transformers 5.0.0rc1__py3-none-any.whl → 5.0.0rc3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (1584) hide show
  1. transformers/__init__.py +27 -27
  2. transformers/activations.py +1 -1
  3. transformers/audio_utils.py +32 -33
  4. transformers/cache_utils.py +32 -139
  5. transformers/cli/chat.py +3 -3
  6. transformers/cli/serve.py +2 -2
  7. transformers/cli/transformers.py +2 -1
  8. transformers/configuration_utils.py +143 -101
  9. transformers/conversion_mapping.py +73 -6
  10. transformers/convert_slow_tokenizer.py +3 -8
  11. transformers/core_model_loading.py +215 -50
  12. transformers/data/processors/glue.py +0 -1
  13. transformers/data/processors/utils.py +0 -1
  14. transformers/data/processors/xnli.py +0 -1
  15. transformers/dependency_versions_table.py +5 -5
  16. transformers/distributed/configuration_utils.py +1 -2
  17. transformers/dynamic_module_utils.py +23 -23
  18. transformers/feature_extraction_sequence_utils.py +19 -23
  19. transformers/feature_extraction_utils.py +63 -31
  20. transformers/generation/candidate_generator.py +80 -33
  21. transformers/generation/configuration_utils.py +186 -131
  22. transformers/generation/continuous_batching/__init__.py +0 -1
  23. transformers/generation/continuous_batching/cache.py +81 -24
  24. transformers/generation/continuous_batching/cache_manager.py +155 -45
  25. transformers/generation/continuous_batching/continuous_api.py +152 -84
  26. transformers/generation/continuous_batching/requests.py +51 -3
  27. transformers/generation/continuous_batching/scheduler.py +127 -52
  28. transformers/generation/logits_process.py +0 -128
  29. transformers/generation/stopping_criteria.py +1 -1
  30. transformers/generation/streamers.py +0 -1
  31. transformers/generation/utils.py +107 -119
  32. transformers/generation/watermarking.py +8 -6
  33. transformers/hf_argparser.py +9 -13
  34. transformers/hyperparameter_search.py +1 -2
  35. transformers/image_processing_base.py +11 -21
  36. transformers/image_processing_utils.py +11 -12
  37. transformers/image_processing_utils_fast.py +68 -57
  38. transformers/image_transforms.py +29 -29
  39. transformers/image_utils.py +30 -32
  40. transformers/initialization.py +37 -0
  41. transformers/integrations/__init__.py +12 -0
  42. transformers/integrations/accelerate.py +44 -111
  43. transformers/integrations/aqlm.py +3 -5
  44. transformers/integrations/awq.py +3 -8
  45. transformers/integrations/bitnet.py +5 -8
  46. transformers/integrations/bitsandbytes.py +16 -15
  47. transformers/integrations/deepspeed.py +19 -4
  48. transformers/integrations/eetq.py +3 -6
  49. transformers/integrations/fbgemm_fp8.py +2 -3
  50. transformers/integrations/finegrained_fp8.py +14 -23
  51. transformers/integrations/flash_attention.py +2 -2
  52. transformers/integrations/flex_attention.py +1 -1
  53. transformers/integrations/fp_quant.py +4 -6
  54. transformers/integrations/ggml.py +0 -1
  55. transformers/integrations/higgs.py +2 -5
  56. transformers/integrations/hub_kernels.py +23 -5
  57. transformers/integrations/integration_utils.py +37 -3
  58. transformers/integrations/mistral.py +12 -0
  59. transformers/integrations/moe.py +240 -0
  60. transformers/integrations/mxfp4.py +9 -16
  61. transformers/integrations/peft.py +5 -0
  62. transformers/integrations/quanto.py +5 -2
  63. transformers/integrations/quark.py +2 -4
  64. transformers/integrations/spqr.py +3 -5
  65. transformers/integrations/tensor_parallel.py +167 -221
  66. transformers/integrations/torchao.py +4 -6
  67. transformers/integrations/vptq.py +3 -5
  68. transformers/loss/loss_lw_detr.py +356 -0
  69. transformers/loss/loss_utils.py +2 -0
  70. transformers/masking_utils.py +47 -51
  71. transformers/model_debugging_utils.py +4 -5
  72. transformers/modelcard.py +14 -192
  73. transformers/modeling_attn_mask_utils.py +19 -19
  74. transformers/modeling_flash_attention_utils.py +27 -27
  75. transformers/modeling_gguf_pytorch_utils.py +71 -24
  76. transformers/modeling_layers.py +21 -22
  77. transformers/modeling_outputs.py +242 -253
  78. transformers/modeling_rope_utils.py +110 -113
  79. transformers/modeling_utils.py +633 -576
  80. transformers/models/__init__.py +23 -0
  81. transformers/models/afmoe/configuration_afmoe.py +26 -29
  82. transformers/models/afmoe/modeling_afmoe.py +37 -49
  83. transformers/models/afmoe/modular_afmoe.py +21 -31
  84. transformers/models/aimv2/configuration_aimv2.py +2 -5
  85. transformers/models/aimv2/modeling_aimv2.py +24 -21
  86. transformers/models/aimv2/modular_aimv2.py +11 -9
  87. transformers/models/albert/configuration_albert.py +0 -1
  88. transformers/models/albert/modeling_albert.py +70 -69
  89. transformers/models/albert/tokenization_albert.py +1 -4
  90. transformers/models/align/configuration_align.py +0 -1
  91. transformers/models/align/modeling_align.py +73 -68
  92. transformers/models/align/processing_align.py +2 -30
  93. transformers/models/altclip/configuration_altclip.py +0 -1
  94. transformers/models/altclip/modeling_altclip.py +83 -80
  95. transformers/models/altclip/processing_altclip.py +2 -15
  96. transformers/models/apertus/__init__.py +0 -1
  97. transformers/models/apertus/configuration_apertus.py +18 -21
  98. transformers/models/apertus/modeling_apertus.py +35 -36
  99. transformers/models/apertus/modular_apertus.py +32 -31
  100. transformers/models/arcee/configuration_arcee.py +20 -23
  101. transformers/models/arcee/modeling_arcee.py +32 -35
  102. transformers/models/arcee/modular_arcee.py +20 -23
  103. transformers/models/aria/configuration_aria.py +20 -23
  104. transformers/models/aria/image_processing_aria.py +25 -27
  105. transformers/models/aria/modeling_aria.py +71 -70
  106. transformers/models/aria/modular_aria.py +85 -88
  107. transformers/models/aria/processing_aria.py +28 -35
  108. transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +0 -1
  109. transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py +3 -6
  110. transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +6 -8
  111. transformers/models/audioflamingo3/__init__.py +0 -1
  112. transformers/models/audioflamingo3/configuration_audioflamingo3.py +0 -1
  113. transformers/models/audioflamingo3/modeling_audioflamingo3.py +22 -23
  114. transformers/models/audioflamingo3/modular_audioflamingo3.py +12 -17
  115. transformers/models/audioflamingo3/processing_audioflamingo3.py +33 -30
  116. transformers/models/auto/auto_factory.py +5 -6
  117. transformers/models/auto/configuration_auto.py +53 -5
  118. transformers/models/auto/feature_extraction_auto.py +12 -10
  119. transformers/models/auto/image_processing_auto.py +17 -28
  120. transformers/models/auto/modeling_auto.py +38 -188
  121. transformers/models/auto/processing_auto.py +6 -1
  122. transformers/models/auto/tokenization_auto.py +147 -169
  123. transformers/models/auto/video_processing_auto.py +12 -10
  124. transformers/models/autoformer/configuration_autoformer.py +4 -7
  125. transformers/models/autoformer/modeling_autoformer.py +98 -100
  126. transformers/models/aya_vision/configuration_aya_vision.py +0 -1
  127. transformers/models/aya_vision/modeling_aya_vision.py +42 -40
  128. transformers/models/aya_vision/modular_aya_vision.py +26 -29
  129. transformers/models/aya_vision/processing_aya_vision.py +25 -53
  130. transformers/models/bamba/configuration_bamba.py +29 -32
  131. transformers/models/bamba/modeling_bamba.py +78 -83
  132. transformers/models/bamba/modular_bamba.py +68 -71
  133. transformers/models/bark/configuration_bark.py +4 -7
  134. transformers/models/bark/generation_configuration_bark.py +3 -5
  135. transformers/models/bark/modeling_bark.py +49 -55
  136. transformers/models/bark/processing_bark.py +19 -41
  137. transformers/models/bart/configuration_bart.py +0 -2
  138. transformers/models/bart/modeling_bart.py +122 -117
  139. transformers/models/barthez/tokenization_barthez.py +1 -4
  140. transformers/models/bartpho/tokenization_bartpho.py +6 -7
  141. transformers/models/beit/configuration_beit.py +0 -11
  142. transformers/models/beit/image_processing_beit.py +53 -56
  143. transformers/models/beit/image_processing_beit_fast.py +8 -10
  144. transformers/models/beit/modeling_beit.py +51 -53
  145. transformers/models/bert/configuration_bert.py +0 -1
  146. transformers/models/bert/modeling_bert.py +114 -122
  147. transformers/models/bert/tokenization_bert.py +2 -4
  148. transformers/models/bert/tokenization_bert_legacy.py +3 -5
  149. transformers/models/bert_generation/configuration_bert_generation.py +0 -1
  150. transformers/models/bert_generation/modeling_bert_generation.py +49 -49
  151. transformers/models/bert_generation/tokenization_bert_generation.py +2 -3
  152. transformers/models/bert_japanese/tokenization_bert_japanese.py +5 -6
  153. transformers/models/bertweet/tokenization_bertweet.py +1 -3
  154. transformers/models/big_bird/configuration_big_bird.py +0 -1
  155. transformers/models/big_bird/modeling_big_bird.py +110 -109
  156. transformers/models/big_bird/tokenization_big_bird.py +1 -4
  157. transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py +0 -1
  158. transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +116 -111
  159. transformers/models/biogpt/configuration_biogpt.py +0 -1
  160. transformers/models/biogpt/modeling_biogpt.py +69 -71
  161. transformers/models/biogpt/modular_biogpt.py +59 -61
  162. transformers/models/biogpt/tokenization_biogpt.py +3 -5
  163. transformers/models/bit/configuration_bit.py +0 -1
  164. transformers/models/bit/image_processing_bit.py +21 -24
  165. transformers/models/bit/image_processing_bit_fast.py +0 -1
  166. transformers/models/bit/modeling_bit.py +14 -12
  167. transformers/models/bitnet/configuration_bitnet.py +18 -21
  168. transformers/models/bitnet/modeling_bitnet.py +32 -35
  169. transformers/models/bitnet/modular_bitnet.py +4 -6
  170. transformers/models/blenderbot/configuration_blenderbot.py +0 -1
  171. transformers/models/blenderbot/modeling_blenderbot.py +71 -95
  172. transformers/models/blenderbot/tokenization_blenderbot.py +6 -8
  173. transformers/models/blenderbot_small/configuration_blenderbot_small.py +0 -1
  174. transformers/models/blenderbot_small/modeling_blenderbot_small.py +73 -68
  175. transformers/models/blenderbot_small/tokenization_blenderbot_small.py +1 -3
  176. transformers/models/blip/configuration_blip.py +0 -1
  177. transformers/models/blip/image_processing_blip.py +17 -20
  178. transformers/models/blip/image_processing_blip_fast.py +0 -1
  179. transformers/models/blip/modeling_blip.py +62 -71
  180. transformers/models/blip/modeling_blip_text.py +71 -65
  181. transformers/models/blip/processing_blip.py +5 -36
  182. transformers/models/blip_2/configuration_blip_2.py +0 -1
  183. transformers/models/blip_2/modeling_blip_2.py +72 -71
  184. transformers/models/blip_2/processing_blip_2.py +8 -38
  185. transformers/models/bloom/configuration_bloom.py +0 -1
  186. transformers/models/bloom/modeling_bloom.py +71 -103
  187. transformers/models/blt/configuration_blt.py +71 -74
  188. transformers/models/blt/modeling_blt.py +235 -78
  189. transformers/models/blt/modular_blt.py +225 -62
  190. transformers/models/bridgetower/configuration_bridgetower.py +0 -1
  191. transformers/models/bridgetower/image_processing_bridgetower.py +34 -35
  192. transformers/models/bridgetower/image_processing_bridgetower_fast.py +7 -10
  193. transformers/models/bridgetower/modeling_bridgetower.py +113 -109
  194. transformers/models/bridgetower/processing_bridgetower.py +2 -16
  195. transformers/models/bros/configuration_bros.py +0 -1
  196. transformers/models/bros/modeling_bros.py +86 -80
  197. transformers/models/bros/processing_bros.py +2 -12
  198. transformers/models/byt5/tokenization_byt5.py +4 -6
  199. transformers/models/camembert/configuration_camembert.py +0 -1
  200. transformers/models/camembert/modeling_camembert.py +196 -195
  201. transformers/models/camembert/modular_camembert.py +51 -54
  202. transformers/models/camembert/tokenization_camembert.py +1 -4
  203. transformers/models/canine/configuration_canine.py +0 -1
  204. transformers/models/canine/modeling_canine.py +79 -75
  205. transformers/models/canine/tokenization_canine.py +2 -1
  206. transformers/models/chameleon/configuration_chameleon.py +24 -27
  207. transformers/models/chameleon/image_processing_chameleon.py +21 -24
  208. transformers/models/chameleon/image_processing_chameleon_fast.py +0 -1
  209. transformers/models/chameleon/modeling_chameleon.py +62 -60
  210. transformers/models/chameleon/processing_chameleon.py +16 -41
  211. transformers/models/chinese_clip/configuration_chinese_clip.py +0 -1
  212. transformers/models/chinese_clip/image_processing_chinese_clip.py +21 -24
  213. transformers/models/chinese_clip/image_processing_chinese_clip_fast.py +0 -1
  214. transformers/models/chinese_clip/modeling_chinese_clip.py +71 -69
  215. transformers/models/chinese_clip/processing_chinese_clip.py +2 -15
  216. transformers/models/clap/configuration_clap.py +0 -1
  217. transformers/models/clap/feature_extraction_clap.py +11 -12
  218. transformers/models/clap/modeling_clap.py +113 -104
  219. transformers/models/clap/processing_clap.py +2 -15
  220. transformers/models/clip/configuration_clip.py +0 -1
  221. transformers/models/clip/image_processing_clip.py +21 -24
