
178
- ultralytics/utils/callbacks/neptune.py,sha256=qIN0gJipB1f3Di7bw0Rb28jLYoCzJSWSqFhVgyC5Gi0,3697
179
- ultralytics/utils/callbacks/raytune.py,sha256=PGZvW_haVq8Cqha3GgvL7iBMAaxfn8_3u_IIdYCNMPo,608
180
- ultralytics/utils/callbacks/tensorboard.py,sha256=XXnpkIJrI_A_68JLRvYvRMHzekn-US1uIcru7vRs_e0,2896
181
- ultralytics/utils/callbacks/wb.py,sha256=x_j4ZH4Klp0_Ld13f0UezFluUTS5Ovfgk9hcjwqeruU,6762
182
- ultralytics-8.0.237.dist-info/LICENSE,sha256=DZak_2itbUtvHzD3E7GNUYSRK6jdOJ-GqncQ2weavLA,34523
183
- ultralytics-8.0.237.dist-info/METADATA,sha256=hql1c6kS7aIwcgfdKQ-gEdq-Vxa8XVTVaKLdBO1urlM,39283
184
- ultralytics-8.0.237.dist-info/WHEEL,sha256=oiQVh_5PnQM0E3gPdiz09WCNmwiHDMaGer_elqB3coM,92
185
- ultralytics-8.0.237.dist-info/entry_points.txt,sha256=YM_wiKyTe9yRrsEfqvYolNO5ngwfoL4-NwgKzc8_7sI,93
186
- ultralytics-8.0.237.dist-info/top_level.txt,sha256=XP49TwiMw4QGsvTLSYiJhz1xF_k7ev5mQ8jJXaXi45Q,12
187
- ultralytics-8.0.237.dist-info/RECORD,,