tunned-geobr 0.2.2__py3-none-any.whl → 0.2.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- tunned_geobr/__init__.py +59 -1
- tunned_geobr/list_geobr.py +74 -3
- tunned_geobr/read_ama_anemometric_towers.py +119 -0
- tunned_geobr/read_areas_under_contract.py +129 -0
- tunned_geobr/read_biodiesel_plants.py +128 -0
- tunned_geobr/read_biomethane_plants.py +128 -0
- tunned_geobr/read_compression_stations.py +128 -0
- tunned_geobr/read_drainage_ducts.py +128 -0
- tunned_geobr/read_etanol_plants.py +128 -0
- tunned_geobr/read_existent_biomass_ute.py +128 -0
- tunned_geobr/read_existent_cgh.py +168 -0
- tunned_geobr/read_existent_eolic.py +165 -0
- tunned_geobr/read_existent_fossile_ute.py +128 -0
- tunned_geobr/read_existent_nuclear_ute.py +128 -0
- tunned_geobr/read_existent_pch.py +168 -0
- tunned_geobr/read_existent_solar.py +165 -0
- tunned_geobr/read_existent_substations.py +128 -0
- tunned_geobr/read_existent_transmission_lines.py +128 -0
- tunned_geobr/read_existent_uhe.py +168 -0
- tunned_geobr/read_exploration_production_environment.py +119 -0
- tunned_geobr/read_federal_union_areas.py +129 -0
- tunned_geobr/read_fuel_bases.py +128 -0
- tunned_geobr/read_gas_distribution_pipelines.py +128 -0
- tunned_geobr/read_gas_transport_pipelines.py +128 -0
- tunned_geobr/read_glp_bases.py +128 -0
- tunned_geobr/read_gnl_terminals.py +128 -0
- tunned_geobr/read_hydroelectric_feasibility_studies.py +119 -0
- tunned_geobr/read_hydroelectric_inventory_aai_studies.py +119 -0
- tunned_geobr/read_isolated_systems.py +128 -0
- tunned_geobr/read_natural_gas_delivery_points.py +128 -0
- tunned_geobr/read_natural_gas_processing_hub.py +128 -0
- tunned_geobr/read_og_basement.py +119 -0
- tunned_geobr/read_og_effective_geographic_basin.py +129 -0
- tunned_geobr/read_og_ipa_direct_evidence.py +119 -0
- tunned_geobr/read_og_ipa_exploratory_activity.py +119 -0
- tunned_geobr/read_og_ipa_exploratory_intensity.py +129 -0
- tunned_geobr/read_og_ipa_need_for_knowledge.py +119 -0
- tunned_geobr/read_og_ipa_prospectiveness.py +119 -0
- tunned_geobr/read_og_ipa_supply_infrastructure.py +119 -0
- tunned_geobr/read_og_legal_pre_salt_polygon.py +119 -0
- tunned_geobr/read_og_predominant_fluid_type.py +129 -0
- tunned_geobr/read_og_probabilistic_effective_basin.py +129 -0
- tunned_geobr/read_og_total_ipa.py +129 -0
- tunned_geobr/read_og_unconventional_resources.py +129 -0
- tunned_geobr/read_oil_and_derivatives_terminal.py +128 -0
- tunned_geobr/read_pan_strategic_areas 2.py +71 -0
- tunned_geobr/read_pio_ducts.py +128 -0
- tunned_geobr/read_pio_terminals.py +128 -0
- tunned_geobr/read_planned_biomass_ute.py +166 -0
- tunned_geobr/read_planned_cgh.py +166 -0
- tunned_geobr/read_planned_eolic.py +165 -0
- tunned_geobr/read_planned_fossile_ute.py +166 -0
- tunned_geobr/read_planned_nuclear_ute.py +165 -0
- tunned_geobr/read_planned_pch.py +166 -0
- tunned_geobr/read_planned_solar.py +165 -0
- tunned_geobr/read_planned_substations.py +164 -0
- tunned_geobr/read_planned_transmission_lines.py +165 -0
- tunned_geobr/read_planned_uhe.py +166 -0
- tunned_geobr/read_processing_facilities.py +128 -0
- tunned_geobr/read_sedimentary_basins.py +119 -0
- tunned_geobr/read_subsystem_interconnected.py +163 -0
- {tunned_geobr-0.2.2.dist-info → tunned_geobr-0.2.4.dist-info}/METADATA +1 -1
- {tunned_geobr-0.2.2.dist-info → tunned_geobr-0.2.4.dist-info}/RECORD +66 -8
- tunned_geobr/constants.py +0 -13
- {tunned_geobr-0.2.2.dist-info → tunned_geobr-0.2.4.dist-info}/WHEEL +0 -0
- {tunned_geobr-0.2.2.dist-info → tunned_geobr-0.2.4.dist-info}/entry_points.txt +0 -0
- {tunned_geobr-0.2.2.dist-info → tunned_geobr-0.2.4.dist-info}/licenses/LICENSE.txt +0 -0
@@ -0,0 +1,128 @@
|
|
1
|
+
import geopandas as gpd
|
2
|
+
import requests
|
3
|
+
import shutil
|
4
|
+
import zipfile
|
5
|
+
import tempfile
|
6
|
+
import warnings
|
7
|
+
import os
|
8
|
+
from shapely.geometry.point import Point
|
9
|
+
|
10
|
+
|
11
|
+
def read_gas_transport_pipelines(simplified=False, verbose=False):
|
12
|
+
"""Download data of gas transport pipelines in Brazil.