  222. transformers/models/clip/image_processing_clip_fast.py +0 -1
  223. transformers/models/clip/modeling_clip.py +47 -46
  224. transformers/models/clip/processing_clip.py +2 -14
  225. transformers/models/clip/tokenization_clip.py +2 -5
  226. transformers/models/clipseg/configuration_clipseg.py +0 -1
  227. transformers/models/clipseg/modeling_clipseg.py +90 -87
  228. transformers/models/clipseg/processing_clipseg.py +8 -39
  229. transformers/models/clvp/configuration_clvp.py +1 -3
  230. transformers/models/clvp/feature_extraction_clvp.py +7 -10
  231. transformers/models/clvp/modeling_clvp.py +133 -118
  232. transformers/models/clvp/number_normalizer.py +1 -2
  233. transformers/models/clvp/processing_clvp.py +3 -20
  234. transformers/models/clvp/tokenization_clvp.py +0 -1
  235. transformers/models/code_llama/tokenization_code_llama.py +4 -7
  236. transformers/models/codegen/configuration_codegen.py +0 -1
  237. transformers/models/codegen/modeling_codegen.py +61 -52
  238. transformers/models/codegen/tokenization_codegen.py +5 -6
  239. transformers/models/cohere/configuration_cohere.py +20 -23
  240. transformers/models/cohere/modeling_cohere.py +36 -39
  241. transformers/models/cohere/modular_cohere.py +24 -28
  242. transformers/models/cohere/tokenization_cohere.py +5 -6
  243. transformers/models/cohere2/configuration_cohere2.py +21 -24
  244. transformers/models/cohere2/modeling_cohere2.py +35 -38
  245. transformers/models/cohere2/modular_cohere2.py +39 -41
  246. transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +6 -8
  247. transformers/models/cohere2_vision/modeling_cohere2_vision.py +35 -33
  248. transformers/models/cohere2_vision/modular_cohere2_vision.py +21 -23
  249. transformers/models/cohere2_vision/processing_cohere2_vision.py +6 -36
  250. transformers/models/colpali/configuration_colpali.py +0 -1
  251. transformers/models/colpali/modeling_colpali.py +14 -16
  252. transformers/models/colpali/modular_colpali.py +11 -51
  253. transformers/models/colpali/processing_colpali.py +14 -52
  254. transformers/models/colqwen2/modeling_colqwen2.py +20 -22
  255. transformers/models/colqwen2/modular_colqwen2.py +29 -68
  256. transformers/models/colqwen2/processing_colqwen2.py +16 -52
  257. transformers/models/conditional_detr/configuration_conditional_detr.py +1 -2
  258. transformers/models/conditional_detr/image_processing_conditional_detr.py +64 -66
  259. transformers/models/conditional_detr/image_processing_conditional_detr_fast.py +22 -22
  260. transformers/models/conditional_detr/modeling_conditional_detr.py +82 -81
  261. transformers/models/conditional_detr/modular_conditional_detr.py +1 -3
  262. transformers/models/convbert/configuration_convbert.py +0 -1
  263. transformers/models/convbert/modeling_convbert.py +88 -87
  264. transformers/models/convbert/tokenization_convbert.py +0 -1
  265. transformers/models/convnext/configuration_convnext.py +0 -1
  266. transformers/models/convnext/image_processing_convnext.py +20 -23
  267. transformers/models/convnext/image_processing_convnext_fast.py +14 -19
  268. transformers/models/convnext/modeling_convnext.py +5 -8
  269. transformers/models/convnextv2/configuration_convnextv2.py +0 -1
  270. transformers/models/convnextv2/modeling_convnextv2.py +5 -8
  271. transformers/models/cpm/tokenization_cpm.py +6 -7
  272. transformers/models/cpm/tokenization_cpm_fast.py +3 -5
  273. transformers/models/cpmant/configuration_cpmant.py +0 -1
  274. transformers/models/cpmant/modeling_cpmant.py +38 -40
  275. transformers/models/cpmant/tokenization_cpmant.py +1 -3
  276. transformers/models/csm/configuration_csm.py +49 -51
  277. transformers/models/csm/generation_csm.py +31 -35
  278. transformers/models/csm/modeling_csm.py +81 -82
  279. transformers/models/csm/modular_csm.py +58 -58
  280. transformers/models/csm/processing_csm.py +25 -68
  281. transformers/models/ctrl/configuration_ctrl.py +0 -1
  282. transformers/models/ctrl/modeling_ctrl.py +52 -43
  283. transformers/models/ctrl/tokenization_ctrl.py +0 -1
  284. transformers/models/cvt/configuration_cvt.py +0 -1
  285. transformers/models/cvt/modeling_cvt.py +18 -16
  286. transformers/models/cwm/__init__.py +0 -1
  287. transformers/models/cwm/configuration_cwm.py +3 -5
  288. transformers/models/cwm/modeling_cwm.py +33 -35
  289. transformers/models/cwm/modular_cwm.py +10 -12
  290. transformers/models/d_fine/configuration_d_fine.py +3 -5
  291. transformers/models/d_fine/modeling_d_fine.py +127 -121
  292. transformers/models/d_fine/modular_d_fine.py +23 -13
  293. transformers/models/dab_detr/configuration_dab_detr.py +2 -3
  294. transformers/models/dab_detr/modeling_dab_detr.py +69 -71
  295. transformers/models/dac/configuration_dac.py +0 -1
  296. transformers/models/dac/feature_extraction_dac.py +6 -9
  297. transformers/models/dac/modeling_dac.py +21 -23
  298. transformers/models/data2vec/configuration_data2vec_audio.py +0 -1
  299. transformers/models/data2vec/configuration_data2vec_text.py +0 -1
  300. transformers/models/data2vec/configuration_data2vec_vision.py +0 -1
  301. transformers/models/data2vec/modeling_data2vec_audio.py +52 -56
  302. transformers/models/data2vec/modeling_data2vec_text.py +98 -93
  303. transformers/models/data2vec/modeling_data2vec_vision.py +41 -42
  304. transformers/models/data2vec/modular_data2vec_audio.py +6 -1
  305. transformers/models/data2vec/modular_data2vec_text.py +58 -54
  306. transformers/models/dbrx/configuration_dbrx.py +27 -20
  307. transformers/models/dbrx/modeling_dbrx.py +40 -43
  308. transformers/models/dbrx/modular_dbrx.py +31 -33
  309. transformers/models/deberta/configuration_deberta.py +0 -1
  310. transformers/models/deberta/modeling_deberta.py +59 -60
  311. transformers/models/deberta/tokenization_deberta.py +2 -5
  312. transformers/models/deberta_v2/configuration_deberta_v2.py +0 -1
  313. transformers/models/deberta_v2/modeling_deberta_v2.py +65 -65
  314. transformers/models/deberta_v2/tokenization_deberta_v2.py +1 -4
  315. transformers/models/decision_transformer/configuration_decision_transformer.py +0 -1
  316. transformers/models/decision_transformer/modeling_decision_transformer.py +56 -55
  317. transformers/models/deepseek_v2/configuration_deepseek_v2.py +34 -37
  318. transformers/models/deepseek_v2/modeling_deepseek_v2.py +39 -37
  319. transformers/models/deepseek_v2/modular_deepseek_v2.py +44 -44
  320. transformers/models/deepseek_v3/configuration_deepseek_v3.py +35 -38
  321. transformers/models/deepseek_v3/modeling_deepseek_v3.py +40 -38
  322. transformers/models/deepseek_v3/modular_deepseek_v3.py +10 -7
  323. transformers/models/deepseek_vl/configuration_deepseek_vl.py +2 -3
  324. transformers/models/deepseek_vl/image_processing_deepseek_vl.py +25 -26
  325. transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +7 -7
  326. transformers/models/deepseek_vl/modeling_deepseek_vl.py +40 -36
  327. transformers/models/deepseek_vl/modular_deepseek_vl.py +14 -43
  328. transformers/models/deepseek_vl/processing_deepseek_vl.py +10 -41
  329. transformers/models/deepseek_vl_hybrid/configuration_deepseek_vl_hybrid.py +3 -5
  330. transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid.py +35 -35
  331. transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +16 -20
  332. transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +42 -38
  333. transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +80 -99
  334. transformers/models/deepseek_vl_hybrid/processing_deepseek_vl_hybrid.py +12 -44
  335. transformers/models/deformable_detr/configuration_deformable_detr.py +2 -3
  336. transformers/models/deformable_detr/image_processing_deformable_detr.py +59 -61
  337. transformers/models/deformable_detr/image_processing_deformable_detr_fast.py +17 -17
  338. transformers/models/deformable_detr/modeling_deformable_detr.py +67 -68
  339. transformers/models/deformable_detr/modular_deformable_detr.py +1 -3
  340. transformers/models/deit/configuration_deit.py +0 -1
  341. transformers/models/deit/image_processing_deit.py +18 -21
  342. transformers/models/deit/image_processing_deit_fast.py +0 -1
  343. transformers/models/deit/modeling_deit.py +16 -18
  344. transformers/models/depth_anything/configuration_depth_anything.py +2 -4
  345. transformers/models/depth_anything/modeling_depth_anything.py +5 -8
  346. transformers/models/depth_pro/configuration_depth_pro.py +0 -1
  347. transformers/models/depth_pro/image_processing_depth_pro.py +22 -23
  348. transformers/models/depth_pro/image_processing_depth_pro_fast.py +6 -8
  349. transformers/models/depth_pro/modeling_depth_pro.py +21 -23
  350. transformers/models/detr/configuration_detr.py +1 -2
  351. transformers/models/detr/image_processing_detr.py +64 -66
  352. transformers/models/detr/image_processing_detr_fast.py +22 -23
  353. transformers/models/detr/modeling_detr.py +78 -73
  354. transformers/models/dia/configuration_dia.py +5 -8
  355. transformers/models/dia/feature_extraction_dia.py +6 -9
  356. transformers/models/dia/generation_dia.py +42 -45
  357. transformers/models/dia/modeling_dia.py +73 -65
  358. transformers/models/dia/modular_dia.py +63 -54
  359. transformers/models/dia/processing_dia.py +39 -29
  360. transformers/models/dia/tokenization_dia.py +3 -6
  361. transformers/models/diffllama/configuration_diffllama.py +20 -23
  362. transformers/models/diffllama/modeling_diffllama.py +44 -47
  363. transformers/models/diffllama/modular_diffllama.py +17 -19
  364. transformers/models/dinat/configuration_dinat.py +0 -1
  365. transformers/models/dinat/modeling_dinat.py +40 -42
  366. transformers/models/dinov2/configuration_dinov2.py +0 -1
  367. transformers/models/dinov2/modeling_dinov2.py +11 -13
  368. transformers/models/dinov2_with_registers/configuration_dinov2_with_registers.py +1 -1
  369. transformers/models/dinov2_with_registers/modeling_dinov2_with_registers.py +12 -13
  370. transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py +5 -7
  371. transformers/models/dinov3_convnext/configuration_dinov3_convnext.py +4 -7
  372. transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +3 -6
  373. transformers/models/dinov3_vit/configuration_dinov3_vit.py +5 -8
  374. transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +5 -7
  375. transformers/models/dinov3_vit/modeling_dinov3_vit.py +17 -16
  376. transformers/models/dinov3_vit/modular_dinov3_vit.py +14 -13
  377. transformers/models/distilbert/configuration_distilbert.py +0 -1
  378. transformers/models/distilbert/modeling_distilbert.py +55 -55
  379. transformers/models/distilbert/tokenization_distilbert.py +0 -1
  380. transformers/models/doge/__init__.py +0 -1
  381. transformers/models/doge/configuration_doge.py +25 -28
  382. transformers/models/doge/modeling_doge.py +43 -46
  383. transformers/models/doge/modular_doge.py +57 -58
  384. transformers/models/donut/configuration_donut_swin.py +0 -1
  385. transformers/models/donut/image_processing_donut.py +26 -29
  386. transformers/models/donut/image_processing_donut_fast.py +5 -11
  387. transformers/models/donut/modeling_donut_swin.py +60 -58
  388. transformers/models/donut/processing_donut.py +5 -26
  389. transformers/models/dots1/configuration_dots1.py +27 -29
  390. transformers/models/dots1/modeling_dots1.py +45 -39
  391. transformers/models/dots1/modular_dots1.py +0 -1
  392. transformers/models/dpr/configuration_dpr.py +0 -1
  393. transformers/models/dpr/modeling_dpr.py +37 -39
  394. transformers/models/dpr/tokenization_dpr.py +7 -9
  395. transformers/models/dpr/tokenization_dpr_fast.py +7 -9
  396. transformers/models/dpt/configuration_dpt.py +1 -2
  397. transformers/models/dpt/image_processing_dpt.py +65 -66
  398. transformers/models/dpt/image_processing_dpt_fast.py +14 -16
  399. transformers/models/dpt/modeling_dpt.py +19 -21
  400. transformers/models/dpt/modular_dpt.py +11 -13
  401. transformers/models/edgetam/configuration_edgetam.py +1 -2
  402. transformers/models/edgetam/modeling_edgetam.py +44 -43
  403. transformers/models/edgetam/modular_edgetam.py +17 -20
  404. transformers/models/edgetam_video/__init__.py +0 -1
  405. transformers/models/edgetam_video/configuration_edgetam_video.py +0 -1
  406. transformers/models/edgetam_video/modeling_edgetam_video.py +131 -120
  407. transformers/models/edgetam_video/modular_edgetam_video.py +29 -37
  408. transformers/models/efficientloftr/configuration_efficientloftr.py +4 -5
  409. transformers/models/efficientloftr/image_processing_efficientloftr.py +14 -16
  410. transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +5 -6
  411. transformers/models/efficientloftr/modeling_efficientloftr.py +41 -30
  412. transformers/models/efficientloftr/modular_efficientloftr.py +1 -3
  413. transformers/models/efficientnet/configuration_efficientnet.py +0 -1
  414. transformers/models/efficientnet/image_processing_efficientnet.py +28 -32
  415. transformers/models/efficientnet/image_processing_efficientnet_fast.py +15 -17
  416. transformers/models/efficientnet/modeling_efficientnet.py +17 -15
  417. transformers/models/electra/configuration_electra.py +0 -1
  418. transformers/models/electra/modeling_electra.py +108 -103
  419. transformers/models/emu3/configuration_emu3.py +5 -7
  420. transformers/models/emu3/image_processing_emu3.py +44 -39
