tunned-geobr 0.2.2__py3-none-any.whl → 0.2.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tunned_geobr/__init__.py +59 -1
- tunned_geobr/list_geobr.py +74 -3
- tunned_geobr/read_ama_anemometric_towers.py +119 -0
- tunned_geobr/read_areas_under_contract.py +129 -0
- tunned_geobr/read_biodiesel_plants.py +128 -0
- tunned_geobr/read_biomethane_plants.py +128 -0
- tunned_geobr/read_compression_stations.py +128 -0
- tunned_geobr/read_drainage_ducts.py +128 -0
- tunned_geobr/read_etanol_plants.py +128 -0
- tunned_geobr/read_existent_biomass_ute.py +128 -0
- tunned_geobr/read_existent_cgh.py +168 -0
- tunned_geobr/read_existent_eolic.py +165 -0
- tunned_geobr/read_existent_fossile_ute.py +128 -0
- tunned_geobr/read_existent_nuclear_ute.py +128 -0
- tunned_geobr/read_existent_pch.py +168 -0
- tunned_geobr/read_existent_solar.py +165 -0
- tunned_geobr/read_existent_substations.py +128 -0
- tunned_geobr/read_existent_transmission_lines.py +128 -0
- tunned_geobr/read_existent_uhe.py +168 -0
- tunned_geobr/read_exploration_production_environment.py +119 -0
- tunned_geobr/read_federal_union_areas.py +129 -0
- tunned_geobr/read_fuel_bases.py +128 -0
- tunned_geobr/read_gas_distribution_pipelines.py +128 -0
- tunned_geobr/read_gas_transport_pipelines.py +128 -0
- tunned_geobr/read_glp_bases.py +128 -0
- tunned_geobr/read_gnl_terminals.py +128 -0
- tunned_geobr/read_hydroelectric_feasibility_studies.py +119 -0
- tunned_geobr/read_hydroelectric_inventory_aai_studies.py +119 -0
- tunned_geobr/read_isolated_systems.py +128 -0
- tunned_geobr/read_natural_gas_delivery_points.py +128 -0
- tunned_geobr/read_natural_gas_processing_hub.py +128 -0
- tunned_geobr/read_og_basement.py +119 -0
- tunned_geobr/read_og_effective_geographic_basin.py +129 -0
- tunned_geobr/read_og_ipa_direct_evidence.py +119 -0
- tunned_geobr/read_og_ipa_exploratory_activity.py +119 -0
- tunned_geobr/read_og_ipa_exploratory_intensity.py +129 -0
- tunned_geobr/read_og_ipa_need_for_knowledge.py +119 -0
- tunned_geobr/read_og_ipa_prospectiveness.py +119 -0
- tunned_geobr/read_og_ipa_supply_infrastructure.py +119 -0
- tunned_geobr/read_og_legal_pre_salt_polygon.py +119 -0
- tunned_geobr/read_og_predominant_fluid_type.py +129 -0
- tunned_geobr/read_og_probabilistic_effective_basin.py +129 -0
- tunned_geobr/read_og_total_ipa.py +129 -0
- tunned_geobr/read_og_unconventional_resources.py +129 -0
- tunned_geobr/read_oil_and_derivatives_terminal.py +128 -0
- tunned_geobr/read_pan_strategic_areas 2.py +71 -0
- tunned_geobr/read_pio_ducts.py +128 -0
- tunned_geobr/read_pio_terminals.py +128 -0
- tunned_geobr/read_planned_biomass_ute.py +166 -0
- tunned_geobr/read_planned_cgh.py +166 -0
- tunned_geobr/read_planned_eolic.py +165 -0
- tunned_geobr/read_planned_fossile_ute.py +166 -0
- tunned_geobr/read_planned_nuclear_ute.py +165 -0
- tunned_geobr/read_planned_pch.py +166 -0
- tunned_geobr/read_planned_solar.py +165 -0
- tunned_geobr/read_planned_substations.py +164 -0
- tunned_geobr/read_planned_transmission_lines.py +165 -0
- tunned_geobr/read_planned_uhe.py +166 -0
- tunned_geobr/read_processing_facilities.py +128 -0
- tunned_geobr/read_sedimentary_basins.py +119 -0
- tunned_geobr/read_subsystem_interconnected.py +163 -0
- {tunned_geobr-0.2.2.dist-info → tunned_geobr-0.2.4.dist-info}/METADATA +1 -1
- {tunned_geobr-0.2.2.dist-info → tunned_geobr-0.2.4.dist-info}/RECORD +66 -8
- tunned_geobr/constants.py +0 -13
- {tunned_geobr-0.2.2.dist-info → tunned_geobr-0.2.4.dist-info}/WHEEL +0 -0
- {tunned_geobr-0.2.2.dist-info → tunned_geobr-0.2.4.dist-info}/entry_points.txt +0 -0
- {tunned_geobr-0.2.2.dist-info → tunned_geobr-0.2.4.dist-info}/licenses/LICENSE.txt +0 -0
@@ -0,0 +1,128 @@
|
|
1
|
+
import geopandas as gpd
|
2
|
+
import requests
|
3
|
+
import shutil
|
4
|
+
import zipfile
|
5
|
+
import tempfile
|
6
|
+
import warnings
|
7
|
+
import os
|
8
|
+
from shapely.geometry.point import Point
|
9
|
+
|
10
|
+
|
11
|
+
def read_isolated_systems(simplified=False, verbose=False):
|
12
|
+
"""Download data of isolated electrical systems in Brazil.