|
13
|
+
|
14
|
+
This function downloads and returns data of gas transport pipelines (gasodutos de transporte)
|
15
|
+
in Brazil as a GeoPandas GeoDataFrame. The data comes from EPE (Energy Research Company).
|
16
|
+
|
17
|
+
Parameters
|
18
|
+
----------
|
19
|
+
simplified : bool, optional
|
20
|
+
If True, returns a simplified version of the dataset with only the most
|
21
|
+
important columns. If False, returns the complete dataset. Default is False.
|
22
|
+
verbose : bool, optional
|
23
|
+
If True, displays detailed messages about the download and processing
|
24
|
+
steps. Default is False.
|
25
|
+
|
26
|
+
Returns
|
27
|
+
-------
|
28
|
+
gpd.GeoDataFrame
|
29
|
+
A GeoDataFrame containing data on gas transport pipelines in Brazil.
|
30
|
+
|
31
|
+
Raises
|
32
|
+
------
|
33
|
+
Exception
|
34
|
+
If the download or processing of the data fails.
|
35
|
+
|
36
|
+
Example
|
37
|
+
-------
|
38
|
+
>>> from tunned_geobr import read_gas_transport_pipelines
|
39
|
+
>>>
|
40
|
+
>>> # Read the data
|
41
|
+
>>> gas_pipelines = read_gas_transport_pipelines()
|
42
|
+
>>>
|
43
|
+
>>> # Plot the data
|
44
|
+
>>> gas_pipelines.plot()
|
45
|
+
"""
|
46
|
+
|
47
|
+
if verbose:
|
48
|
+
print("Downloading data of gas transport pipelines in Brazil")
|
49
|
+
|
50
|
+
# Define the URL for the API request
|
51
|
+
url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Gasodutos%20de%20transporte%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-8655251.47456396%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C-4787514.465591563%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
|
52
|
+
|
53
|
+
try:
|
54
|
+
# Make the API request
|
55
|
+
response = requests.get(url)
|
56
|
+
response.raise_for_status()
|
57
|
+
|
58
|
+
# Parse the JSON response
|
59
|
+
data = response.json()
|
60
|
+
|
61
|
+
# Extract the URL for the zip file
|
62
|
+
if 'results' in data and len(data['results']) > 0 and 'value' in data['results'][0]:
|
63
|
+
download_url = data['results'][0]['value']['url']
|
64
|
+
else:
|
65
|
+
raise Exception("Failed to extract download URL from API response")
|
66
|
+
|
67
|
+
# Create a temporary directory to store the downloaded files
|
68
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
69
|
+
# Download the zip file
|
70
|
+
zip_path = os.path.join(temp_dir, "gas_transport_pipelines.zip")
|
71
|
+
if verbose:
|
72
|
+
print("Downloading zip file")
|
73
|
+
|
74
|
+
response = requests.get(download_url, stream=True)
|
75
|
+
response.raise_for_status()
|
76
|
+
|
77
|
+
with open(zip_path, 'wb') as f:
|
78
|
+
response.raw.decode_content = True
|
79
|
+
shutil.copyfileobj(response.raw, f)
|
80
|
+
|
81
|
+
# Extract the zip file
|
82
|
+
if verbose:
|
83
|
+
print("Extracting files")
|
84
|
+
|
85
|
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
