ubc-solar-physics 1.0.3__cp310-cp310-win32.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- core.cp310-win32.pyd +0 -0
- physics/__init__.py +12 -0
- physics/__version__.py +16 -0
- physics/environment/__init__.py +22 -0
- physics/environment/environment.rs +2 -0
- physics/environment/gis/__init__.py +7 -0
- physics/environment/gis/base_gis.py +24 -0
- physics/environment/gis/gis.py +337 -0
- physics/environment/gis/gis.rs +25 -0
- physics/environment/gis.rs +1 -0
- physics/environment/meteorology/__init__.py +3 -0
- physics/environment/meteorology/base_meteorology.py +69 -0
- physics/environment/meteorology/clouded_meteorology.py +601 -0
- physics/environment/meteorology/irradiant_meteorology.py +106 -0
- physics/environment/meteorology/meteorology.rs +138 -0
- physics/environment/meteorology.rs +1 -0
- physics/environment/race.py +89 -0
- physics/environment.rs +2 -0
- physics/lib.rs +98 -0
- physics/models/__init__.py +13 -0
- physics/models/arrays/__init__.py +7 -0
- physics/models/arrays/arrays.rs +0 -0
- physics/models/arrays/base_array.py +6 -0
- physics/models/arrays/basic_array.py +39 -0
- physics/models/arrays.rs +1 -0
- physics/models/battery/__init__.py +7 -0
- physics/models/battery/base_battery.py +29 -0
- physics/models/battery/basic_battery.py +141 -0
- physics/models/battery/battery.rs +0 -0
- physics/models/battery.rs +1 -0
- physics/models/constants.py +23 -0
- physics/models/lvs/__init__.py +7 -0
- physics/models/lvs/base_lvs.py +6 -0
- physics/models/lvs/basic_lvs.py +18 -0
- physics/models/lvs/lvs.rs +0 -0
- physics/models/lvs.rs +1 -0
- physics/models/motor/__init__.py +7 -0
- physics/models/motor/base_motor.py +6 -0
- physics/models/motor/basic_motor.py +174 -0
- physics/models/motor/motor.rs +0 -0
- physics/models/motor.rs +1 -0
- physics/models/regen/__init__.py +7 -0
- physics/models/regen/base_regen.py +6 -0
- physics/models/regen/basic_regen.py +39 -0
- physics/models/regen/regen.rs +0 -0
- physics/models/regen.rs +1 -0
- physics/models.rs +5 -0
- ubc_solar_physics-1.0.3.dist-info/LICENSE +21 -0
- ubc_solar_physics-1.0.3.dist-info/METADATA +136 -0
- ubc_solar_physics-1.0.3.dist-info/RECORD +52 -0
- ubc_solar_physics-1.0.3.dist-info/WHEEL +5 -0
- ubc_solar_physics-1.0.3.dist-info/top_level.txt +1 -0
core.cp310-win32.pyd
ADDED
Binary file
|
physics/__init__.py
ADDED
physics/__version__.py
ADDED
@@ -0,0 +1,16 @@
|
|
1
|
+
# file generated by setuptools_scm
|
2
|
+
# don't change, don't track in version control
|
3
|
+
TYPE_CHECKING = False
|
4
|
+
if TYPE_CHECKING:
|
5
|
+
from typing import Tuple, Union
|
6
|
+
VERSION_TUPLE = Tuple[Union[int, str], ...]