|
13
|
+
|
14
|
+
This function downloads and returns data of isolated electrical systems
|
15
|
+
in Brazil as a GeoPandas GeoDataFrame. The data comes from EPE (Energy Research Company).
|
16
|
+
|
17
|
+
Parameters
|
18
|
+
----------
|
19
|
+
simplified : bool, optional
|
20
|
+
If True, returns a simplified version of the dataset with only the most
|
21
|
+
important columns. If False, returns the complete dataset. Default is False.
|
22
|
+
verbose : bool, optional
|
23
|
+
If True, displays detailed messages about the download and processing
|
24
|
+
steps. Default is False.
|
25
|
+
|
26
|
+
Returns
|
27
|
+
-------
|
28
|
+
gpd.GeoDataFrame
|
29
|
+
A GeoDataFrame containing data on isolated electrical systems in Brazil.
|
30
|
+
|
31
|
+
Raises
|
32
|
+
------
|
33
|
+
Exception
|
34
|
+
If the download or processing of the data fails.
|
35
|
+
|
36
|
+
Example
|
37
|
+
-------
|
38
|
+
>>> from tunned_geobr import read_isolated_systems
|
39
|
+
>>>
|
40
|
+
>>> # Read the data
|
41
|
+
>>> isolated_systems = read_isolated_systems()
|
42
|
+
>>>
|
43
|
+
>>> # Plot the data
|
44
|
+
>>> isolated_systems.plot()
|
45
|
+
"""
|
46
|
+
|
47
|
+
if verbose:
|
48
|
+
print("Downloading data of isolated electrical systems in Brazil")
|
49
|
+
|
50
|
+
# Define the URL for the API request
|
51
|
+
url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Sistemas%20Isolados%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-8655251.47456396%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C-4787514.465591563%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
|
52
|
+
|
53
|
+
try:
|
54
|
+
# Make the API request
|
55
|
+
response = requests.get(url)
|
56
|
+
response.raise_for_status()
|
57
|
+
|
58
|
+
# Parse the JSON response
|
59
|
+
data = response.json()
|
60
|
+
|
61
|
+
# Extract the URL for the zip file
|
62
|
+
if 'results' in data and len(data['results']) > 0 and 'value' in data['results'][0]:
|
63
|
+
download_url = data['results'][0]['value']['url']
|
64
|
+
else:
|
65
|
+
raise Exception("Failed to extract download URL from API response")
|
66
|
+
|
67
|
+
# Create a temporary directory to store the downloaded files
|
68
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
69
|
+
# Download the zip file
|
70
|
+
zip_path = os.path.join(temp_dir, "isolated_systems.zip")
|
71
|
+
if verbose:
|
72
|
+
print("Downloading zip file")
|
73
|
+
|
74
|
+
response = requests.get(download_url, stream=True)
|
75
|
+
response.raise_for_status()
|
76
|
+
|
77
|
+
with open(zip_path, 'wb') as f:
|
78
|
+
response.raw.decode_content = True
|
79
|
+
shutil.copyfileobj(response.raw, f)
|
80
|
+
|
81
|
+
# Extract the zip file
|
82
|
+
if verbose:
|
83
|
+
print("Extracting files")
|
84
|
+
|
85
|
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
86
|
+
