tunned-geobr 0.2.3__py3-none-any.whl → 0.2.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (69) hide show
  1. tunned_geobr/__init__.py +59 -1
  2. tunned_geobr/list_geobr.py +72 -1
  3. tunned_geobr/read_ama_anemometric_towers.py +119 -0
  4. tunned_geobr/read_areas_under_contract.py +129 -0
  5. tunned_geobr/read_biodiesel_plants.py +128 -0
  6. tunned_geobr/read_biomethane_plants.py +128 -0
  7. tunned_geobr/read_compression_stations.py +128 -0
  8. tunned_geobr/read_drainage_ducts.py +128 -0
  9. tunned_geobr/read_etanol_plants.py +128 -0
  10. tunned_geobr/read_existent_biomass_ute.py +128 -0
  11. tunned_geobr/read_existent_cgh.py +168 -0
  12. tunned_geobr/read_existent_eolic.py +165 -0
  13. tunned_geobr/read_existent_fossile_ute.py +128 -0
  14. tunned_geobr/read_existent_nuclear_ute.py +128 -0
  15. tunned_geobr/read_existent_pch.py +168 -0
  16. tunned_geobr/read_existent_solar.py +165 -0
  17. tunned_geobr/read_existent_substations.py +128 -0
  18. tunned_geobr/read_existent_transmission_lines.py +128 -0
  19. tunned_geobr/read_existent_uhe.py +168 -0
  20. tunned_geobr/read_exploration_production_environment.py +119 -0
  21. tunned_geobr/read_federal_union_areas.py +129 -0
  22. tunned_geobr/read_fuel_bases.py +128 -0
  23. tunned_geobr/read_gas_distribution_pipelines.py +128 -0
  24. tunned_geobr/read_gas_transport_pipelines.py +128 -0
  25. tunned_geobr/read_glp_bases.py +128 -0
  26. tunned_geobr/read_gnl_terminals.py +128 -0
  27. tunned_geobr/read_hydroelectric_feasibility_studies.py +119 -0
  28. tunned_geobr/read_hydroelectric_inventory_aai_studies.py +119 -0
  29. tunned_geobr/read_isolated_systems.py +128 -0
  30. tunned_geobr/read_natural_gas_delivery_points.py +128 -0
  31. tunned_geobr/read_natural_gas_processing_hub.py +128 -0
  32. tunned_geobr/read_og_basement.py +119 -0
  33. tunned_geobr/read_og_effective_geographic_basin.py +129 -0
  34. tunned_geobr/read_og_ipa_direct_evidence.py +119 -0
  35. tunned_geobr/read_og_ipa_exploratory_activity.py +119 -0
  36. tunned_geobr/read_og_ipa_exploratory_intensity.py +129 -0
  37. tunned_geobr/read_og_ipa_need_for_knowledge.py +119 -0
  38. tunned_geobr/read_og_ipa_prospectiveness.py +119 -0
  39. tunned_geobr/read_og_ipa_supply_infrastructure.py +119 -0
  40. tunned_geobr/read_og_legal_pre_salt_polygon.py +119 -0
  41. tunned_geobr/read_og_predominant_fluid_type.py +129 -0
  42. tunned_geobr/read_og_probabilistic_effective_basin.py +129 -0
  43. tunned_geobr/read_og_total_ipa.py +129 -0
  44. tunned_geobr/read_og_unconventional_resources.py +129 -0
  45. tunned_geobr/read_oil_and_derivatives_terminal.py +128 -0
  46. tunned_geobr/read_pan_strategic_areas 2.py +71 -0
  47. tunned_geobr/read_pio_ducts.py +128 -0
  48. tunned_geobr/read_pio_terminals.py +128 -0
  49. tunned_geobr/read_planned_biomass_ute.py +166 -0
  50. tunned_geobr/read_planned_cgh.py +166 -0
  51. tunned_geobr/read_planned_eolic.py +165 -0
  52. tunned_geobr/read_planned_fossile_ute.py +166 -0
  53. tunned_geobr/read_planned_nuclear_ute.py +165 -0
  54. tunned_geobr/read_planned_pch.py +166 -0
  55. tunned_geobr/read_planned_solar.py +165 -0
  56. tunned_geobr/read_planned_substations.py +164 -0
  57. tunned_geobr/read_planned_transmission_lines.py +165 -0
  58. tunned_geobr/read_planned_uhe.py +166 -0
  59. tunned_geobr/read_processing_facilities.py +128 -0
  60. tunned_geobr/read_quilombola_areas.py +74 -56
  61. tunned_geobr/read_sedimentary_basins.py +119 -0
  62. tunned_geobr/read_subsystem_interconnected.py +163 -0
  63. {tunned_geobr-0.2.3.dist-info → tunned_geobr-0.2.5.dist-info}/METADATA +1 -1
  64. {tunned_geobr-0.2.3.dist-info → tunned_geobr-0.2.5.dist-info}/RECORD +67 -10
  65. tunned_geobr/constants.py +0 -13
