tunned-geobr 0.2.2__py3-none-any.whl → 0.2.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (67) hide show
  1. tunned_geobr/__init__.py +59 -1
  2. tunned_geobr/list_geobr.py +74 -3
  3. tunned_geobr/read_ama_anemometric_towers.py +119 -0
  4. tunned_geobr/read_areas_under_contract.py +129 -0
  5. tunned_geobr/read_biodiesel_plants.py +128 -0
  6. tunned_geobr/read_biomethane_plants.py +128 -0
  7. tunned_geobr/read_compression_stations.py +128 -0
  8. tunned_geobr/read_drainage_ducts.py +128 -0
  9. tunned_geobr/read_etanol_plants.py +128 -0
  10. tunned_geobr/read_existent_biomass_ute.py +128 -0
  11. tunned_geobr/read_existent_cgh.py +168 -0
  12. tunned_geobr/read_existent_eolic.py +165 -0
  13. tunned_geobr/read_existent_fossile_ute.py +128 -0
  14. tunned_geobr/read_existent_nuclear_ute.py +128 -0
  15. tunned_geobr/read_existent_pch.py +168 -0
  16. tunned_geobr/read_existent_solar.py +165 -0
  17. tunned_geobr/read_existent_substations.py +128 -0
  18. tunned_geobr/read_existent_transmission_lines.py +128 -0
  19. tunned_geobr/read_existent_uhe.py +168 -0
  20. tunned_geobr/read_exploration_production_environment.py +119 -0
  21. tunned_geobr/read_federal_union_areas.py +129 -0
  22. tunned_geobr/read_fuel_bases.py +128 -0
  23. tunned_geobr/read_gas_distribution_pipelines.py +128 -0
  24. tunned_geobr/read_gas_transport_pipelines.py +128 -0
  25. tunned_geobr/read_glp_bases.py +128 -0
  26. tunned_geobr/read_gnl_terminals.py +128 -0
  27. tunned_geobr/read_hydroelectric_feasibility_studies.py +119 -0
  28. tunned_geobr/read_hydroelectric_inventory_aai_studies.py +119 -0
  29. tunned_geobr/read_isolated_systems.py +128 -0
  30. tunned_geobr/read_natural_gas_delivery_points.py +128 -0
  31. tunned_geobr/read_natural_gas_processing_hub.py +128 -0
  32. tunned_geobr/read_og_basement.py +119 -0
  33. tunned_geobr/read_og_effective_geographic_basin.py +129 -0
  34. tunned_geobr/read_og_ipa_direct_evidence.py +119 -0
  35. tunned_geobr/read_og_ipa_exploratory_activity.py +119 -0
  36. tunned_geobr/read_og_ipa_exploratory_intensity.py +129 -0
  37. tunned_geobr/read_og_ipa_need_for_knowledge.py +119 -0
  38. tunned_geobr/read_og_ipa_prospectiveness.py +119 -0
  39. tunned_geobr/read_og_ipa_supply_infrastructure.py +119 -0
  40. tunned_geobr/read_og_legal_pre_salt_polygon.py +119 -0
  41. tunned_geobr/read_og_predominant_fluid_type.py +129 -0
  42. tunned_geobr/read_og_probabilistic_effective_basin.py +129 -0
  43. tunned_geobr/read_og_total_ipa.py +129 -0
  44. tunned_geobr/read_og_unconventional_resources.py +129 -0
  45. tunned_geobr/read_oil_and_derivatives_terminal.py +128 -0
  46. tunned_geobr/read_pan_strategic_areas 2.py +71 -0
  47. tunned_geobr/read_pio_ducts.py +128 -0
  48. tunned_geobr/read_pio_terminals.py +128 -0
  49. tunned_geobr/read_planned_biomass_ute.py +166 -0
  50. tunned_geobr/read_planned_cgh.py +166 -0
  51. tunned_geobr/read_planned_eolic.py +165 -0
  52. tunned_geobr/read_planned_fossile_ute.py +166 -0
  53. tunned_geobr/read_planned_nuclear_ute.py +165 -0
  54. tunned_geobr/read_planned_pch.py +166 -0
  55. tunned_geobr/read_planned_solar.py +165 -0
