tunned-geobr 0.2.3__py3-none-any.whl → 0.2.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (69) hide show
  1. tunned_geobr/__init__.py +59 -1
  2. tunned_geobr/list_geobr.py +72 -1
  3. tunned_geobr/read_ama_anemometric_towers.py +119 -0
  4. tunned_geobr/read_areas_under_contract.py +129 -0
  5. tunned_geobr/read_biodiesel_plants.py +128 -0
  6. tunned_geobr/read_biomethane_plants.py +128 -0
  7. tunned_geobr/read_compression_stations.py +128 -0
  8. tunned_geobr/read_drainage_ducts.py +128 -0
  9. tunned_geobr/read_etanol_plants.py +128 -0
  10. tunned_geobr/read_existent_biomass_ute.py +128 -0
  11. tunned_geobr/read_existent_cgh.py +168 -0
  12. tunned_geobr/read_existent_eolic.py +165 -0
  13. tunned_geobr/read_existent_fossile_ute.py +128 -0
  14. tunned_geobr/read_existent_nuclear_ute.py +128 -0
  15. tunned_geobr/read_existent_pch.py +168 -0
  16. tunned_geobr/read_existent_solar.py +165 -0
  17. tunned_geobr/read_existent_substations.py +128 -0
  18. tunned_geobr/read_existent_transmission_lines.py +128 -0
  19. tunned_geobr/read_existent_uhe.py +168 -0
  20. tunned_geobr/read_exploration_production_environment.py +119 -0
  21. tunned_geobr/read_federal_union_areas.py +129 -0
  22. tunned_geobr/read_fuel_bases.py +128 -0
  23. tunned_geobr/read_gas_distribution_pipelines.py +128 -0
  24. tunned_geobr/read_gas_transport_pipelines.py +128 -0
  25. tunned_geobr/read_glp_bases.py +128 -0
  26. tunned_geobr/read_gnl_terminals.py +128 -0
  27. tunned_geobr/read_hydroelectric_feasibility_studies.py +119 -0
  28. tunned_geobr/read_hydroelectric_inventory_aai_studies.py +119 -0
  29. tunned_geobr/read_isolated_systems.py +128 -0
  30. tunned_geobr/read_natural_gas_delivery_points.py +128 -0
  31. tunned_geobr/read_natural_gas_processing_hub.py +128 -0
  32. tunned_geobr/read_og_basement.py +119 -0
  33. tunned_geobr/read_og_effective_geographic_basin.py +129 -0
  34. tunned_geobr/read_og_ipa_direct_evidence.py +119 -0
  35. tunned_geobr/read_og_ipa_exploratory_activity.py +119 -0
  36. tunned_geobr/read_og_ipa_exploratory_intensity.py +129 -0
  37. tunned_geobr/read_og_ipa_need_for_knowledge.py +119 -0
  38. tunned_geobr/read_og_ipa_prospectiveness.py +119 -0
  39. tunned_geobr/read_og_ipa_supply_infrastructure.py +119 -0
  40. tunned_geobr/read_og_legal_pre_salt_polygon.py +119 -0
  41. tunned_geobr/read_og_predominant_fluid_type.py +129 -0
  42. tunned_geobr/read_og_probabilistic_effective_basin.py +129 -0
  43. tunned_geobr/read_og_total_ipa.py +129 -0
  44. tunned_geobr/read_og_unconventional_resources.py +129 -0
  45. tunned_geobr/read_oil_and_derivatives_terminal.py +128 -0
  46. tunned_geobr/read_pan_strategic_areas 2.py +71 -0
  47. tunned_geobr/read_pio_ducts.py +128 -0
  48. tunned_geobr/read_pio_terminals.py +128 -0
  49. tunned_geobr/read_planned_biomass_ute.py +166 -0
  50. tunned_geobr/read_planned_cgh.py +166 -0
  51. tunned_geobr/read_planned_eolic.py +165 -0
  52. tunned_geobr/read_planned_fossile_ute.py +166 -0
  53. tunned_geobr/read_planned_nuclear_ute.py +165 -0
  54. tunned_geobr/read_planned_pch.py +166 -0
  55. tunned_geobr/read_planned_solar.py +165 -0
  56. tunned_geobr/read_planned_substations.py +164 -0
  57. tunned_geobr/read_planned_transmission_lines.py +165 -0
  58. tunned_geobr/read_planned_uhe.py +166 -0
  59. tunned_geobr/read_processing_facilities.py +128 -0
  60. tunned_geobr/read_quilombola_areas.py +74 -56
  61. tunned_geobr/read_sedimentary_basins.py +119 -0
  62. tunned_geobr/read_subsystem_interconnected.py +163 -0
  63. {tunned_geobr-0.2.3.dist-info → tunned_geobr-0.2.5.dist-info}/METADATA +1 -1
  64. {tunned_geobr-0.2.3.dist-info → tunned_geobr-0.2.5.dist-info}/RECORD +67 -10
  65. tunned_geobr/constants.py +0 -13
  66. tunned_geobr/read_quilombola_areas_temp.py +0 -103
  67. {tunned_geobr-0.2.3.dist-info → tunned_geobr-0.2.5.dist-info}/WHEEL +0 -0
  68. {tunned_geobr-0.2.3.dist-info → tunned_geobr-0.2.5.dist-info}/entry_points.txt +0 -0
  69. {tunned_geobr-0.2.3.dist-info → tunned_geobr-0.2.5.dist-info}/licenses/LICENSE.txt +0 -0
@@ -0,0 +1,163 @@
1
+ import geopandas as gpd
2
+ import os
3
+ import tempfile
4
+ import urllib.parse
5
+ import requests
6
+ import shutil
7
+ from zipfile import ZipFile
8
+ from pathlib import Path
9
+ from io import BytesIO
10
+ import warnings
11
+ import json
12
+
13
+ def read_subsystem_interconnected(simplified=False, verbose=False):
14
+ """Download Subsystem of the National Interconnected System data from EPE.