|
7
|
+
else:
|
8
|
+
VERSION_TUPLE = object
|
9
|
+
|
10
|
+
version: str
|
11
|
+
__version__: str
|
12
|
+
__version_tuple__: VERSION_TUPLE
|
13
|
+
version_tuple: VERSION_TUPLE
|
14
|
+
|
15
|
+
__version__ = version = '1.0.3'
|
16
|
+
__version_tuple__ = version_tuple = (1, 0, 3)
|
@@ -0,0 +1,22 @@
|
|
1
|
+
from .race import (
|
2
|
+
Race,
|
3
|
+
compile_races
|
4
|
+
)
|
5
|
+
|
6
|
+
from .gis import (
|
7
|
+
GIS,
|
8
|
+
)
|
9
|
+
|
10
|
+
from .meteorology import (
|
11
|
+
IrradiantMeteorology,
|
12
|
+
CloudedMeteorology,
|
13
|
+
BaseMeteorology
|
14
|
+
)
|
15
|
+
|
16
|
+
__all__ = [
|
17
|
+
"IrradiantMeteorology",
|
18
|
+
"CloudedMeteorology",
|
19
|
+
"GIS",
|
20
|
+
"Race",
|
21
|
+
"compile_races"
|
22
|
+
]
|
@@ -0,0 +1,24 @@
|
|
1
|
+
from abc import ABC, abstractmethod
|
2
|
+
import numpy as np
|
3
|
+
|
4
|
+
|
5
|
+
class BaseGIS(ABC):
|
6
|
+
@abstractmethod
|
7
|
+
def calculate_closest_gis_indices(self, cumulative_distances) -> np.ndarray:
|
8
|
+
raise NotImplementedError
|
9
|
+
|
10
|
+
@abstractmethod
|
11
|
+
def get_path_elevations(self) -> np.ndarray:
|
12
|
+
raise NotImplementedError
|
13
|
+
|
14
|
+
@abstractmethod
|
15
|
+
def get_gradients(self, gis_indices) -> np.ndarray:
|
16
|
+
raise NotImplementedError
|
17
|
+
|
18
|
+
@abstractmethod
|
19
|
+
def get_time_zones(self, gis_indices) -> np.ndarray:
|
20
|
+
raise NotImplementedError
|
21
|
+
|
22
|
+
@abstractmethod
|
23
|
+
def get_path(self) -> np.ndarray:
|
24
|
+
raise NotImplementedError
|
@@ -0,0 +1,337 @@
|
|
1
|
+
import logging
|
2
|
+
import math
|
3
|
+
import core
|
4
|
+
import numpy as np
|
5
|
+
import sys
|
6
|
+
|
7
|
+
from tqdm import tqdm
|
8
|
+
from xml.dom import minidom
|
9
|
+
from haversine import haversine, Unit
|
10
|
+
from physics.environment.gis.base_gis import BaseGIS
|
11
|
+
|
12
|
+
|
13
|
+
class GIS(BaseGIS):
|
14
|
+
def __init__(self, route_data, origin_coord, current_coord=None):
|
15
|
+
"""
|
16
|
+
|
17
|
+
Initialises a GIS (geographic location system) object. This object is responsible for getting the
|
18
|
+
simulation's planned route from the Google Maps API and performing operations on the received data.
|
19
|
+
|
20
|
+
Requires a map, ``route_data`` with certain keys.
|
21
|
+
1. "path": an iterable of shape [N, 2] representing N coordinates in the form (latitude, longitude).
|
22
|
+
2. "elevations": an iterable of shape [N] where each Nth element is the elevation, in meters, of the Nth path coordinate.
|
23
|
+
3. "time_zones": an iterable of shape [N] where each Nth element is the UTC time zone offset of the Nth path coordinate.
|
24
|
+
4. "num_unique_coords": the number of unique coordinates (that is, if the path is a single lap that has been tiled, how many path coordinates compose a single lap).
|
25
|
+
|
26
|
+
:param route_data: map of data containing "path", "elevations", "time_zones", and "num_unique_coords".