  421. transformers/models/emu3/modeling_emu3.py +67 -64
  422. transformers/models/emu3/modular_emu3.py +39 -35
  423. transformers/models/emu3/processing_emu3.py +18 -43
  424. transformers/models/encodec/configuration_encodec.py +2 -4
  425. transformers/models/encodec/feature_extraction_encodec.py +10 -13
  426. transformers/models/encodec/modeling_encodec.py +39 -29
  427. transformers/models/encoder_decoder/configuration_encoder_decoder.py +0 -1
  428. transformers/models/encoder_decoder/modeling_encoder_decoder.py +17 -19
  429. transformers/models/eomt/configuration_eomt.py +0 -1
  430. transformers/models/eomt/image_processing_eomt.py +53 -55
  431. transformers/models/eomt/image_processing_eomt_fast.py +59 -28
  432. transformers/models/eomt/modeling_eomt.py +23 -18
  433. transformers/models/eomt/modular_eomt.py +18 -13
  434. transformers/models/ernie/configuration_ernie.py +0 -1
  435. transformers/models/ernie/modeling_ernie.py +127 -132
  436. transformers/models/ernie/modular_ernie.py +97 -103
  437. transformers/models/ernie4_5/configuration_ernie4_5.py +18 -20
  438. transformers/models/ernie4_5/modeling_ernie4_5.py +32 -34
  439. transformers/models/ernie4_5/modular_ernie4_5.py +1 -3
  440. transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py +27 -29
  441. transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +52 -51
  442. transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +16 -44
  443. transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
  444. transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +329 -0
  445. transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +455 -0
  446. transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +231 -0
  447. transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1895 -0
  448. transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1901 -0
  449. transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +249 -0
  450. transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +593 -0
  451. transformers/models/esm/configuration_esm.py +2 -4
  452. transformers/models/esm/modeling_esm.py +38 -34
  453. transformers/models/esm/modeling_esmfold.py +48 -45
  454. transformers/models/esm/openfold_utils/chunk_utils.py +6 -6
  455. transformers/models/esm/openfold_utils/loss.py +1 -2
  456. transformers/models/esm/openfold_utils/protein.py +13 -13
  457. transformers/models/esm/openfold_utils/tensor_utils.py +6 -6
  458. transformers/models/esm/tokenization_esm.py +2 -4
  459. transformers/models/evolla/configuration_evolla.py +29 -32
  460. transformers/models/evolla/modeling_evolla.py +67 -62
  461. transformers/models/evolla/modular_evolla.py +53 -47
  462. transformers/models/evolla/processing_evolla.py +23 -35
  463. transformers/models/exaone4/configuration_exaone4.py +19 -22
  464. transformers/models/exaone4/modeling_exaone4.py +33 -36
  465. transformers/models/exaone4/modular_exaone4.py +40 -42
  466. transformers/models/falcon/configuration_falcon.py +22 -25
  467. transformers/models/falcon/modeling_falcon.py +75 -78
  468. transformers/models/falcon_h1/configuration_falcon_h1.py +40 -43
  469. transformers/models/falcon_h1/modeling_falcon_h1.py +80 -78
  470. transformers/models/falcon_h1/modular_falcon_h1.py +54 -50
  471. transformers/models/falcon_mamba/configuration_falcon_mamba.py +0 -1
  472. transformers/models/falcon_mamba/modeling_falcon_mamba.py +50 -47
  473. transformers/models/falcon_mamba/modular_falcon_mamba.py +16 -14
  474. transformers/models/fast_vlm/configuration_fast_vlm.py +1 -0
  475. transformers/models/fast_vlm/modeling_fast_vlm.py +43 -39
  476. transformers/models/fast_vlm/modular_fast_vlm.py +2 -3
  477. transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py +2 -5
  478. transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +68 -57
  479. transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +2 -3
  480. transformers/models/flaubert/configuration_flaubert.py +0 -1
  481. transformers/models/flaubert/modeling_flaubert.py +138 -143
  482. transformers/models/flaubert/tokenization_flaubert.py +3 -5
  483. transformers/models/flava/configuration_flava.py +5 -6
  484. transformers/models/flava/image_processing_flava.py +66 -67
  485. transformers/models/flava/image_processing_flava_fast.py +42 -45
  486. transformers/models/flava/modeling_flava.py +111 -107
  487. transformers/models/flava/processing_flava.py +2 -12
  488. transformers/models/flex_olmo/__init__.py +0 -1
  489. transformers/models/flex_olmo/configuration_flex_olmo.py +23 -25
  490. transformers/models/flex_olmo/modeling_flex_olmo.py +44 -43
  491. transformers/models/flex_olmo/modular_flex_olmo.py +35 -37
  492. transformers/models/florence2/configuration_florence2.py +0 -1
  493. transformers/models/florence2/modeling_florence2.py +59 -43
  494. transformers/models/florence2/modular_florence2.py +65 -81
  495. transformers/models/florence2/processing_florence2.py +18 -47
  496. transformers/models/fnet/configuration_fnet.py +0 -1
  497. transformers/models/fnet/modeling_fnet.py +76 -80
  498. transformers/models/fnet/tokenization_fnet.py +0 -1
  499. transformers/models/focalnet/configuration_focalnet.py +0 -1
  500. transformers/models/focalnet/modeling_focalnet.py +39 -41
  501. transformers/models/fsmt/configuration_fsmt.py +0 -1
  502. transformers/models/fsmt/modeling_fsmt.py +47 -48
  503. transformers/models/fsmt/tokenization_fsmt.py +3 -5
  504. transformers/models/funnel/configuration_funnel.py +0 -1
  505. transformers/models/funnel/modeling_funnel.py +91 -93
  506. transformers/models/funnel/tokenization_funnel.py +2 -5
  507. transformers/models/fuyu/configuration_fuyu.py +23 -26
  508. transformers/models/fuyu/image_processing_fuyu.py +29 -31
  509. transformers/models/fuyu/image_processing_fuyu_fast.py +12 -13
  510. transformers/models/fuyu/modeling_fuyu.py +29 -30
  511. transformers/models/fuyu/processing_fuyu.py +23 -34
  512. transformers/models/gemma/configuration_gemma.py +20 -23
  513. transformers/models/gemma/modeling_gemma.py +42 -46
  514. transformers/models/gemma/modular_gemma.py +37 -40
  515. transformers/models/gemma/tokenization_gemma.py +3 -6
  516. transformers/models/gemma2/configuration_gemma2.py +25 -28
  517. transformers/models/gemma2/modeling_gemma2.py +35 -38
  518. transformers/models/gemma2/modular_gemma2.py +56 -58
  519. transformers/models/gemma3/configuration_gemma3.py +28 -29
  520. transformers/models/gemma3/image_processing_gemma3.py +29 -31
  521. transformers/models/gemma3/image_processing_gemma3_fast.py +9 -11
  522. transformers/models/gemma3/modeling_gemma3.py +112 -94
  523. transformers/models/gemma3/modular_gemma3.py +110 -91
  524. transformers/models/gemma3/processing_gemma3.py +5 -5
  525. transformers/models/gemma3n/configuration_gemma3n.py +12 -10
  526. transformers/models/gemma3n/feature_extraction_gemma3n.py +9 -11
  527. transformers/models/gemma3n/modeling_gemma3n.py +127 -98
  528. transformers/models/gemma3n/modular_gemma3n.py +117 -84
  529. transformers/models/gemma3n/processing_gemma3n.py +12 -26
  530. transformers/models/git/configuration_git.py +0 -1
  531. transformers/models/git/modeling_git.py +250 -197
  532. transformers/models/git/processing_git.py +2 -14
  533. transformers/models/glm/configuration_glm.py +19 -21
  534. transformers/models/glm/modeling_glm.py +33 -36
  535. transformers/models/glm/modular_glm.py +4 -7
  536. transformers/models/glm4/configuration_glm4.py +19 -21
  537. transformers/models/glm4/modeling_glm4.py +36 -38
  538. transformers/models/glm4/modular_glm4.py +8 -10
  539. transformers/models/glm46v/configuration_glm46v.py +0 -1
  540. transformers/models/glm46v/image_processing_glm46v.py +35 -40
  541. transformers/models/glm46v/image_processing_glm46v_fast.py +7 -7
  542. transformers/models/glm46v/modeling_glm46v.py +54 -52
  543. transformers/models/glm46v/modular_glm46v.py +4 -3
  544. transformers/models/glm46v/processing_glm46v.py +7 -41
  545. transformers/models/glm46v/video_processing_glm46v.py +9 -11
  546. transformers/models/glm4_moe/configuration_glm4_moe.py +25 -28
  547. transformers/models/glm4_moe/modeling_glm4_moe.py +41 -40
  548. transformers/models/glm4_moe/modular_glm4_moe.py +27 -30
  549. transformers/models/glm4_moe_lite/__init__.py +28 -0
  550. transformers/models/glm4_moe_lite/configuration_glm4_moe_lite.py +235 -0
  551. transformers/models/glm4_moe_lite/modeling_glm4_moe_lite.py +740 -0
  552. transformers/models/glm4_moe_lite/modular_glm4_moe_lite.py +304 -0
  553. transformers/models/glm4v/configuration_glm4v.py +14 -17
  554. transformers/models/glm4v/image_processing_glm4v.py +34 -40
  555. transformers/models/glm4v/image_processing_glm4v_fast.py +6 -7
  556. transformers/models/glm4v/modeling_glm4v.py +148 -156
  557. transformers/models/glm4v/modular_glm4v.py +142 -185
  558. transformers/models/glm4v/processing_glm4v.py +7 -41
  559. transformers/models/glm4v/video_processing_glm4v.py +9 -11
  560. transformers/models/glm4v_moe/configuration_glm4v_moe.py +119 -122
  561. transformers/models/glm4v_moe/modeling_glm4v_moe.py +275 -319
  562. transformers/models/glm4v_moe/modular_glm4v_moe.py +66 -163
  563. transformers/models/glm_image/__init__.py +31 -0
  564. transformers/models/glm_image/configuration_glm_image.py +352 -0
  565. transformers/models/glm_image/image_processing_glm_image.py +503 -0
  566. transformers/models/glm_image/image_processing_glm_image_fast.py +296 -0
  567. transformers/models/glm_image/modeling_glm_image.py +1590 -0
  568. transformers/models/glm_image/modular_glm_image.py +1480 -0
  569. transformers/models/glm_image/processing_glm_image.py +217 -0
  570. transformers/models/glmasr/__init__.py +29 -0
  571. transformers/models/glmasr/configuration_glmasr.py +196 -0
  572. transformers/models/glmasr/modeling_glmasr.py +511 -0
  573. transformers/models/glmasr/modular_glmasr.py +431 -0
  574. transformers/models/glmasr/processing_glmasr.py +331 -0
  575. transformers/models/glpn/configuration_glpn.py +0 -1
  576. transformers/models/glpn/image_processing_glpn.py +11 -12
  577. transformers/models/glpn/image_processing_glpn_fast.py +8 -10
  578. transformers/models/glpn/modeling_glpn.py +10 -12
  579. transformers/models/got_ocr2/configuration_got_ocr2.py +5 -8
  580. transformers/models/got_ocr2/image_processing_got_ocr2.py +22 -24
  581. transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +6 -8
  582. transformers/models/got_ocr2/modeling_got_ocr2.py +48 -45
  583. transformers/models/got_ocr2/modular_got_ocr2.py +31 -34
  584. transformers/models/got_ocr2/processing_got_ocr2.py +42 -63
  585. transformers/models/gpt2/configuration_gpt2.py +0 -1
  586. transformers/models/gpt2/modeling_gpt2.py +114 -113
  587. transformers/models/gpt2/tokenization_gpt2.py +6 -9
  588. transformers/models/gpt_bigcode/configuration_gpt_bigcode.py +0 -1
  589. transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +76 -88
  590. transformers/models/gpt_neo/configuration_gpt_neo.py +0 -1
  591. transformers/models/gpt_neo/modeling_gpt_neo.py +77 -66
  592. transformers/models/gpt_neox/configuration_gpt_neox.py +19 -22
  593. transformers/models/gpt_neox/modeling_gpt_neox.py +71 -73
  594. transformers/models/gpt_neox/modular_gpt_neox.py +64 -66
  595. transformers/models/gpt_neox/tokenization_gpt_neox.py +2 -5
  596. transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py +15 -18
  597. transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +42 -45
  598. transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py +1 -3
  599. transformers/models/gpt_oss/configuration_gpt_oss.py +38 -24
  600. transformers/models/gpt_oss/modeling_gpt_oss.py +40 -44
  601. transformers/models/gpt_oss/modular_gpt_oss.py +22 -26
  602. transformers/models/gpt_sw3/tokenization_gpt_sw3.py +4 -4
  603. transformers/models/gptj/configuration_gptj.py +0 -1
  604. transformers/models/gptj/modeling_gptj.py +96 -86
  605. transformers/models/granite/configuration_granite.py +23 -26
  606. transformers/models/granite/modeling_granite.py +40 -42
  607. transformers/models/granite/modular_granite.py +29 -31
  608. transformers/models/granite_speech/configuration_granite_speech.py +0 -1
  609. transformers/models/granite_speech/feature_extraction_granite_speech.py +1 -3
  610. transformers/models/granite_speech/modeling_granite_speech.py +36 -24
  611. transformers/models/granite_speech/processing_granite_speech.py +11 -4
  612. transformers/models/granitemoe/configuration_granitemoe.py +26 -29
  613. transformers/models/granitemoe/modeling_granitemoe.py +37 -40
  614. transformers/models/granitemoe/modular_granitemoe.py +22 -25
  615. transformers/models/granitemoehybrid/__init__.py +0 -1
  616. transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +41 -40
  617. transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +92 -86
  618. transformers/models/granitemoehybrid/modular_granitemoehybrid.py +29 -21
  619. transformers/models/granitemoeshared/configuration_granitemoeshared.py +27 -30
  620. transformers/models/granitemoeshared/modeling_granitemoeshared.py +50 -55
  621. transformers/models/granitemoeshared/modular_granitemoeshared.py +19 -21
  622. transformers/models/grounding_dino/configuration_grounding_dino.py +2 -4
  623. transformers/models/grounding_dino/image_processing_grounding_dino.py +60 -62