15
+
16
+ This function downloads and processes subsystem of the National Interconnected System data from EPE
17
+ (Energy Research Company). The data includes information about the different subsystems
18
+ of Brazil's National Interconnected System.
19
+ Original source: EPE (Empresa de Pesquisa Energética)
20
+
21
+ Parameters
22
+ ----------
23
+ simplified : boolean, by default False
24
+ If True, returns a simplified version of the dataset with fewer columns
25
+ verbose : boolean, by default False
26
+ If True, prints detailed information about the download process
27
+
28
+ Returns
29
+ -------
30
+ gpd.GeoDataFrame
31
+ Geodataframe with subsystem of the National Interconnected System data
32
+
33
+ Example
34
+ -------
35
+ >>> from tunned_geobr import read_subsystem_interconnected
36
+
37
+ # Read subsystem of the National Interconnected System data
38
+ >>> subsystem_data = read_subsystem_interconnected()
39
+ """
40
+
41
+ # URL for the EPE geoserver
42
+ url = r"https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Subsistema%20do%20Sistema%20Interligado%20Nacional%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-8655251.47456396%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C-4787514.465591563%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
43
+
44
+ try:
45
+ # Disable SSL verification warning
46
+ warnings.filterwarnings('ignore', message='Unverified HTTPS request')
47
+
48
+ if verbose:
49
+ print("Requesting data from EPE server...")
50
+
51
+ response = requests.get(url, timeout=60, verify=False)
52
+ if not response.ok:
53
+ raise Exception(f"Error getting JSON response: {response.status_code}")
54
+
55
+ json_response = response.json()
56
+
57
+ if verbose:
58
+ print(f"JSON response received: {json.dumps(json_response, indent=2)[:500]}...")
59
+
60
+ if 'results' not in json_response or len(json_response['results']) == 0:
61
+ raise Exception("Invalid JSON response structure")
62
+
63
+ if 'value' not in json_response['results'][0] or 'url' not in json_response['results'][0]['value']:
64
+ raise Exception("URL not found in JSON response")
65
+
66
+ file_url = json_response['results'][0]['value']['url']
67
+
68
+ if verbose:
69
+ print(f"Downloading file from: {file_url}")
70
+
71
+ file_response = requests.get(file_url, stream=True, timeout=60, verify=False)
72
+ if not file_response.ok:
73
+ raise Exception(f"Error downloading file: {file_response.status_code}")
74
+
75
+ # Check if content is actually a zip file
76
+ content = file_response.content
77
+ if len(content) < 100:
78
+ if verbose:
79
+ print(f"Warning: Downloaded content is very small ({len(content)} bytes)")
80
+ print(f"Content preview: {content[:100]}")
81
+
82
+ # Create a temporary directory to extract the files
83
+ with tempfile.TemporaryDirectory() as temp_dir:
84
+ if verbose:
85
+ print(f"Extracting files to temporary directory: {temp_dir}")
86
+
87
+ try:
88
+ # Extract the zip file
89
+ with ZipFile(BytesIO(content)) as zip_ref:
90
+ zip_ref.extractall(temp_dir)
91
+
92
+ if verbose:
93
+ print(f"Files in zip: {zip_ref.namelist()}")
94
+ except Exception as zip_error:
95
+ if verbose:
96
+ print(f"Error extracting zip: {str(zip_error)}")
97
+ print(f"Saving content to debug.zip for inspection")
98
+ with open("debug.zip", "wb") as f:
99
+ f.write(content)
100
+ raise Exception(f"Failed to extract zip file: {str(zip_error)}")
101
+
102
+ # Find the shapefile
103
+ all_files = os.listdir(temp_dir)
104
+ if verbose:
105
+ print(f"Files in temp directory: {all_files}")
106
+
107
+ shp_files = [f for f in all_files if f.endswith('.shp')]
108
+ if not shp_files:
109
+ # Try looking in subdirectories
110
+ for root, dirs, files in os.walk(temp_dir):
111
+ shp_files.extend([os.path.join(root, f) for f in files if f.endswith('.shp')])
112
+
113
+ if not shp_files:
114
+ raise Exception("No shapefile found in the downloaded data")
115
+
116
+ # Read the shapefile
117
+ shp_path = shp_files[0] if os.path.isabs(shp_files[0]) else os.path.join(temp_dir, shp_files[0])
118
+ if verbose:
119
+ print(f"Reading shapefile: {shp_path}")
120
+
121
+ gdf = gpd.read_file(shp_path)
122
+
123
+ # Convert to SIRGAS 2000 (EPSG:4674)
124
+ gdf = gdf.to_crs(4674)
125
+
126
+ if verbose:
127
+ print(f"Data loaded successfully with {len(gdf)} records")
128
+ print(f"Columns: {gdf.columns.tolist()}")
129
+
130
+ if simplified:
131
+ # Keep only the most relevant columns
132
+ columns_to_keep = [
133
+ 'geometry',
134
+ 'nome', # Subsystem name
135
+ 'sigla', # Subsystem acronym
136
+ 'area_km2' # Area in km²
137
+ ]
138
+
139
+ # Filter columns that actually exist in the dataset
140
+ existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
141
+ if len(existing_columns) <= 1:
142
+ if verbose:
143
+ print("Warning: No matching columns found for simplified version. Returning all columns.")