86
|
+
zip_ref.extractall(temp_dir)
|
87
|
+
|
88
|
+
# Find the shapefile in the extracted files
|
89
|
+
shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
|
90
|
+
|
91
|
+
if not shp_files:
|
92
|
+
raise Exception("No shapefile found in the downloaded zip file")
|
93
|
+
|
94
|
+
# Read the shapefile
|
95
|
+
if verbose:
|
96
|
+
print("Reading shapefile")
|
97
|
+
|
98
|
+
shp_path = os.path.join(temp_dir, shp_files[0])
|
99
|
+
gdf = gpd.read_file(shp_path)
|
100
|
+
|
101
|
+
# Convert to SIRGAS 2000 (EPSG:4674)
|
102
|
+
if verbose:
|
103
|
+
print("Converting to SIRGAS 2000 (EPSG:4674)")
|
104
|
+
|
105
|
+
gdf = gdf.to_crs(epsg=4674)
|
106
|
+
|
107
|
+
# Simplify the dataset if requested
|
108
|
+
if simplified:
|
109
|
+
if verbose:
|
110
|
+
print("Simplifying the dataset")
|
111
|
+
|
112
|
+
# Select only the most important columns
|
113
|
+
# Adjust these columns based on the actual data structure
|
114
|
+
cols_to_keep = ['NOME', 'EMPRESA', 'EXTENSAO', 'DIAMETRO', 'CAPACIDADE', 'UF', 'geometry']
|
115
|
+
cols_available = [col for col in cols_to_keep if col in gdf.columns]
|
116
|
+
|
117
|
+
if not cols_available:
|
118
|
+
warnings.warn("None of the specified columns for simplification are available. Returning the full dataset.")
|
119
|
+
else:
|
120
|
+
gdf = gdf[cols_available]
|
121
|
+
|
122
|
+
if verbose:
|
123
|
+
print("Finished processing gas transport pipelines data")
|
124
|
+
|
125
|
+
return gdf
|
126
|
+
|
127
|
+
except Exception as e:
|
128
|
+
raise Exception(f"Failed to download or process gas transport pipelines data: {str(e)}")
|
@@ -0,0 +1,128 @@
|
|
1
|
+
import geopandas as gpd
|
2
|
+
import requests
|
3
|
+
import shutil
|
4
|
+
import zipfile
|
5
|
+
import tempfile
|
6
|
+
import warnings
|
7
|
+
import os
|
8
|
+
from shapely.geometry.point import Point
|
9
|
+
|
10
|
+
|
11
|
+
def read_glp_bases(simplified=False, verbose=False):
|
12
|
+
"""Download data of GLP (LPG) bases in Brazil.
|
13
|
+
|
14
|
+
This function downloads and returns data of GLP (Liquefied Petroleum Gas) bases
|
15
|
+
in Brazil as a GeoPandas GeoDataFrame. The data comes from EPE (Energy Research Company).
|
16
|
+
|
17
|
+
Parameters
|
18
|
+
----------
|
19
|
+
simplified : bool, optional
|
20
|
+
If True, returns a simplified version of the dataset with only the most
|
21
|
+
important columns. If False, returns the complete dataset. Default is False.
|
22
|
+
verbose : bool, optional
|
23
|
+
If True, displays detailed messages about the download and processing
|
24
|
+
steps. Default is False.
|
25
|
+
|
26
|
+
Returns
|
27
|
+
-------
|
28
|
+
gpd.GeoDataFrame
|
29
|
+
A GeoDataFrame containing data on GLP bases in Brazil.
|
30
|
+
|
31
|
+
Raises
|
32
|
+
------
|
33
|
+
Exception
|
34
|
+
If the download or processing of the data fails.