  56. tunned_geobr/read_planned_substations.py +164 -0
  57. tunned_geobr/read_planned_transmission_lines.py +165 -0
  58. tunned_geobr/read_planned_uhe.py +166 -0
  59. tunned_geobr/read_processing_facilities.py +128 -0
  60. tunned_geobr/read_sedimentary_basins.py +119 -0
  61. tunned_geobr/read_subsystem_interconnected.py +163 -0
  62. {tunned_geobr-0.2.2.dist-info → tunned_geobr-0.2.4.dist-info}/METADATA +1 -1
  63. {tunned_geobr-0.2.2.dist-info → tunned_geobr-0.2.4.dist-info}/RECORD +66 -8
  64. tunned_geobr/constants.py +0 -13
  65. {tunned_geobr-0.2.2.dist-info → tunned_geobr-0.2.4.dist-info}/WHEEL +0 -0
  66. {tunned_geobr-0.2.2.dist-info → tunned_geobr-0.2.4.dist-info}/entry_points.txt +0 -0
  67. {tunned_geobr-0.2.2.dist-info → tunned_geobr-0.2.4.dist-info}/licenses/LICENSE.txt +0 -0
@@ -0,0 +1,128 @@
1
+ import geopandas as gpd
2
+ import requests
3
+ import shutil
4
+ import zipfile
5
+ import tempfile
6
+ import warnings
7
+ import os
8
+ from shapely.geometry.point import Point
9
+
10
+
11
+ def read_gas_transport_pipelines(simplified=False, verbose=False):
12
+ """Download data of gas transport pipelines in Brazil.
13
+
14
+ This function downloads and returns data of gas transport pipelines (gasodutos de transporte)
15
+ in Brazil as a GeoPandas GeoDataFrame. The data comes from EPE (Energy Research Company).
16
+
17
+ Parameters
18
+ ----------
19
+ simplified : bool, optional
20
+ If True, returns a simplified version of the dataset with only the most
21
+ important columns. If False, returns the complete dataset. Default is False.
22
+ verbose : bool, optional
23
+ If True, displays detailed messages about the download and processing
24
+ steps. Default is False.
25
+
26
+ Returns
27
+ -------
28
+ gpd.GeoDataFrame
29
+ A GeoDataFrame containing data on gas transport pipelines in Brazil.
30
+
31
+ Raises
32
+ ------
33
+ Exception
34
+ If the download or processing of the data fails.
35
+
36
+ Example
37
+ -------
38
+ >>> from tunned_geobr import read_gas_transport_pipelines
39
+ >>>
40
+ >>> # Read the data
41
+ >>> gas_pipelines = read_gas_transport_pipelines()
42
+ >>>
43
+ >>> # Plot the data
44
+ >>> gas_pipelines.plot()
45
+ """
46
+
47
+ if verbose:
48
+ print("Downloading data of gas transport pipelines in Brazil")
49
+
50
+ # Define the URL for the API request
51
+ url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Gasodutos%20de%20transporte%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-8655251.47456396%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C-4787514.465591563%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
52
+
53
+ try:
54
+ # Make the API request
55
+ response = requests.get(url)
56
+ response.raise_for_status()
57
+
58
+ # Parse the JSON response
59
+ data = response.json()
60
+
61
+ # Extract the URL for the zip file
62
+ if 'results' in data and len(data['results']) > 0 and 'value' in data['results'][0]:
63
+ download_url = data['results'][0]['value']['url']
64
+ else:
65
+ raise Exception("Failed to extract download URL from API response")
66
+
67