zip_ref.extractall(temp_dir)
|
87
|
+
|
88
|
+
# Find the shapefile in the extracted files
|
89
|
+
shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
|
90
|
+
|
91
|
+
if not shp_files:
|
92
|
+
raise Exception("No shapefile found in the downloaded zip file")
|
93
|
+
|
94
|
+
# Read the shapefile
|
95
|
+
if verbose:
|
96
|
+
print("Reading shapefile")
|
97
|
+
|
98
|
+
shp_path = os.path.join(temp_dir, shp_files[0])
|
99
|
+
gdf = gpd.read_file(shp_path)
|
100
|
+
|
101
|
+
# Convert to SIRGAS 2000 (EPSG:4674)
|
102
|
+
if verbose:
|
103
|
+
print("Converting to SIRGAS 2000 (EPSG:4674)")
|
104
|
+
|
105
|
+
gdf = gdf.to_crs(epsg=4674)
|
106
|
+
|
107
|
+
# Simplify the dataset if requested
|
108
|
+
if simplified:
|
109
|
+
if verbose:
|
110
|
+
print("Simplifying the dataset")
|
111
|
+
|
112
|
+
# Select only the most important columns
|
113
|
+
# Adjust these columns based on the actual data structure
|
114
|
+
cols_to_keep = ['NOME', 'UF', 'MUNICIPIO', 'geometry']
|
115
|
+
cols_available = [col for col in cols_to_keep if col in gdf.columns]
|
116
|
+
|
117
|
+
if not cols_available:
|
118
|
+
warnings.warn("None of the specified columns for simplification are available. Returning the full dataset.")
|
119
|
+
else:
|
120
|
+
gdf = gdf[cols_available]
|
121
|
+
|
122
|
+
if verbose:
|
123
|
+
print("Finished processing isolated electrical systems data")
|
124
|
+
|
125
|
+
return gdf
|
126
|
+
|
127
|
+
except Exception as e:
|
128
|
+
raise Exception(f"Failed to download or process isolated electrical systems data: {str(e)}")
|
@@ -0,0 +1,128 @@
|
|
1
|
+
import geopandas as gpd
|
2
|
+
import requests
|
3
|
+
import shutil
|
4
|
+
import zipfile
|
5
|
+
import tempfile
|
6
|
+
import warnings
|
7
|
+
import os
|
8
|
+
from shapely.geometry.point import Point
|
9
|
+
|
10
|
+
|
11
|
+
def read_natural_gas_delivery_points(simplified=False, verbose=False):
|
12
|
+
"""Download data of natural gas delivery points in Brazil.
|
13
|
+
|
14
|
+
This function downloads and returns data of natural gas delivery points
|
15
|
+
in Brazil as a GeoPandas GeoDataFrame. The data comes from EPE (Energy Research Company).
|
16
|
+
|
17
|
+
Parameters
|
18
|
+
----------
|
19
|
+
simplified : bool, optional
|
20
|
+
If True, returns a simplified version of the dataset with only the most
|
21
|
+
important columns. If False, returns the complete dataset. Default is False.
|
22
|
+
verbose : bool, optional
|
23
|
+
If True, displays detailed messages about the download and processing
|
24
|
+
steps. Default is False.
|
25
|
+
|
26
|
+
Returns
|
27
|
+
-------
|
28
|
+
gpd.GeoDataFrame
|
29
|
+
A GeoDataFrame containing data on natural gas delivery points in Brazil.
|
30
|
+
|
31
|
+
Raises
|
32
|
+
------
|
33
|
+
Exception
|
34
|
+
If the download or processing of the data fails.