  66. tunned_geobr/read_quilombola_areas_temp.py +0 -103
  67. {tunned_geobr-0.2.3.dist-info → tunned_geobr-0.2.5.dist-info}/WHEEL +0 -0
  68. {tunned_geobr-0.2.3.dist-info → tunned_geobr-0.2.5.dist-info}/entry_points.txt +0 -0
  69. {tunned_geobr-0.2.3.dist-info → tunned_geobr-0.2.5.dist-info}/licenses/LICENSE.txt +0 -0
@@ -0,0 +1,128 @@
1
+ import geopandas as gpd
2
+ import requests
3
+ import shutil
4
+ import zipfile
5
+ import tempfile
6
+ import warnings
7
+ import os
8
+ from shapely.geometry.point import Point
9
+
10
+
11
+ def read_oil_and_derivatives_terminal(simplified=False, verbose=False):
12
+ """Download data of oil and derivatives terminals in Brazil.
13
+
14
+ This function downloads and returns data of oil and derivatives terminals
15
+ in Brazil as a GeoPandas GeoDataFrame. The data comes from EPE (Energy Research Company).
16
+
17
+ Parameters
18
+ ----------
19
+ simplified : bool, optional
20
+ If True, returns a simplified version of the dataset with only the most
21
+ important columns. If False, returns the complete dataset. Default is False.
22
+ verbose : bool, optional
23
+ If True, displays detailed messages about the download and processing
24
+ steps. Default is False.
25
+
26
+ Returns
27
+ -------
28
+ gpd.GeoDataFrame
29
+ A GeoDataFrame containing data on oil and derivatives terminals in Brazil.
30
+
31
+ Raises
32
+ ------
33
+ Exception
34
+ If the download or processing of the data fails.
35
+
36
+ Example
37
+ -------
38
+ >>> from tunned_geobr import read_oil_and_derivatives_terminal
39
+ >>>
40
+ >>> # Read the data
41
+ >>> oil_terminals = read_oil_and_derivatives_terminal()
42
+ >>>
43
+ >>> # Plot the data
44
+ >>> oil_terminals.plot()
45
+ """
46
+
47
+ if verbose:
48
+ print("Downloading data of oil and derivatives terminals in Brazil")
49
+
50
+ # Define the URL for the API request
51
+ url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Terminais%20de%20Petr%C3%B3leo%20e%20Derivados%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-8655251.47456396%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C-4787514.465591563%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
52
+
53
+ try:
54
+ # Make the API request
55
+ response = requests.get(url)
56
+ response.raise_for_status()
57
+
58
+ # Parse the JSON response
59
+ data = response.json()
60
+
61
+ # Extract the URL for the zip file
62
+ if 'results' in data and len(data['results']) > 0 and 'value' in data['results'][0]:
63
+ download_url = data['results'][0]['value']['url']
64
+ else:
65
+ raise Exception("Failed to extract download URL from API response")
66
+
67
+ # Create a temporary directory to store the downloaded files
68
+ with tempfile.TemporaryDirectory() as temp_dir:
69
+ # Download the zip file
70
+ zip_path = os.path.join(temp_dir, "oil_terminals.zip")
71
+ if verbose:
72
+ print("Downloading zip file")
73
+
74
+ response = requests.get(download_url, stream=True)
75
+ response.raise_for_status()
76
+
77
+ with open(zip_path, 'wb') as f:
78
+ response.raw.decode_content = True
79
+ shutil.copyfileobj(response.raw, f)
80
+
81
+ # Extract the zip file
82
+ if verbose:
83
+ print("Extracting files")
84
+
85
+ with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
+ zip_ref.extractall(temp_dir)
87
+
88
+ # Find the shapefile in the extracted files
89
+ shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+
91
+ if not shp_files:
92
+ raise Exception("No shapefile found in the downloaded zip file")
93
+
94
+ # Read the shapefile
95
+ if verbose:
96
+ print("Reading shapefile")
97
+
98
+ shp_path = os.path.join(temp_dir, shp_files[0])
99
+ gdf = gpd.read_file(shp_path)
100
+
101
+ # Convert to SIRGAS 2000 (EPSG:4674)