+ # Create a temporary directory to store the downloaded files
68
+ with tempfile.TemporaryDirectory() as temp_dir:
69
+ # Download the zip file
70
+ zip_path = os.path.join(temp_dir, "gas_transport_pipelines.zip")
71
+ if verbose:
72
+ print("Downloading zip file")
73
+
74
+ response = requests.get(download_url, stream=True)
75
+ response.raise_for_status()
76
+
77
+ with open(zip_path, 'wb') as f:
78
+ response.raw.decode_content = True
79
+ shutil.copyfileobj(response.raw, f)
80
+
81
+ # Extract the zip file
82
+ if verbose:
83
+ print("Extracting files")
84
+
85
+ with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
+ zip_ref.extractall(temp_dir)
87
+
88
+ # Find the shapefile in the extracted files
89
+ shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+
91
+ if not shp_files:
92
+ raise Exception("No shapefile found in the downloaded zip file")
93
+
94
+ # Read the shapefile
95
+ if verbose:
96
+ print("Reading shapefile")
97
+
98
+ shp_path = os.path.join(temp_dir, shp_files[0])
99
+ gdf = gpd.read_file(shp_path)
100
+
101
+ # Convert to SIRGAS 2000 (EPSG:4674)
102
+ if verbose:
103
+ print("Converting to SIRGAS 2000 (EPSG:4674)")
104
+
105
+ gdf = gdf.to_crs(epsg=4674)
106
+
107
+ # Simplify the dataset if requested
108
+ if simplified:
109
+ if verbose:
110
+ print("Simplifying the dataset")
111
+
112
+ # Select only the most important columns
113
+ # Adjust these columns based on the actual data structure
114
+ cols_to_keep = ['NOME', 'EMPRESA', 'EXTENSAO', 'DIAMETRO', 'CAPACIDADE', 'UF', 'geometry']
115
+ cols_available = [col for col in cols_to_keep if col in gdf.columns]
116
+
117
+ if not cols_available:
118
+ warnings.warn("None of the specified columns for simplification are available. Returning the full dataset.")
119
+ else:
120
+ gdf = gdf[cols_available]
121
+
122
+ if verbose:
123
+ print("Finished processing gas transport pipelines data")
124
+
125
+ return gdf
126
+
127
+ except Exception as e:
128
+ raise Exception(f"Failed to download or process gas transport pipelines data: {str(e)}")
@@ -0,0 +1,128 @@
1
+ import geopandas as gpd
2
+ import requests
3
+ import shutil
4
+ import zipfile
5
+ import tempfile
6
+ import warnings
7
+ import os
8
+ from shapely.geometry.point import Point
9
+
10
+
11
+ def read_glp_bases(simplified=False, verbose=False):
12
+ """Download data of GLP (LPG) bases in Brazil.
13
+
14
+ This function downloads and returns data of GLP (Liquefied Petroleum Gas) bases
15
+ in Brazil as a GeoPandas GeoDataFrame. The data comes from EPE (Energy Research Company).
16
+
17
+ Parameters
18
+ ----------
19
+ simplified : bool, optional
20
+ If True, returns a simplified version of the dataset with only the most
21
+ important columns. If False, returns the complete dataset. Default is False.
22
+ verbose : bool, optional
23
+ If True, displays detailed messages about the download and processing
24
+ steps. Default is False.
25
+
26
+ Returns
27
+ -------
28
+ gpd.GeoDataFrame
29
+ A GeoDataFrame containing data on GLP bases in Brazil.
30
+
31
+ Raises
32
+ ------
33
+ Exception
34
+ If the download or processing of the data fails.