  624. transformers/models/grounding_dino/image_processing_grounding_dino_fast.py +17 -18
  625. transformers/models/grounding_dino/modeling_grounding_dino.py +95 -97
  626. transformers/models/grounding_dino/modular_grounding_dino.py +2 -3
  627. transformers/models/grounding_dino/processing_grounding_dino.py +10 -38
  628. transformers/models/groupvit/configuration_groupvit.py +0 -1
  629. transformers/models/groupvit/modeling_groupvit.py +75 -71
  630. transformers/models/helium/configuration_helium.py +20 -22
  631. transformers/models/helium/modeling_helium.py +34 -37
  632. transformers/models/helium/modular_helium.py +3 -7
  633. transformers/models/herbert/tokenization_herbert.py +4 -6
  634. transformers/models/hgnet_v2/configuration_hgnet_v2.py +0 -1
  635. transformers/models/hgnet_v2/modeling_hgnet_v2.py +16 -9
  636. transformers/models/hgnet_v2/modular_hgnet_v2.py +16 -9
  637. transformers/models/hiera/configuration_hiera.py +0 -1
  638. transformers/models/hiera/modeling_hiera.py +60 -62
  639. transformers/models/hubert/configuration_hubert.py +0 -1
  640. transformers/models/hubert/modeling_hubert.py +39 -37
  641. transformers/models/hubert/modular_hubert.py +12 -11
  642. transformers/models/hunyuan_v1_dense/configuration_hunyuan_v1_dense.py +21 -24
  643. transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +31 -34
  644. transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +4 -6
  645. transformers/models/hunyuan_v1_moe/__init__.py +1 -1
  646. transformers/models/hunyuan_v1_moe/configuration_hunyuan_v1_moe.py +25 -28
  647. transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +44 -39
  648. transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +9 -9
  649. transformers/models/ibert/configuration_ibert.py +0 -1
  650. transformers/models/ibert/modeling_ibert.py +76 -62
  651. transformers/models/ibert/quant_modules.py +0 -1
  652. transformers/models/idefics/configuration_idefics.py +0 -1
  653. transformers/models/idefics/image_processing_idefics.py +13 -15
  654. transformers/models/idefics/modeling_idefics.py +70 -61
  655. transformers/models/idefics/perceiver.py +1 -3
  656. transformers/models/idefics/processing_idefics.py +32 -48
  657. transformers/models/idefics/vision.py +22 -24
  658. transformers/models/idefics2/configuration_idefics2.py +0 -1
  659. transformers/models/idefics2/image_processing_idefics2.py +31 -32
  660. transformers/models/idefics2/image_processing_idefics2_fast.py +7 -8
  661. transformers/models/idefics2/modeling_idefics2.py +63 -59
  662. transformers/models/idefics2/processing_idefics2.py +10 -68
  663. transformers/models/idefics3/configuration_idefics3.py +0 -1
  664. transformers/models/idefics3/image_processing_idefics3.py +42 -43
  665. transformers/models/idefics3/image_processing_idefics3_fast.py +11 -12
  666. transformers/models/idefics3/modeling_idefics3.py +57 -55
  667. transformers/models/idefics3/processing_idefics3.py +15 -69
  668. transformers/models/ijepa/configuration_ijepa.py +0 -1
  669. transformers/models/ijepa/modeling_ijepa.py +10 -11
  670. transformers/models/ijepa/modular_ijepa.py +5 -7
  671. transformers/models/imagegpt/configuration_imagegpt.py +0 -1
  672. transformers/models/imagegpt/image_processing_imagegpt.py +17 -18
  673. transformers/models/imagegpt/image_processing_imagegpt_fast.py +9 -14
  674. transformers/models/imagegpt/modeling_imagegpt.py +66 -60
  675. transformers/models/informer/configuration_informer.py +6 -9
  676. transformers/models/informer/modeling_informer.py +84 -86
  677. transformers/models/informer/modular_informer.py +13 -16
  678. transformers/models/instructblip/configuration_instructblip.py +0 -1
  679. transformers/models/instructblip/modeling_instructblip.py +45 -44
  680. transformers/models/instructblip/processing_instructblip.py +10 -36
  681. transformers/models/instructblipvideo/configuration_instructblipvideo.py +0 -1
  682. transformers/models/instructblipvideo/modeling_instructblipvideo.py +107 -105
  683. transformers/models/instructblipvideo/modular_instructblipvideo.py +34 -36
  684. transformers/models/instructblipvideo/processing_instructblipvideo.py +14 -33
  685. transformers/models/instructblipvideo/video_processing_instructblipvideo.py +4 -6
  686. transformers/models/internvl/configuration_internvl.py +0 -1
  687. transformers/models/internvl/modeling_internvl.py +52 -51
  688. transformers/models/internvl/modular_internvl.py +24 -30
  689. transformers/models/internvl/processing_internvl.py +12 -45
  690. transformers/models/internvl/video_processing_internvl.py +8 -10
  691. transformers/models/jais2/__init__.py +27 -0
  692. transformers/models/jais2/configuration_jais2.py +150 -0
  693. transformers/models/jais2/modeling_jais2.py +484 -0
  694. transformers/models/jais2/modular_jais2.py +194 -0
  695. transformers/models/jamba/configuration_jamba.py +0 -1
  696. transformers/models/jamba/modeling_jamba.py +67 -65
  697. transformers/models/jamba/modular_jamba.py +54 -55
  698. transformers/models/janus/configuration_janus.py +0 -1
  699. transformers/models/janus/image_processing_janus.py +35 -37
  700. transformers/models/janus/image_processing_janus_fast.py +12 -14
  701. transformers/models/janus/modeling_janus.py +56 -50
  702. transformers/models/janus/modular_janus.py +76 -70
  703. transformers/models/janus/processing_janus.py +17 -43
  704. transformers/models/jetmoe/configuration_jetmoe.py +20 -23
  705. transformers/models/jetmoe/modeling_jetmoe.py +41 -44
  706. transformers/models/jetmoe/modular_jetmoe.py +31 -33
  707. transformers/models/kosmos2/configuration_kosmos2.py +0 -1
  708. transformers/models/kosmos2/modeling_kosmos2.py +159 -148
  709. transformers/models/kosmos2/processing_kosmos2.py +40 -55
  710. transformers/models/kosmos2_5/__init__.py +0 -1
  711. transformers/models/kosmos2_5/configuration_kosmos2_5.py +0 -1
  712. transformers/models/kosmos2_5/image_processing_kosmos2_5.py +10 -12
  713. transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +4 -13
  714. transformers/models/kosmos2_5/modeling_kosmos2_5.py +118 -110
  715. transformers/models/kosmos2_5/processing_kosmos2_5.py +8 -29
  716. transformers/models/kyutai_speech_to_text/configuration_kyutai_speech_to_text.py +23 -25
  717. transformers/models/kyutai_speech_to_text/feature_extraction_kyutai_speech_to_text.py +12 -14
  718. transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +67 -68
  719. transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +28 -22
  720. transformers/models/kyutai_speech_to_text/processing_kyutai_speech_to_text.py +2 -8
  721. transformers/models/lasr/configuration_lasr.py +5 -3
  722. transformers/models/lasr/feature_extraction_lasr.py +10 -12
  723. transformers/models/lasr/modeling_lasr.py +21 -23
  724. transformers/models/lasr/modular_lasr.py +16 -11
  725. transformers/models/lasr/processing_lasr.py +12 -8
  726. transformers/models/lasr/tokenization_lasr.py +2 -4
  727. transformers/models/layoutlm/configuration_layoutlm.py +0 -1
  728. transformers/models/layoutlm/modeling_layoutlm.py +72 -72
  729. transformers/models/layoutlmv2/configuration_layoutlmv2.py +0 -1
  730. transformers/models/layoutlmv2/image_processing_layoutlmv2.py +18 -21
  731. transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +5 -7
  732. transformers/models/layoutlmv2/modeling_layoutlmv2.py +60 -50
  733. transformers/models/layoutlmv2/processing_layoutlmv2.py +14 -44
  734. transformers/models/layoutlmv2/tokenization_layoutlmv2.py +64 -74
  735. transformers/models/layoutlmv3/configuration_layoutlmv3.py +0 -1
  736. transformers/models/layoutlmv3/image_processing_layoutlmv3.py +24 -26
  737. transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +7 -9
  738. transformers/models/layoutlmv3/modeling_layoutlmv3.py +78 -56
  739. transformers/models/layoutlmv3/processing_layoutlmv3.py +14 -46
  740. transformers/models/layoutlmv3/tokenization_layoutlmv3.py +64 -75
  741. transformers/models/layoutxlm/configuration_layoutxlm.py +0 -1
  742. transformers/models/layoutxlm/modular_layoutxlm.py +0 -1
  743. transformers/models/layoutxlm/processing_layoutxlm.py +14 -44
  744. transformers/models/layoutxlm/tokenization_layoutxlm.py +65 -76
  745. transformers/models/led/configuration_led.py +1 -4
  746. transformers/models/led/modeling_led.py +119 -267
  747. transformers/models/levit/configuration_levit.py +0 -1
  748. transformers/models/levit/image_processing_levit.py +19 -21
  749. transformers/models/levit/image_processing_levit_fast.py +0 -1
  750. transformers/models/levit/modeling_levit.py +35 -19
  751. transformers/models/lfm2/configuration_lfm2.py +22 -23
  752. transformers/models/lfm2/modeling_lfm2.py +43 -45
  753. transformers/models/lfm2/modular_lfm2.py +29 -29
  754. transformers/models/lfm2_moe/__init__.py +0 -1
  755. transformers/models/lfm2_moe/configuration_lfm2_moe.py +1 -2
  756. transformers/models/lfm2_moe/modeling_lfm2_moe.py +58 -49
  757. transformers/models/lfm2_moe/modular_lfm2_moe.py +13 -37
  758. transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -1
  759. transformers/models/lfm2_vl/image_processing_lfm2_vl_fast.py +34 -5
  760. transformers/models/lfm2_vl/modeling_lfm2_vl.py +42 -38
  761. transformers/models/lfm2_vl/modular_lfm2_vl.py +28 -29
  762. transformers/models/lfm2_vl/processing_lfm2_vl.py +96 -76
  763. transformers/models/lightglue/image_processing_lightglue.py +16 -15
  764. transformers/models/lightglue/image_processing_lightglue_fast.py +5 -6
  765. transformers/models/lightglue/modeling_lightglue.py +28 -30
  766. transformers/models/lightglue/modular_lightglue.py +28 -28
  767. transformers/models/lighton_ocr/__init__.py +28 -0
  768. transformers/models/lighton_ocr/configuration_lighton_ocr.py +128 -0
  769. transformers/models/lighton_ocr/modeling_lighton_ocr.py +460 -0
  770. transformers/models/lighton_ocr/modular_lighton_ocr.py +403 -0
  771. transformers/models/lighton_ocr/processing_lighton_ocr.py +229 -0
  772. transformers/models/lilt/configuration_lilt.py +0 -1
  773. transformers/models/lilt/modeling_lilt.py +72 -70
  774. transformers/models/llama/configuration_llama.py +21 -24
  775. transformers/models/llama/modeling_llama.py +32 -35
  776. transformers/models/llama/tokenization_llama.py +2 -4
  777. transformers/models/llama4/configuration_llama4.py +20 -22
  778. transformers/models/llama4/image_processing_llama4_fast.py +9 -11
  779. transformers/models/llama4/modeling_llama4.py +78 -75
  780. transformers/models/llama4/processing_llama4.py +33 -57
  781. transformers/models/llava/configuration_llava.py +0 -1
  782. transformers/models/llava/image_processing_llava.py +25 -28
  783. transformers/models/llava/image_processing_llava_fast.py +6 -8
  784. transformers/models/llava/modeling_llava.py +47 -44
  785. transformers/models/llava/processing_llava.py +18 -51
  786. transformers/models/llava_next/configuration_llava_next.py +0 -1
  787. transformers/models/llava_next/image_processing_llava_next.py +43 -45
  788. transformers/models/llava_next/image_processing_llava_next_fast.py +5 -7
  789. transformers/models/llava_next/modeling_llava_next.py +49 -47
  790. transformers/models/llava_next/processing_llava_next.py +18 -47
  791. transformers/models/llava_next_video/configuration_llava_next_video.py +0 -1
  792. transformers/models/llava_next_video/modeling_llava_next_video.py +60 -58
  793. transformers/models/llava_next_video/modular_llava_next_video.py +51 -49
  794. transformers/models/llava_next_video/processing_llava_next_video.py +21 -63
  795. transformers/models/llava_next_video/video_processing_llava_next_video.py +0 -1
  796. transformers/models/llava_onevision/configuration_llava_onevision.py +0 -1
  797. transformers/models/llava_onevision/image_processing_llava_onevision.py +40 -42
  798. transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +6 -8
  799. transformers/models/llava_onevision/modeling_llava_onevision.py +67 -65
  800. transformers/models/llava_onevision/modular_llava_onevision.py +58 -56
  801. transformers/models/llava_onevision/processing_llava_onevision.py +21 -53
  802. transformers/models/llava_onevision/video_processing_llava_onevision.py +0 -1
  803. transformers/models/longcat_flash/__init__.py +0 -1
  804. transformers/models/longcat_flash/configuration_longcat_flash.py +32 -35
  805. transformers/models/longcat_flash/modeling_longcat_flash.py +32 -32
  806. transformers/models/longcat_flash/modular_longcat_flash.py +18 -19
  807. transformers/models/longformer/configuration_longformer.py +1 -4
  808. transformers/models/longformer/modeling_longformer.py +99 -101
  809. transformers/models/longt5/configuration_longt5.py +0 -1
  810. transformers/models/longt5/modeling_longt5.py +43 -48
  811. transformers/models/luke/configuration_luke.py +0 -1
  812. transformers/models/luke/modeling_luke.py +179 -181
  813. transformers/models/luke/tokenization_luke.py +99 -105
  814. transformers/models/lw_detr/__init__.py +27 -0
  815. transformers/models/lw_detr/configuration_lw_detr.py +374 -0
  816. transformers/models/lw_detr/modeling_lw_detr.py +1698 -0
  817. transformers/models/lw_detr/modular_lw_detr.py +1611 -0
  818. transformers/models/lxmert/configuration_lxmert.py +0 -1
  819. transformers/models/lxmert/modeling_lxmert.py +63 -74
  820. transformers/models/m2m_100/configuration_m2m_100.py +0 -1