102
+ if verbose:
103
+ print("Converting to SIRGAS 2000 (EPSG:4674)")
104
+
105
+ gdf = gdf.to_crs(epsg=4674)
106
+
107
+ # Simplify the dataset if requested
108
+ if simplified:
109
+ if verbose:
110
+ print("Simplifying the dataset")
111
+
112
+ # Select only the most important columns
113
+ # Adjust these columns based on the actual data structure
114
+ cols_to_keep = ['NOME', 'EMPRESA', 'TIPO', 'CAPACIDADE', 'UF', 'MUNICIPIO', 'geometry']
115
+ cols_available = [col for col in cols_to_keep if col in gdf.columns]
116
+
117
+ if not cols_available:
118
+ warnings.warn("None of the specified columns for simplification are available. Returning the full dataset.")
119
+ else:
120
+ gdf = gdf[cols_available]
121
+
122
+ if verbose:
123
+ print("Finished processing oil and derivatives terminals data")
124
+
125
+ return gdf
126
+
127
+ except Exception as e:
128
+ raise Exception(f"Failed to download or process oil and derivatives terminals data: {str(e)}")
@@ -0,0 +1,71 @@
1
+ import geopandas as gpd
2
+ import requests
3
+ from io import BytesIO
4
+
5
+ def read_pan_strategic_areas(simplified=False):
6
+ """Download ICMBio's Strategic Areas data.
7
+
8
+ This function downloads and processes the Strategic Areas data from ICMBio
9
+ (Chico Mendes Institute for Biodiversity Conservation) using their WFS service.
10
+ The data includes strategic areas for biodiversity conservation planning.
11
+ Original source: ICMBio - Instituto Chico Mendes de Conservação da Biodiversidade
12
+
13
+ Parameters
14
+ ----------
15
+ simplified : boolean, by default False
16
+ If True, returns a simplified version of the dataset with fewer columns
17
+
18
+ Returns
19
+ -------
20
+ gpd.GeoDataFrame
21
+ Geodataframe with ICMBio's strategic areas data
22
+
23
+ Example
24
+ -------
25
+ >>> from tunned_geobr import read_pan_strategic_areas
26
+
27
+ # Read strategic areas data
28
+ >>> strategic_areas = read_pan_strategic_areas()
29
+ """
30
+
31
+ url = "https://geoservicos.inde.gov.br/geoserver/ICMBio/ows?request=GetFeature&service=WFS&version=1.0.0&typeName=ICMBio:pan_icmbio_areas_estrat_052024_a&outputFormat=json"
32
+
33
+ try:
34
+ # Download the GeoJSON data
35
+ response = requests.get(url)
36
+ if response.status_code != 200:
37
+ raise Exception("Failed to download strategic areas data from ICMBio WFS")
38
+
39
+ # Read the GeoJSON directly into a GeoDataFrame
40
+ gdf = gpd.read_file(BytesIO(response.content))
41
+
42
+ # Convert to SIRGAS 2000 (EPSG:4674) if not already
43
+ if gdf.crs is None or gdf.crs.to_epsg() != 4674:
44
+ gdf = gdf.to_crs(4674)
45
+
46
+ if simplified:
47
+ # Keep only the most relevant columns
48
+ # Note: Column names may need adjustment based on actual data
49
+ columns_to_keep = [
50
+ 'geometry',
51
+ 'nome', # Area name
52
+ 'tipo', # Type of strategic area
53
+ 'bioma', # Biome
54
+ 'uf', # State
55
+ 'area_ha', # Area in hectares
56
+ 'descricao', # Description
57
+ 'importancia', # Importance
58
+ 'data_criacao' # Creation date
59
+ ]
60
+
61
+ # Filter columns that actually exist in the dataset
62
+ existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
63
+ gdf = gdf[existing_columns]
64
+
65
+ except Exception as e:
66
+ raise Exception(f"Error downloading strategic areas data: {str(e)}")
67
+
68
+ return gdf
69
+
70
+ if __name__ == '__main__':
71
+ read_pan_strategic_areas()
@@ -0,0 +1,128 @@
1
+ import geopandas as gpd
2
+ import requests
3
+ import shutil
4
+ import zipfile
5
+ import tempfile
6
+ import warnings
7
+ import os
8
+ from shapely.geometry.point import Point
9
+
10
+
11
+ def read_pio_ducts(simplified=False, verbose=False):
12
+ """Download data of PIO (Oil Products and Other Liquids) ducts in Brazil.