|
35
|
+
|
36
|
+
Example
|
37
|
+
-------
|
38
|
+
>>> from tunned_geobr import read_natural_gas_delivery_points
|
39
|
+
>>>
|
40
|
+
>>> # Read the data
|
41
|
+
>>> gas_delivery_points = read_natural_gas_delivery_points()
|
42
|
+
>>>
|
43
|
+
>>> # Plot the data
|
44
|
+
>>> gas_delivery_points.plot()
|
45
|
+
"""
|
46
|
+
|
47
|
+
if verbose:
|
48
|
+
print("Downloading data of natural gas delivery points in Brazil")
|
49
|
+
|
50
|
+
# Define the URL for the API request
|
51
|
+
url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Pontos%20de%20entrega%20de%20g%C3%A1s%20natural%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-8655251.47456396%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C-4787514.465591563%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
|
52
|
+
|
53
|
+
try:
|
54
|
+
# Make the API request
|
55
|
+
response = requests.get(url)
|
56
|
+
response.raise_for_status()
|
57
|
+
|
58
|
+
# Parse the JSON response
|
59
|
+
data = response.json()
|
60
|
+
|
61
|
+
# Extract the URL for the zip file
|
62
|
+
if 'results' in data and len(data['results']) > 0 and 'value' in data['results'][0]:
|
63
|
+
download_url = data['results'][0]['value']['url']
|
64
|
+
else:
|
65
|
+
raise Exception("Failed to extract download URL from API response")
|
66
|
+
|
67
|
+
# Create a temporary directory to store the downloaded files
|
68
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
69
|
+
# Download the zip file
|
70
|
+
zip_path = os.path.join(temp_dir, "gas_delivery_points.zip")
|
71
|
+
if verbose:
|
72
|
+
print("Downloading zip file")
|
73
|
+
|
74
|
+
response = requests.get(download_url, stream=True)
|
75
|
+
response.raise_for_status()
|
76
|
+
|
77
|
+
with open(zip_path, 'wb') as f:
|
78
|
+
response.raw.decode_content = True
|
79
|
+
shutil.copyfileobj(response.raw, f)
|
80
|
+
|
81
|
+
# Extract the zip file
|
82
|
+
if verbose:
|
83
|
+
print("Extracting files")
|
84
|
+
|
85
|
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
86
|
+
zip_ref.extractall(temp_dir)
|
87
|
+
|
88
|
+
# Find the shapefile in the extracted files
|
89
|
+
shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
|
90
|
+
|
91
|
+
if not shp_files:
|
92
|
+
raise Exception("No shapefile found in the downloaded zip file")
|
93
|
+
|
94
|
+
# Read the shapefile
|
95
|
+
if verbose:
|
96
|
+
print("Reading shapefile")
|
97
|
+
|
98
|
+
shp_path = os.path.join(temp_dir, shp_files[0])
|
99
|
+
gdf = gpd.read_file(shp_path)
|
100
|
+
|
101
|
+
# Convert to SIRGAS 2000 (EPSG:4674)
|
102
|
+
if verbose:
|
103
|
+
print("Converting to SIRGAS 2000 (EPSG:4674)")
|
104
|
+
|
105
|
+
gdf = gdf.to_crs(epsg=4674)
|
106
|
+
|
107
|
+
# Simplify the dataset if requested
|
108
|
+
if simplified:
|
109
|
+
if verbose:
|
110
|
+
print("Simplifying the dataset")
|
111
|
+
|
112
|
+
# Select only the most important columns
|
113
|
+
# Adjust these columns based on the actual data structure
|
114
|
+
cols_to_keep = ['NOME', 'TIPO', 'UF', 'MUNICIPIO', 'geometry']
|
115
|
+
cols_available = [col for col in cols_to_keep if col in gdf.columns]
|
116
|
+
|
117
|
+
if not cols_available:
|
118
|
+
warnings.warn("None of the specified columns for simplification are available. Returning the full dataset.")
|
119
|
+
else:
|
120
|
+
gdf = gdf[cols_available]
|
121
|
+
|
122
|
+
if verbose:
|
123
|
+
print("Finished processing natural gas delivery points data")
|
124
|
+
|
125
|
+
return gdf
|
126
|
+
|
127
|
+
except Exception as e:
|
128
|
+
raise Exception(f"Failed to download or process natural gas delivery points data: {str(e)}")
|
@@ -0,0 +1,128 @@
|
|
1
|
+
import geopandas as gpd
|
2
|
+
import requests
|
3
|
+
import shutil
|
4
|
+
import zipfile
|
5
|
+
import tempfile
|
6
|
+
import warnings
|
7
|
+
import os
|
8
|
+
from shapely.geometry.point import Point
|
9
|
+
|
10
|
+
|
11
|
+
def read_natural_gas_processing_hub(simplified=False, verbose=False):
|
12
|
+
"""Download data of natural gas processing hubs in Brazil.