|
27
|
+
:param origin_coord: NumPy array containing the start coordinate (lat, long) of the planned travel route
|
28
|
+
|
29
|
+
"""
|
30
|
+
self.path = route_data['path']
|
31
|
+
self.launch_point = route_data['path'][0]
|
32
|
+
self.path_elevations = route_data['elevations']
|
33
|
+
self.path_time_zones = route_data['time_zones']
|
34
|
+
self.num_unique_coords = route_data['num_unique_coords']
|
35
|
+
|
36
|
+
if current_coord is not None:
|
37
|
+
if not np.array_equal(current_coord, origin_coord):
|
38
|
+
logging.warning("Current position is not origin position. Modifying path data.\n")
|
39
|
+
|
40
|
+
# We need to find the closest coordinate along the path to the vehicle position
|
41
|
+
current_coord_index = GIS._find_closest_coordinate_index(current_coord, self.path)
|
42
|
+
|
43
|
+
# All coords before the current coordinate should be discarded
|
44
|
+
self.path = self.path[current_coord_index:]
|
45
|
+
self.path_elevations = self.path_elevations[current_coord_index:]
|
46
|
+
self.path_time_zones = self.path_time_zones[current_coord_index:]
|
47
|
+
|
48
|
+
self.path_distances = calculate_path_distances(self.path)
|
49
|
+
self.path_length = np.cumsum(calculate_path_distances(self.path[:self.num_unique_coords]))[-1]
|
50
|
+
self.path_gradients = calculate_path_gradients(self.path_elevations, self.path_distances)
|
51
|
+
|
52
|
+
@staticmethod
|
53
|
+
def process_KML_file(route_file):
|
54
|
+
"""
|
55
|
+
|
56
|
+
Load the FSGP Track from a KML file exported from a Google Earth project.
|
57
|
+
|
58
|
+
Ensure to follow guidelines enumerated in this directory's `README.md` when creating and
|
59
|
+
loading new route files.
|
60
|
+
|
61
|
+
:return: Array of N coordinates (latitude, longitude) in the shape [N][2].
|
62
|
+
"""
|
63
|
+
with open(route_file) as f:
|
64
|
+
data = minidom.parse(f)
|
65
|
+
kml_coordinates = data.getElementsByTagName("coordinates")[0].childNodes[0].data
|
66
|
+
coordinates: np.ndarray = np.array(parse_coordinates_from_kml(kml_coordinates))
|
67
|
+
|
68
|
+
# Google Earth exports coordinates in order longitude, latitude, when we want the opposite
|
69
|
+
return np.roll(coordinates, 1, axis=1)
|
70
|
+
|
71
|
+
def calculate_closest_gis_indices(self, distances):
|
72
|
+
"""
|
73
|
+
|
74
|
+
Takes in an array of point distances from starting point, returns a list of
|
75
|
+
``self.path`` indices of coordinates which have a distance from the starting point
|
76
|
+
closest to the point distances.
|
77
|
+
|
78
|
+
:param np.ndarray distances: (float[N]) array of distances, where cumulative_distances[x] > cumulative_distances[x-1]
|
79
|
+
:returns: (float[N]) array of indices of path
|
80
|
+
:rtype: np.ndarray
|
81
|
+
|
82
|
+
"""
|
83
|
+
return core.closest_gis_indices_loop(distances, self.path_distances)
|
84
|
+
|
85
|
+
@staticmethod
|
86
|
+
def _python_calculate_closest_gis_indices(distances, path_distances):
|
87
|
+
"""
|
88
|
+
|
89
|
+
Python implementation of rust core.closest_gis_indices_loop. See parent function for documentation details.
