tsadmetrics 0.1.3__py3-none-any.whl → 0.1.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. entorno/bin/activate_this.py +32 -0
  2. entorno/bin/rst2html.py +23 -0
  3. entorno/bin/rst2html4.py +26 -0
  4. entorno/bin/rst2html5.py +33 -0
  5. entorno/bin/rst2latex.py +26 -0
  6. entorno/bin/rst2man.py +27 -0
  7. entorno/bin/rst2odt.py +28 -0
  8. entorno/bin/rst2odt_prepstyles.py +20 -0
  9. entorno/bin/rst2pseudoxml.py +23 -0
  10. entorno/bin/rst2s5.py +24 -0
  11. entorno/bin/rst2xetex.py +27 -0
  12. entorno/bin/rst2xml.py +23 -0
  13. entorno/bin/rstpep2html.py +25 -0
  14. experiments/scripts/compute_metrics.py +187 -0
  15. experiments/scripts/metrics_complexity_analysis.py +109 -0
  16. experiments/scripts/metro_experiment.py +133 -0
  17. experiments/scripts/opt_metro_experiment.py +343 -0
  18. tests/__init__.py +0 -0
  19. tests/test_binary.py +759 -0
  20. tests/test_non_binary.py +371 -0
  21. tsadmetrics/_tsadeval/affiliation/__init__.py +0 -0
  22. tsadmetrics/_tsadeval/affiliation/_affiliation_zone.py +86 -0
  23. tsadmetrics/_tsadeval/affiliation/_integral_interval.py +464 -0
  24. tsadmetrics/_tsadeval/affiliation/_single_ground_truth_event.py +68 -0
  25. tsadmetrics/_tsadeval/affiliation/generics.py +135 -0
  26. tsadmetrics/_tsadeval/affiliation/metrics.py +114 -0
  27. tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/File_IO.py +175 -0
  28. tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Range.py +50 -0
  29. tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/Time_Plot.py +184 -0
  30. tsadmetrics/_tsadeval/eTaPR_pkg/DataManage/__init__.py +0 -0
  31. tsadmetrics/_tsadeval/eTaPR_pkg/__init__.py +0 -0
  32. tsadmetrics/_tsadeval/eTaPR_pkg/etapr.py +386 -0
  33. tsadmetrics/_tsadeval/eTaPR_pkg/tapr.py +362 -0
  34. tsadmetrics/_tsadeval/prts/__init__.py +0 -0
  35. tsadmetrics/_tsadeval/prts/base/__init__.py +0 -0
  36. tsadmetrics/_tsadeval/prts/base/time_series_metrics.py +165 -0
  37. tsadmetrics/_tsadeval/prts/basic_metrics_ts.py +121 -0
  38. tsadmetrics/_tsadeval/prts/time_series_metrics/__init__.py +0 -0
  39. tsadmetrics/_tsadeval/prts/time_series_metrics/fscore.py +61 -0
  40. tsadmetrics/_tsadeval/prts/time_series_metrics/precision.py +86 -0
  41. tsadmetrics/_tsadeval/prts/time_series_metrics/precision_recall.py +21 -0
  42. tsadmetrics/_tsadeval/prts/time_series_metrics/recall.py +85 -0
  43. {tsadmetrics-0.1.3.dist-info → tsadmetrics-0.1.5.dist-info}/METADATA +1 -1
  44. tsadmetrics-0.1.5.dist-info/RECORD +62 -0
  45. tsadmetrics-0.1.5.dist-info/top_level.txt +4 -0
  46. tsadmetrics-0.1.3.dist-info/RECORD +0 -20
  47. tsadmetrics-0.1.3.dist-info/top_level.txt +0 -1
  48. {tsadmetrics-0.1.3.dist-info → tsadmetrics-0.1.5.dist-info}/WHEEL +0 -0
@@ -0,0 +1,464 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ import math
4
+ from .generics import _sum_wo_nan
5
+ """
6
+ In order to shorten the length of the variables,
7
+ the general convention in this file is to let:
8
+ - I for a predicted event (start, stop),
9
+ - Is for a list of predicted events,
10
+ - J for a ground truth event,
11
+ - Js for a list of ground truth events.