144
+ else:
145
+ gdf = gdf[existing_columns]
146
+
147
+ except Exception as e:
148
+ raise Exception(f"Error downloading or processing subsystem of the National Interconnected System data: {str(e)}")
149
+
150
+ return gdf
151
+
152
+ if __name__ == '__main__':
153
+ try:
154
+ subsystem_data = read_subsystem_interconnected(verbose=True)
155
+ print(f"Downloaded subsystem of the National Interconnected System data with {len(subsystem_data)} records and {len(subsystem_data.columns)} columns")
156
+
157
+ # Test simplified version
158
+ simplified_data = read_subsystem_interconnected(simplified=True)
159
+ print(f"Simplified data has {len(simplified_data.columns)} columns: {simplified_data.columns.tolist()}")
160
+ except Exception as e:
161
+ print(f"Error: {str(e)}")
162
+ import traceback
163
+ traceback.print_exc()
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: tunned-geobr
3
- Version: 0.2.3
3
+ Version: 0.2.5
4
4
  Summary: Fork personalizado do geobr com funcionalidades extras como download de dados da ANM
5
5
  Author: Anderson Stolfi
6
6
  License: MIT
@@ -1,12 +1,12 @@
1
- tunned_geobr-0.2.3.dist-info/METADATA,sha256=IKOvws4p0V7XJvVf979Q2s4GwrjV6SpTeWAS1j5ja3I,5018
2
- tunned_geobr-0.2.3.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
- tunned_geobr-0.2.3.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
- tunned_geobr-0.2.3.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
5
- tunned_geobr/__init__.py,sha256=uxb92oXuVe5RRdfsRksj4rw0p0s0_H5k84t241qfu1g,3597
6
- tunned_geobr/constants.py,sha256=ZHj4pKtrxoUMFFgw-4ikuFcCkxEjzIbWL_gzhutGDB4,262
1
+ tunned_geobr-0.2.5.dist-info/METADATA,sha256=qV-puwV243sopHV1F8Ec0h5FmeZOhXv2zmmkrys1ZXQ,5018
2
+ tunned_geobr-0.2.5.dist-info/WHEEL,sha256=thaaA2w1JzcGC48WYufAs8nrYZjJm8LqNfnXFOFyCC4,90
3
+ tunned_geobr-0.2.5.dist-info/entry_points.txt,sha256=6OYgBcLyFCUgeqLgnvMyOJxPCWzgy7se4rLPKtNonMs,34
4
+ tunned_geobr-0.2.5.dist-info/licenses/LICENSE.txt,sha256=mECZRcbde3HssOKe1Co4zgqBLGVN0OWpTsEy3LIbcRA,75
5
+ tunned_geobr/__init__.py,sha256=6kbBMfBy0NidzGz_heNFEFPLLVVaNphTqGOFV-6qzqI,7354
7
6
  tunned_geobr/data/grid_state_correspondence_table.csv,sha256=FpkBuX_-lRXQ1yBrQODxQgG9oha9Fd8A8zGKfdsDAmk,2660
8
- tunned_geobr/list_geobr.py,sha256=aQibdkAjuVUAoQ816N4Hc6SOAVA-S5B6ajPAQYucE30,9364
7
+ tunned_geobr/list_geobr.py,sha256=l-sXzMr94uHZfeYDKgcdlnwaVbB50rrw02I0ehRIWAg,17305
9
8
  tunned_geobr/lookup_muni.py,sha256=ny1zU4i6OagvL4Mrc6XQWPgn2RrJa_mXlKXh81oVYsM,3462
9
+ tunned_geobr/read_ama_anemometric_towers.py,sha256=I3YUhwt_-kOYYupTM3H0-MgmyMpz3zLgI4l3re7U4K8,4691
10
10
  tunned_geobr/read_amazon.py,sha256=7o2uoJ-NAwsENAjoNTbR8AFIg_piEiWttpICPzkA9IM,1285
11
11
  tunned_geobr/read_amazon_ibas.py,sha256=RtOo5wPfc26S2HYJCLylNCPM5cHBOLGTP4uKEtGC3Bw,3500
12
12
  tunned_geobr/read_apcb_amazon.py,sha256=IQZc_hyDcwYtRkQmdJMuQuZVcCGeuF9S5p3xeOghUgo,2834
@@ -16,31 +16,57 @@ tunned_geobr/read_apcb_mata_atlantica.py,sha256=ZFvV8kZXfoZuEWPYu05Qky0F6I5KqD-X
16
16
  tunned_geobr/read_apcb_pampa.py,sha256=ILypuNxVy1R3WLQr4xc4ICW5iOnMXWO9A-uGsBK3EIU,2819
17
17
  tunned_geobr/read_apcb_zcm.py,sha256=I0j8RWbIkOr2Wa6uskhD70_oQpo4boUTg_bikL-P7n8,2893
18
18
  tunned_geobr/read_archaeological_sites.py,sha256=h0RhY6Yt0icO195lrBbRTAN0wyt-cSCNMjAlfTUqSpA,3408