|
13
|
+
|
14
|
+
This function downloads and returns data of natural gas processing hubs
|
15
|
+
in Brazil as a GeoPandas GeoDataFrame. The data comes from EPE (Energy Research Company).
|
16
|
+
|
17
|
+
Parameters
|
18
|
+
----------
|
19
|
+
simplified : bool, optional
|
20
|
+
If True, returns a simplified version of the dataset with only the most
|
21
|
+
important columns. If False, returns the complete dataset. Default is False.
|
22
|
+
verbose : bool, optional
|
23
|
+
If True, displays detailed messages about the download and processing
|
24
|
+
steps. Default is False.
|
25
|
+
|
26
|
+
Returns
|
27
|
+
-------
|
28
|
+
gpd.GeoDataFrame
|
29
|
+
A GeoDataFrame containing data on natural gas processing hubs in Brazil.
|
30
|
+
|
31
|
+
Raises
|
32
|
+
------
|
33
|
+
Exception
|
34
|
+
If the download or processing of the data fails.
|
35
|
+
|
36
|
+
Example
|
37
|
+
-------
|
38
|
+
>>> from tunned_geobr import read_natural_gas_processing_hub
|
39
|
+
>>>
|
40
|
+
>>> # Read the data
|
41
|
+
>>> gas_hubs = read_natural_gas_processing_hub()
|
42
|
+
>>>
|
43
|
+
>>> # Plot the data
|
44
|
+
>>> gas_hubs.plot()
|
45
|
+
"""
|
46
|
+
|
47
|
+
if verbose:
|
48
|
+
print("Downloading data of natural gas processing hubs in Brazil")
|
49
|
+
|
50
|
+
# Define the URL for the API request
|
51
|
+
url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Polos%20de%20processamento%20de%20g%C3%A1s%20natural%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-8655251.47456396%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C-4787514.465591563%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
|
52
|
+
|
53
|
+
try:
|
54
|
+
# Make the API request
|
55
|
+
response = requests.get(url)
|
56
|
+
response.raise_for_status()
|
57
|
+
|
58
|
+
# Parse the JSON response
|
59
|
+
data = response.json()
|
60
|
+
|
61
|
+
# Extract the URL for the zip file
|
62
|
+
if 'results' in data and len(data['results']) > 0 and 'value' in data['results'][0]:
|
63
|
+
download_url = data['results'][0]['value']['url']
|
64
|
+
else:
|
65
|
+
raise Exception("Failed to extract download URL from API response")
|
66
|
+
|
67
|
+
# Create a temporary directory to store the downloaded files
|
68
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
69
|
+
# Download the zip file
|
70
|
+
zip_path = os.path.join(temp_dir, "gas_processing_hubs.zip")
|
71
|
+
if verbose:
|
72
|
+
print("Downloading zip file")
|
73
|
+
|
74
|
+
response = requests.get(download_url, stream=True)
|
75
|
+
response.raise_for_status()
|
76
|
+
|
77
|
+
with open(zip_path, 'wb') as f:
|
78
|
+
response.raw.decode_content = True
|
79
|
+
shutil.copyfileobj(response.raw, f)
|
80
|
+
|
81
|
+
# Extract the zip file
|
82
|
+
if verbose:
|
83
|
+
print("Extracting files")
|
84
|
+
|
85
|
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
86
|
+
zip_ref.extractall(temp_dir)
|
87
|
+
|
88
|
+
# Find the shapefile in the extracted files
|
89
|
+
shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
|
90
|
+
|
91
|
+
if not shp_files:
|
92
|
+
raise Exception("No shapefile found in the downloaded zip file")
|
93
|
+
|
94
|
+
# Read the shapefile
|
95
|
+
if verbose:
|
96
|
+
print("Reading shapefile")
|
97
|
+
|
98
|
+
shp_path = os.path.join(temp_dir, shp_files[0])
|
99
|
+
gdf = gpd.read_file(shp_path)
|
100
|
+
|
101
|
+
# Convert to SIRGAS 2000 (EPSG:4674)
|
102
|
+
if verbose:
|
103
|
+
print("Converting to SIRGAS 2000 (EPSG:4674)")
|
104
|
+
|
105
|
+
gdf = gdf.to_crs(epsg=4674)
|
106
|
+
|
107
|
+
# Simplify the dataset if requested
|
108
|
+
if simplified:
|
109
|
+
if verbose:
|
110
|
+
print("Simplifying the dataset")
|
111
|
+
|
112
|
+
# Select only the most important columns
|
113
|
+
# Adjust these columns based on the actual data structure
|
114
|
+
cols_to_keep = ['NOME', 'EMPRESA', 'CAPACIDADE', 'UF', 'MUNICIPIO', 'geometry']
|
115
|
+
cols_available = [col for col in cols_to_keep if col in gdf.columns]
|
116
|
+
|
117
|
+
if not cols_available:
|
118
|
+
warnings.warn("None of the specified columns for simplification are available. Returning the full dataset.")