35
+
36
+ Example
37
+ -------
38
+ >>> from tunned_geobr import read_glp_bases
39
+ >>>
40
+ >>> # Read the data
41
+ >>> glp_bases = read_glp_bases()
42
+ >>>
43
+ >>> # Plot the data
44
+ >>> glp_bases.plot()
45
+ """
46
+
47
+ if verbose:
48
+ print("Downloading data of GLP bases in Brazil")
49
+
50
+ # Define the URL for the API request
51
+ url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Bases%20de%20GLP%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-8655251.47456396%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C-4787514.465591563%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
52
+
53
+ try:
54
+ # Make the API request
55
+ response = requests.get(url)
56
+ response.raise_for_status()
57
+
58
+ # Parse the JSON response
59
+ data = response.json()
60
+
61
+ # Extract the URL for the zip file
62
+ if 'results' in data and len(data['results']) > 0 and 'value' in data['results'][0]:
63
+ download_url = data['results'][0]['value']['url']
64
+ else:
65
+ raise Exception("Failed to extract download URL from API response")
66
+
67
+ # Create a temporary directory to store the downloaded files
68
+ with tempfile.TemporaryDirectory() as temp_dir:
69
+ # Download the zip file
70
+ zip_path = os.path.join(temp_dir, "glp_bases.zip")
71
+ if verbose:
72
+ print("Downloading zip file")
73
+
74
+ response = requests.get(download_url, stream=True)
75
+ response.raise_for_status()
76
+
77
+ with open(zip_path, 'wb') as f:
78
+ response.raw.decode_content = True
79
+ shutil.copyfileobj(response.raw, f)
80
+
81
+ # Extract the zip file
82
+ if verbose:
83
+ print("Extracting files")
84
+
85
+ with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
+ zip_ref.extractall(temp_dir)
87
+
88
+ # Find the shapefile in the extracted files
89
+ shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+
91
+ if not shp_files:
92
+ raise Exception("No shapefile found in the downloaded zip file")
93
+
94
+ # Read the shapefile
95
+ if verbose:
96
+ print("Reading shapefile")
97
+
98
+ shp_path = os.path.join(temp_dir, shp_files[0])
99
+ gdf = gpd.read_file(shp_path)
100
+
101
+ # Convert to SIRGAS 2000 (EPSG:4674)
102
+ if verbose:
103
+ print("Converting to SIRGAS 2000 (EPSG:4674)")
104
+
105
+ gdf = gdf.to_crs(epsg=4674)
106
+
107
+ # Simplify the dataset if requested
108
+ if simplified:
109
+ if verbose:
110
+ print("Simplifying the dataset")
111
+
112
+ # Select only the most important columns
113
+ # Adjust these columns based on the actual data structure
114
+ cols_to_keep = ['NOME', 'EMPRESA', 'CAPACIDADE', 'UF', 'MUNICIPIO', 'geometry']
115
+ cols_available = [col for col in cols_to_keep if col in gdf.columns]
116
+
117
+ if not cols_available:
118
+ warnings.warn("None of the specified columns for simplification are available. Returning the full dataset.")
119
+ else:
120
+ gdf = gdf[cols_available]
121
+
122
+ if verbose:
123
+ print("Finished processing GLP bases data")
124
+
125
+ return gdf
126
+
127
+ except Exception as e:
128
+ raise Exception(f"Failed to download or process GLP bases data: {str(e)}")
@@ -0,0 +1,128 @@
1
+ import geopandas as gpd
2
+ import requests
3
+ import shutil
4
+ import zipfile
5
+ import tempfile
6
+ import warnings
7
+ import os
8
+ from shapely.geometry.point import Point
9
+
10
+
11
+ def read_gnl_terminals(simplified=False, verbose=False):
12
+ """Download data of GNL (LNG) terminals in Brazil.
13
+
14
+ This function downloads and returns data of GNL (Liquefied Natural Gas) terminals
15
+ in Brazil as a GeoPandas GeoDataFrame. The data comes from EPE (Energy Research Company).
16
+
17
+ Parameters
18
+ ----------
19
+ simplified : bool, optional
20
+ If True, returns a simplified version of the dataset with only the most
21
+ important columns. If False, returns the complete dataset. Default is False.
22
+ verbose : bool, optional
23
+ If True, displays detailed messages about the download and processing
24
+ steps. Default is False.
25
+
26
+ Returns
27
+ -------
28
+ gpd.GeoDataFrame
29
+ A GeoDataFrame containing data on GNL terminals in Brazil.
30
+
31
+ Raises
32
+ ------
33
+ Exception
34
+ If the download or processing of the data fails.