19
+ tunned_geobr/read_areas_under_contract.py,sha256=y0fMHrqgnZpTXNKPb6GEaU0X9Fylwwqj0PRonLVUV5M,5341
19
20
  tunned_geobr/read_atlantic_forest_ibas.py,sha256=67rY-yo_Sv8g26YVVXgXy_z4pPV4j8Y2GGs8I5jBX0k,3570
20
21
  tunned_geobr/read_atlantic_forest_law_limits.py,sha256=lDovZnFyLVUgM37hN0pMN8zUY9iyZlNNAfuQjb-EBFI,2758
21
22
  tunned_geobr/read_baze_sites.py,sha256=nwlEp3R34IecIUiv-3q5yKA-6rbNAqMK463Em4msjvI,6343
23
+ tunned_geobr/read_biodiesel_plants.py,sha256=aCEbxtCe1L00UF2mGvRcyywNG_82-q1IlYiyiq0g4R0,5264
22
24
  tunned_geobr/read_biomes.py,sha256=OM69JHTm6MfjdwXl3QGLMdAA6h_WUhGZ0v_1Pt2N-Ds,1337
25
+ tunned_geobr/read_biomethane_plants.py,sha256=7fWgZtoiGfVX72bLyLgIEGU8zvxkazTgBLCaLVAwTEA,5276
23
26
  tunned_geobr/read_biosphere_reserves.py,sha256=ihW5xbRpIb-vxMr4LDKSflWVCK3mn1gZb2A_GPddR7s,3147
24
27
  tunned_geobr/read_cave_potential.py,sha256=P3LrYTQtfb0OpNAJCOWif9q5zrhI0PEgarEg2o8eNXc,3015
25
28
  tunned_geobr/read_census_tract.py,sha256=yuNx_sYWNe0XJCG9f87RNlL7aBq3aS0tTaeJMRo1wEY,3258
26
29
  tunned_geobr/read_census_tract_2022.py,sha256=JtoJJtZ2rFiC5gtuZ7V_5teYFkuq1-GkV4GalSkhorQ,4066
27
30
  tunned_geobr/read_climate_aggressiveness.py,sha256=Y53LYy39DNVbuVO_U3iYhyCb-Q3QQm73T2k8ZEXvtG4,2804
28
31
  tunned_geobr/read_comparable_areas.py,sha256=SxUnlN-c2ALG5GsYkk8OiRMU7TKmocxet1cPCsFCj8M,2108
32
+ tunned_geobr/read_compression_stations.py,sha256=oTBMziFpYy2WML95pz1PNbaKtkhlklLvzjPYAebcz2Q,5282
29
33
  tunned_geobr/read_conservation_units.py,sha256=JxnJZhEHGIeH5BKD5Dm9fgph1lfhvlwnAQPh3aG8Ld8,1379
30
34
  tunned_geobr/read_country.py,sha256=clBQlsVA_xCNc0JosKYiUe8q_ySQbkew-kRlSajEfJs,1357
31
35
  tunned_geobr/read_disaster_risk_area.py,sha256=zlSVIwfcD0yZ5A7lAUHMSuML9RaAzzxXKfheSDbnmxE,1845
36
+ tunned_geobr/read_drainage_ducts.py,sha256=slK44CLo9sN9tVaY0rkpJT-IsKBjuHcMYojc-y7SPME,5199
32
37
  tunned_geobr/read_ebas.py,sha256=4TDZt4b2-tKnTfEJEHUuomsRBUFTJXcH8HFYkGlx6cI,2759
38
+ tunned_geobr/read_etanol_plants.py,sha256=jMMZ_DBVNcbqFyc00j7JHK-bJmZiBqYubgDrtN3YhhU,5231
39
+ tunned_geobr/read_existent_biomass_ute.py,sha256=LxPz2C-gX3ZZAfS-3IhrUIidE7p8v5J8wX2qwnx714M,5388
40
+ tunned_geobr/read_existent_cgh.py,sha256=_2xnbAybV0AW8g2NJndkAkKvf2I-CETPPtiIM0NqnmI,7556
41
+ tunned_geobr/read_existent_eolic.py,sha256=atKqzb14gQMigHKwdDoYUVkQU1bX4DfdBM468ySot8o,7335
42
+ tunned_geobr/read_existent_fossile_ute.py,sha256=S_AdxedciScLc3vUjDsOylUeYkGUGP5hTM92spwCb-8,5385
43
+ tunned_geobr/read_existent_nuclear_ute.py,sha256=j8Qvykm0Yyuim3_8src_Hq6iQfVHHRQ9VjD6u1Se8Gk,5373
44
+ tunned_geobr/read_existent_pch.py,sha256=mI2A1Vm4ikFNJ8vNaEOWcBkbTWfSdav3mIQvUcRWQKc,7563
45
+ tunned_geobr/read_existent_solar.py,sha256=JXbgvPk0XVsERZidVIEbXfC6c-cq1KEIWan1cBnlmH8,7348
46
+ tunned_geobr/read_existent_substations.py,sha256=hKVMz09Fm5ES1L_26vlPF96j45HOJmNepsVvaTvD6lk,5301
47
+ tunned_geobr/read_existent_transmission_lines.py,sha256=yWoHMPoa66eMApAqtC_0WMGquULqxMXO0G_Y8i7jRzE,5327
48
+ tunned_geobr/read_existent_uhe.py,sha256=sT5SoZte2sVON2av9FjSXa4-d4vm9wltnqhShbcImzY,7563
49
+ tunned_geobr/read_exploration_production_environment.py,sha256=M8u7k0JCzOKGof-Emps0CvIC0SUUkZjvZ9KsImXUzik,4754
33
50
  tunned_geobr/read_federal_highways.py,sha256=nULCIBFRPKlXWuCMujX_AJv7ZUcwSQtQzhhuFUJ44o0,2797
51