12
+ """
13
+
14
+ def interval_length(J = (1,2)):
15
+ """
16
+ Length of an interval
17
+
18
+ :param J: couple representating the start and stop of an interval, or None
19
+ :return: length of the interval, and 0 for a None interval
20
+ """
21
+ if J is None:
22
+ return(0)
23
+ return(J[1] - J[0])
24
+
25
+ def sum_interval_lengths(Is = [(1,2),(3,4),(5,6)]):
26
+ """
27
+ Sum of length of the intervals
28
+
29
+ :param Is: list of intervals represented by starts and stops
30
+ :return: sum of the interval length
31
+ """
32
+ return(sum([interval_length(I) for I in Is]))
33
+
34
+ def interval_intersection(I = (1, 3), J = (2, 4)):
35
+ """
36
+ Intersection between two intervals I and J
37
+ I and J should be either empty or represent a positive interval (no point)
38
+
39
+ :param I: an interval represented by start and stop
40
+ :param J: a second interval of the same form
41
+ :return: an interval representing the start and stop of the intersection (or None if empty)
42
+ """
43
+ if I is None:
44
+ return(None)
45
+ if J is None:
46
+ return(None)
47
+
48
+ I_inter_J = (max(I[0], J[0]), min(I[1], J[1]))
49
+ if I_inter_J[0] >= I_inter_J[1]:
50
+ return(None)
51
+ else:
52
+ return(I_inter_J)
53
+
54
+ def interval_subset(I = (1, 3), J = (0, 6)):
55
+ """
56
+ Checks whether I is a subset of J
57
+
58
+ :param I: an non empty interval represented by start and stop
59
+ :param J: a second non empty interval of the same form
60
+ :return: True if I is a subset of J
61
+ """
62
+ if (I[0] >= J[0]) and (I[1] <= J[1]):
63
+ return True
64
+ else:
65
+ return False
66
+
67
+ def cut_into_three_func(I, J):
68
+ """
69
+ Cut an interval I into a partition of 3 subsets:
70
+ the elements before J,
71
+ the elements belonging to J,
72
+ and the elements after J
73
+
74
+ :param I: an interval represented by start and stop, or None for an empty one
75
+ :param J: a non empty interval
76
+ :return: a triplet of three intervals, each represented by either (start, stop) or None
77
+ """
78
+ if I is None:
79
+ return((None, None, None))
80
+
81
+ I_inter_J = interval_intersection(I, J)
82
+ if I == I_inter_J:
83
+ I_before = None
84
+ I_after = None
85
+ elif I[1] <= J[0]:
86
+ I_before = I
87
+ I_after = None
88
+ elif I[0] >= J[1]:
89
+ I_before = None
90
+ I_after = I
91
+ elif (I[0] <= J[0]) and (I[1] >= J[1]):
92
+ I_before = (I[0], I_inter_J[0])
93
+ I_after = (I_inter_J[1], I[1])
94
+ elif I[0] <= J[0]:
95
+ I_before = (I[0], I_inter_J[0])
96
+ I_after = None
97
+ elif I[1] >= J[1]:
98
+ I_before = None
99
+ I_after = (I_inter_J[1], I[1])
100
+ else:
101
+ raise ValueError('unexpected unconsidered case')
102
+ return(I_before, I_inter_J, I_after)
103
+
104
+ def get_pivot_j(I, J):
105
+ """
106
+ Get the single point of J that is the closest to I, called 'pivot' here,
107
+ with the requirement that I should be outside J
108
+
109
+ :param I: a non empty interval (start, stop)
110
+ :param J: another non empty interval, with empty intersection with I
111
+ :return: the element j of J that is the closest to I
112
+ """
113
+ if interval_intersection(I, J) is not None:
114
+ raise ValueError('I and J should have a void intersection')
115
+
116
+ j_pivot = None # j_pivot is a border of J
117
+ if max(I) <= min(J):
118
+ j_pivot = min(J)
119
+ elif min(I) >= max(J):
120
+ j_pivot = max(J)
121
+ else:
122
+ raise ValueError('I should be outside J')
123
+ return(j_pivot)
124
+
125
+ def integral_mini_interval(I, J):
126
+ """
127
+ In the specific case where interval I is located outside J,
128
+ integral of distance from x to J over the interval x \in I.
129
+ This is the *integral* i.e. the sum.
130
+ It's not the mean (not divided by the length of I yet)
131
+
132
+ :param I: a interval (start, stop), or None
133
+ :param J: a non empty interval, with empty intersection with I
134
+ :return: the integral of distances d(x, J) over x \in I
135
+ """
136
+ if I is None:
137
+ return(0)
138
+
139
+ j_pivot = get_pivot_j(I, J)
140
+ a = min(I)
141
+ b = max(I)
142
+ return((b-a)*abs((j_pivot - (a+b)/2)))
143
+
144
+ def integral_interval_distance(I, J):
145
+ """
146
+ For any non empty intervals I, J, compute the
147
+ integral of distance from x to J over the interval x \in I.
148
+ This is the *integral* i.e. the sum.