35
+
36
+ Example
37
+ -------
38
+ >>> from tunned_geobr import read_gnl_terminals
39
+ >>>
40
+ >>> # Read the data
41
+ >>> gnl_terminals = read_gnl_terminals()
42
+ >>>
43
+ >>> # Plot the data
44
+ >>> gnl_terminals.plot()
45
+ """
46
+
47
+ if verbose:
48
+ print("Downloading data of GNL terminals in Brazil")
49
+
50
+ # Define the URL for the API request
51
+ url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Terminais%20GNL%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-8655251.47456396%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C-4787514.465591563%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
52
+
53
+ try:
54
+ # Make the API request
55
+ response = requests.get(url)
56
+ response.raise_for_status()
57
+
58
+ # Parse the JSON response
59
+ data = response.json()
60
+
61
+ # Extract the URL for the zip file
62
+ if 'results' in data and len(data['results']) > 0 and 'value' in data['results'][0]:
63
+ download_url = data['results'][0]['value']['url']
64
+ else:
65
+ raise Exception("Failed to extract download URL from API response")
66
+
67
+ # Create a temporary directory to store the downloaded files
68
+ with tempfile.TemporaryDirectory() as temp_dir:
69
+ # Download the zip file
70
+ zip_path = os.path.join(temp_dir, "gnl_terminals.zip")
71
+ if verbose:
72
+ print("Downloading zip file")
73
+
74
+ response = requests.get(download_url, stream=True)
75
+ response.raise_for_status()
76
+
77
+ with open(zip_path, 'wb') as f:
78
+ response.raw.decode_content = True
79
+ shutil.copyfileobj(response.raw, f)
80
+
81
+ # Extract the zip file
82
+ if verbose:
83
+ print("Extracting files")
84
+
85
+ with zipfile.ZipFile(zip_path, 'r') as zip_ref:
86
+ zip_ref.extractall(temp_dir)
87
+
88
+ # Find the shapefile in the extracted files
89
+ shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
90
+
91
+ if not shp_files:
92
+ raise Exception("No shapefile found in the downloaded zip file")
93
+
94
+ # Read the shapefile
95
+ if verbose:
96
+ print("Reading shapefile")
97
+
98
+ shp_path = os.path.join(temp_dir, shp_files[0])
99
+ gdf = gpd.read_file(shp_path)
100
+
101
+ # Convert to SIRGAS 2000 (EPSG:4674)
102
+ if verbose:
103
+ print("Converting to SIRGAS 2000 (EPSG:4674)")
104
+
105
+ gdf = gdf.to_crs(epsg=4674)
106
+
107
+ # Simplify the dataset if requested
108
+ if simplified:
109
+ if verbose:
110
+ print("Simplifying the dataset")
111
+
112
+ # Select only the most important columns
113
+ # Adjust these columns based on the actual data structure
114
+ cols_to_keep = ['NOME', 'EMPRESA', 'CAPACIDADE', 'TIPO', 'UF', 'MUNICIPIO', 'geometry']
115
+ cols_available = [col for col in cols_to_keep if col in gdf.columns]
116
+
117
+ if not cols_available:
118
+ warnings.warn("None of the specified columns for simplification are available. Returning the full dataset.")
119
+ else:
120
+ gdf = gdf[cols_available]
121
+
122
+ if verbose:
123
+ print("Finished processing GNL terminals data")
124
+
125
+ return gdf
126
+
127
+ except Exception as e:
128
+ raise Exception(f"Failed to download or process GNL terminals data: {str(e)}")
@@ -0,0 +1,119 @@
1
+ import geopandas as gpd
2
+ import requests
3
+ import zipfile
4
+ import tempfile
5
+ import os
6
+ import warnings
7
+ import shutil
8
+
9
+
10
+ def read_hydroelectric_feasibility_studies(simplified=True, verbose=False):
11
+ """Download data for Hydroelectric Feasibility Studies in Brazil.
12
+
13
+ This function downloads, processes, and returns data for Hydroelectric Feasibility Studies
14
+ in Brazil as a geopandas GeoDataFrame.
15
+
16
+ Parameters
17
+ ----------
18
+ simplified : bool, optional
19
+ If True, returns a simplified version of the dataset with only essential columns.
20
+ If False, returns the complete dataset with all columns.
21
+ Default is True.
22
+ verbose : bool, optional
23
+ If True, prints detailed information about the data download and processing.
24
+ Default is False.
25
+
26
+ Returns
27
+ -------
28
+ geopandas.GeoDataFrame
29
+ A GeoDataFrame containing Hydroelectric Feasibility Studies data.