+ tunned_geobr/read_federal_union_areas.py,sha256=SnzdGs0zJreh8RALGairO57mvva3wUJjTWTUv-O1Ai0,5303
34
52
  tunned_geobr/read_fossil_occurrences.py,sha256=LxL5D_6H758lgQBpl_CWZuggEOZg31THVD2dAiM85N4,3598
53
+ tunned_geobr/read_fuel_bases.py,sha256=Fmu9swdPp4Pdri_HDP95Hegj2ZY87ZGE6C7t0vd61MM,5123
54
+ tunned_geobr/read_gas_distribution_pipelines.py,sha256=ALNxscxsc8uq_Lw_oPpBW2yeHlPJXug-7l8Weaatqdg,5341
55
+ tunned_geobr/read_gas_transport_pipelines.py,sha256=xItLOd_HClYg7e-Zf6X5LJzVDR1bOGw--PCFqkQsM30,5299
35
56
  tunned_geobr/read_geographic_regions.py,sha256=11ZDKhfYrUUbmcROMipdJHglHLgXm6sZXbkf3uz2Bws,3474
36
57
  tunned_geobr/read_geology.py,sha256=dzMUN1RYD4VcGOkle8iJtNZGiPQJ8x9kEdDirKgS-9Y,2766
37
58
  tunned_geobr/read_geomorphology.py,sha256=7TFy9CYLUL0lFBTKT_lZeUL7r5c9mWp64VpXUwKTLHY,2843
59
+ tunned_geobr/read_glp_bases.py,sha256=PZK3iUHoeZipB80DvpzDg4jjPE8YiiMzeFq8ik70uKw,5135
60
+ tunned_geobr/read_gnl_terminals.py,sha256=AAfhECIHCOtiLV283krSl44CAd8GKWJzTs4dgPMEa-g,5188
38
61
  tunned_geobr/read_health_facilities.py,sha256=NEU2BGEBmIPbT0Z02EOKLtfC9-_AmNrIHaD-83kmh5Q,2012
39
62
  tunned_geobr/read_health_region.py,sha256=uT3TUSpQFuC0BdvVbg7UKf8_RNVmeNAdMlLZvgPWN4c,1832
40
63
  tunned_geobr/read_heliports.py,sha256=liLQ5J7UgHcxcsx7xpkh_4oxxh4rNz7hprTwnWSViw4,2791
64
+ tunned_geobr/read_hydroelectric_feasibility_studies.py,sha256=61hBf0218A--VF_SP9F4xcgtM3GYAjFuBk6VkZtvmP0,4764
65
+ tunned_geobr/read_hydroelectric_inventory_aai_studies.py,sha256=_2Cl6haiM4lJwDW5d2SNCVkUfywBOs9Q4qBLCndiamw,4814
41
66
  tunned_geobr/read_immediate_region.py,sha256=rR8qyHoAzl3tP2eKvpPOIWjMDrHHDWBUD8wZdNFVtzU,2554
42
67
  tunned_geobr/read_indigenous_land.py,sha256=TGmLHj8s7mvsO8y9GWhNVwCMw_zdSzdSOFCH7dD3iRM,1459
43
68
  tunned_geobr/read_intermediate_region.py,sha256=vzDHaUJhx_zaAu-s8jt4lxM93JJRYMbAqNH3gs1GCss,2185
69
+ tunned_geobr/read_isolated_systems.py,sha256=dWhfm8CnB7cgi1DetuHr6e0F5QDjIKEsAHOcj0chQIk,5231
44
70
  tunned_geobr/read_meso_region.py,sha256=q_3FO7wtRy8LEF7TxF18YqlICb--C2gvp0uIgc0c4g8,2601
45
71
  tunned_geobr/read_metro_area.py,sha256=CAo79d5sLlTPhejlpWlQb5bQT5YRpBi-pfdRdKbPxT8,1497
46
72
  tunned_geobr/read_micro_region.py,sha256=tbIUSTWOxfz-8Fh9z274XNfI-IC1r8V2lQbgWViLufQ,2509
@@ -49,20 +75,50 @@ tunned_geobr/read_municipal_seat.py,sha256=9Vi-q1jzY8n086O-nNY1sVkVzV_NZbdzE5juo
49
75
  tunned_geobr/read_municipality.py,sha256=oovNlQdCbfD9KN3ywWU4SRzWQUK7Q_kGQRztK-Mq-9A,2593
50
76
  tunned_geobr/read_municipality_direct.py,sha256=v2oRUyYlkOrJy_FTmxZMo3kug9rzAoescrkc293H1OY,5650
51
77
  tunned_geobr/read_natural_caves.py,sha256=-XjoRxhT_yYy0fZu87S6RRUZ-cyaWPqWqOrd9Y8ERKo,3073
78
+ tunned_geobr/read_natural_gas_delivery_points.py,sha256=mKeywQ610Qw9ttY1_v-KclMIml3Tff3knhAAlBgAh0c,5309
79
+ tunned_geobr/read_natural_gas_processing_hub.py,sha256=hAbCt4BunWQ78bDOtl7zrunJUia0bPr_LpdZiNwKAFw,5306
52
80
  tunned_geobr/read_neighborhood.py,sha256=H96W8QEDqPtJ6lIJaegaRKZftzaGKmKkmbs-ZNBsM-Q,1084
53
81
  tunned_geobr/read_neighborhoods_2022.py,sha256=EX1-5CM3tNe05HE1F5r3YtZ-66X_NC67u_DzrmzKvTc,3952
82
+ tunned_geobr/read_og_basement.py,sha256=9fdOoMDPBUkDgwxBU_3BL0BZDANPSoIgXWhKjtQVlxk,4618
83
+ tunned_geobr/read_og_effective_geographic_basin.py,sha256=lDnVSh8R4Ic-ldkkDLN7ugUkUpScMLeaLjNpdat4iwQ,5402
84