|
90
|
+
|
91
|
+
"""
|
92
|
+
|
93
|
+
current_coordinate_index = 0
|
94
|
+
result = []
|
95
|
+
|
96
|
+
with tqdm(total=len(distances), file=sys.stdout, desc="Calculating closest GIS indices") as pbar:
|
97
|
+
distance_travelled = 0
|
98
|
+
for distance in np.nditer(distances):
|
99
|
+
distance_travelled += distance
|
100
|
+
|
101
|
+
while distance_travelled > path_distances[current_coordinate_index]:
|
102
|
+
distance_travelled -= path_distances[current_coordinate_index]
|
103
|
+
current_coordinate_index += 1
|
104
|
+
|
105
|
+
if current_coordinate_index >= len(path_distances) - 1:
|
106
|
+
current_coordinate_index = len(path_distances) - 1
|
107
|
+
|
108
|
+
result.append(current_coordinate_index)
|
109
|
+
pbar.update(1)
|
110
|
+
|
111
|
+
return np.array(result)
|
112
|
+
|
113
|
+
# ----- Getters -----
|
114
|
+
def get_time_zones(self, gis_indices):
|
115
|
+
"""
|
116
|
+
|
117
|
+
Takes in an array of path indices, returns the time zone at each index
|
118
|
+
|
119
|
+
:param np.ndarray gis_indices: (float[N]) array of path indices
|
120
|
+
:returns: (float[N]) array of time zones in seconds
|
121
|
+
:rtype: np.ndarray
|
122
|
+
|
123
|
+
"""
|
124
|
+
|
125
|
+
return self.path_time_zones[gis_indices]
|
126
|
+
|
127
|
+
def get_gradients(self, gis_indices):
|
128
|
+
"""
|
129
|
+
|
130
|
+
Takes in an array of path indices, returns the road gradient at each index
|
131
|
+
|
132
|
+
:param np.ndarray gis_indices: (float[N]) array of path indices
|
133
|
+
:returns: (float[N]) array of road gradients
|
134
|
+
:rtype np.ndarray:
|
135
|
+
|
136
|
+
"""
|
137
|
+
|
138
|
+
return self.path_gradients[gis_indices]
|
139
|
+
|
140
|
+
def get_path(self):
|
141
|
+
"""
|
142
|
+
Returns all N coordinates of the path in a NumPy array
|
143
|
+
[N][latitude, longitude]
|
144
|
+
|
145
|
+
:rtype: np.ndarray
|
146
|
+
|
147
|
+
"""
|
148
|
+
|
149
|
+
return self.path
|
150
|
+
|
151
|
+
def get_path_elevations(self):
|
152
|
+
"""
|
153
|
+
|
154
|
+
Returns all N elevations of the path in a NumPy array
|
155
|
+
[N][elevation]
|
156
|
+
|
157
|
+
:rtype: np.ndarray
|
158
|
+
|
159
|
+
"""
|
160
|
+
|
161
|
+
return self.path_elevations
|
162
|
+
|
163
|
+
def get_path_distances(self):
|
164
|
+
"""
|
165
|
+
|
166
|
+
Returns all N-1 distances of the path in a NumPy array
|
167
|
+
[N-1][elevation]
|
168
|
+
|
169
|
+
:rtype: np.ndarray
|
170
|
+
|
171
|
+
"""
|
172
|
+
|
173
|
+
return self.path_distances
|
174
|
+
|
175
|
+
def get_path_gradients(self):
|
176
|
+
"""
|
177
|
+
|
178
|
+
Returns all N-1 gradients of a path in a NumPy array
|
179
|
+
[N-1][gradient]
|
180
|
+
|
181
|
+
:rtype: np.ndarray
|
182
|
+
|
183
|
+
"""
|
184
|
+
|
185
|
+
return self.path_gradients
|
186
|
+
|
187
|
+
# ----- Path calculation functions -----
|
188
|
+
def calculate_path_min_max(self):
|
189
|
+
logging.warning(f"Using deprecated function 'calculate_path_min_max()'!")