149
+ It's not the mean (not divided by the length of I yet)
150
+ The interval I can intersect J or not
151
+
152
+ :param I: a interval (start, stop), or None
153
+ :param J: a non empty interval
154
+ :return: the integral of distances d(x, J) over x \in I
155
+ """
156
+ # I and J are single intervals (not generic sets)
157
+ # I is a predicted interval in the range of affiliation of J
158
+
159
+ def f(I_cut):
160
+ return(integral_mini_interval(I_cut, J))
161
+ # If I_middle is fully included into J, it is
162
+ # the distance to J is always 0
163
+ def f0(I_middle):
164
+ return(0)
165
+
166
+ cut_into_three = cut_into_three_func(I, J)
167
+ # Distance for now, not the mean:
168
+ # Distance left: Between cut_into_three[0] and the point min(J)
169
+ d_left = f(cut_into_three[0])
170
+ # Distance middle: Between cut_into_three[1] = I inter J, and J
171
+ d_middle = f0(cut_into_three[1])
172
+ # Distance right: Between cut_into_three[2] and the point max(J)
173
+ d_right = f(cut_into_three[2])
174
+ # It's an integral so summable
175
+ return(d_left + d_middle + d_right)
176
+
177
+ def integral_mini_interval_P_CDFmethod__min_piece(I, J, E):
178
+ """
179
+ Helper of `integral_mini_interval_Pprecision_CDFmethod`
180
+ In the specific case where interval I is located outside J,
181
+ compute the integral $\int_{d_min}^{d_max} \min(m, x) dx$, with:
182
+ - m the smallest distance from J to E,
183
+ - d_min the smallest distance d(x, J) from x \in I to J
184
+ - d_max the largest distance d(x, J) from x \in I to J
185
+
186
+ :param I: a single predicted interval, a non empty interval (start, stop)
187
+ :param J: ground truth interval, a non empty interval, with empty intersection with I
188
+ :param E: the affiliation/influence zone for J, represented as a couple (start, stop)
189
+ :return: the integral $\int_{d_min}^{d_max} \min(m, x) dx$
190
+ """
191
+ if interval_intersection(I, J) is not None:
192
+ raise ValueError('I and J should have a void intersection')
193
+ if not interval_subset(J, E):
194
+ raise ValueError('J should be included in E')
195
+ if not interval_subset(I, E):
196
+ raise ValueError('I should be included in E')
197
+
198
+ e_min = min(E)
199
+ j_min = min(J)
200
+ j_max = max(J)
201
+ e_max = max(E)
202
+ i_min = min(I)
203
+ i_max = max(I)
204
+
205
+ d_min = max(i_min - j_max, j_min - i_max)
206
+ d_max = max(i_max - j_max, j_min - i_min)
207
+ m = min(j_min - e_min, e_max - j_max)
208
+ A = min(d_max, m)**2 - min(d_min, m)**2
209
+ B = max(d_max, m) - max(d_min, m)
210
+ C = (1/2)*A + m*B
211
+ return(C)
212
+
213
+ def integral_mini_interval_Pprecision_CDFmethod(I, J, E):
214
+ """
215
+ Integral of the probability of distances over the interval I.
216
+ In the specific case where interval I is located outside J,
217
+ compute the integral $\int_{x \in I} Fbar(dist(x,J)) dx$.
218
+ This is the *integral* i.e. the sum (not the mean)
219
+
220
+ :param I: a single predicted interval, a non empty interval (start, stop)
221
+ :param J: ground truth interval, a non empty interval, with empty intersection with I
222
+ :param E: the affiliation/influence zone for J, represented as a couple (start, stop)
223
+ :return: the integral $\int_{x \in I} Fbar(dist(x,J)) dx$
224
+ """
225
+ integral_min_piece = integral_mini_interval_P_CDFmethod__min_piece(I, J, E)
226
+
227
+ e_min = min(E)
228
+ j_min = min(J)
229
+ j_max = max(J)
230
+ e_max = max(E)
231
+ i_min = min(I)
232
+ i_max = max(I)
233
+ d_min = max(i_min - j_max, j_min - i_max)
234
+ d_max = max(i_max - j_max, j_min - i_min)
235
+ integral_linear_piece = (1/2)*(d_max**2 - d_min**2)
236
+ integral_remaining_piece = (j_max - j_min)*(i_max - i_min)
237
+
238
+ DeltaI = i_max - i_min
239
+ DeltaE = e_max - e_min
240
+
241
+ output = DeltaI - (1/DeltaE)*(integral_min_piece + integral_linear_piece + integral_remaining_piece)
242
+ return(output)
243
+
244
+ def integral_interval_probaCDF_precision(I, J, E):
245
+ """
246
+ Integral of the probability of distances over the interval I.
247
+ Compute the integral $\int_{x \in I} Fbar(dist(x,J)) dx$.
248
+ This is the *integral* i.e. the sum (not the mean)
249
+
250
+ :param I: a single (non empty) predicted interval in the zone of affiliation of J
251
+ :param J: ground truth interval
252
+ :param E: affiliation/influence zone for J
253
+ :return: the integral $\int_{x \in I} Fbar(dist(x,J)) dx$
254
+ """
255
+ # I and J are single intervals (not generic sets)
256
+ def f(I_cut):
257
+ if I_cut is None:
258
+ return(0)
259
+ else:
260
+ return(integral_mini_interval_Pprecision_CDFmethod(I_cut, J, E))
261
+
262
+ # If I_middle is fully included into J, it is
263
+ # integral of 1 on the interval I_middle, so it's |I_middle|
264
+ def f0(I_middle):
265
+ if I_middle is None:
266
+ return(0)
267
+ else:
268
+ return(max(I_middle) - min(I_middle))
269
+
270
+ cut_into_three = cut_into_three_func(I, J)
271
+ # Distance for now, not the mean:
272
+ # Distance left: Between cut_into_three[0] and the point min(J)
273
+ d_left = f(cut_into_three[0])
274
+ # Distance middle: Between cut_into_three[1] = I inter J, and J
275
+ d_middle = f0(cut_into_three[1])
276
+ # Distance right: Between cut_into_three[2] and the point max(J)
277
+ d_right = f(cut_into_three[2])
278
+ # It's an integral so summable
279
+ return(d_left + d_middle + d_right)
280
+
281
+ def cut_J_based_on_mean_func(J, e_mean):
282
+ """
283
+ Helper function for the recall.