+ tunned_geobr/read_og_ipa_direct_evidence.py,sha256=dqIVIonwujERYTR_Kz3I9F3FzBiWHIGK_cOeoM0FQyo,4799
85
+ tunned_geobr/read_og_ipa_exploratory_activity.py,sha256=BZOVfhi524zKQFOWK445y09JBFwHKS3i8JndjXgF378,4748
86
+ tunned_geobr/read_og_ipa_exploratory_intensity.py,sha256=A1Boae3YoKCH0jn7Z0sWUkVBYJ8aKl4naMpqOs3DS3I,5401
87
+ tunned_geobr/read_og_ipa_need_for_knowledge.py,sha256=_E9g6psmo0HWzg9WxSrNQtiiQv3kUIKvq-NtjyifLSA,4738
88
+ tunned_geobr/read_og_ipa_prospectiveness.py,sha256=yuY25wAeUIaPMBEePKmTT_cvpjGKpwIDq-GyM8dpDEw,4704
89
+ tunned_geobr/read_og_ipa_supply_infrastructure.py,sha256=RIze4M4K5DpUISZ3MlYRKWaiki-XOTdh_kUg5MPtn0s,4760
90
+ tunned_geobr/read_og_legal_pre_salt_polygon.py,sha256=2NSqvlqqCu_PjRMKyIjzbOrA1s390LGeuyDpcoE4Pu4,4734
91
+ tunned_geobr/read_og_predominant_fluid_type.py,sha256=tYAZeHYKHT8qN1f_Iko3GIVCKZxx27T_d_G0rtGwcr0,5397
92
+ tunned_geobr/read_og_probabilistic_effective_basin.py,sha256=5VZixVU5wDclBhiXYQHPs5azK_3KJkr-N5vndeujcTg,5442
93
+ tunned_geobr/read_og_total_ipa.py,sha256=HWFI6-HcEvhvhBK4eWVTsZcqx2UC8b7zOjjtQxxNT_4,5245
94
+ tunned_geobr/read_og_unconventional_resources.py,sha256=E2Kkv6N3V2aMhViyrJWmGxgC6kLhshdRzP4oJnBmKU8,5389
95
+ tunned_geobr/read_oil_and_derivatives_terminal.py,sha256=7l6vBVX23JEMH06sjn5E8vHiW0R-ws3rzBav_G50pNA,5330
96
+ tunned_geobr/read_pan_strategic_areas 2.py,sha256=alORMUQbnW_ER3_uOzqTbUaSyr-Y3Mg_bsoykxiGDMA,2654
54
97
  tunned_geobr/read_pan_strategic_areas.py,sha256=EP-Qtx_q4lE3lsNNIUaoQc5j-9aKBkxY2BizTwWY3ZY,3375
55
98
  tunned_geobr/read_pedology.py,sha256=xk_yOxIOVTHip4kj2y1xgO4fHKn8e1dv2cNOayXCtKk,2783
99
+ tunned_geobr/read_pio_ducts.py,sha256=gNfClvKh3x0gckWe4GNqcil9WwOMoPffU7V_LXDzmqI,5128
100
+ tunned_geobr/read_pio_terminals.py,sha256=NduuiA1AOc7vvMnwJlqc9V4QeiXlWtFaylS3prKjG14,5191
101
+ tunned_geobr/read_planned_biomass_ute.py,sha256=AEPmAuhBZyicYA_nATsMhhHEmJ6xnUNQZtRXkE67cLk,7557
102
+ tunned_geobr/read_planned_cgh.py,sha256=Tms3Ed9tYnXKqua7fHAd8PTxhm7MUv88Mq_ZU9ny5go,7458
103
+ tunned_geobr/read_planned_eolic.py,sha256=WOaWY1bKHFBysaZNzDT7VyT4tEpL_TcnRdrCGy2ZVgs,7345
104
+ tunned_geobr/read_planned_fossile_ute.py,sha256=B0c6cI-gIwmRnx4fOegWhtdg_34YBTcGVsKb3l7wwlg,7553
105
+ tunned_geobr/read_planned_nuclear_ute.py,sha256=JiZUakYvHlflVsG8HkYbwdsuZ_Wf9uSjr16mGX--i5Y,7505
106
+ tunned_geobr/read_planned_pch.py,sha256=hTz0fH5_0_OMagem0ZwwoWfD90Q9kV3kqp4fXVYwfJA,7465
107
+ tunned_geobr/read_planned_solar.py,sha256=An69HvVYdzN_QMaFzLiB1TMiMdPOP-H4fbZ6FSg2n8M,7341
108
+ tunned_geobr/read_planned_substations.py,sha256=xUwUhRC5qMxricukn708r-nvuo0Q1lWAIjOzpOk21bA,7356
109
+ tunned_geobr/read_planned_transmission_lines.py,sha256=UwcEd5bWWMKQs94tudF6UFj8jcKwm2LH6KL9af4pinQ,7390
110
+ tunned_geobr/read_planned_uhe.py,sha256=Podxyzscn8xrvgBkwwtJ6QJIoNh0FrGLRpblB_MEzxY,7465
56
111
  tunned_geobr/read_pop_arrangements.py,sha256=x3Q1uDrqLoMuqAaTW3gUyJdq6-e9ve79pg6qbV0xp0U,1385
57
112
  tunned_geobr/read_ports.py,sha256=dOFOhQ2kim-_VJ_bC1ZiABqD9-FCOelkrTAaLD_yAmY,2848
58
113
  tunned_geobr/read_private_aerodromes.py,sha256=Il9sfvBxDM-Xv6fkvOXYfaFLfjOaHlIw-tTGhUJ_TpM,2918
114
+ tunned_geobr/read_processing_facilities.py,sha256=BABgyK2FBlHyVSBBzuYN5kRyq9H6LzinPbVOcVsgvgg,5294
59
115
  tunned_geobr/read_public_aerodromes.py,sha256=nq3b9HF5_e-yeNcSfQ5ktdAGHKbSfDD_imj-tOhjKJA,2909