|
35
|
+
|
36
|
+
Example
|
37
|
+
-------
|
38
|
+
>>> from tunned_geobr import read_glp_bases
|
39
|
+
>>>
|
40
|
+
>>> # Read the data
|
41
|
+
>>> glp_bases = read_glp_bases()
|
42
|
+
>>>
|
43
|
+
>>> # Plot the data
|
44
|
+
>>> glp_bases.plot()
|
45
|
+
"""
|
46
|
+
|
47
|
+
if verbose:
|
48
|
+
print("Downloading data of GLP bases in Brazil")
|
49
|
+
|
50
|
+
# Define the URL for the API request
|
51
|
+
url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Bases%20de%20GLP%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-8655251.47456396%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C-4787514.465591563%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
|
52
|
+
|
53
|
+
try:
|
54
|
+
# Make the API request
|
55
|
+
response = requests.get(url)
|
56
|
+
response.raise_for_status()
|
57
|
+
|
58
|
+
# Parse the JSON response
|
59
|
+
data = response.json()
|
60
|
+
|
61
|
+
# Extract the URL for the zip file
|
62
|
+
if 'results' in data and len(data['results']) > 0 and 'value' in data['results'][0]:
|
63
|
+
download_url = data['results'][0]['value']['url']
|
64
|
+
else:
|
65
|
+
raise Exception("Failed to extract download URL from API response")
|
66
|
+
|
67
|
+
# Create a temporary directory to store the downloaded files
|
68
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
69
|
+
# Download the zip file
|
70
|
+
zip_path = os.path.join(temp_dir, "glp_bases.zip")
|
71
|
+
if verbose:
|
72
|
+
print("Downloading zip file")
|
73
|
+
|
74
|
+
response = requests.get(download_url, stream=True)
|
75
|
+
response.raise_for_status()
|
76
|
+
|
77
|
+
with open(zip_path, 'wb') as f:
|
78
|
+
response.raw.decode_content = True
|
79
|
+
shutil.copyfileobj(response.raw, f)
|
80
|
+
|
81
|
+
# Extract the zip file
|
82
|
+
if verbose:
|
83
|
+
print("Extracting files")
|
84
|
+
|
85
|
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
86
|
+
zip_ref.extractall(temp_dir)
|
87
|
+
|
88
|
+
# Find the shapefile in the extracted files
|
89
|
+
shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
|
90
|
+
|
91
|
+
if not shp_files:
|
92
|
+
raise Exception("No shapefile found in the downloaded zip file")
|
93
|
+
|
94
|
+
# Read the shapefile
|
95
|
+
if verbose:
|
96
|
+
print("Reading shapefile")
|
97
|
+
|
98
|
+
shp_path = os.path.join(temp_dir, shp_files[0])
|
99
|
+
gdf = gpd.read_file(shp_path)
|
100
|
+
|
101
|
+
# Convert to SIRGAS 2000 (EPSG:4674)
|
102
|
+
if verbose:
|
103
|
+
print("Converting to SIRGAS 2000 (EPSG:4674)")
|
104
|
+
|
105
|
+
gdf = gdf.to_crs(epsg=4674)
|
106
|
+
|
107
|
+
# Simplify the dataset if requested
|
108
|
+
if simplified:
|
109
|
+
if verbose:
|
110
|
+
print("Simplifying the dataset")
|
111
|
+
|
112
|
+
# Select only the most important columns
|
113
|
+
# Adjust these columns based on the actual data structure
|
114
|
+
cols_to_keep = ['NOME', 'EMPRESA', 'CAPACIDADE', 'UF', 'MUNICIPIO', 'geometry']
|
115
|
+
cols_available = [col for col in cols_to_keep if col in gdf.columns]
|
116
|
+
|
117
|
+
if not cols_available:
|
118
|
+
warnings.warn("None of the specified columns for simplification are available. Returning the full dataset.")
|
119
|
+
else:
|
120
|
+
gdf = gdf[cols_available]
|
121
|
+
|
122
|
+
if verbose:
|
123
|
+
print("Finished processing GLP bases data")
|
124
|
+
|
125
|
+
return gdf
|
126
|
+
|
127
|
+
except Exception as e:
|
128
|
+
raise Exception(f"Failed to download or process GLP bases data: {str(e)}")
|
@@ -0,0 +1,128 @@
|
|
1
|
+
import geopandas as gpd
|
2
|
+
import requests
|
3
|
+
import shutil
|
4
|
+
import zipfile
|
5
|
+
import tempfile
|
6
|
+
import warnings
|
7
|
+
import os
|
8
|
+
from shapely.geometry.point import Point
|
9
|
+
|
10
|
+
|
11
|
+
def read_gnl_terminals(simplified=False, verbose=False):
|
12
|
+
"""Download data of GNL (LNG) terminals in Brazil.
|
13
|
+
|
14
|
+
This function downloads and returns data of GNL (Liquefied Natural Gas) terminals
|
15
|
+
in Brazil as a GeoPandas GeoDataFrame. The data comes from EPE (Energy Research Company).