284
+ Partition J into two intervals: before and after e_mean
285
+ (e_mean represents the center element of E the zone of affiliation)
286
+
287
+ :param J: ground truth interval
288
+ :param e_mean: a float number (center value of E)
289
+ :return: a couple partitionning J into (J_before, J_after)
290
+ """
291
+ if J is None:
292
+ J_before = None
293
+ J_after = None
294
+ elif e_mean >= max(J):
295
+ J_before = J
296
+ J_after = None
297
+ elif e_mean <= min(J):
298
+ J_before = None
299
+ J_after = J
300
+ else: # e_mean is across J
301
+ J_before = (min(J), e_mean)
302
+ J_after = (e_mean, max(J))
303
+
304
+ return((J_before, J_after))
305
+
306
+ def integral_mini_interval_Precall_CDFmethod(I, J, E):
307
+ """
308
+ Integral of the probability of distances over the interval J.
309
+ In the specific case where interval J is located outside I,
310
+ compute the integral $\int_{y \in J} Fbar_y(dist(y,I)) dy$.
311
+ This is the *integral* i.e. the sum (not the mean)
312
+
313
+ :param I: a single (non empty) predicted interval
314
+ :param J: ground truth (non empty) interval, with empty intersection with I
315
+ :param E: the affiliation/influence zone for J, represented as a couple (start, stop)
316
+ :return: the integral $\int_{y \in J} Fbar_y(dist(y,I)) dy$
317
+ """
318
+ # The interval J should be located outside I
319
+ # (so it's either the left piece or the right piece w.r.t I)
320
+ i_pivot = get_pivot_j(J, I)
321
+ e_min = min(E)
322
+ e_max = max(E)
323
+ e_mean = (e_min + e_max) / 2
324
+
325
+ # If i_pivot is outside E (it's possible), then
326
+ # the distance is worst that any random element within E,
327
+ # so we set the recall to 0
328
+ if i_pivot <= min(E):
329
+ return(0)
330
+ elif i_pivot >= max(E):
331
+ return(0)
332
+ # Otherwise, we have at least i_pivot in E and so d < M so min(d,M)=d
333
+
334
+ cut_J_based_on_e_mean = cut_J_based_on_mean_func(J, e_mean)
335
+ J_before = cut_J_based_on_e_mean[0]
336
+ J_after = cut_J_based_on_e_mean[1]
337
+
338
+ iemin_mean = (e_min + i_pivot)/2
339
+ cut_Jbefore_based_on_iemin_mean = cut_J_based_on_mean_func(J_before, iemin_mean)
340
+ J_before_closeE = cut_Jbefore_based_on_iemin_mean[0] # before e_mean and closer to e_min than i_pivot ~ J_before_before
341
+ J_before_closeI = cut_Jbefore_based_on_iemin_mean[1] # before e_mean and closer to i_pivot than e_min ~ J_before_after
342
+
343
+ iemax_mean = (e_max + i_pivot)/2
344
+ cut_Jafter_based_on_iemax_mean = cut_J_based_on_mean_func(J_after, iemax_mean)
345
+ J_after_closeI = cut_Jafter_based_on_iemax_mean[0] # after e_mean and closer to i_pivot than e_max ~ J_after_before
346
+ J_after_closeE = cut_Jafter_based_on_iemax_mean[1] # after e_mean and closer to e_max than i_pivot ~ J_after_after
347
+
348
+ if J_before_closeE is not None:
349
+ j_before_before_min = min(J_before_closeE) # == min(J)
350
+ j_before_before_max = max(J_before_closeE)
351
+ else:
352
+ j_before_before_min = math.nan
353
+ j_before_before_max = math.nan
354
+
355
+ if J_before_closeI is not None:
356
+ j_before_after_min = min(J_before_closeI) # == j_before_before_max if existing
357
+ j_before_after_max = max(J_before_closeI) # == max(J_before)
358
+ else:
359
+ j_before_after_min = math.nan
360
+ j_before_after_max = math.nan
361
+
362
+ if J_after_closeI is not None:
363
+ j_after_before_min = min(J_after_closeI) # == min(J_after)
364
+ j_after_before_max = max(J_after_closeI)
365