|
119
|
+
else:
|
120
|
+
gdf = gdf[cols_available]
|
121
|
+
|
122
|
+
if verbose:
|
123
|
+
print("Finished processing natural gas processing hubs data")
|
124
|
+
|
125
|
+
return gdf
|
126
|
+
|
127
|
+
except Exception as e:
|
128
|
+
raise Exception(f"Failed to download or process natural gas processing hubs data: {str(e)}")
|
@@ -0,0 +1,119 @@
|
|
1
|
+
import geopandas as gpd
|
2
|
+
import requests
|
3
|
+
import zipfile
|
4
|
+
import tempfile
|
5
|
+
import os
|
6
|
+
import warnings
|
7
|
+
import shutil
|
8
|
+
|
9
|
+
|
10
|
+
def read_og_basement(simplified=True, verbose=False):
|
11
|
+
"""Download data for Oil and Gas Basement in Brazil.
|
12
|
+
|
13
|
+
This function downloads, processes, and returns data for Oil and Gas Basement
|
14
|
+
in Brazil as a geopandas GeoDataFrame.
|
15
|
+
|
16
|
+
Parameters
|
17
|
+
----------
|
18
|
+
simplified : bool, optional
|
19
|
+
If True, returns a simplified version of the dataset with only essential columns.
|
20
|
+
If False, returns the complete dataset with all columns.
|
21
|
+
Default is True.
|
22
|
+
verbose : bool, optional
|
23
|
+
If True, prints detailed information about the data download and processing.
|
24
|
+
Default is False.
|
25
|
+
|
26
|
+
Returns
|
27
|
+
-------
|
28
|
+
geopandas.GeoDataFrame
|
29
|
+
A GeoDataFrame containing Oil and Gas Basement data.
|
30
|
+
|
31
|
+
Examples
|
32
|
+
--------
|
33
|
+
>>> # Download Oil and Gas Basement data
|
34
|
+
>>> df = read_og_basement()
|
35
|
+
>>> df.head()
|
36
|
+
"""
|
37
|
+
|
38
|
+
url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Embasamento%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-9237395.881983705%2C-4650539.310904562%5D%2C%5B-9237395.881983705%2C1219824.4613954136%5D%2C%5B-2349502.3891517334%2C1219824.4613954136%5D%2C%5B-2349502.3891517334%2C-4650539.310904562%5D%2C%5B-9237395.881983705%2C-4650539.310904562%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
|
39
|
+
|
40
|
+
if verbose:
|
41
|
+
print("Downloading data...")
|
42
|
+
|
43
|
+
try:
|
44
|
+
response = requests.get(url)
|
45
|
+
response.raise_for_status()
|
46
|
+
response_json = response.json()
|
47
|
+
|
48
|
+
if "value" not in response_json or not response_json["value"]:
|
49
|
+
raise ValueError("No data found in the response")
|
50
|
+
|
51
|
+
download_url = response_json["value"]["itemUrl"]
|
52
|
+
|
53
|
+
if verbose:
|
54
|
+
print(f"Download URL: {download_url}")
|
55
|
+
print("Downloading zip file...")
|
56
|
+
|
57
|
+
zip_response = requests.get(download_url)
|
58
|
+
zip_response.raise_for_status()
|
59
|
+
|
60
|
+
# Create a temporary directory to extract the files
|
61
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
62
|
+
zip_path = os.path.join(temp_dir, "data.zip")
|
63
|
+
|
64
|
+
# Save the zip file
|
65
|
+
with open(zip_path, "wb") as f:
|
66
|
+
f.write(zip_response.content)
|
67
|
+
|
68
|
+
if verbose:
|
69
|
+
print(f"Zip file saved to {zip_path}")
|
70
|
+
print("Extracting files...")