13
+
14
+ This function downloads and returns data of PIO ducts
15
+ in Brazil as a GeoPandas GeoDataFrame. The data comes from EPE (Energy Research Company).
16
+
17
+ Parameters
18
+ ----------
19
+ simplified : bool, optional
20
+ If True, returns a simplified version of the dataset with only the most
21
+ important columns. If False, returns the complete dataset. Default is False.
22
+ verbose : bool, optional
23
+ If True, displays detailed messages about the download and processing
24
+ steps. Default is False.
25
+
26
+ Returns
27
+ -------
28
+ gpd.GeoDataFrame
29
+ A GeoDataFrame containing data on PIO ducts in Brazil.
30
+
31
+ Raises
32
+ ------
33
+ Exception
34
+ If the download or processing of the data fails.
35
+
36
+ Example
37
+ -------
38
+ >>> from tunned_geobr import read_pio_ducts
39
+ >>>
40
+ >>> # Read the data
41
+ >>> pio_ducts = read_pio_ducts()
42
+ >>>
43
+ >>> # Plot the data
44
+ >>> pio_ducts.plot()
45
+ """
46
+
47
+ if verbose:
48
+ print("Downloading data of PIO ducts in Brazil")
49
+
50
+ # Define the URL for the API request
51
+ url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Dutos%20PIO%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-8655251.47456396%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C-4787514.465591563%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
52
+
53
+ try:
54
+ # Make the API request
55
+ response = requests.get(url)
56
+ response.raise_for_status()
57
+
58
+ # Parse the JSON response
59
+ data = response.json()
60
+
61
+ # Extract the URL for the zip file
62
+ if 'results' in data and len(data['results']) > 0 and 'value' in data['results'][0]:
63
+ download_url = data['results'][0]['value']['url']
64
+ else:
65
+ raise Exception("Failed to extract download URL from API response")
66
+
67
+ # Create a temporary directory to store the downloaded files
68
+ with tempfile.TemporaryDirectory() as temp_dir:
69
+ # Download the zip file
70
+ zip_path = os.path.join(temp_dir, "pio_ducts.zip")
71
+ if verbose:
72
+ print("Downloading zip file")
73
+
74
+ response = requests.get(download_url, stream=True)
75
+ response.raise_for_status()
76
+
77
+ with open(zip_path, 'wb') as f:
78
+ response.raw.decode_content = True
79
+ shutil.copyfileobj(response.raw, f)
80
+
81
+ # Extract the zip file
82
+ if verbose:
83
+ print("Extracting files")
84
+
85
+ with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
+ zip_ref.extractall(temp_dir)
87
+
88
+ # Find the shapefile in the extracted files
89
+ shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+
91
+ if not shp_files:
92
+ raise Exception("No shapefile found in the downloaded zip file")
93
+
94
+ # Read the shapefile
95
+ if verbose:
96
+ print("Reading shapefile")
97
+
98
+ shp_path = os.path.join(temp_dir, shp_files[0])
99
+ gdf = gpd.read_file(shp_path)
100
+
101
+ # Convert to SIRGAS 2000 (EPSG:4674)
102
+ if verbose:
103
+ print("Converting to SIRGAS 2000 (EPSG:4674)")
104
+
105
+ gdf = gdf.to_crs(epsg=4674)
106
+
107
+ # Simplify the dataset if requested
108
+ if simplified:
109
+ if verbose:
110
+ print("Simplifying the dataset")
111
+
112
+ # Select only the most important columns
113
+ # Adjust these columns based on the actual data structure
114
+ cols_to_keep = ['NOME', 'EMPRESA', 'EXTENSAO', 'DIAMETRO', 'UF', 'geometry']
115
+ cols_available = [col for col in cols_to_keep if col in gdf.columns]
116
+
117
+ if not cols_available:
118
+ warnings.warn("None of the specified columns for simplification are available. Returning the full dataset.")