+ else:
366
+ j_after_before_min = math.nan
367
+ j_after_before_max = math.nan
368
+
369
+ if J_after_closeE is not None:
370
+ j_after_after_min = min(J_after_closeE) # == j_after_before_max if existing
371
+ j_after_after_max = max(J_after_closeE) # == max(J)
372
+ else:
373
+ j_after_after_min = math.nan
374
+ j_after_after_max = math.nan
375
+
376
+ # <-- J_before_closeE --> <-- J_before_closeI --> <-- J_after_closeI --> <-- J_after_closeE -->
377
+ # j_bb_min j_bb_max j_ba_min j_ba_max j_ab_min j_ab_max j_aa_min j_aa_max
378
+ # (with `b` for before and `a` for after in the previous variable names)
379
+
380
+ # vs e_mean m = min(t-e_min, e_max-t) d=|i_pivot-t| min(d,m) \int min(d,m)dt \int d dt \int_(min(d,m)+d)dt \int_{t \in J}(min(d,m)+d)dt
381
+ # Case J_before_closeE & i_pivot after J before t-e_min i_pivot-t min(i_pivot-t,t-e_min) = t-e_min t^2/2-e_min*t i_pivot*t-t^2/2 t^2/2-e_min*t+i_pivot*t-t^2/2 = (i_pivot-e_min)*t (i_pivot-e_min)*tB - (i_pivot-e_min)*tA = (i_pivot-e_min)*(tB-tA)
382
+ # Case J_before_closeI & i_pivot after J before t-e_min i_pivot-t min(i_pivot-t,t-e_min) = i_pivot-t i_pivot*t-t^2/2 i_pivot*t-t^2/2 i_pivot*t-t^2/2+i_pivot*t-t^2/2 = 2*i_pivot*t-t^2 2*i_pivot*tB-tB^2 - 2*i_pivot*tA + tA^2 = 2*i_pivot*(tB-tA) - (tB^2 - tA^2)
383
+ # Case J_after_closeI & i_pivot after J after e_max-t i_pivot-t min(i_pivot-t,e_max-t) = i_pivot-t i_pivot*t-t^2/2 i_pivot*t-t^2/2 i_pivot*t-t^2/2+i_pivot*t-t^2/2 = 2*i_pivot*t-t^2 2*i_pivot*tB-tB^2 - 2*i_pivot*tA + tA^2 = 2*i_pivot*(tB-tA) - (tB^2 - tA^2)
384
+ # Case J_after_closeE & i_pivot after J after e_max-t i_pivot-t min(i_pivot-t,e_max-t) = e_max-t e_max*t-t^2/2 i_pivot*t-t^2/2 e_max*t-t^2/2+i_pivot*t-t^2/2 = (e_max+i_pivot)*t-t^2 (e_max+i_pivot)*tB-tB^2 - (e_max+i_pivot)*tA + tA^2 = (e_max+i_pivot)*(tB-tA) - (tB^2 - tA^2)
385
+ #
386
+ # Case J_before_closeE & i_pivot before J before t-e_min t-i_pivot min(t-i_pivot,t-e_min) = t-e_min t^2/2-e_min*t t^2/2-i_pivot*t t^2/2-e_min*t+t^2/2-i_pivot*t = t^2-(e_min+i_pivot)*t tB^2-(e_min+i_pivot)*tB - tA^2 + (e_min+i_pivot)*tA = (tB^2 - tA^2) - (e_min+i_pivot)*(tB-tA)
387
+ # Case J_before_closeI & i_pivot before J before t-e_min t-i_pivot min(t-i_pivot,t-e_min) = t-i_pivot t^2/2-i_pivot*t t^2/2-i_pivot*t t^2/2-i_pivot*t+t^2/2-i_pivot*t = t^2-2*i_pivot*t tB^2-2*i_pivot*tB - tA^2 + 2*i_pivot*tA = (tB^2 - tA^2) - 2*i_pivot*(tB-tA)
388
+ # Case J_after_closeI & i_pivot before J after e_max-t t-i_pivot min(t-i_pivot,e_max-t) = t-i_pivot t^2/2-i_pivot*t t^2/2-i_pivot*t t^2/2-i_pivot*t+t^2/2-i_pivot*t = t^2-2*i_pivot*t tB^2-2*i_pivot*tB - tA^2 + 2*i_pivot*tA = (tB^2 - tA^2) - 2*i_pivot*(tB-tA)
389
+ # Case J_after_closeE & i_pivot before J after e_max-t t-i_pivot min(t-i_pivot,e_max-t) = e_max-t e_max*t-t^2/2 t^2/2-i_pivot*t e_max*t-t^2/2+t^2/2-i_pivot*t = (e_max-i_pivot)*t (e_max-i_pivot)*tB - (e_max-i_pivot)*tA = (e_max-i_pivot)*(tB-tA)
390
+
391
+ if i_pivot >= max(J):
392
+ part1_before_closeE = (i_pivot-e_min)*(j_before_before_max - j_before_before_min) # (i_pivot-e_min)*(tB-tA) # j_before_before_max - j_before_before_min
393
+ part2_before_closeI = 2*i_pivot*(j_before_after_max-j_before_after_min) - (j_before_after_max**2 - j_before_after_min**2) # 2*i_pivot*(tB-tA) - (tB^2 - tA^2) # j_before_after_max - j_before_after_min
394
+ part3_after_closeI = 2*i_pivot*(j_after_before_max-j_after_before_min) - (j_after_before_max**2 - j_after_before_min**2) # 2*i_pivot*(tB-tA) - (tB^2 - tA^2) # j_after_before_max - j_after_before_min