30
+
31
+ Examples
32
+ --------
33
+ >>> # Download Hydroelectric Feasibility Studies data
34
+ >>> df = read_hydroelectric_feasibility_studies()
35
+ >>> df.head()
36
+ """
37
+
38
+ url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Estudos%20de%20Viabilidade%20Hidrel%C3%A9trica%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-9237395.881983705%2C-4650539.310904562%5D%2C%5B-9237395.881983705%2C1219824.4613954136%5D%2C%5B-2349502.3891517334%2C1219824.4613954136%5D%2C%5B-2349502.3891517334%2C-4650539.310904562%5D%2C%5B-9237395.881983705%2C-4650539.310904562%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
39
+
40
+ if verbose:
41
+ print("Downloading data...")
42
+
43
+ try:
44
+ response = requests.get(url)
45
+ response.raise_for_status()
46
+ response_json = response.json()
47
+
48
+ if "value" not in response_json or not response_json["value"]:
49
+ raise ValueError("No data found in the response")
50
+
51
+ download_url = response_json["value"]["itemUrl"]
52
+
53
+ if verbose:
54
+ print(f"Download URL: {download_url}")
55
+ print("Downloading zip file...")
56
+
57
+ zip_response = requests.get(download_url)
58
+ zip_response.raise_for_status()
59
+
60
+ # Create a temporary directory to extract the files
61
+ with tempfile.TemporaryDirectory() as temp_dir:
62
+ zip_path = os.path.join(temp_dir, "data.zip")
63
+
64
+ # Save the zip file
65
+ with open(zip_path, "wb") as f:
66
+ f.write(zip_response.content)
67
+
68
+ if verbose:
69
+ print(f"Zip file saved to {zip_path}")
70
+ print("Extracting files...")
71
+
72
+ # Extract the zip file
73
+ with zipfile.ZipFile(zip_path, "r") as zip_ref:
74
+ zip_ref.extractall(temp_dir)
75
+
76
+ # Find the shapefile
77
+ shp_files = [f for f in os.listdir(temp_dir) if f.endswith(".shp")]
78
+
79
+ if not shp_files:
80
+ raise FileNotFoundError("No shapefile found in the downloaded zip file")
81
+
82
+ shp_path = os.path.join(temp_dir, shp_files[0])
83
+
84
+ if verbose:
85
+ print(f"Reading shapefile from {shp_path}")
86
+
87
+ # Read the shapefile
88
+ gdf = gpd.read_file(shp_path)
89
+
90
+ # Convert to SIRGAS 2000 (EPSG:4674)
91
+ gdf = gdf.to_crs(epsg=4674)
92
+
93
+ if simplified:
94
+ # Select only essential columns
95
+ if verbose:
96
+ print("Simplifying the dataset...")
97
+
98
+ # Identify the essential columns
99
+ essential_cols = ["geometry"]
100
+
101
+ # Add any other essential columns that exist in the dataset
102
+ for col in ["NOME", "BACIA", "RIO", "POTENCIA", "AREA_KM2"]:
103
+ if col in gdf.columns:
104
+ essential_cols.append(col)
105
+
106
+ # Select only the essential columns
107
+ gdf = gdf[essential_cols]
108
+
109
+ return gdf
110
+
111
+ except requests.exceptions.RequestException as e:
112
+ warnings.warn(f"Error downloading data: {e}")
113
+ return None
114
+ except (ValueError, FileNotFoundError, zipfile.BadZipFile) as e:
115
+ warnings.warn(f"Error processing data: {e}")
116
+ return None
117
+ except Exception as e:
118
+ warnings.warn(f"Unexpected error: {e}")
119
+ return None
@@ -0,0 +1,119 @@
1
+ import geopandas as gpd
2
+ import requests
3
+ import zipfile
4
+ import tempfile
5
+ import os
6
+ import warnings
7
+ import shutil
8
+
9
+
10
+ def read_hydroelectric_inventory_aai_studies(simplified=True, verbose=False):
11
+ """Download data for Hydroelectric Inventory and AAI Studies in Brazil.
12
+
13
+ This function downloads, processes, and returns data for Hydroelectric Inventory and AAI Studies
14
+ in Brazil as a geopandas GeoDataFrame.
15
+
16
+ Parameters
17
+ ----------
18
+ simplified : bool, optional
19
+ If True, returns a simplified version of the dataset with only essential columns.