119
+ else:
120
+ gdf = gdf[cols_available]
121
+
122
+ if verbose:
123
+ print("Finished processing PIO ducts data")
124
+
125
+ return gdf
126
+
127
+ except Exception as e:
128
+ raise Exception(f"Failed to download or process PIO ducts data: {str(e)}")
@@ -0,0 +1,128 @@
1
+ import geopandas as gpd
2
+ import requests
3
+ import shutil
4
+ import zipfile
5
+ import tempfile
6
+ import warnings
7
+ import os
8
+ from shapely.geometry.point import Point
9
+
10
+
11
+ def read_pio_terminals(simplified=False, verbose=False):
12
+ """Download data of PIO (Oil Products and Other Liquids) terminals in Brazil.
13
+
14
+ This function downloads and returns data of PIO terminals
15
+ in Brazil as a GeoPandas GeoDataFrame. The data comes from EPE (Energy Research Company).
16
+
17
+ Parameters
18
+ ----------
19
+ simplified : bool, optional
20
+ If True, returns a simplified version of the dataset with only the most
21
+ important columns. If False, returns the complete dataset. Default is False.
22
+ verbose : bool, optional
23
+ If True, displays detailed messages about the download and processing
24
+ steps. Default is False.
25
+
26
+ Returns
27
+ -------
28
+ gpd.GeoDataFrame
29
+ A GeoDataFrame containing data on PIO terminals in Brazil.
30
+
31
+ Raises
32
+ ------
33
+ Exception
34
+ If the download or processing of the data fails.
35
+
36
+ Example
37
+ -------
38
+ >>> from tunned_geobr import read_pio_terminals
39
+ >>>
40
+ >>> # Read the data
41
+ >>> pio_terminals = read_pio_terminals()
42
+ >>>
43
+ >>> # Plot the data
44
+ >>> pio_terminals.plot()
45
+ """
46
+
47
+ if verbose:
48
+ print("Downloading data of PIO terminals in Brazil")
49
+
50
+ # Define the URL for the API request
51
+ url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Terminais%20PIO%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-8655251.47456396%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C-4787514.465591563%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
52
+
53
+ try:
54
+ # Make the API request
55
+ response = requests.get(url)
56
+ response.raise_for_status()
57
+
58
+ # Parse the JSON response
59
+ data = response.json()
60
+
61
+ # Extract the URL for the zip file
62
+ if 'results' in data and len(data['results']) > 0 and 'value' in data['results'][0]:
63
+ download_url = data['results'][0]['value']['url']
64
+ else:
65
+ raise Exception("Failed to extract download URL from API response")
66
+
67
+ # Create a temporary directory to store the downloaded files
68
+ with tempfile.TemporaryDirectory() as temp_dir:
69
+ # Download the zip file
70
+ zip_path = os.path.join(temp_dir, "pio_terminals.zip")
71
+ if verbose:
72
+ print("Downloading zip file")
73
+
74
+ response = requests.get(download_url, stream=True)
75
+ response.raise_for_status()
76
+
77
+ with open(zip_path, 'wb') as f:
78
+ response.raw.decode_content = True
79
+ shutil.copyfileobj(response.raw, f)
80
+
81
+ # Extract the zip file
82
+ if verbose:
83
+ print("Extracting files")
84
+
85
+ with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
+ zip_ref.extractall(temp_dir)
87
+
88
+ # Find the shapefile in the extracted files
89
+ shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+
91
+ if not shp_files:
92
+ raise Exception("No shapefile found in the downloaded zip file")
93
+
94
+ # Read the shapefile
95
+ if verbose:
96
+ print("Reading shapefile")
97
+
98
+ shp_path = os.path.join(temp_dir, shp_files[0])
99
+ gdf = gpd.read_file(shp_path)
100
+
101
+ # Convert to SIRGAS 2000 (EPSG:4674)
102
+ if verbose:
103
+ print("Converting to SIRGAS 2000 (EPSG:4674)")
104
+
105
+ gdf = gdf.to_crs(epsg=4674)
106
+
107
+ # Simplify the dataset if requested
108
+ if simplified:
109
+ if verbose:
110
+ print("Simplifying the dataset")
111
+
112
+ # Select only the most important columns
113
+ # Adjust these columns based on the actual data structure
114
+ cols_to_keep = ['NOME', 'EMPRESA', 'TIPO', 'CAPACIDADE', 'UF', 'MUNICIPIO', 'geometry']
115
+ cols_available = [col for col in cols_to_keep if col in gdf.columns]
116
+
117
+ if not cols_available:
118
+ warnings.warn("None of the specified columns for simplification are available. Returning the full dataset.")