|
190
|
+
min_lat, min_long = self.path.min(axis=0)
|
191
|
+
max_lat, max_long = self.path.max(axis=0)
|
192
|
+
return [min_long, min_lat, max_long, max_lat]
|
193
|
+
|
194
|
+
def calculate_current_heading_array(self):
|
195
|
+
"""
|
196
|
+
|
197
|
+
Calculates the bearing of the vehicle between consecutive points
|
198
|
+
https://www.movable-type.co.uk/scripts/latlong.html
|
199
|
+
|
200
|
+
:returns: array of bearings
|
201
|
+
:rtype: np.ndarray
|
202
|
+
|
203
|
+
"""
|
204
|
+
bearing_array = np.zeros(len(self.path))
|
205
|
+
|
206
|
+
for index in range(0, len(self.path) - 1):
|
207
|
+
coord_1 = np.radians(self.path[index])
|
208
|
+
coord_2 = np.radians(self.path[index + 1])
|
209
|
+
|
210
|
+
y = math.sin(coord_2[1] - coord_1[1]) \
|
211
|
+
* math.cos(coord_2[0])
|
212
|
+
|
213
|
+
x = math.cos(coord_1[0]) \
|
214
|
+
* math.sin(coord_2[0]) \
|
215
|
+
- math.sin(coord_1[0]) \
|
216
|
+
* math.cos(coord_2[0]) \
|
217
|
+
* math.cos(coord_2[1] - coord_1[1])
|
218
|
+
|
219
|
+
theta = math.atan2(y, x)
|
220
|
+
|
221
|
+
bearing_array[index] = ((theta * 180) / math.pi + 360) % 360
|
222
|
+
|
223
|
+
bearing_array[-1] = bearing_array[-2]
|
224
|
+
|
225
|
+
return bearing_array
|
226
|
+
|
227
|
+
@staticmethod
|
228
|
+
def _calculate_vector_square_magnitude(vector):
|
229
|
+
"""
|
230
|
+
|
231
|
+
Calculate the square magnitude of an input vector. Must be one-dimensional.
|
232
|
+
|
233
|
+
:param np.ndarray vector: NumPy array[N] representing a vector[N]
|
234
|
+
:return: square magnitude of the input vector
|
235
|
+
:rtype: float
|
236
|
+
|
237
|
+
"""
|
238
|
+
|
239
|
+
return sum(i ** 2 for i in vector)
|
240
|
+
|
241
|
+
@staticmethod
|
242
|
+
def _find_closest_coordinate_index(current_coord, path):
|
243
|
+
"""
|
244
|
+
|
245
|
+
Returns the closest coordinate to current_coord in path
|
246
|
+
|
247
|
+
:param np.ndarray current_coord: A NumPy array[N] representing a N-dimensional vector
|
248
|
+
:param np.ndarray path: A NumPy array[M][N] of M coordinates which should be N-dimensional vectors
|
249
|
+
:returns: index of the closest coordinate.
|
250
|
+
:rtype: int
|
251
|
+
|
252
|
+
"""
|
253
|
+
|
254
|
+
to_current_coord_from_path = np.abs(path - current_coord)
|
255
|
+
distances_from_current_coord = np.zeros(len(to_current_coord_from_path))
|
256
|
+
for i in range(len(to_current_coord_from_path)):
|
257
|
+
# As we just need the minimum, using square magnitude will save performance
|
258
|
+
distances_from_current_coord[i] = GIS._calculate_vector_square_magnitude(to_current_coord_from_path[i])
|
259
|
+
|
260
|
+
return distances_from_current_coord.argmin()
|
261
|
+
|
262
|
+
|
263
|
+
def calculate_path_distances(coords):
|
264
|
+
"""
|
265
|
+
|
266
|
+
Obtain the distance between each coordinate by approximating the spline between them
|
267
|
+
as a straight line, and use the Haversine formula (https://en.wikipedia.org/wiki/Haversine_formula)
|
268
|
+
to calculate distance between coordinates on a sphere.