60
- tunned_geobr/read_quilombola_areas.py,sha256=C47Wj4DhSDa-pSFfYK4uGDwtu4sUwqPMr-CuuxS95xg,3060
61
- tunned_geobr/read_quilombola_areas_temp.py,sha256=iY-r4YDRjaGyO-iPRBm1kWDkN_-axjYxMAQyAjIfG68,4288
116
+ tunned_geobr/read_quilombola_areas.py,sha256=iY-r4YDRjaGyO-iPRBm1kWDkN_-axjYxMAQyAjIfG68,4288
62
117
  tunned_geobr/read_railways.py,sha256=J6eM0yr049CaOL95PMd4sGc7JJHiEinJhqf0ThCOClg,2763
63
118
  tunned_geobr/read_region.py,sha256=qHbmj3uS-W2Vk6Z1d4vVUA9d03gqGqoujIWPqWk-L8Y,955
64
119
  tunned_geobr/read_rppn.py,sha256=nXDzclIiqhutkYWvxlIH_mYSNGdfRVSUzSzi-15X-3w,3963
65
120
  tunned_geobr/read_schools.py,sha256=kxaRwuKmZDPgSuhCUd_Ltxo-6_z3b3jXY9Qo0MY_b-A,1364
121
+ tunned_geobr/read_sedimentary_basins.py,sha256=HsL-QHpEVrzUyEJ9qW8xZOkhoJw4LRxCPoeI7G7GByI,4634
66
122
  tunned_geobr/read_semiarid.py,sha256=o6WZFqO4d-x_A7fsZD3NotFlraasuiy_LmwrNG_SjoA,1357
67
123
  tunned_geobr/read_settlements.py,sha256=C47Wj4DhSDa-pSFfYK4uGDwtu4sUwqPMr-CuuxS95xg,3060
68
124
  tunned_geobr/read_sigef_properties.py,sha256=LZ69L6ev-7JT0chINKcgHZKl1ZpH6iLk6Je_HAxDnsQ,3204
@@ -71,6 +127,7 @@ tunned_geobr/read_state.py,sha256=F6VKlVweo2v9K82weqoj22AhgtuLZSaGYmm7B1Y-vIY,26
71
127
  tunned_geobr/read_state_direct.py,sha256=AA3a7XxO2NocRNBGd1FpYriTE2_l-f8sbxwOgRMf9Fw,3818
72
128
  tunned_geobr/read_state_highways.py,sha256=pvRkwuensDOFh3wrcui36iTLcOtkrXoZmT50oUL8WFI,2769
73
129
  tunned_geobr/read_statistical_grid.py,sha256=14fgzDrJtjDoOVzV8Qg8kkqruqiwCSwwRHVjct_w3bM,4479
130
+ tunned_geobr/read_subsystem_interconnected.py,sha256=bm4S63vLZJfph0u7ZN3qPRMYp_DKSL51K33hYq4dXzQ,7446
74
131
  tunned_geobr/read_transmission_lines_ons.py,sha256=9IYGW16oFu32R4qgwfmY6aJQKooY1nf0x7RvBshoSL0,3117
75
132
  tunned_geobr/read_urban_area.py,sha256=XG3DkiGrg8b_b2cZ3gcGTL3JohqCYCMgiOOLnsN5YUA,1363
76
133
  tunned_geobr/read_urban_concentrations.py,sha256=HPCn9Z1Ya3vFpX6WKKT1c_VkrDrMp7vAclwbq88AMDc,1427
@@ -79,4 +136,4 @@ tunned_geobr/read_water_bodies_ana.py,sha256=e8wQukpQABjyFCdqSWcFXXMdD-jmguELVJa
79
136
  tunned_geobr/read_waterways.py,sha256=mEdoVogYWr5EYZ8bE3xMCVWyLrHYU7xTL2lUE0XbDAM,2951
80
137
  tunned_geobr/read_weighting_area.py,sha256=fsV9pXWOw1X7XLS9SAUHVhKy6sw97EEXF5kWEEpFaZ8,2324
81
138
  tunned_geobr/utils.py,sha256=WT9PSGWvcERjj3yhfTvyWSE5ZiEjO4tYK5xIj5jJCg8,8170
82
- tunned_geobr-0.2.3.dist-info/RECORD,,
139
+ tunned_geobr-0.2.5.dist-info/RECORD,,
tunned_geobr/constants.py DELETED
@@ -1,13 +0,0 @@
1
- from enum import Enum
2
-
3
-
4
- class DataTypes(Enum):
5
-
6
- code_muni = "float"
7
- code_cnes = "float"
8
- code_state = "float"
9
- year_update = "float"
10
- code_neighborhood = "float"
11
- code_subdistrict = "float"
12
- code_district = "float"
13
- geo_bater = "float"
@@ -1,103 +0,0 @@
1
- import geopandas as gpd
2
- import tempfile
3
- import os
4
- import requests
5
- from zipfile import ZipFile
6
- from io import BytesIO
7
- import urllib3
8
- import time
9
- from pathlib import Path
10
-
11
- def read_quilombola_areas(simplified=False, local_file=None):
12
- """Download Quilombola Areas data from INCRA.
13
-
14
- This function downloads and processes data about Quilombola Areas (Áreas Quilombolas)
15
- in Brazil. These are territories recognized and titled to remaining quilombo communities.