20
+ If False, returns the complete dataset with all columns.
21
+ Default is True.
22
+ verbose : bool, optional
23
+ If True, prints detailed information about the data download and processing.
24
+ Default is False.
25
+
26
+ Returns
27
+ -------
28
+ geopandas.GeoDataFrame
29
+ A GeoDataFrame containing Hydroelectric Inventory and AAI Studies data.
30
+
31
+ Examples
32
+ --------
33
+ >>> # Download Hydroelectric Inventory and AAI Studies data
34
+ >>> df = read_hydroelectric_inventory_aai_studies()
35
+ >>> df.head()
36
+ """
37
+
38
+ url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Estudos%20de%20Invent%C3%A1rio%20Hidrel%C3%A9trico%20e%20AAI%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-9237395.881983705%2C-4650539.310904562%5D%2C%5B-9237395.881983705%2C1219824.4613954136%5D%2C%5B-2349502.3891517334%2C1219824.4613954136%5D%2C%5B-2349502.3891517334%2C-4650539.310904562%5D%2C%5B-9237395.881983705%2C-4650539.310904562%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
39
+
40
+ if verbose:
41
+ print("Downloading data...")
42
+
43
+ try:
44
+ response = requests.get(url)
45
+ response.raise_for_status()
46
+ response_json = response.json()
47
+
48
+ if "value" not in response_json or not response_json["value"]:
49
+ raise ValueError("No data found in the response")
50
+
51
+ download_url = response_json["value"]["itemUrl"]
52
+
53
+ if verbose:
54
+ print(f"Download URL: {download_url}")
55
+ print("Downloading zip file...")
56
+
57
+ zip_response = requests.get(download_url)
58
+ zip_response.raise_for_status()
59
+
60
+ # Create a temporary directory to extract the files
61
+ with tempfile.TemporaryDirectory() as temp_dir:
62
+ zip_path = os.path.join(temp_dir, "data.zip")
63
+
64
+ # Save the zip file
65
+ with open(zip_path, "wb") as f:
66
+ f.write(zip_response.content)
67
+
68
+ if verbose:
69
+ print(f"Zip file saved to {zip_path}")
70
+ print("Extracting files...")
71
+
72
+ # Extract the zip file
73
+ with zipfile.ZipFile(zip_path, "r") as zip_ref:
74
+ zip_ref.extractall(temp_dir)
75
+
76
+ # Find the shapefile
77
+ shp_files = [f for f in os.listdir(temp_dir) if f.endswith(".shp")]
78
+
79
+ if not shp_files:
80
+ raise FileNotFoundError("No shapefile found in the downloaded zip file")
81
+
82
+ shp_path = os.path.join(temp_dir, shp_files[0])
83
+
84
+ if verbose:
85
+ print(f"Reading shapefile from {shp_path}")
86
+
87
+ # Read the shapefile
88
+ gdf = gpd.read_file(shp_path)
89
+
90
+ # Convert to SIRGAS 2000 (EPSG:4674)
91
+ gdf = gdf.to_crs(epsg=4674)
92
+
93
+ if simplified:
94
+ # Select only essential columns
95
+ if verbose:
96
+ print("Simplifying the dataset...")
97
+
98
+ # Identify the essential columns
99
+ essential_cols = ["geometry"]
100
+
101
+ # Add any other essential columns that exist in the dataset
102
+ for col in ["NOME", "BACIA", "RIO", "TIPO", "SITUACAO", "AREA_KM2"]:
103
+ if col in gdf.columns:
104
+ essential_cols.append(col)
105
+
106
+ # Select only the essential columns
107
+ gdf = gdf[essential_cols]
108
+
109
+ return gdf
110
+
111
+ except requests.exceptions.RequestException as e:
112
+ warnings.warn(f"Error downloading data: {e}")
113
+ return None
114
+ except (ValueError, FileNotFoundError, zipfile.BadZipFile) as e:
115
+ warnings.warn(f"Error processing data: {e}")
116
+ return None
117
+ except Exception as e:
118
+ warnings.warn(f"Unexpected error: {e}")
119
+ return None