  821. transformers/models/m2m_100/modeling_m2m_100.py +79 -71
  822. transformers/models/m2m_100/tokenization_m2m_100.py +8 -8
  823. transformers/models/mamba/configuration_mamba.py +0 -1
  824. transformers/models/mamba/modeling_mamba.py +44 -44
  825. transformers/models/mamba2/configuration_mamba2.py +0 -1
  826. transformers/models/mamba2/modeling_mamba2.py +67 -68
  827. transformers/models/marian/configuration_marian.py +1 -2
  828. transformers/models/marian/modeling_marian.py +87 -86
  829. transformers/models/marian/tokenization_marian.py +6 -6
  830. transformers/models/markuplm/configuration_markuplm.py +0 -1
  831. transformers/models/markuplm/feature_extraction_markuplm.py +1 -2
  832. transformers/models/markuplm/modeling_markuplm.py +65 -70
  833. transformers/models/markuplm/processing_markuplm.py +31 -38
  834. transformers/models/markuplm/tokenization_markuplm.py +67 -77
  835. transformers/models/mask2former/configuration_mask2former.py +5 -8
  836. transformers/models/mask2former/image_processing_mask2former.py +84 -85
  837. transformers/models/mask2former/image_processing_mask2former_fast.py +30 -33
  838. transformers/models/mask2former/modeling_mask2former.py +99 -92
  839. transformers/models/mask2former/modular_mask2former.py +6 -8
  840. transformers/models/maskformer/configuration_maskformer.py +6 -9
  841. transformers/models/maskformer/configuration_maskformer_swin.py +0 -1
  842. transformers/models/maskformer/image_processing_maskformer.py +84 -85
  843. transformers/models/maskformer/image_processing_maskformer_fast.py +29 -33
  844. transformers/models/maskformer/modeling_maskformer.py +65 -59
  845. transformers/models/maskformer/modeling_maskformer_swin.py +34 -32
  846. transformers/models/mbart/configuration_mbart.py +1 -1
  847. transformers/models/mbart/modeling_mbart.py +118 -113
  848. transformers/models/mbart/tokenization_mbart.py +2 -4
  849. transformers/models/mbart50/tokenization_mbart50.py +3 -5
  850. transformers/models/megatron_bert/configuration_megatron_bert.py +0 -1
  851. transformers/models/megatron_bert/modeling_megatron_bert.py +141 -150
  852. transformers/models/metaclip_2/modeling_metaclip_2.py +48 -46
  853. transformers/models/metaclip_2/modular_metaclip_2.py +21 -21
  854. transformers/models/mgp_str/configuration_mgp_str.py +0 -1
  855. transformers/models/mgp_str/modeling_mgp_str.py +14 -16
  856. transformers/models/mgp_str/processing_mgp_str.py +3 -20
  857. transformers/models/mgp_str/tokenization_mgp_str.py +1 -3
  858. transformers/models/mimi/configuration_mimi.py +38 -40
  859. transformers/models/mimi/modeling_mimi.py +100 -82
  860. transformers/models/minimax/__init__.py +0 -1
  861. transformers/models/minimax/configuration_minimax.py +32 -36
  862. transformers/models/minimax/modeling_minimax.py +57 -47
  863. transformers/models/minimax/modular_minimax.py +62 -54
  864. transformers/models/minimax_m2/__init__.py +28 -0
  865. transformers/models/minimax_m2/configuration_minimax_m2.py +211 -0
  866. transformers/models/minimax_m2/modeling_minimax_m2.py +704 -0
  867. transformers/models/minimax_m2/modular_minimax_m2.py +369 -0
  868. transformers/models/ministral/configuration_ministral.py +20 -22
  869. transformers/models/ministral/modeling_ministral.py +32 -34
  870. transformers/models/ministral/modular_ministral.py +27 -29
  871. transformers/models/ministral3/configuration_ministral3.py +19 -22
  872. transformers/models/ministral3/modeling_ministral3.py +32 -34
  873. transformers/models/ministral3/modular_ministral3.py +4 -5
  874. transformers/models/mistral/configuration_mistral.py +19 -22
  875. transformers/models/mistral/modeling_mistral.py +32 -34
  876. transformers/models/mistral/modular_mistral.py +11 -12
  877. transformers/models/mistral3/configuration_mistral3.py +0 -1
  878. transformers/models/mistral3/modeling_mistral3.py +53 -46
  879. transformers/models/mistral3/modular_mistral3.py +38 -36
  880. transformers/models/mixtral/configuration_mixtral.py +24 -27
  881. transformers/models/mixtral/modeling_mixtral.py +47 -42
  882. transformers/models/mixtral/modular_mixtral.py +32 -31
  883. transformers/models/mlcd/configuration_mlcd.py +0 -1
  884. transformers/models/mlcd/modeling_mlcd.py +16 -12
  885. transformers/models/mlcd/modular_mlcd.py +13 -11
  886. transformers/models/mllama/configuration_mllama.py +5 -8
  887. transformers/models/mllama/image_processing_mllama.py +23 -25
  888. transformers/models/mllama/image_processing_mllama_fast.py +5 -6
  889. transformers/models/mllama/modeling_mllama.py +94 -86
  890. transformers/models/mllama/processing_mllama.py +6 -55
  891. transformers/models/mluke/tokenization_mluke.py +97 -103
  892. transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -3
  893. transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +95 -97
  894. transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -3
  895. transformers/models/mobilebert/configuration_mobilebert.py +0 -1
  896. transformers/models/mobilebert/modeling_mobilebert.py +77 -85
  897. transformers/models/mobilebert/tokenization_mobilebert.py +0 -1
  898. transformers/models/mobilenet_v1/configuration_mobilenet_v1.py +0 -1
  899. transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py +20 -23
  900. transformers/models/mobilenet_v1/image_processing_mobilenet_v1_fast.py +0 -1
  901. transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +13 -16
  902. transformers/models/mobilenet_v2/configuration_mobilenet_v2.py +0 -1
  903. transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py +48 -51
  904. transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +10 -12
  905. transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +17 -20
  906. transformers/models/mobilevit/configuration_mobilevit.py +0 -1
  907. transformers/models/mobilevit/image_processing_mobilevit.py +46 -49
  908. transformers/models/mobilevit/image_processing_mobilevit_fast.py +9 -11
  909. transformers/models/mobilevit/modeling_mobilevit.py +21 -19
  910. transformers/models/mobilevitv2/configuration_mobilevitv2.py +0 -1
  911. transformers/models/mobilevitv2/modeling_mobilevitv2.py +21 -20
  912. transformers/models/modernbert/configuration_modernbert.py +34 -34
  913. transformers/models/modernbert/modeling_modernbert.py +135 -126
  914. transformers/models/modernbert/modular_modernbert.py +167 -156
  915. transformers/models/modernbert_decoder/configuration_modernbert_decoder.py +30 -32
  916. transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +54 -48
  917. transformers/models/modernbert_decoder/modular_modernbert_decoder.py +78 -71
  918. transformers/models/moonshine/configuration_moonshine.py +22 -24
  919. transformers/models/moonshine/modeling_moonshine.py +64 -66
  920. transformers/models/moonshine/modular_moonshine.py +72 -73
  921. transformers/models/moshi/configuration_moshi.py +18 -21
  922. transformers/models/moshi/modeling_moshi.py +150 -183
  923. transformers/models/mpnet/configuration_mpnet.py +0 -1
  924. transformers/models/mpnet/modeling_mpnet.py +57 -57
  925. transformers/models/mpnet/tokenization_mpnet.py +1 -4
  926. transformers/models/mpt/configuration_mpt.py +1 -9
  927. transformers/models/mpt/modeling_mpt.py +58 -60
  928. transformers/models/mra/configuration_mra.py +0 -1
  929. transformers/models/mra/modeling_mra.py +58 -57
  930. transformers/models/mt5/configuration_mt5.py +2 -4
  931. transformers/models/mt5/modeling_mt5.py +75 -87
  932. transformers/models/musicgen/configuration_musicgen.py +0 -1
  933. transformers/models/musicgen/modeling_musicgen.py +113 -120
  934. transformers/models/musicgen/processing_musicgen.py +3 -21
  935. transformers/models/musicgen_melody/configuration_musicgen_melody.py +0 -1
  936. transformers/models/musicgen_melody/feature_extraction_musicgen_melody.py +8 -9
  937. transformers/models/musicgen_melody/modeling_musicgen_melody.py +110 -109
  938. transformers/models/musicgen_melody/processing_musicgen_melody.py +3 -22
  939. transformers/models/mvp/configuration_mvp.py +0 -1
  940. transformers/models/mvp/modeling_mvp.py +122 -119
  941. transformers/models/myt5/tokenization_myt5.py +8 -10
  942. transformers/models/nanochat/configuration_nanochat.py +0 -1
  943. transformers/models/nanochat/modeling_nanochat.py +33 -36
  944. transformers/models/nanochat/modular_nanochat.py +12 -14
  945. transformers/models/nemotron/configuration_nemotron.py +20 -23
  946. transformers/models/nemotron/modeling_nemotron.py +51 -54
  947. transformers/models/nllb/tokenization_nllb.py +7 -9
  948. transformers/models/nllb_moe/configuration_nllb_moe.py +1 -1
  949. transformers/models/nllb_moe/modeling_nllb_moe.py +77 -69
  950. transformers/models/nougat/image_processing_nougat.py +29 -32
  951. transformers/models/nougat/image_processing_nougat_fast.py +4 -6
  952. transformers/models/nougat/processing_nougat.py +37 -39
  953. transformers/models/nougat/tokenization_nougat.py +16 -23
  954. transformers/models/nystromformer/configuration_nystromformer.py +0 -1
  955. transformers/models/nystromformer/modeling_nystromformer.py +68 -63
  956. transformers/models/olmo/configuration_olmo.py +18 -21
  957. transformers/models/olmo/modeling_olmo.py +32 -35
  958. transformers/models/olmo/modular_olmo.py +5 -9
  959. transformers/models/olmo2/configuration_olmo2.py +18 -21
  960. transformers/models/olmo2/modeling_olmo2.py +33 -36
  961. transformers/models/olmo2/modular_olmo2.py +29 -31
  962. transformers/models/olmo3/__init__.py +0 -1
  963. transformers/models/olmo3/configuration_olmo3.py +20 -23
  964. transformers/models/olmo3/modeling_olmo3.py +32 -35
  965. transformers/models/olmo3/modular_olmo3.py +31 -33
  966. transformers/models/olmoe/configuration_olmoe.py +24 -26
  967. transformers/models/olmoe/modeling_olmoe.py +49 -43
  968. transformers/models/olmoe/modular_olmoe.py +16 -15
  969. transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -3
  970. transformers/models/omdet_turbo/modeling_omdet_turbo.py +42 -40
  971. transformers/models/omdet_turbo/processing_omdet_turbo.py +19 -67
  972. transformers/models/oneformer/configuration_oneformer.py +5 -8
  973. transformers/models/oneformer/image_processing_oneformer.py +83 -84
  974. transformers/models/oneformer/image_processing_oneformer_fast.py +33 -34
  975. transformers/models/oneformer/modeling_oneformer.py +130 -162
  976. transformers/models/oneformer/processing_oneformer.py +28 -43
  977. transformers/models/openai/configuration_openai.py +0 -1
  978. transformers/models/openai/modeling_openai.py +62 -51
  979. transformers/models/openai/tokenization_openai.py +2 -5
  980. transformers/models/opt/configuration_opt.py +0 -1
  981. transformers/models/opt/modeling_opt.py +74 -75
  982. transformers/models/ovis2/__init__.py +0 -1
  983. transformers/models/ovis2/configuration_ovis2.py +0 -1
  984. transformers/models/ovis2/image_processing_ovis2.py +22 -24
  985. transformers/models/ovis2/image_processing_ovis2_fast.py +6 -8
  986. transformers/models/ovis2/modeling_ovis2.py +58 -48
  987. transformers/models/ovis2/modular_ovis2.py +38 -32
  988. transformers/models/ovis2/processing_ovis2.py +12 -40
  989. transformers/models/owlv2/configuration_owlv2.py +0 -1
  990. transformers/models/owlv2/image_processing_owlv2.py +20 -21
  991. transformers/models/owlv2/image_processing_owlv2_fast.py +7 -10
  992. transformers/models/owlv2/modeling_owlv2.py +89 -90
  993. transformers/models/owlv2/modular_owlv2.py +6 -9
  994. transformers/models/owlv2/processing_owlv2.py +20 -49
  995. transformers/models/owlvit/configuration_owlvit.py +0 -1
  996. transformers/models/owlvit/image_processing_owlvit.py +21 -22
  997. transformers/models/owlvit/image_processing_owlvit_fast.py +2 -3
  998. transformers/models/owlvit/modeling_owlvit.py +88 -89
  999. transformers/models/owlvit/processing_owlvit.py +20 -48
  1000. transformers/models/paddleocr_vl/__init__.py +0 -1
  1001. transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +19 -19
  1002. transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +37 -37
  1003. transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +12 -12
  1004. transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +104 -90
  1005. transformers/models/paddleocr_vl/modular_paddleocr_vl.py +90 -80
  1006. transformers/models/paddleocr_vl/processing_paddleocr_vl.py +1 -3
  1007. transformers/models/paligemma/configuration_paligemma.py +0 -1
  1008. transformers/models/paligemma/modeling_paligemma.py +73 -67
  1009. transformers/models/paligemma/processing_paligemma.py +13 -66
  1010. transformers/models/parakeet/configuration_parakeet.py +1 -4
  1011. transformers/models/parakeet/feature_extraction_parakeet.py +10 -12
  1012. transformers/models/parakeet/modeling_parakeet.py +23 -22
  1013. transformers/models/parakeet/modular_parakeet.py +21 -18
  1014. transformers/models/parakeet/processing_parakeet.py +12 -5
  1015. transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +5 -7
  1016. transformers/models/patchtsmixer/configuration_patchtsmixer.py +5 -8
  1017. transformers/models/patchtsmixer/modeling_patchtsmixer.py +64 -62
  1018. transformers/models/patchtst/configuration_patchtst.py +6 -9
  1019. transformers/models/patchtst/modeling_patchtst.py +77 -78
  1020. transformers/models/pe_audio/__init__.py +29 -0
  1021. transformers/models/pe_audio/configuration_pe_audio.py +204 -0