16
- Original source: INCRA - Instituto Nacional de Colonização e Reforma Agrária
17
-
18
- Parameters
19
- ----------
20
- simplified : boolean, by default False
21
- If True, returns a simplified version of the dataset with fewer columns
22
- local_file : string, optional
23
- Path to a local zip file containing the data, by default None
24
- If provided, the function will use this file instead of downloading from INCRA
25
-
26
- Returns
27
- -------
28
- gpd.GeoDataFrame
29
- Geodataframe with Quilombola Areas data
30
- Columns:
31
- - geometry: Geometry of the area
32
- - nome: Area name
33
- - municipio: Municipality
34
- - uf: State
35
- - area_ha: Area in hectares
36
- - fase: Current phase in the titling process
37
- - familias: Number of families
38
- - portaria: Ordinance number
39
- - decreto: Decree number
40
- - titulo: Title number
41
- - data_titulo: Title date
42
-
43
- Example
44
- -------
45
- >>> from tunned_geobr import read_quilombola_areas
46
-
47
- # Read Quilombola Areas data
48
- >>> quilombos = read_quilombola_areas()
49
-
50
- # Or use a local file that was previously downloaded
51
- >>> quilombos = read_quilombola_areas(local_file="path/to/Áreas de Quilombolas.zip")
52
- """
53
-
54
- url = "https://certificacao.incra.gov.br/csv_shp/zip/Áreas%20de%20Quilombolas.zip"
55
-
56
- # If a local file is provided, use it instead of downloading
57
- if local_file and os.path.exists(local_file):
58
- print(f"Using local file: {local_file}")
59
- try:
60
- with tempfile.TemporaryDirectory() as temp_dir:
61
- # Extract the zip file
62
- with ZipFile(local_file) as zip_ref:
63
- zip_ref.extractall(temp_dir)
64
-
65
- # Find the shapefile
66
- shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
67
- if not shp_files:
68
- raise Exception("No shapefile found in the local file")
69
-
70
- print(f"Found shapefile: {shp_files[0]}")
71
-
72
- # Read the shapefile
73
- gdf = gpd.read_file(os.path.join(temp_dir, shp_files[0]))
74
- gdf = gdf.to_crs(4674) # Convert to SIRGAS 2000
75
-
76
- print(f"Successfully loaded {len(gdf)} Quilombola Areas from local file")
77
-
78
- if simplified:
79
- # Keep only the most relevant columns
80
- columns_to_keep = [
81
- 'geometry',
82
- 'nome', # Area name
83
- 'municipio', # Municipality
84
- 'uf', # State
85
- 'area_ha', # Area in hectares
86
- 'fase' # Current phase
87
- ]
88
-
89
- # Filter columns that actually exist in the dataset
90
- existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
91
- gdf = gdf[existing_columns]
92
-
93
- return gdf
94
- except Exception as e:
95
- raise Exception(f"Error processing local file: {str(e)}")
96
-
97
- # If no local file is provided, return a message with download instructions
98
- # This is consistent with the approach in read_snci_properties as mentioned in the MEMORY
99
- return "O download automático dos dados de Áreas Quilombolas está temporariamente indisponível.\nPor favor, faça o download manual através do link:\n" + url + "\n\nApós o download, você pode usar o parâmetro local_file:\nquilombos = read_quilombola_areas(local_file='caminho/para/Áreas de Quilombolas.zip')"
100
-
101
- if __name__ == '__main__':
102
- quilombos = read_quilombola_areas()
103
- print(quilombos)