|
16
|
+
|
17
|
+
Parameters
|
18
|
+
----------
|
19
|
+
simplified : bool, optional
|
20
|
+
If True, returns a simplified version of the dataset with only the most
|
21
|
+
important columns. If False, returns the complete dataset. Default is False.
|
22
|
+
verbose : bool, optional
|
23
|
+
If True, displays detailed messages about the download and processing
|
24
|
+
steps. Default is False.
|
25
|
+
|
26
|
+
Returns
|
27
|
+
-------
|
28
|
+
gpd.GeoDataFrame
|
29
|
+
A GeoDataFrame containing data on GNL terminals in Brazil.
|
30
|
+
|
31
|
+
Raises
|
32
|
+
------
|
33
|
+
Exception
|
34
|
+
If the download or processing of the data fails.
|
35
|
+
|
36
|
+
Example
|
37
|
+
-------
|
38
|
+
>>> from tunned_geobr import read_gnl_terminals
|
39
|
+
>>>
|
40
|
+
>>> # Read the data
|
41
|
+
>>> gnl_terminals = read_gnl_terminals()
|
42
|
+
>>>
|
43
|
+
>>> # Plot the data
|
44
|
+
>>> gnl_terminals.plot()
|
45
|
+
"""
|
46
|
+
|
47
|
+
if verbose:
|
48
|
+
print("Downloading data of GNL terminals in Brazil")
|
49
|
+
|
50
|
+
# Define the URL for the API request
|
51
|
+
url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Terminais%20GNL%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-8655251.47456396%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C1229608.401015912%5D%2C%5B-3508899.2341809804%2C-4787514.465591563%5D%2C%5B-8655251.47456396%2C-4787514.465591563%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
|
52
|
+
|
53
|
+
try:
|
54
|
+
# Make the API request
|
55
|
+
response = requests.get(url)
|
56
|
+
response.raise_for_status()
|
57
|
+
|
58
|
+
# Parse the JSON response
|
59
|
+
data = response.json()
|
60
|
+
|
61
|
+
# Extract the URL for the zip file
|
62
|
+
if 'results' in data and len(data['results']) > 0 and 'value' in data['results'][0]:
|
63
|
+
download_url = data['results'][0]['value']['url']
|
64
|
+
else:
|
65
|
+
raise Exception("Failed to extract download URL from API response")
|
66
|
+
|
67
|
+
# Create a temporary directory to store the downloaded files
|
68
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
69
|
+
# Download the zip file
|
70
|
+
zip_path = os.path.join(temp_dir, "gnl_terminals.zip")
|
71
|
+
if verbose:
|
72
|
+
print("Downloading zip file")
|
73
|
+
|
74
|
+
response = requests.get(download_url, stream=True)
|
75
|
+
response.raise_for_status()
|
76
|
+
|
77
|
+
with open(zip_path, 'wb') as f:
|
78
|
+
response.raw.decode_content = True
|
79
|
+
shutil.copyfileobj(response.raw, f)
|
80
|
+
|
81
|
+
# Extract the zip file
|
82
|
+
if verbose:
|
83
|
+
print("Extracting files")
|
84
|
+
|
85
|
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
86
|
+
zip_ref.extractall(temp_dir)
|
87
|
+
|
88
|
+
# Find the shapefile in the extracted files
|
89
|
+
shp_files = [f for f in os.listdir(temp_dir) if f.endswith('.shp')]
|
90
|
+
|
91
|
+
if not shp_files:
|
92
|
+
raise Exception("No shapefile found in the downloaded zip file")
|
93
|
+
|
94
|
+
# Read the shapefile
|
95
|
+
if verbose:
|
96
|
+
print("Reading shapefile")
|
97
|
+
|
98
|
+
shp_path = os.path.join(temp_dir, shp_files[0])
|
99
|
+
gdf = gpd.read_file(shp_path)
|
100
|
+
|
101
|
+
# Convert to SIRGAS 2000 (EPSG:4674)
|
102
|
+
if verbose:
|
103
|
+
print("Converting to SIRGAS 2000 (EPSG:4674)")
|
104
|
+
|
105
|
+
gdf = gdf.to_crs(epsg=4674)
|
106
|
+
|
107
|
+
# Simplify the dataset if requested
|
108
|
+
if simplified:
|
109
|
+
if verbose:
|
110
|
+
print("Simplifying the dataset")
|
111
|
+
|
112
|
+
# Select only the most important columns
|
113
|
+
# Adjust these columns based on the actual data structure
|
114
|
+
cols_to_keep = ['NOME', 'EMPRESA', 'CAPACIDADE', 'TIPO', 'UF', 'MUNICIPIO', 'geometry']
|
115
|
+
cols_available = [col for col in cols_to_keep if col in gdf.columns]
|
116
|
+
|
117
|
+
if not cols_available:
|
118
|
+
warnings.warn("None of the specified columns for simplification are available. Returning the full dataset.")