  1022. transformers/models/pe_audio/feature_extraction_pe_audio.py +160 -0
  1023. transformers/models/pe_audio/modeling_pe_audio.py +819 -0
  1024. transformers/models/pe_audio/modular_pe_audio.py +298 -0
  1025. transformers/models/pe_audio/processing_pe_audio.py +23 -0
  1026. transformers/models/pe_audio_video/__init__.py +28 -0
  1027. transformers/models/pe_audio_video/configuration_pe_audio_video.py +223 -0
  1028. transformers/models/pe_audio_video/modeling_pe_audio_video.py +971 -0
  1029. transformers/models/pe_audio_video/modular_pe_audio_video.py +763 -0
  1030. transformers/models/pe_audio_video/processing_pe_audio_video.py +24 -0
  1031. transformers/models/pe_video/__init__.py +29 -0
  1032. transformers/models/pe_video/configuration_pe_video.py +209 -0
  1033. transformers/models/pe_video/modeling_pe_video.py +635 -0
  1034. transformers/models/pe_video/modular_pe_video.py +218 -0
  1035. transformers/models/pe_video/processing_pe_video.py +10 -0
  1036. transformers/models/pe_video/video_processing_pe_video.py +64 -0
  1037. transformers/models/pegasus/configuration_pegasus.py +1 -1
  1038. transformers/models/pegasus/modeling_pegasus.py +66 -65
  1039. transformers/models/pegasus/tokenization_pegasus.py +1 -4
  1040. transformers/models/pegasus_x/configuration_pegasus_x.py +0 -1
  1041. transformers/models/pegasus_x/modeling_pegasus_x.py +51 -52
  1042. transformers/models/perceiver/configuration_perceiver.py +0 -1
  1043. transformers/models/perceiver/image_processing_perceiver.py +22 -25
  1044. transformers/models/perceiver/image_processing_perceiver_fast.py +5 -7
  1045. transformers/models/perceiver/modeling_perceiver.py +140 -137
  1046. transformers/models/perceiver/tokenization_perceiver.py +3 -6
  1047. transformers/models/perception_lm/configuration_perception_lm.py +0 -1
  1048. transformers/models/perception_lm/image_processing_perception_lm_fast.py +8 -10
  1049. transformers/models/perception_lm/modeling_perception_lm.py +45 -43
  1050. transformers/models/perception_lm/modular_perception_lm.py +38 -36
  1051. transformers/models/perception_lm/processing_perception_lm.py +13 -47
  1052. transformers/models/perception_lm/video_processing_perception_lm.py +0 -1
  1053. transformers/models/persimmon/configuration_persimmon.py +18 -21
  1054. transformers/models/persimmon/modeling_persimmon.py +40 -43
  1055. transformers/models/phi/configuration_phi.py +19 -22
  1056. transformers/models/phi/modeling_phi.py +36 -38
  1057. transformers/models/phi/modular_phi.py +23 -23
  1058. transformers/models/phi3/configuration_phi3.py +23 -26
  1059. transformers/models/phi3/modeling_phi3.py +34 -37
  1060. transformers/models/phi3/modular_phi3.py +13 -17
  1061. transformers/models/phi4_multimodal/configuration_phi4_multimodal.py +25 -26
  1062. transformers/models/phi4_multimodal/feature_extraction_phi4_multimodal.py +7 -9
  1063. transformers/models/phi4_multimodal/image_processing_phi4_multimodal_fast.py +7 -7
  1064. transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +58 -57
  1065. transformers/models/phi4_multimodal/modular_phi4_multimodal.py +62 -60
  1066. transformers/models/phi4_multimodal/processing_phi4_multimodal.py +7 -44
  1067. transformers/models/phimoe/configuration_phimoe.py +26 -29
  1068. transformers/models/phimoe/modeling_phimoe.py +47 -42
  1069. transformers/models/phimoe/modular_phimoe.py +1 -2
  1070. transformers/models/phobert/tokenization_phobert.py +4 -6
  1071. transformers/models/pix2struct/configuration_pix2struct.py +0 -1
  1072. transformers/models/pix2struct/image_processing_pix2struct.py +15 -19
  1073. transformers/models/pix2struct/image_processing_pix2struct_fast.py +7 -10
  1074. transformers/models/pix2struct/modeling_pix2struct.py +42 -45
  1075. transformers/models/pix2struct/processing_pix2struct.py +5 -30
  1076. transformers/models/pixio/__init__.py +29 -0
  1077. transformers/models/pixio/configuration_pixio.py +150 -0
  1078. transformers/models/pixio/modeling_pixio.py +505 -0
  1079. transformers/models/pixio/modular_pixio.py +401 -0
  1080. transformers/models/pixtral/configuration_pixtral.py +11 -14
  1081. transformers/models/pixtral/image_processing_pixtral.py +26 -28
  1082. transformers/models/pixtral/image_processing_pixtral_fast.py +5 -6
  1083. transformers/models/pixtral/modeling_pixtral.py +23 -26
  1084. transformers/models/pixtral/processing_pixtral.py +21 -53
  1085. transformers/models/plbart/configuration_plbart.py +1 -1
  1086. transformers/models/plbart/modeling_plbart.py +107 -102
  1087. transformers/models/plbart/modular_plbart.py +36 -32
  1088. transformers/models/plbart/tokenization_plbart.py +4 -5
  1089. transformers/models/poolformer/configuration_poolformer.py +0 -1
  1090. transformers/models/poolformer/image_processing_poolformer.py +21 -24
  1091. transformers/models/poolformer/image_processing_poolformer_fast.py +6 -8
  1092. transformers/models/poolformer/modeling_poolformer.py +21 -13
  1093. transformers/models/pop2piano/configuration_pop2piano.py +0 -2
  1094. transformers/models/pop2piano/feature_extraction_pop2piano.py +6 -9
  1095. transformers/models/pop2piano/modeling_pop2piano.py +22 -23
  1096. transformers/models/pop2piano/processing_pop2piano.py +25 -33
  1097. transformers/models/pop2piano/tokenization_pop2piano.py +15 -23
  1098. transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +3 -3
  1099. transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything.py +28 -28
  1100. transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py +14 -15
  1101. transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +9 -10
  1102. transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +9 -10
  1103. transformers/models/prophetnet/configuration_prophetnet.py +26 -28
  1104. transformers/models/prophetnet/modeling_prophetnet.py +111 -131
  1105. transformers/models/prophetnet/tokenization_prophetnet.py +14 -16
  1106. transformers/models/pvt/configuration_pvt.py +0 -1
  1107. transformers/models/pvt/image_processing_pvt.py +17 -20
  1108. transformers/models/pvt/image_processing_pvt_fast.py +0 -1
  1109. transformers/models/pvt/modeling_pvt.py +19 -21
  1110. transformers/models/pvt_v2/configuration_pvt_v2.py +2 -4
  1111. transformers/models/pvt_v2/modeling_pvt_v2.py +21 -23
  1112. transformers/models/qwen2/configuration_qwen2.py +18 -21
  1113. transformers/models/qwen2/modeling_qwen2.py +32 -34
  1114. transformers/models/qwen2/modular_qwen2.py +11 -12
  1115. transformers/models/qwen2/tokenization_qwen2.py +2 -5
  1116. transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +20 -23
  1117. transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +239 -192
  1118. transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +174 -127
  1119. transformers/models/qwen2_5_omni/processing_qwen2_5_omni.py +41 -49
  1120. transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +22 -25
  1121. transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +112 -101
  1122. transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +72 -107
  1123. transformers/models/qwen2_5_vl/processing_qwen2_5_vl.py +7 -43
  1124. transformers/models/qwen2_audio/configuration_qwen2_audio.py +0 -1
  1125. transformers/models/qwen2_audio/modeling_qwen2_audio.py +29 -31
  1126. transformers/models/qwen2_audio/processing_qwen2_audio.py +13 -42
  1127. transformers/models/qwen2_moe/configuration_qwen2_moe.py +28 -31
  1128. transformers/models/qwen2_moe/modeling_qwen2_moe.py +48 -43
  1129. transformers/models/qwen2_moe/modular_qwen2_moe.py +7 -10
  1130. transformers/models/qwen2_vl/configuration_qwen2_vl.py +22 -24
  1131. transformers/models/qwen2_vl/image_processing_qwen2_vl.py +41 -42
  1132. transformers/models/qwen2_vl/image_processing_qwen2_vl_fast.py +8 -9
  1133. transformers/models/qwen2_vl/modeling_qwen2_vl.py +108 -96
  1134. transformers/models/qwen2_vl/processing_qwen2_vl.py +7 -44
  1135. transformers/models/qwen2_vl/video_processing_qwen2_vl.py +35 -13
  1136. transformers/models/qwen3/configuration_qwen3.py +20 -23
  1137. transformers/models/qwen3/modeling_qwen3.py +32 -35
  1138. transformers/models/qwen3/modular_qwen3.py +4 -6
  1139. transformers/models/qwen3_moe/configuration_qwen3_moe.py +25 -28
  1140. transformers/models/qwen3_moe/modeling_qwen3_moe.py +48 -43
  1141. transformers/models/qwen3_moe/modular_qwen3_moe.py +10 -13
  1142. transformers/models/qwen3_next/configuration_qwen3_next.py +31 -34
  1143. transformers/models/qwen3_next/modeling_qwen3_next.py +43 -48
  1144. transformers/models/qwen3_next/modular_qwen3_next.py +33 -34
  1145. transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +89 -88
  1146. transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +199 -156
  1147. transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +170 -152
  1148. transformers/models/qwen3_omni_moe/processing_qwen3_omni_moe.py +40 -48
  1149. transformers/models/qwen3_vl/configuration_qwen3_vl.py +21 -24
  1150. transformers/models/qwen3_vl/modeling_qwen3_vl.py +91 -81
  1151. transformers/models/qwen3_vl/modular_qwen3_vl.py +86 -112
  1152. transformers/models/qwen3_vl/processing_qwen3_vl.py +6 -42
  1153. transformers/models/qwen3_vl/video_processing_qwen3_vl.py +10 -12
  1154. transformers/models/qwen3_vl_moe/configuration_qwen3_vl_moe.py +21 -25
  1155. transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +174 -195
  1156. transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +65 -117
  1157. transformers/models/rag/configuration_rag.py +0 -9
  1158. transformers/models/rag/modeling_rag.py +123 -127
  1159. transformers/models/rag/retrieval_rag.py +2 -4
  1160. transformers/models/rag/tokenization_rag.py +0 -50
  1161. transformers/models/recurrent_gemma/configuration_recurrent_gemma.py +21 -24
  1162. transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +34 -36
  1163. transformers/models/reformer/configuration_reformer.py +0 -1
  1164. transformers/models/reformer/modeling_reformer.py +76 -69
  1165. transformers/models/reformer/tokenization_reformer.py +3 -6
  1166. transformers/models/regnet/configuration_regnet.py +0 -1
  1167. transformers/models/regnet/modeling_regnet.py +11 -9
  1168. transformers/models/rembert/configuration_rembert.py +0 -1
  1169. transformers/models/rembert/modeling_rembert.py +115 -111
  1170. transformers/models/rembert/tokenization_rembert.py +1 -4
  1171. transformers/models/resnet/configuration_resnet.py +0 -1
  1172. transformers/models/resnet/modeling_resnet.py +16 -13
  1173. transformers/models/roberta/configuration_roberta.py +0 -1
  1174. transformers/models/roberta/modeling_roberta.py +94 -93
  1175. transformers/models/roberta/modular_roberta.py +58 -58
  1176. transformers/models/roberta/tokenization_roberta.py +2 -5
  1177. transformers/models/roberta/tokenization_roberta_old.py +2 -4
  1178. transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py +0 -1
  1179. transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +94 -93
  1180. transformers/models/roc_bert/configuration_roc_bert.py +0 -1
  1181. transformers/models/roc_bert/modeling_roc_bert.py +122 -121
  1182. transformers/models/roc_bert/tokenization_roc_bert.py +88 -94
  1183. transformers/models/roformer/configuration_roformer.py +0 -1
  1184. transformers/models/roformer/modeling_roformer.py +79 -81
  1185. transformers/models/roformer/tokenization_roformer.py +3 -6
  1186. transformers/models/roformer/tokenization_utils.py +0 -1
  1187. transformers/models/rt_detr/configuration_rt_detr.py +1 -2
  1188. transformers/models/rt_detr/configuration_rt_detr_resnet.py +0 -1
  1189. transformers/models/rt_detr/image_processing_rt_detr.py +54 -55
  1190. transformers/models/rt_detr/image_processing_rt_detr_fast.py +15 -15
  1191. transformers/models/rt_detr/modeling_rt_detr.py +84 -82
  1192. transformers/models/rt_detr/modeling_rt_detr_resnet.py +10 -7
  1193. transformers/models/rt_detr/modular_rt_detr.py +14 -14
  1194. transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -4
  1195. transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +86 -81
  1196. transformers/models/rt_detr_v2/modular_rt_detr_v2.py +10 -7
  1197. transformers/models/rwkv/configuration_rwkv.py +0 -1
  1198. transformers/models/rwkv/modeling_rwkv.py +30 -32
  1199. transformers/models/sam/configuration_sam.py +1 -1
  1200. transformers/models/sam/image_processing_sam.py +59 -60
  1201. transformers/models/sam/image_processing_sam_fast.py +21 -23
  1202. transformers/models/sam/modeling_sam.py +37 -36
  1203. transformers/models/sam/processing_sam.py +39 -27
  1204. transformers/models/sam2/configuration_sam2.py +1 -2
  1205. transformers/models/sam2/image_processing_sam2_fast.py +14 -15
  1206. transformers/models/sam2/modeling_sam2.py +50 -48
  1207. transformers/models/sam2/modular_sam2.py +48 -45
  1208. transformers/models/sam2/processing_sam2.py +31 -47
  1209. transformers/models/sam2_video/configuration_sam2_video.py +0 -1
  1210. transformers/models/sam2_video/modeling_sam2_video.py +119 -112
  1211. transformers/models/sam2_video/modular_sam2_video.py +91 -97
  1212. transformers/models/sam2_video/processing_sam2_video.py +49 -66
  1213. transformers/models/sam2_video/video_processing_sam2_video.py +1 -4
  1214. transformers/models/sam3/configuration_sam3.py +21 -2
  1215. transformers/models/sam3/image_processing_sam3_fast.py +17 -20