395
+ part4_after_closeE = (e_max+i_pivot)*(j_after_after_max-j_after_after_min) - (j_after_after_max**2 - j_after_after_min**2) # (e_max+i_pivot)*(tB-tA) - (tB^2 - tA^2) # j_after_after_max - j_after_after_min
396
+ out_parts = [part1_before_closeE, part2_before_closeI, part3_after_closeI, part4_after_closeE]
397
+ elif i_pivot <= min(J):
398
+ part1_before_closeE = (j_before_before_max**2 - j_before_before_min**2) - (e_min+i_pivot)*(j_before_before_max-j_before_before_min) # (tB^2 - tA^2) - (e_min+i_pivot)*(tB-tA) # j_before_before_max - j_before_before_min
399
+ part2_before_closeI = (j_before_after_max**2 - j_before_after_min**2) - 2*i_pivot*(j_before_after_max-j_before_after_min) # (tB^2 - tA^2) - 2*i_pivot*(tB-tA) # j_before_after_max - j_before_after_min
400
+ part3_after_closeI = (j_after_before_max**2 - j_after_before_min**2) - 2*i_pivot*(j_after_before_max - j_after_before_min) # (tB^2 - tA^2) - 2*i_pivot*(tB-tA) # j_after_before_max - j_after_before_min
401
+ part4_after_closeE = (e_max-i_pivot)*(j_after_after_max - j_after_after_min) # (e_max-i_pivot)*(tB-tA) # j_after_after_max - j_after_after_min
402
+ out_parts = [part1_before_closeE, part2_before_closeI, part3_after_closeI, part4_after_closeE]
403
+ else:
404
+ raise ValueError('The i_pivot should be outside J')
405
+
406
+ out_integral_min_dm_plus_d = _sum_wo_nan(out_parts) # integral on all J, i.e. sum of the disjoint parts
407
+
408
+ # We have for each point t of J:
409
+ # \bar{F}_{t, recall}(d) = 1 - (1/|E|) * (min(d,m) + d)
410
+ # Since t is a single-point here, and we are in the case where i_pivot is inside E.
411
+ # The integral is then given by:
412
+ # C = \int_{t \in J} \bar{F}_{t, recall}(D(t)) dt
413
+ # = \int_{t \in J} 1 - (1/|E|) * (min(d,m) + d) dt
414
+ # = |J| - (1/|E|) * [\int_{t \in J} (min(d,m) + d) dt]
415
+ # = |J| - (1/|E|) * out_integral_min_dm_plus_d
416
+ DeltaJ = max(J) - min(J)
417
+ DeltaE = max(E) - min(E)
418
+ C = DeltaJ - (1/DeltaE) * out_integral_min_dm_plus_d
419
+
420
+ return(C)
421
+
422
+ def integral_interval_probaCDF_recall(I, J, E):
423
+ """
424
+ Integral of the probability of distances over the interval J.
425
+ Compute the integral $\int_{y \in J} Fbar_y(dist(y,I)) dy$.
426
+ This is the *integral* i.e. the sum (not the mean)
427
+
428
+ :param I: a single (non empty) predicted interval
429
+ :param J: ground truth (non empty) interval
430
+ :param E: the affiliation/influence zone for J
431
+ :return: the integral $\int_{y \in J} Fbar_y(dist(y,I)) dy$
432
+ """
433
+ # I and J are single intervals (not generic sets)
434
+ # E is the outside affiliation interval of J (even for recall!)
435
+ # (in particular J \subset E)
436
+ #
437
+ # J is the portion of the ground truth affiliated to I
438
+ # I is a predicted interval (can be outside E possibly since it's recall)
439
+ def f(J_cut):
440
+ if J_cut is None:
441
+ return(0)
442
+ else:
443
+ return integral_mini_interval_Precall_CDFmethod(I, J_cut, E)
444
+
445
+ # If J_middle is fully included into I, it is
446
+ # integral of 1 on the interval J_middle, so it's |J_middle|
447
+ def f0(J_middle):
448
+ if J_middle is None:
449
+ return(0)
450
+ else:
451
+ return(max(J_middle) - min(J_middle))
452
+
453
+ cut_into_three = cut_into_three_func(J, I) # it's J that we cut into 3, depending on the position w.r.t I
454
+ # since we integrate over J this time.