|
119
|
+
else:
|
120
|
+
gdf = gdf[cols_available]
|
121
|
+
|
122
|
+
if verbose:
|
123
|
+
print("Finished processing GNL terminals data")
|
124
|
+
|
125
|
+
return gdf
|
126
|
+
|
127
|
+
except Exception as e:
|
128
|
+
raise Exception(f"Failed to download or process GNL terminals data: {str(e)}")
|
@@ -0,0 +1,119 @@
|
|
1
|
+
import geopandas as gpd
|
2
|
+
import requests
|
3
|
+
import zipfile
|
4
|
+
import tempfile
|
5
|
+
import os
|
6
|
+
import warnings
|
7
|
+
import shutil
|
8
|
+
|
9
|
+
|
10
|
+
def read_hydroelectric_feasibility_studies(simplified=True, verbose=False):
|
11
|
+
"""Download data for Hydroelectric Feasibility Studies in Brazil.
|
12
|
+
|
13
|
+
This function downloads, processes, and returns data for Hydroelectric Feasibility Studies
|
14
|
+
in Brazil as a geopandas GeoDataFrame.
|
15
|
+
|
16
|
+
Parameters
|
17
|
+
----------
|
18
|
+
simplified : bool, optional
|
19
|
+
If True, returns a simplified version of the dataset with only essential columns.
|
20
|
+
If False, returns the complete dataset with all columns.
|
21
|
+
Default is True.
|
22
|
+
verbose : bool, optional
|
23
|
+
If True, prints detailed information about the data download and processing.
|
24
|
+
Default is False.
|
25
|
+
|
26
|
+
Returns
|
27
|
+
-------
|
28
|
+
geopandas.GeoDataFrame
|
29
|
+
A GeoDataFrame containing Hydroelectric Feasibility Studies data.
|
30
|
+
|
31
|
+
Examples
|
32
|
+
--------
|
33
|
+
>>> # Download Hydroelectric Feasibility Studies data
|
34
|
+
>>> df = read_hydroelectric_feasibility_studies()
|
35
|
+
>>> df.head()
|
36
|
+
"""
|
37
|
+
|
38
|
+
url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Estudos%20de%20Viabilidade%20Hidrel%C3%A9trica%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-9237395.881983705%2C-4650539.310904562%5D%2C%5B-9237395.881983705%2C1219824.4613954136%5D%2C%5B-2349502.3891517334%2C1219824.4613954136%5D%2C%5B-2349502.3891517334%2C-4650539.310904562%5D%2C%5B-9237395.881983705%2C-4650539.310904562%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
|
39
|
+
|
40
|
+
if verbose:
|
41
|
+
print("Downloading data...")
|
42
|
+
|
43
|
+
try:
|
44
|
+
response = requests.get(url)
|
45
|
+
response.raise_for_status()
|
46
|
+
response_json = response.json()
|
47
|
+
|
48
|
+
if "value" not in response_json or not response_json["value"]:
|
49
|
+
raise ValueError("No data found in the response")
|
50
|
+
|
51
|
+
download_url = response_json["value"]["itemUrl"]
|
52
|
+
|
53
|
+
if verbose:
|
54
|
+
print(f"Download URL: {download_url}")
|
55
|
+
print("Downloading zip file...")
|
56
|
+
|
57
|
+
zip_response = requests.get(download_url)
|
58
|
+
zip_response.raise_for_status()
|
59
|
+
|
60
|
+
# Create a temporary directory to extract the files
|
61
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
62
|
+
zip_path = os.path.join(temp_dir, "data.zip")
|
63
|
+
|
64
|
+
# Save the zip file
|
65
|
+
with open(zip_path, "wb") as f:
|
66
|
+
f.write(zip_response.content)
|
67
|
+
|
68
|
+
if verbose:
|
69
|
+
print(f"Zip file saved to {zip_path}")
|
70
|
+
print("Extracting files...")