119
+ else:
120
+ gdf = gdf[cols_available]
121
+
122
+ if verbose:
123
+ print("Finished processing PIO terminals data")
124
+
125
+ return gdf
126
+
127
+ except Exception as e:
128
+ raise Exception(f"Failed to download or process PIO terminals data: {str(e)}")
@@ -0,0 +1,166 @@
1
+ import geopandas as gpd
2
+ import os
3
+ import tempfile
4
+ import urllib.parse
5
+ import requests
6
+ import shutil
7
+ from zipfile import ZipFile
8
+ from pathlib import Path
9
+ from io import BytesIO
10
+ import warnings
11
+ import json
12
+
13
+ def read_planned_biomass_ute(simplified=False, verbose=False):
14
+ """Download Planned Biomass Thermoelectric Power Plants data from EPE.
15
+
16
+ This function downloads and processes planned biomass thermoelectric power plants data from EPE
17
+ (Energy Research Company). The data includes information about planned biomass thermoelectric
18
+ power generation projects across Brazil.
19
+ Original source: EPE (Empresa de Pesquisa Energética)
20
+
21
+ Parameters
22
+ ----------
23
+ simplified : boolean, by default False
24
+ If True, returns a simplified version of the dataset with fewer columns
25
+ verbose : boolean, by default False
26
+ If True, prints detailed information about the download process
27
+
28
+ Returns
29
+ -------
30
+ gpd.GeoDataFrame
31
+ Geodataframe with planned biomass thermoelectric power plants data
32
+
33
+ Example
34
+ -------
35
+ >>> from tunned_geobr import read_planned_biomass_ute
36
+
37
+ # Read planned biomass thermoelectric power plants data
38
+ >>> planned_biomass_ute = read_planned_biomass_ute()
39
+ """
40
+
41
+ # URL for the EPE geoserver
42
+ url = r"https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22UTE%20Biomassa%20-%20Expans%C3%A3o%20Planejada%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-8655251.47456396%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C-4787514.465591563%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
43
+
44
+ try:
45
+ # Disable SSL verification warning
46
+ warnings.filterwarnings('ignore', message='Unverified HTTPS request')
47
+
48
+ if verbose:
49
+ print("Requesting data from EPE server...")
50
+
51
+ response = requests.get(url, timeout=60, verify=False)
52
+ if not response.ok:
53
+ raise Exception(f"Error getting JSON response: {response.status_code}")
54
+
55
+ json_response = response.json()
56
+
57
+ if verbose:
58
+ print(f"JSON response received: {json.dumps(json_response, indent=2)[:500]}...")