  1216. transformers/models/sam3/modeling_sam3.py +77 -56
  1217. transformers/models/sam3/modular_sam3.py +3 -8
  1218. transformers/models/sam3/processing_sam3.py +29 -48
  1219. transformers/models/sam3_tracker/__init__.py +0 -1
  1220. transformers/models/sam3_tracker/configuration_sam3_tracker.py +0 -1
  1221. transformers/models/sam3_tracker/modeling_sam3_tracker.py +36 -36
  1222. transformers/models/sam3_tracker/modular_sam3_tracker.py +2 -1
  1223. transformers/models/sam3_tracker/processing_sam3_tracker.py +31 -47
  1224. transformers/models/sam3_tracker_video/__init__.py +0 -1
  1225. transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -1
  1226. transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +96 -85
  1227. transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +27 -6
  1228. transformers/models/sam3_tracker_video/processing_sam3_tracker_video.py +50 -66
  1229. transformers/models/sam3_video/configuration_sam3_video.py +14 -1
  1230. transformers/models/sam3_video/modeling_sam3_video.py +32 -34
  1231. transformers/models/sam3_video/processing_sam3_video.py +26 -46
  1232. transformers/models/sam_hq/__init__.py +1 -1
  1233. transformers/models/sam_hq/configuration_sam_hq.py +1 -1
  1234. transformers/models/sam_hq/modeling_sam_hq.py +65 -64
  1235. transformers/models/sam_hq/modular_sam_hq.py +17 -19
  1236. transformers/models/sam_hq/{processing_samhq.py → processing_sam_hq.py} +39 -28
  1237. transformers/models/seamless_m4t/configuration_seamless_m4t.py +0 -1
  1238. transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py +8 -11
  1239. transformers/models/seamless_m4t/modeling_seamless_m4t.py +207 -193
  1240. transformers/models/seamless_m4t/processing_seamless_m4t.py +18 -39
  1241. transformers/models/seamless_m4t/tokenization_seamless_m4t.py +15 -20
  1242. transformers/models/seamless_m4t_v2/configuration_seamless_m4t_v2.py +0 -1
  1243. transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +199 -195
  1244. transformers/models/seed_oss/configuration_seed_oss.py +23 -25
  1245. transformers/models/seed_oss/modeling_seed_oss.py +31 -33
  1246. transformers/models/seed_oss/modular_seed_oss.py +3 -4
  1247. transformers/models/segformer/configuration_segformer.py +0 -10
  1248. transformers/models/segformer/image_processing_segformer.py +39 -42
  1249. transformers/models/segformer/image_processing_segformer_fast.py +7 -9
  1250. transformers/models/segformer/modeling_segformer.py +26 -28
  1251. transformers/models/segformer/modular_segformer.py +5 -7
  1252. transformers/models/seggpt/configuration_seggpt.py +0 -1
  1253. transformers/models/seggpt/image_processing_seggpt.py +38 -41
  1254. transformers/models/seggpt/modeling_seggpt.py +28 -30
  1255. transformers/models/sew/configuration_sew.py +0 -1
  1256. transformers/models/sew/modeling_sew.py +33 -35
  1257. transformers/models/sew/modular_sew.py +10 -12
  1258. transformers/models/sew_d/configuration_sew_d.py +0 -1
  1259. transformers/models/sew_d/modeling_sew_d.py +28 -30
  1260. transformers/models/shieldgemma2/configuration_shieldgemma2.py +0 -1
  1261. transformers/models/shieldgemma2/modeling_shieldgemma2.py +16 -17
  1262. transformers/models/shieldgemma2/processing_shieldgemma2.py +3 -5
  1263. transformers/models/siglip/configuration_siglip.py +0 -1
  1264. transformers/models/siglip/image_processing_siglip.py +17 -20
  1265. transformers/models/siglip/image_processing_siglip_fast.py +0 -1
  1266. transformers/models/siglip/modeling_siglip.py +62 -41
  1267. transformers/models/siglip/processing_siglip.py +2 -14
  1268. transformers/models/siglip/tokenization_siglip.py +6 -7
  1269. transformers/models/siglip2/configuration_siglip2.py +1 -1
  1270. transformers/models/siglip2/image_processing_siglip2.py +15 -16
  1271. transformers/models/siglip2/image_processing_siglip2_fast.py +4 -5
  1272. transformers/models/siglip2/modeling_siglip2.py +114 -92
  1273. transformers/models/siglip2/modular_siglip2.py +23 -25
  1274. transformers/models/siglip2/processing_siglip2.py +2 -14
  1275. transformers/models/smollm3/configuration_smollm3.py +23 -26
  1276. transformers/models/smollm3/modeling_smollm3.py +32 -35
  1277. transformers/models/smollm3/modular_smollm3.py +27 -29
  1278. transformers/models/smolvlm/configuration_smolvlm.py +1 -1
  1279. transformers/models/smolvlm/image_processing_smolvlm.py +42 -43
  1280. transformers/models/smolvlm/image_processing_smolvlm_fast.py +12 -12
  1281. transformers/models/smolvlm/modeling_smolvlm.py +56 -53
  1282. transformers/models/smolvlm/modular_smolvlm.py +15 -17
  1283. transformers/models/smolvlm/processing_smolvlm.py +15 -76
  1284. transformers/models/smolvlm/video_processing_smolvlm.py +7 -9
  1285. transformers/models/speech_encoder_decoder/configuration_speech_encoder_decoder.py +0 -1
  1286. transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py +20 -23
  1287. transformers/models/speech_to_text/configuration_speech_to_text.py +0 -1
  1288. transformers/models/speech_to_text/feature_extraction_speech_to_text.py +10 -13
  1289. transformers/models/speech_to_text/modeling_speech_to_text.py +62 -54
  1290. transformers/models/speech_to_text/processing_speech_to_text.py +4 -30
  1291. transformers/models/speech_to_text/tokenization_speech_to_text.py +5 -6
  1292. transformers/models/speecht5/configuration_speecht5.py +0 -1
  1293. transformers/models/speecht5/feature_extraction_speecht5.py +16 -37
  1294. transformers/models/speecht5/modeling_speecht5.py +200 -174
  1295. transformers/models/speecht5/number_normalizer.py +0 -1
  1296. transformers/models/speecht5/processing_speecht5.py +3 -37
  1297. transformers/models/speecht5/tokenization_speecht5.py +4 -5
  1298. transformers/models/splinter/configuration_splinter.py +0 -1
  1299. transformers/models/splinter/modeling_splinter.py +63 -59
  1300. transformers/models/splinter/tokenization_splinter.py +2 -4
  1301. transformers/models/squeezebert/configuration_squeezebert.py +0 -1
  1302. transformers/models/squeezebert/modeling_squeezebert.py +62 -62
  1303. transformers/models/squeezebert/tokenization_squeezebert.py +0 -1
  1304. transformers/models/stablelm/configuration_stablelm.py +20 -23
  1305. transformers/models/stablelm/modeling_stablelm.py +40 -43
  1306. transformers/models/starcoder2/configuration_starcoder2.py +19 -22
  1307. transformers/models/starcoder2/modeling_starcoder2.py +34 -37
  1308. transformers/models/starcoder2/modular_starcoder2.py +13 -15
  1309. transformers/models/superglue/configuration_superglue.py +3 -3
  1310. transformers/models/superglue/image_processing_superglue.py +15 -15
  1311. transformers/models/superglue/image_processing_superglue_fast.py +5 -7
  1312. transformers/models/superglue/modeling_superglue.py +32 -33
  1313. transformers/models/superpoint/image_processing_superpoint.py +15 -15
  1314. transformers/models/superpoint/image_processing_superpoint_fast.py +5 -7
  1315. transformers/models/superpoint/modeling_superpoint.py +13 -14
  1316. transformers/models/swiftformer/configuration_swiftformer.py +0 -1
  1317. transformers/models/swiftformer/modeling_swiftformer.py +16 -14
  1318. transformers/models/swin/configuration_swin.py +0 -1
  1319. transformers/models/swin/modeling_swin.py +74 -82
  1320. transformers/models/swin2sr/configuration_swin2sr.py +0 -1
  1321. transformers/models/swin2sr/image_processing_swin2sr.py +10 -13
  1322. transformers/models/swin2sr/image_processing_swin2sr_fast.py +2 -6
  1323. transformers/models/swin2sr/modeling_swin2sr.py +75 -61
  1324. transformers/models/swinv2/configuration_swinv2.py +0 -1
  1325. transformers/models/swinv2/modeling_swinv2.py +96 -100
  1326. transformers/models/switch_transformers/configuration_switch_transformers.py +0 -1
  1327. transformers/models/switch_transformers/modeling_switch_transformers.py +34 -41
  1328. transformers/models/switch_transformers/modular_switch_transformers.py +31 -38
  1329. transformers/models/t5/configuration_t5.py +7 -2
  1330. transformers/models/t5/modeling_t5.py +76 -84
  1331. transformers/models/t5/tokenization_t5.py +1 -3
  1332. transformers/models/t5gemma/configuration_t5gemma.py +33 -34
  1333. transformers/models/t5gemma/modeling_t5gemma.py +97 -100
  1334. transformers/models/t5gemma/modular_t5gemma.py +117 -118
  1335. transformers/models/t5gemma2/configuration_t5gemma2.py +59 -96
  1336. transformers/models/t5gemma2/modeling_t5gemma2.py +109 -103
  1337. transformers/models/t5gemma2/modular_t5gemma2.py +375 -91
  1338. transformers/models/table_transformer/configuration_table_transformer.py +1 -2
  1339. transformers/models/table_transformer/modeling_table_transformer.py +47 -49
  1340. transformers/models/tapas/configuration_tapas.py +0 -1
  1341. transformers/models/tapas/modeling_tapas.py +64 -66
  1342. transformers/models/tapas/tokenization_tapas.py +115 -153
  1343. transformers/models/textnet/configuration_textnet.py +0 -1
  1344. transformers/models/textnet/image_processing_textnet.py +22 -25
  1345. transformers/models/textnet/image_processing_textnet_fast.py +5 -7
  1346. transformers/models/textnet/modeling_textnet.py +13 -14
  1347. transformers/models/time_series_transformer/configuration_time_series_transformer.py +5 -8
  1348. transformers/models/time_series_transformer/modeling_time_series_transformer.py +79 -81
  1349. transformers/models/timesfm/configuration_timesfm.py +0 -1
  1350. transformers/models/timesfm/modeling_timesfm.py +29 -19
  1351. transformers/models/timesfm/modular_timesfm.py +28 -18
  1352. transformers/models/timesformer/configuration_timesformer.py +0 -1
  1353. transformers/models/timesformer/modeling_timesformer.py +13 -16
  1354. transformers/models/timm_backbone/configuration_timm_backbone.py +0 -1
  1355. transformers/models/timm_backbone/modeling_timm_backbone.py +17 -15
  1356. transformers/models/timm_wrapper/configuration_timm_wrapper.py +5 -3
  1357. transformers/models/timm_wrapper/image_processing_timm_wrapper.py +4 -5
  1358. transformers/models/timm_wrapper/modeling_timm_wrapper.py +32 -28
  1359. transformers/models/trocr/configuration_trocr.py +0 -1
  1360. transformers/models/trocr/modeling_trocr.py +39 -42
  1361. transformers/models/trocr/processing_trocr.py +5 -25
  1362. transformers/models/tvp/configuration_tvp.py +5 -2
  1363. transformers/models/tvp/image_processing_tvp.py +50 -52
  1364. transformers/models/tvp/image_processing_tvp_fast.py +9 -10
  1365. transformers/models/tvp/modeling_tvp.py +25 -27
  1366. transformers/models/tvp/processing_tvp.py +2 -14
  1367. transformers/models/udop/configuration_udop.py +1 -1
  1368. transformers/models/udop/modeling_udop.py +63 -70
  1369. transformers/models/udop/processing_udop.py +7 -26
  1370. transformers/models/udop/tokenization_udop.py +80 -93
  1371. transformers/models/umt5/configuration_umt5.py +2 -3
  1372. transformers/models/umt5/modeling_umt5.py +80 -87
  1373. transformers/models/unispeech/configuration_unispeech.py +0 -1
  1374. transformers/models/unispeech/modeling_unispeech.py +47 -49
  1375. transformers/models/unispeech/modular_unispeech.py +20 -22
  1376. transformers/models/unispeech_sat/configuration_unispeech_sat.py +0 -1
  1377. transformers/models/unispeech_sat/modeling_unispeech_sat.py +63 -65
  1378. transformers/models/unispeech_sat/modular_unispeech_sat.py +21 -23
  1379. transformers/models/univnet/feature_extraction_univnet.py +14 -14
  1380. transformers/models/univnet/modeling_univnet.py +7 -8
  1381. transformers/models/upernet/configuration_upernet.py +0 -1
  1382. transformers/models/upernet/modeling_upernet.py +10 -13
  1383. transformers/models/vaultgemma/__init__.py +0 -1
  1384. transformers/models/vaultgemma/configuration_vaultgemma.py +24 -26
  1385. transformers/models/vaultgemma/modeling_vaultgemma.py +35 -37
  1386. transformers/models/vaultgemma/modular_vaultgemma.py +29 -31
  1387. transformers/models/video_llama_3/image_processing_video_llama_3.py +43 -42
  1388. transformers/models/video_llama_3/image_processing_video_llama_3_fast.py +8 -8
  1389. transformers/models/video_llama_3/modeling_video_llama_3.py +77 -66
  1390. transformers/models/video_llama_3/modular_video_llama_3.py +110 -112
  1391. transformers/models/video_llama_3/processing_video_llama_3.py +5 -39
  1392. transformers/models/video_llama_3/video_processing_video_llama_3.py +18 -18
  1393. transformers/models/video_llava/configuration_video_llava.py +0 -1
  1394. transformers/models/video_llava/image_processing_video_llava.py +35 -38
  1395. transformers/models/video_llava/modeling_video_llava.py +59 -57
  1396. transformers/models/video_llava/processing_video_llava.py +38 -78
  1397. transformers/models/video_llava/video_processing_video_llava.py +0 -1
  1398. transformers/models/videomae/configuration_videomae.py +0 -1
  1399. transformers/models/videomae/image_processing_videomae.py +31 -34
  1400. transformers/models/videomae/modeling_videomae.py +13 -15
  1401. transformers/models/videomae/video_processing_videomae.py +0 -1
  1402. transformers/models/vilt/configuration_vilt.py +2 -3
  1403. transformers/models/vilt/image_processing_vilt.py +29 -30
  1404. transformers/models/vilt/image_processing_vilt_fast.py +9 -10
  1405. transformers/models/vilt/modeling_vilt.py +83 -78
  1406. transformers/models/vilt/processing_vilt.py +2 -14
  1407. transformers/models/vipllava/configuration_vipllava.py +0 -1