455
+ #
456
+ # Distance for now, not the mean:
457
+ # Distance left: Between cut_into_three[0] and the point min(I)
458
+ d_left = f(cut_into_three[0])
459
+ # Distance middle: Between cut_into_three[1] = J inter I, and I
460
+ d_middle = f0(cut_into_three[1])
461
+ # Distance right: Between cut_into_three[2] and the point max(I)
462
+ d_right = f(cut_into_three[2])
463
+ # It's an integral so summable
464
+ return(d_left + d_middle + d_right)
@@ -0,0 +1,68 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ import math
4
+ from ._affiliation_zone import (
5
+ get_all_E_gt_func,
6
+ affiliation_partition)
7
+ from ._integral_interval import (
8
+ integral_interval_distance,
9
+ integral_interval_probaCDF_precision,
10
+ integral_interval_probaCDF_recall,
11
+ interval_length,
12
+ sum_interval_lengths)
13
+
14
+ def affiliation_precision_distance(Is = [(1,2),(3,4),(5,6)], J = (2,5.5)):
15
+ """
16
+ Compute the individual average distance from Is to a single ground truth J
17
+
18
+ :param Is: list of predicted events within the affiliation zone of J
19
+ :param J: couple representating the start and stop of a ground truth interval
20
+ :return: individual average precision directed distance number
21
+ """
22
+ if all([I is None for I in Is]): # no prediction in the current area
23
+ return(math.nan) # undefined
24
+ return(sum([integral_interval_distance(I, J) for I in Is]) / sum_interval_lengths(Is))
25
+
26
+ def affiliation_precision_proba(Is = [(1,2),(3,4),(5,6)], J = (2,5.5), E = (0,8)):
27
+ """
28
+ Compute the individual precision probability from Is to a single ground truth J
29
+
30
+ :param Is: list of predicted events within the affiliation zone of J
31
+ :param J: couple representating the start and stop of a ground truth interval
32
+ :param E: couple representing the start and stop of the zone of affiliation of J
33
+ :return: individual precision probability in [0, 1], or math.nan if undefined
34
+ """
35
+ if all([I is None for I in Is]): # no prediction in the current area
36
+ return(math.nan) # undefined
37
+ return(sum([integral_interval_probaCDF_precision(I, J, E) for I in Is]) / sum_interval_lengths(Is))
38
+
39
+ def affiliation_recall_distance(Is = [(1,2),(3,4),(5,6)], J = (2,5.5)):
40
+ """
41
+ Compute the individual average distance from a single J to the predictions Is
42
+
43
+ :param Is: list of predicted events within the affiliation zone of J
44
+ :param J: couple representating the start and stop of a ground truth interval
45
+ :return: individual average recall directed distance number
46
+ """
47
+ Is = [I for I in Is if I is not None] # filter possible None in Is
48
+ if len(Is) == 0: # there is no prediction in the current area
49
+ return(math.inf)
50
+ E_gt_recall = get_all_E_gt_func(Is, (-math.inf, math.inf)) # here from the point of view of the predictions
51
+ Js = affiliation_partition([J], E_gt_recall) # partition of J depending of proximity with Is
52
+ return(sum([integral_interval_distance(J[0], I) for I, J in zip(Is, Js)]) / interval_length(J))
53
+
54
+ def affiliation_recall_proba(Is = [(1,2),(3,4),(5,6)], J = (2,5.5), E = (0,8)):
55
+ """
56
+ Compute the individual recall probability from a single ground truth J to Is
57
+
58
+ :param Is: list of predicted events within the affiliation zone of J
59
+ :param J: couple representating the start and stop of a ground truth interval
60
+ :param E: couple representing the start and stop of the zone of affiliation of J
61
+ :return: individual recall probability in [0, 1]
62
+ """
63
+ Is = [I for I in Is if I is not None] # filter possible None in Is
64
+ if len(Is) == 0: # there is no prediction in the current area
65
+ return(0)
66
+ E_gt_recall = get_all_E_gt_func(Is, E) # here from the point of view of the predictions
67
+ Js = affiliation_partition([J], E_gt_recall) # partition of J depending of proximity with Is
68
+ return(sum([integral_interval_probaCDF_recall(I, J[0], E) for I, J in zip(Is, Js)]) / interval_length(J))
@@ -0,0 +1,135 @@
1
+ #!/usr/bin/env python3
2
+ # -*- coding: utf-8 -*-
3
+ from itertools import groupby
4
+ from operator import itemgetter
5
+ import math
6
+ import gzip
7
+ import glob
8
+ import os
9
+
10
+ def convert_vector_to_events(vector = [0, 1, 1, 0, 0, 1, 0]):
11
+ """
12
+ Convert a binary vector (indicating 1 for the anomalous instances)
13
+ to a list of events. The events are considered as durations,
14
+ i.e. setting 1 at index i corresponds to an anomalous interval [i, i+1).