|
269
|
+
|
270
|
+
:param np.ndarray coords: A NumPy array [n][latitude, longitude]
|
271
|
+
:returns path_distances: a NumPy array [n-1][distances],
|
272
|
+
:rtype: np.ndarray
|
273
|
+
|
274
|
+
"""
|
275
|
+
|
276
|
+
coords_offset = np.roll(coords, (1, 1))
|
277
|
+
path_distances = []
|
278
|
+
for u, v in zip(coords, coords_offset):
|
279
|
+
path_distances.append(haversine(u, v, unit=Unit.METERS))
|
280
|
+
|
281
|
+
return np.array(path_distances)
|
282
|
+
|
283
|
+
|
284
|
+
def parse_coordinates_from_kml(coords_str: str) -> np.ndarray:
|
285
|
+
"""
|
286
|
+
|
287
|
+
Parse a coordinates string from a XML (KML) file into a list of coordinates (2D vectors).
|
288
|
+
Requires coordinates in the format "39.,41.,0 39.,40.,0" which will return [ [39., 41.], [39., 40.] ].
|
289
|
+
|
290
|
+
:param coords_str: coordinates string from a XML (KML) file
|
291
|
+
:return: list of 2D vectors representing coordinates
|
292
|
+
:rtype: np.ndarray
|
293
|
+
|
294
|
+
"""
|
295
|
+
|
296
|
+
def parse_coord(pair):
|
297
|
+
coord = pair.split(',')
|
298
|
+
coord.pop()
|
299
|
+
coord = [float(value) for value in coord]
|
300
|
+
return coord
|
301
|
+
|
302
|
+
return list(map(parse_coord, coords_str.split()))
|
303
|
+
|
304
|
+
|
305
|
+
def calculate_path_gradients(elevations, distances):
|
306
|
+
"""
|
307
|
+
|
308
|
+
Get the approximate gradients of every point on the path.
|
309
|
+
|
310
|
+
Note:
|
311
|
+
- gradient > 0 corresponds to uphill
|
312
|
+
- gradient < 0 corresponds to downhill
|
313
|
+
|
314
|
+
:param np.ndarray elevations: [N][elevations]
|
315
|
+
:param np.ndarray distances: [N-1][distances]
|
316
|
+
:returns gradients: [N-1][gradients]
|
317
|
+
:rtype: np.ndarray
|
318
|
+
|
319
|
+
"""
|
320
|
+
|
321
|
+
# subtract every next elevation with the previous elevation to
|
322
|
+
# get the difference in elevation
|
323
|
+
# [1 2 3 4 5]
|
324
|
+
# [5 1 2 3 4] -
|
325
|
+
# -------------
|
326
|
+
# [1 1 1 1]
|
327
|
+
|
328
|
+
offset = np.roll(elevations, 1)
|
329
|
+
delta_elevations = elevations - offset
|
330
|
+
|
331
|
+
# Divide the difference in elevation to get the gradient
|
332
|
+
# gradient > 0: uphill
|
333
|
+
# gradient < 0: downhill
|
334
|
+
with np.errstate(invalid='ignore'):
|
335
|
+
gradients = delta_elevations / distances
|
336
|
+
|
337
|
+
return np.nan_to_num(gradients, nan=0.)