|
71
|
+
|
72
|
+
# Extract the zip file
|
73
|
+
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
74
|
+
zip_ref.extractall(temp_dir)
|
75
|
+
|
76
|
+
# Find the shapefile
|
77
|
+
shp_files = [f for f in os.listdir(temp_dir) if f.endswith(".shp")]
|
78
|
+
|
79
|
+
if not shp_files:
|
80
|
+
raise FileNotFoundError("No shapefile found in the downloaded zip file")
|
81
|
+
|
82
|
+
shp_path = os.path.join(temp_dir, shp_files[0])
|
83
|
+
|
84
|
+
if verbose:
|
85
|
+
print(f"Reading shapefile from {shp_path}")
|
86
|
+
|
87
|
+
# Read the shapefile
|
88
|
+
gdf = gpd.read_file(shp_path)
|
89
|
+
|
90
|
+
# Convert to SIRGAS 2000 (EPSG:4674)
|
91
|
+
gdf = gdf.to_crs(epsg=4674)
|
92
|
+
|
93
|
+
if simplified:
|
94
|
+
# Select only essential columns
|
95
|
+
if verbose:
|
96
|
+
print("Simplifying the dataset...")
|
97
|
+
|
98
|
+
# Identify the essential columns
|
99
|
+
essential_cols = ["geometry"]
|
100
|
+
|
101
|
+
# Add any other essential columns that exist in the dataset
|
102
|
+
for col in ["NOME", "BACIA", "RIO", "POTENCIA", "AREA_KM2"]:
|
103
|
+
if col in gdf.columns:
|
104
|
+
essential_cols.append(col)
|
105
|
+
|
106
|
+
# Select only the essential columns
|
107
|
+
gdf = gdf[essential_cols]
|
108
|
+
|
109
|
+
return gdf
|
110
|
+
|
111
|
+
except requests.exceptions.RequestException as e:
|
112
|
+
warnings.warn(f"Error downloading data: {e}")
|
113
|
+
return None
|
114
|
+
except (ValueError, FileNotFoundError, zipfile.BadZipFile) as e:
|
115
|
+
warnings.warn(f"Error processing data: {e}")
|
116
|
+
return None
|
117
|
+
except Exception as e:
|
118
|
+
warnings.warn(f"Unexpected error: {e}")
|
119
|
+
return None
|
@@ -0,0 +1,119 @@
|
|
1
|
+
import geopandas as gpd
|
2
|
+
import requests
|
3
|
+
import zipfile
|
4
|
+
import tempfile
|
5
|
+
import os
|
6
|
+
import warnings
|
7
|
+
import shutil
|
8
|
+
|
9
|
+
|
10
|
+
def read_hydroelectric_inventory_aai_studies(simplified=True, verbose=False):
|
11
|
+
"""Download data for Hydroelectric Inventory and AAI Studies in Brazil.
|
12
|
+
|
13
|
+
This function downloads, processes, and returns data for Hydroelectric Inventory and AAI Studies
|
14
|
+
in Brazil as a geopandas GeoDataFrame.
|
15
|
+
|
16
|
+
Parameters
|
17
|
+
----------
|
18
|
+
simplified : bool, optional
|
19
|
+
If True, returns a simplified version of the dataset with only essential columns.
|
20
|
+
If False, returns the complete dataset with all columns.
|
21
|
+
Default is True.
|
22
|
+
verbose : bool, optional
|
23
|
+
If True, prints detailed information about the data download and processing.
|
24
|
+
Default is False.
|
25
|
+
|
26
|
+
Returns
|
27
|
+
-------
|
28
|
+
geopandas.GeoDataFrame
|
29
|
+
A GeoDataFrame containing Hydroelectric Inventory and AAI Studies data.
|
30
|
+
|
31
|
+
Examples
|
32
|
+
--------
|
33
|
+
>>> # Download Hydroelectric Inventory and AAI Studies data
|
34
|
+
>>> df = read_hydroelectric_inventory_aai_studies()
|
35
|
+
>>> df.head()
|
36
|
+
"""
|
37
|
+
|
38
|
+
url = "https://gisepeprd2.epe.gov.br/arcgis/rest/services/Download_Dados_Webmap_EPE/GPServer/Extract%20Data%20Task/execute?f=json&env%3AoutSR=102100&Layers_to_Clip=%5B%22Estudos%20de%20Invent%C3%A1rio%20Hidrel%C3%A9trico%20e%20AAI%22%5D&Area_of_Interest=%7B%22geometryType%22%3A%22esriGeometryPolygon%22%2C%22features%22%3A%5B%7B%22geometry%22%3A%7B%22rings%22%3A%5B%5B%5B-9237395.881983705%2C-4650539.310904562%5D%2C%5B-9237395.881983705%2C1219824.4613954136%5D%2C%5B-2349502.3891517334%2C1219824.4613954136%5D%2C%5B-2349502.3891517334%2C-4650539.310904562%5D%2C%5B-9237395.881983705%2C-4650539.310904562%5D%5D%5D%2C%22spatialReference%22%3A%7B%22wkid%22%3A102100%7D%7D%7D%5D%2C%22sr%22%3A%7B%22wkid%22%3A102100%7D%7D&Feature_Format=Shapefile%20-%20SHP%20-%20.shp&Raster_Format=Tagged%20Image%20File%20Format%20-%20TIFF%20-%20.tif"
|
39
|
+
|
40
|
+
if verbose:
|
41
|
+
print("Downloading data...")