15
+
16
+ :param vector: a list of elements belonging to {0, 1}
17
+ :return: a list of couples, each couple representing the start and stop of
18
+ each event
19
+ """
20
+ positive_indexes = [idx for idx, val in enumerate(vector) if val > 0]
21
+ events = []
22
+ for k, g in groupby(enumerate(positive_indexes), lambda ix : ix[0] - ix[1]):
23
+ cur_cut = list(map(itemgetter(1), g))
24
+ events.append((cur_cut[0], cur_cut[-1]))
25
+
26
+ # Consistent conversion in case of range anomalies (for indexes):
27
+ # A positive index i is considered as the interval [i, i+1),
28
+ # so the last index should be moved by 1
29
+ events = [(x, y+1) for (x,y) in events]
30
+
31
+ return(events)
32
+
33
+ def infer_Trange(events_pred, events_gt):
34
+ """
35
+ Given the list of events events_pred and events_gt, get the
36
+ smallest possible Trange corresponding to the start and stop indexes
37
+ of the whole series.
38
+ Trange will not influence the measure of distances, but will impact the
39
+ measures of probabilities.
40
+
41
+ :param events_pred: a list of couples corresponding to predicted events
42
+ :param events_gt: a list of couples corresponding to ground truth events
43
+ :return: a couple corresponding to the smallest range containing the events
44
+ """
45
+ if len(events_gt) == 0:
46
+ raise ValueError('The gt events should contain at least one event')
47
+ if len(events_pred) == 0:
48
+ # empty prediction, base Trange only on events_gt (which is non empty)
49
+ return(infer_Trange(events_gt, events_gt))
50
+
51
+ min_pred = min([x[0] for x in events_pred])
52
+ min_gt = min([x[0] for x in events_gt])
53
+ max_pred = max([x[1] for x in events_pred])
54
+ max_gt = max([x[1] for x in events_gt])
55
+ Trange = (min(min_pred, min_gt), max(max_pred, max_gt))
56
+ return(Trange)
57
+
58
+ def has_point_anomalies(events):
59
+ """
60
+ Checking whether events contain point anomalies, i.e.
61
+ events starting and stopping at the same time.
62
+
63
+ :param events: a list of couples corresponding to predicted events
64
+ :return: True is the events have any point anomalies, False otherwise
65
+ """
66
+ if len(events) == 0:
67
+ return(False)
68
+ return(min([x[1] - x[0] for x in events]) == 0)
69
+
70
+ def _sum_wo_nan(vec):
71
+ """
72
+ Sum of elements, ignoring math.isnan ones
73
+
74
+ :param vec: vector of floating numbers
75
+ :return: sum of the elements, ignoring math.isnan ones
76
+ """
77
+ vec_wo_nan = [e for e in vec if not math.isnan(e)]
78
+ return(sum(vec_wo_nan))
79
+
80
+ def _len_wo_nan(vec):
81
+ """
82
+ Count of elements, ignoring math.isnan ones
83
+
84
+ :param vec: vector of floating numbers
85
+ :return: count of the elements, ignoring math.isnan ones
86
+ """
87
+ vec_wo_nan = [e for e in vec if not math.isnan(e)]
88
+ return(len(vec_wo_nan))
89
+
90
+ def read_gz_data(filename = 'data/machinetemp_groundtruth.gz'):
91
+ """
92
+ Load a file compressed with gz, such that each line of the
93
+ file is either 0 (representing a normal instance) or 1 (representing)
94
+ an anomalous instance.
95
+ :param filename: file path to the gz compressed file
96
+ :return: list of integers with either 0 or 1
97
+ """
98
+ with gzip.open(filename, 'rb') as f:
99
+ content = f.read().splitlines()
100
+ content = [int(x) for x in content]
101
+ return(content)
102
+
103
+ def read_all_as_events():
104
+ """
105
+ Load the files contained in the folder `data/` and convert
106
+ to events. The length of the series is kept.
107
+ The convention for the file name is: `dataset_algorithm.gz`
108
+ :return: two dictionaries:
109
+ - the first containing the list of events for each dataset and algorithm,
110
+ - the second containing the range of the series for each dataset
111
+ """
112
+ filepaths = glob.glob('data/*.gz')
113
+ datasets = dict()
114
+ Tranges = dict()
115
+ for filepath in filepaths:
116
+ vector = read_gz_data(filepath)
117
+ events = convert_vector_to_events(vector)
118
+ # ad hoc cut for those files
119
+ cut_filepath = (os.path.split(filepath)[1]).split('_')
120
+ data_name = cut_filepath[0]
121
+ algo_name = (cut_filepath[1]).split('.')[0]
122
+ if not data_name in datasets:
123
+ datasets[data_name] = dict()
124
+ Tranges[data_name] = (0, len(vector))
125
+ datasets[data_name][algo_name] = events
126
+ return(datasets, Tranges)
127
+
128
+ def f1_func(p, r):
129
+ """
130
+ Compute the f1 function
131
+ :param p: precision numeric value
132
+ :param r: recall numeric value
133
+ :return: f1 numeric value
134
+ """
135
+ return(2*p*r/(p+r))