|
@@ -0,0 +1,25 @@
|
|
1
|
+
use chrono::{Datelike, NaiveDateTime, Timelike};
|
2
|
+
use numpy::ndarray::{s, Array, Array2, ArrayViewD, ArrayViewMut2, ArrayViewMut3, Axis};
|
3
|
+
|
4
|
+
pub fn rust_closest_gis_indices_loop(
|
5
|
+
distances: ArrayViewD<'_, f64>,
|
6
|
+
path_distances: ArrayViewD<'_, f64>,
|
7
|
+
) -> Vec<i64> {
|
8
|
+
let mut current_coord_index: usize = 0;
|
9
|
+
let mut distance_travelled: f64 = 0.0;
|
10
|
+
let mut result: Vec<i64> = Vec::with_capacity(distances.len());
|
11
|
+
|
12
|
+
for &distance in distances {
|
13
|
+
distance_travelled += distance;
|
14
|
+
|
15
|
+
while distance_travelled > path_distances[current_coord_index] {
|
16
|
+
distance_travelled -= path_distances[current_coord_index];
|
17
|
+
current_coord_index += 1;
|
18
|
+
}
|
19
|
+
|
20
|
+
current_coord_index = std::cmp::min(current_coord_index, path_distances.len() - 1);
|
21
|
+
result.push(current_coord_index as i64);
|
22
|
+
}
|
23
|
+
|
24
|
+
result
|
25
|
+
}
|
@@ -0,0 +1 @@
|
|
1
|
+
pub mod gis;
|
@@ -0,0 +1,69 @@
|
|
1
|
+
from typing import Optional
|
2
|
+
import numpy as np
|
3
|
+
from abc import ABC, abstractmethod
|
4
|
+
|
5
|
+
|
6
|
+
class BaseMeteorology(ABC):
|
7
|
+
def __init__(self):
|
8
|
+
self._wind_speed: Optional[np.ndarray] = None
|
9
|
+
self._wind_direction: Optional[np.ndarray] = None
|
10
|
+
self._solar_irradiance: Optional[np.ndarray] = None
|
11
|
+
self._weather_indices: Optional[np.ndarray] = None
|
12
|
+
|
13
|
+
def _return_if_available(self, attr):
|
14
|
+
if (value := getattr(self, attr)) is not None:
|
15
|
+
return value
|
16
|
+
else:
|
17
|
+
raise UnboundLocalError(f"{attr} is not available!")
|
18
|
+
|
19
|
+
@property
|
20
|
+
def wind_speed(self) -> np.ndarray:
|
21
|
+
"""
|
22
|
+
Return the wind speeds in m/s at every tick, if available.
|
23
|
+
|
24
|
+
:return: ``ndarray`` of wind speeds in m/s at every tick
|
25
|
+
:raises UnboundLocalError: if wind speeds are not available.
|
26
|
+
"""
|
27
|
+
return self._return_if_available("_wind_speed")
|
28
|
+
|
29
|
+
@property
|
30
|
+
def wind_direction(self) -> np.ndarray:
|
31
|
+
"""
|
32
|
+
Return the wind direction in degrees, following the meteorological convention, if available.
|
33
|
+
|
34
|
+
:return: ``ndarray`` of wind directions in degrees at every tick.
|
35
|
+
:raises UnboundLocalError: if wind directions are not available.
|
36
|
+
"""
|
37
|
+
return self._return_if_available("_wind_direction")
|
38
|
+
|
39
|
+
@property
|
40
|
+
def solar_irradiance(self) -> np.ndarray:
|
41
|
+
"""
|
42
|
+
Return the solar irradiance in W/m^2 every tick, if available.
|
43
|
+
|
44
|
+
:return: ``ndarray`` of solar irradiances in W/m^2 at every tick
|
45
|
+
:raises UnboundLocalError: if solar irradiances are not available.
|
46
|
+
"""
|
47
|
+
return self._return_if_available("_solar_irradiance")
|
48
|
+
|
49
|
+
@property
|
50
|
+
def weather_indices(self) -> np.ndarray:
|
51
|
+
"""
|
52
|
+
Return the weather indices at every tick, if available.
|
53
|
+
|
54
|
+
:return: ``ndarray`` of weather indices at every tick
|
55
|
+
:raises UnboundLocalError: if weather indices are not available.
|
56
|
+
"""
|
57
|
+
return self._return_if_available("_weather_indices")
|
58
|
+
|
59
|
+
@abstractmethod
|
60
|
+
def spatially_localize(self, cumulative_distances: np.ndarray) -> None:
|
61
|
+
raise NotImplementedError
|
62
|
+
|
63
|
+
@abstractmethod
|
64
|
+
def temporally_localize(self, unix_timestamps, start_time, tick) -> None:
|
65
|
+
raise NotImplementedError
|
66
|
+
|
67
|
+
@abstractmethod
|
68
|
+
def calculate_solar_irradiances(self, coords, time_zones, local_times, elevations):
|
69
|
+
raise NotImplementedError
|