59
+
60
+ if 'results' not in json_response or len(json_response['results']) == 0:
61
+ raise Exception("Invalid JSON response structure")
62
+
63
+ if 'value' not in json_response['results'][0] or 'url' not in json_response['results'][0]['value']:
64
+ raise Exception("URL not found in JSON response")
65
+
66
+ file_url = json_response['results'][0]['value']['url']
67
+
68
+ if verbose:
69
+ print(f"Downloading file from: {file_url}")
70
+
71
+ file_response = requests.get(file_url, stream=True, timeout=60, verify=False)
72
+ if not file_response.ok:
73
+ raise Exception(f"Error downloading file: {file_response.status_code}")
74
+
75
+ # Check if content is actually a zip file
76
+ content = file_response.content
77
+ if len(content) < 100:
78
+ if verbose:
79
+ print(f"Warning: Downloaded content is very small ({len(content)} bytes)")
80
+ print(f"Content preview: {content[:100]}")
81
+
82
+ # Create a temporary directory to extract the files
83
+ with tempfile.TemporaryDirectory() as temp_dir:
84
+ if verbose:
85
+ print(f"Extracting files to temporary directory: {temp_dir}")
86
+
87
+ try:
88
+ # Extract the zip file
89
+ with ZipFile(BytesIO(content)) as zip_ref:
90
+ zip_ref.extractall(temp_dir)
91
+
92
+ if verbose:
93
+ print(f"Files in zip: {zip_ref.namelist()}")
94
+ except Exception as zip_error:
95
+ if verbose:
96
+ print(f"Error extracting zip: {str(zip_error)}")
97
+ print(f"Saving content to debug.zip for inspection")
98
+ with open("debug.zip", "wb") as f:
99
+ f.write(content)
100
+ raise Exception(f"Failed to extract zip file: {str(zip_error)}")
101
+
102
+ # Find the shapefile
103
+ all_files = os.listdir(temp_dir)
104
+ if verbose:
105
+ print(f"Files in temp directory: {all_files}")
106
+
107
+ shp_files = [f for f in all_files if f.endswith('.shp')]
108
+ if not shp_files:
109
+ # Try looking in subdirectories
110
+ for root, dirs, files in os.walk(temp_dir):
111
+ shp_files.extend([os.path.join(root, f) for f in files if f.endswith('.shp')])
112
+
113
+ if not shp_files:
114
+ raise Exception("No shapefile found in the downloaded data")
115
+
116
+ # Read the shapefile
117
+ shp_path = shp_files[0] if os.path.isabs(shp_files[0]) else os.path.join(temp_dir, shp_files[0])
118
+ if verbose:
119
+ print(f"Reading shapefile: {shp_path}")
120
+
121
+ gdf = gpd.read_file(shp_path)
122
+
123
+ # Convert to SIRGAS 2000 (EPSG:4674)
124
+ gdf = gdf.to_crs(4674)
125
+
126
+ if verbose:
127
+ print(f"Data loaded successfully with {len(gdf)} records")
128
+ print(f"Columns: {gdf.columns.tolist()}")
129
+
130
+ if simplified:
131
+ # Keep only the most relevant columns
132
+ columns_to_keep = [
133
+ 'geometry',
134
+ 'nome', # Power plant name
135
+ 'potencia', # Capacity in MW
136
+ 'combustivel', # Fuel type
137
+ 'leilao', # Auction
138
+ 'ceg', # CEG code
139
+ 'ano_prev' # Expected year
140
+ ]
141
+
142
+ # Filter columns that actually exist in the dataset
143
+ existing_columns = ['geometry'] + [col for col in columns_to_keep[1:] if col in gdf.columns]
144
+ if len(existing_columns) <= 1:
145
+ if verbose:
146
+ print("Warning: No matching columns found for simplified version. Returning all columns.")
147
+ else:
148
+ gdf = gdf[existing_columns]
149
+
150
+ except Exception as e:
151
+ raise Exception(f"Error downloading or processing planned biomass thermoelectric power plants data: {str(e)}")
152
+
153
+ return gdf
154
+
155
+ if __name__ == '__main__':
156
+ try:
157
+ biomass_ute_data = read_planned_biomass_ute(verbose=True)
158
+ print(f"Downloaded planned biomass thermoelectric power plants data with {len(biomass_ute_data)} records and {len(biomass_ute_data.columns)} columns")
159
+
160
+ # Test simplified version
161
+ simplified_data = read_planned_biomass_ute(simplified=True)
162
+ print(f"Simplified data has {len(simplified_data.columns)} columns: {simplified_data.columns.tolist()}")
163
+ except Exception as e:
164
+ print(f"Error: {str(e)}")
165
+ import traceback
166
+ traceback.print_exc()