|
71
|
+
|
72
|
+
# Extract the zip file
|
73
|
+
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
74
|
+
zip_ref.extractall(temp_dir)
|
75
|
+
|
76
|
+
# Find the shapefile
|
77
|
+
shp_files = [f for f in os.listdir(temp_dir) if f.endswith(".shp")]
|
78
|
+
|
79
|
+
if not shp_files:
|
80
|
+
raise FileNotFoundError("No shapefile found in the downloaded zip file")
|
81
|
+
|
82
|
+
shp_path = os.path.join(temp_dir, shp_files[0])
|
83
|
+
|
84
|
+
if verbose:
|
85
|
+
print(f"Reading shapefile from {shp_path}")
|
86
|
+
|
87
|
+
# Read the shapefile
|
88
|
+
gdf = gpd.read_file(shp_path)
|
89
|
+
|
90
|
+
# Convert to SIRGAS 2000 (EPSG:4674)
|
91
|
+
gdf = gdf.to_crs(epsg=4674)
|
92
|
+
|
93
|
+
if simplified:
|
94
|
+
# Select only essential columns
|
95
|
+
if verbose:
|
96
|
+
print("Simplifying the dataset...")
|
97
|
+
|
98
|
+
# Identify the essential columns
|
99
|
+
essential_cols = ["geometry"]
|
100
|
+
|
101
|
+
# Add any other essential columns that exist in the dataset
|
102
|
+
for col in ["NOME", "DESCRICAO", "AREA_KM2"]:
|
103
|
+
if col in gdf.columns:
|
104
|
+
essential_cols.append(col)
|
105
|
+
|
106
|
+
# Select only the essential columns
|
107
|
+
gdf = gdf[essential_cols]
|
108
|
+
|
109
|
+
return gdf
|
110
|
+
|
111
|
+
except requests.exceptions.RequestException as e:
|
112
|
+
warnings.warn(f"Error downloading data: {e}")
|
113
|
+
return None
|
114
|
+
except (ValueError, FileNotFoundError, zipfile.BadZipFile) as e:
|
115
|
+
warnings.warn(f"Error processing data: {e}")
|
116
|
+
return None
|
117
|
+
except Exception as e:
|
118
|
+
warnings.warn(f"Unexpected error: {e}")
|
119
|
+
return None
|
@@ -0,0 +1,129 @@
|
|
1
|
+
import geopandas as gpd
|
2
|
+
import requests
|
3
|
+
import shutil
|
4
|
+
import zipfile
|
5
|
+
import tempfile
|
6
|
+
import warnings
|
7
|
+
import os
|
8
|
+
from shapely.geometry.point import Point
|
9
|
+
|
10
|
+
|
11
|
+
def read_og_effective_geographic_basin(simplified=False, verbose=False):
|
12
|
+
"""Download data of oil and gas effective geographic basins in Brazil.
|
13
|
+
|
14
|
+
This function downloads and returns data of oil and gas effective geographic basins
|
15
|
+
(Bacia Efetiva Geográfica) in Brazil as a GeoPandas GeoDataFrame.
|
16
|
+
The data comes from EPE (Energy Research Company).
|
17
|
+
|
18
|
+
Parameters
|
19
|
+
----------
|
20
|
+
simplified : bool, optional
|
21
|
+
If True, returns a simplified version of the dataset with only the most
|
22
|
+
important columns. If False, returns the complete dataset. Default is False.
|
23
|
+
verbose : bool, optional
|
24
|
+
If True, displays detailed messages about the download and processing
|
25
|
+
steps. Default is False.
|
26
|
+
|
27
|
+
Returns
|
28
|
+
-------
|
29
|
+
gpd.GeoDataFrame
|
30
|
+
A GeoDataFrame containing data on oil and gas effective geographic basins in Brazil.
|
31
|
+
|
32
|
+
Raises
|
33
|
+
------
|
34
|
+
Exception
|
35
|
+
If the download or processing of the data fails.