|
42
|
+
|
43
|
+
try:
|
44
|
+
response = requests.get(url)
|
45
|
+
response.raise_for_status()
|
46
|
+
response_json = response.json()
|
47
|
+
|
48
|
+
if "value" not in response_json or not response_json["value"]:
|
49
|
+
raise ValueError("No data found in the response")
|
50
|
+
|
51
|
+
download_url = response_json["value"]["itemUrl"]
|
52
|
+
|
53
|
+
if verbose:
|
54
|
+
print(f"Download URL: {download_url}")
|
55
|
+
print("Downloading zip file...")
|
56
|
+
|
57
|
+
zip_response = requests.get(download_url)
|
58
|
+
zip_response.raise_for_status()
|
59
|
+
|
60
|
+
# Create a temporary directory to extract the files
|
61
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
62
|
+
zip_path = os.path.join(temp_dir, "data.zip")
|
63
|
+
|
64
|
+
# Save the zip file
|
65
|
+
with open(zip_path, "wb") as f:
|
66
|
+
f.write(zip_response.content)
|
67
|
+
|
68
|
+
if verbose:
|
69
|
+
print(f"Zip file saved to {zip_path}")
|
70
|
+
print("Extracting files...")
|
71
|
+
|
72
|
+
# Extract the zip file
|
73
|
+
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
74
|
+
zip_ref.extractall(temp_dir)
|
75
|
+
|
76
|
+
# Find the shapefile
|
77
|
+
shp_files = [f for f in os.listdir(temp_dir) if f.endswith(".shp")]
|
78
|
+
|
79
|
+
if not shp_files:
|
80
|
+
raise FileNotFoundError("No shapefile found in the downloaded zip file")
|
81
|
+
|
82
|
+
shp_path = os.path.join(temp_dir, shp_files[0])
|
83
|
+
|
84
|
+
if verbose:
|
85
|
+
print(f"Reading shapefile from {shp_path}")
|
86
|
+
|
87
|
+
# Read the shapefile
|
88
|
+
gdf = gpd.read_file(shp_path)
|
89
|
+
|
90
|
+
# Convert to SIRGAS 2000 (EPSG:4674)
|
91
|
+
gdf = gdf.to_crs(epsg=4674)
|
92
|
+
|
93
|
+
if simplified:
|
94
|
+
# Select only essential columns
|
95
|
+
if verbose:
|
96
|
+
print("Simplifying the dataset...")
|
97
|
+
|
98
|
+
# Identify the essential columns
|
99
|
+
essential_cols = ["geometry"]
|
100
|
+
|
101
|
+
# Add any other essential columns that exist in the dataset
|
102
|
+
for col in ["NOME", "BACIA", "RIO", "TIPO", "SITUACAO", "AREA_KM2"]:
|
103
|
+
if col in gdf.columns:
|
104
|
+
essential_cols.append(col)
|
105
|
+
|
106
|
+
# Select only the essential columns
|
107
|
+
gdf = gdf[essential_cols]
|
108
|
+
|
109
|
+
return gdf
|
110
|
+
|
111
|
+
except requests.exceptions.RequestException as e:
|
112
|
+
warnings.warn(f"Error downloading data: {e}")
|
113
|
+
return None
|
114
|
+
except (ValueError, FileNotFoundError, zipfile.BadZipFile) as e:
|
115
|
+
warnings.warn(f"Error processing data: {e}")
|
116
|
+
return None
|
117
|
+
except Exception as e:
|
118
|
+
warnings.warn(f"Unexpected error: {e}")
|
119
|
+
return None
|