|
36
|
+
|
37
|
+
Example
|
38
|
+
-------
|
39
|
+
>>> from tunned_geobr import read_og_effective_geographic_basin
|
40
|
+
>>>
|
41
|
+
>>> # Read the data
|
42
|
+
>>> geo_basins = read_og_effective_geographic_basin()
|
43
|
+
>>>
|
44
|
+
>>> # Plot the data
|
45
|
+
>>> geo_basins.plot()
|
46
|
+
"""
|
47
|
+
|
48
|
+
if verbose:
|
49
|
+
print("Downloading data of oil and gas effective geographic basins in Brazil")
|
50
|
+
|
51
|
+
# Define the URL for the API request
|
52
|
+
url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Bacia%20Efetiva%20Geogr%C3%A1fica%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-9237395.881983705%2C-4650539.310904562%5D%2C%5B-9237395.881983705%2C1219824.4613954136%5D%2C%5B-2349502.3891517334%2C1219824.4613954136%5D%2C%5B-2349502.3891517334%2C-4650539.310904562%5D%2C%5B-9237395.881983705%2C-4650539.310904562%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
|
53
|
+
|
54
|
+
try:
|
55
|
+
# Make the API request
|
56
|
+
response = requests.get(url)
|
57
|
+
response.raise_for_status()
|
58
|
+
|
59
|
+
# Parse the JSON response
|
60
|
+
data = response.json()
|
61
|
+
|
62
|
+
# Extract the URL for the zip file
|
63
|
+
if 'results' in data and len(data['results']) > 0 and 'value' in data['results'][0]:
|
64
|
+
download_url = data['results'][0]['value']['url']
|
65
|
+
else:
|
66
|
+
raise Exception("Failed to extract download URL from API response")
|
67
|
+
|
68
|
+
# Create a temporary directory to store the downloaded files
|
69
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
70
|
+
# Download the zip file
|
71
|
+
zip_path = os.path.join(temp_dir, "og_effective_geographic_basin.zip")
|
72
|
+
if verbose:
|
73
|
+
print("Downloading zip file")
|
74
|
+
|
75
|
+
response = requests.get(download_url, stream=True)
|
76
|
+
response.raise_for_status()
|
77
|
+
|
78
|
+
with open(zip_path, 'wb') as f:
|
79
|
+
response.raw.decode_content = True
|
80
|
+
shutil.copyfileobj(response.raw, f)
|
81
|
+
|
82
|
+
# Extract the zip file
|
83
|
+
if verbose:
|
84
|
+
print("Extracting files")
|
85
|
+
|
86
|
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
87
|
+
zip_ref.extractall(temp_dir)
|
88
|
+
|
89
|
+
# Find the shapefile in the extracted files
|
90
|
+
shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
|
91
|
+
|
92
|
+
if not shp_files:
|
93
|
+
raise Exception("No shapefile found in the downloaded zip file")
|
94
|
+
|
95
|
+
# Read the shapefile
|
96
|
+
if verbose:
|
97
|
+
print("Reading shapefile")
|
98
|
+
|
99
|
+
shp_path = os.path.join(temp_dir, shp_files[0])
|
100
|
+
gdf = gpd.read_file(shp_path)
|
101
|
+
|
102
|
+
# Convert to SIRGAS 2000 (EPSG:4674)
|
103
|
+
if verbose:
|
104
|
+
print("Converting to SIRGAS 2000 (EPSG:4674)")
|
105
|
+
|
106
|
+
gdf = gdf.to_crs(epsg=4674)
|
107
|
+
|
108
|
+
# Simplify the dataset if requested
|
109
|
+
if simplified:
|
110
|
+
if verbose:
|
111
|
+
print("Simplifying the dataset")
|
112
|
+
|
113
|
+
# Select only the most important columns
|
114
|
+
# Adjust these columns based on the actual data structure
|
115
|
+
cols_to_keep = ['NOME', 'TIPO', 'AMBIENTE', 'UF', 'geometry']
|
116
|
+
cols_available = [col for col in cols_to_keep if col in gdf.columns]
|
117
|
+
|
118
|
+
if not cols_available:
|
119
|
+
warnings.warn("None of the specified columns for simplification are available. Returning the full dataset.")
|
120
|
+
else:
|
121
|
+
gdf = gdf[cols_available]
|
122
|
+
|
123
|
+
if verbose:
|
124
|
+
print("Finished processing oil and gas effective geographic basins data")
|
125
|
+
|
126
|
+
return gdf
|
127
|
+
|
128
|
+
except Exception as e:
|
129
|
+
raise Exception(f"Failed to download or process oil and gas effective geographic basins data: {str(e)}")
|