  1408. transformers/models/vipllava/modeling_vipllava.py +45 -42
  1409. transformers/models/vipllava/modular_vipllava.py +30 -32
  1410. transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py +0 -1
  1411. transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py +18 -21
  1412. transformers/models/vision_text_dual_encoder/configuration_vision_text_dual_encoder.py +0 -1
  1413. transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +18 -21
  1414. transformers/models/vision_text_dual_encoder/processing_vision_text_dual_encoder.py +2 -16
  1415. transformers/models/visual_bert/configuration_visual_bert.py +0 -1
  1416. transformers/models/visual_bert/modeling_visual_bert.py +92 -92
  1417. transformers/models/vit/configuration_vit.py +0 -1
  1418. transformers/models/vit/image_processing_vit.py +19 -22
  1419. transformers/models/vit/image_processing_vit_fast.py +0 -1
  1420. transformers/models/vit/modeling_vit.py +13 -15
  1421. transformers/models/vit_mae/configuration_vit_mae.py +0 -1
  1422. transformers/models/vit_mae/modeling_vit_mae.py +21 -23
  1423. transformers/models/vit_msn/configuration_vit_msn.py +0 -1
  1424. transformers/models/vit_msn/modeling_vit_msn.py +10 -12
  1425. transformers/models/vitdet/configuration_vitdet.py +0 -1
  1426. transformers/models/vitdet/modeling_vitdet.py +12 -14
  1427. transformers/models/vitmatte/configuration_vitmatte.py +2 -5
  1428. transformers/models/vitmatte/image_processing_vitmatte.py +15 -18
  1429. transformers/models/vitmatte/image_processing_vitmatte_fast.py +14 -16
  1430. transformers/models/vitmatte/modeling_vitmatte.py +13 -11
  1431. transformers/models/vitpose/configuration_vitpose.py +4 -7
  1432. transformers/models/vitpose/image_processing_vitpose.py +24 -25
  1433. transformers/models/vitpose/image_processing_vitpose_fast.py +9 -11
  1434. transformers/models/vitpose/modeling_vitpose.py +10 -12
  1435. transformers/models/vitpose_backbone/configuration_vitpose_backbone.py +0 -1
  1436. transformers/models/vitpose_backbone/modeling_vitpose_backbone.py +8 -10
  1437. transformers/models/vits/configuration_vits.py +0 -1
  1438. transformers/models/vits/modeling_vits.py +34 -35
  1439. transformers/models/vits/tokenization_vits.py +3 -4
  1440. transformers/models/vivit/configuration_vivit.py +0 -1
  1441. transformers/models/vivit/image_processing_vivit.py +36 -39
  1442. transformers/models/vivit/modeling_vivit.py +5 -7
  1443. transformers/models/vjepa2/__init__.py +0 -1
  1444. transformers/models/vjepa2/configuration_vjepa2.py +0 -1
  1445. transformers/models/vjepa2/modeling_vjepa2.py +30 -32
  1446. transformers/models/vjepa2/video_processing_vjepa2.py +0 -1
  1447. transformers/models/voxtral/__init__.py +0 -1
  1448. transformers/models/voxtral/configuration_voxtral.py +0 -1
  1449. transformers/models/voxtral/modeling_voxtral.py +19 -27
  1450. transformers/models/voxtral/modular_voxtral.py +12 -21
  1451. transformers/models/voxtral/processing_voxtral.py +25 -48
  1452. transformers/models/wav2vec2/configuration_wav2vec2.py +0 -1
  1453. transformers/models/wav2vec2/feature_extraction_wav2vec2.py +7 -10
  1454. transformers/models/wav2vec2/modeling_wav2vec2.py +67 -122
  1455. transformers/models/wav2vec2/processing_wav2vec2.py +6 -35
  1456. transformers/models/wav2vec2/tokenization_wav2vec2.py +20 -332
  1457. transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py +0 -1
  1458. transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +65 -62
  1459. transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +52 -48
  1460. transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py +6 -35
  1461. transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py +0 -1
  1462. transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +84 -77
  1463. transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +37 -30
  1464. transformers/models/wav2vec2_phoneme/tokenization_wav2vec2_phoneme.py +16 -17
  1465. transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py +36 -55
  1466. transformers/models/wavlm/configuration_wavlm.py +0 -1
  1467. transformers/models/wavlm/modeling_wavlm.py +45 -48
  1468. transformers/models/wavlm/modular_wavlm.py +4 -5
  1469. transformers/models/whisper/configuration_whisper.py +0 -1
  1470. transformers/models/whisper/english_normalizer.py +3 -4
  1471. transformers/models/whisper/feature_extraction_whisper.py +9 -24
  1472. transformers/models/whisper/generation_whisper.py +27 -48
  1473. transformers/models/whisper/modeling_whisper.py +73 -73
  1474. transformers/models/whisper/processing_whisper.py +3 -20
  1475. transformers/models/whisper/tokenization_whisper.py +9 -30
  1476. transformers/models/x_clip/configuration_x_clip.py +0 -1
  1477. transformers/models/x_clip/modeling_x_clip.py +70 -69
  1478. transformers/models/x_clip/processing_x_clip.py +2 -14
  1479. transformers/models/xcodec/configuration_xcodec.py +4 -6
  1480. transformers/models/xcodec/modeling_xcodec.py +20 -17
  1481. transformers/models/xglm/configuration_xglm.py +0 -1
  1482. transformers/models/xglm/modeling_xglm.py +59 -55
  1483. transformers/models/xglm/tokenization_xglm.py +1 -4
  1484. transformers/models/xlm/configuration_xlm.py +0 -1
  1485. transformers/models/xlm/modeling_xlm.py +139 -144
  1486. transformers/models/xlm/tokenization_xlm.py +3 -5
  1487. transformers/models/xlm_roberta/configuration_xlm_roberta.py +0 -1
  1488. transformers/models/xlm_roberta/modeling_xlm_roberta.py +195 -194
  1489. transformers/models/xlm_roberta/modular_xlm_roberta.py +50 -53
  1490. transformers/models/xlm_roberta/tokenization_xlm_roberta.py +1 -4
  1491. transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py +0 -1
  1492. transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +94 -93
  1493. transformers/models/xlm_roberta_xl/modular_xlm_roberta_xl.py +67 -70
  1494. transformers/models/xlnet/configuration_xlnet.py +0 -11
  1495. transformers/models/xlnet/modeling_xlnet.py +152 -163
  1496. transformers/models/xlnet/tokenization_xlnet.py +1 -4
  1497. transformers/models/xlstm/configuration_xlstm.py +3 -5
  1498. transformers/models/xlstm/modeling_xlstm.py +62 -65
  1499. transformers/models/xmod/configuration_xmod.py +0 -1
  1500. transformers/models/xmod/modeling_xmod.py +101 -100
  1501. transformers/models/yolos/configuration_yolos.py +0 -1
  1502. transformers/models/yolos/image_processing_yolos.py +60 -62
  1503. transformers/models/yolos/image_processing_yolos_fast.py +18 -18
  1504. transformers/models/yolos/modeling_yolos.py +12 -14
  1505. transformers/models/yolos/modular_yolos.py +2 -4
  1506. transformers/models/yoso/configuration_yoso.py +0 -1
  1507. transformers/models/yoso/modeling_yoso.py +64 -63
  1508. transformers/models/zamba/configuration_zamba.py +0 -1
  1509. transformers/models/zamba/modeling_zamba.py +70 -70
  1510. transformers/models/zamba2/configuration_zamba2.py +36 -37
  1511. transformers/models/zamba2/modeling_zamba2.py +87 -89
  1512. transformers/models/zamba2/modular_zamba2.py +43 -45
  1513. transformers/models/zoedepth/configuration_zoedepth.py +1 -2
  1514. transformers/models/zoedepth/image_processing_zoedepth.py +28 -29
  1515. transformers/models/zoedepth/image_processing_zoedepth_fast.py +12 -15
  1516. transformers/models/zoedepth/modeling_zoedepth.py +21 -16
  1517. transformers/pipelines/__init__.py +59 -55
  1518. transformers/pipelines/any_to_any.py +14 -22
  1519. transformers/pipelines/audio_utils.py +1 -2
  1520. transformers/pipelines/automatic_speech_recognition.py +20 -12
  1521. transformers/pipelines/base.py +13 -17
  1522. transformers/pipelines/deprecated/__init__.py +0 -1
  1523. transformers/pipelines/document_question_answering.py +1 -1
  1524. transformers/pipelines/image_text_to_text.py +0 -1
  1525. transformers/pipelines/image_to_text.py +4 -44
  1526. transformers/pipelines/question_answering.py +5 -44
  1527. transformers/pipelines/text_classification.py +1 -14
  1528. transformers/pipelines/text_to_audio.py +2 -2
  1529. transformers/pipelines/token_classification.py +1 -22
  1530. transformers/pipelines/video_classification.py +1 -9
  1531. transformers/pipelines/zero_shot_audio_classification.py +0 -1
  1532. transformers/pipelines/zero_shot_classification.py +0 -6
  1533. transformers/pipelines/zero_shot_image_classification.py +0 -7
  1534. transformers/processing_utils.py +222 -151
  1535. transformers/quantizers/auto.py +2 -4
  1536. transformers/quantizers/base.py +19 -64
  1537. transformers/quantizers/quantizer_aqlm.py +1 -18
  1538. transformers/quantizers/quantizer_auto_round.py +1 -10
  1539. transformers/quantizers/quantizer_awq.py +3 -8
  1540. transformers/quantizers/quantizer_bitnet.py +1 -6
  1541. transformers/quantizers/quantizer_bnb_4bit.py +9 -49
  1542. transformers/quantizers/quantizer_bnb_8bit.py +9 -19
  1543. transformers/quantizers/quantizer_compressed_tensors.py +1 -4
  1544. transformers/quantizers/quantizer_eetq.py +2 -12
  1545. transformers/quantizers/quantizer_fbgemm_fp8.py +5 -14
  1546. transformers/quantizers/quantizer_finegrained_fp8.py +15 -10
  1547. transformers/quantizers/quantizer_fp_quant.py +4 -4
  1548. transformers/quantizers/quantizer_gptq.py +1 -4
  1549. transformers/quantizers/quantizer_higgs.py +2 -6
  1550. transformers/quantizers/quantizer_mxfp4.py +2 -28
  1551. transformers/quantizers/quantizer_quanto.py +14 -14
  1552. transformers/quantizers/quantizer_quark.py +0 -1
  1553. transformers/quantizers/quantizer_spqr.py +3 -8
  1554. transformers/quantizers/quantizer_torchao.py +31 -127
  1555. transformers/quantizers/quantizer_vptq.py +1 -10
  1556. transformers/testing_utils.py +31 -49
  1557. transformers/tokenization_mistral_common.py +554 -902
  1558. transformers/tokenization_utils_base.py +112 -124
  1559. transformers/tokenization_utils_sentencepiece.py +5 -6
  1560. transformers/tokenization_utils_tokenizers.py +30 -7
  1561. transformers/trainer.py +30 -11
  1562. transformers/trainer_callback.py +8 -0
  1563. transformers/trainer_jit_checkpoint.py +1 -2
  1564. transformers/trainer_seq2seq.py +4 -0
  1565. transformers/training_args.py +11 -13
  1566. transformers/utils/__init__.py +4 -0
  1567. transformers/utils/attention_visualizer.py +5 -5
  1568. transformers/utils/auto_docstring.py +598 -37
  1569. transformers/utils/doc.py +1 -1
  1570. transformers/utils/dummy_pt_objects.py +0 -42
  1571. transformers/utils/generic.py +21 -1
  1572. transformers/utils/import_utils.py +51 -9
  1573. transformers/utils/kernel_config.py +71 -18
  1574. transformers/utils/loading_report.py +3 -3
  1575. transformers/utils/quantization_config.py +16 -18
  1576. transformers/video_processing_utils.py +35 -32
  1577. transformers/video_utils.py +18 -22
  1578. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc3.dist-info}/METADATA +23 -24
  1579. transformers-5.0.0rc3.dist-info/RECORD +2067 -0
  1580. transformers-5.0.0rc1.dist-info/RECORD +0 -2003
  1581. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc3.dist-info}/WHEEL +0 -0
  1582. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc3.dist-info}/entry_points.txt +0 -0
  1583. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc3.dist-info}/licenses/LICENSE +0 -0
  1584. {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc3.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,1901 @@
1
+ # Copyright 2025 Baidu and HuggingFace Inc. team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ """PyTorch Ernie4.5-VL model."""
15
+
16
+ import itertools
17
+ from collections.abc import Callable
18
+ from typing import Optional
19
+
20
+ import numpy as np
21
+ import torch
22
+ import torch.nn as nn
23
+ import torch.nn.functional as F
24
+
25
+ from ... import initialization as init
26
+ from ...cache_utils import Cache, DynamicCache
27
+ from ...configuration_utils import PreTrainedConfig, layer_type_validation
28
+ from ...generation import GenerationMixin
29
+ from ...image_processing_utils import BaseImageProcessor, BatchFeature
30
+ from ...image_processing_utils_fast import (
31
+ group_images_by_shape,
32
+ reorder_images,
33
+ )
34
+ from ...image_transforms import convert_to_rgb, resize, to_channel_dimension_format
35
+ from ...image_utils import (
36
+ OPENAI_CLIP_MEAN,
37
+ OPENAI_CLIP_STD,
38
+ ChannelDimension,
39
+ ImageInput,
40
+ PILImageResampling,
41
+ SizeDict,
42
+ get_image_size,
43
+ infer_channel_dimension_format,
44
+ is_scaled_image,
45
+ make_list_of_images,
46
+ to_numpy_array,
47
+ )
48
+ from ...masking_utils import create_causal_mask
49
+ from ...modeling_flash_attention_utils import FlashAttentionKwargs
50
+ from ...modeling_layers import GradientCheckpointingLayer
51
+ from ...modeling_outputs import MoeCausalLMOutputWithPast, MoeModelOutputWithPast
52
+ from ...modeling_rope_utils import dynamic_rope_update
53
+ from ...modeling_utils import PreTrainedModel
54
+ from ...processing_utils import Unpack
55
+ from ...utils import (
56
+ TensorType,
57
+ TransformersKwargs,
58
+ auto_docstring,
59
+ can_return_tuple,
60
+ is_torchdynamo_compiling,
61
+ logging,
62
+ )
63
+ from ...utils.generic import OutputRecorder, check_model_inputs, maybe_autocast
64
+ from ..ernie4_5_moe.configuration_ernie4_5_moe import Ernie4_5_MoeConfig
65
+ from ..ernie4_5_moe.modeling_ernie4_5_moe import (
66
+ Ernie4_5_MoeAttention,
67
+ Ernie4_5_MoeExperts,
68
+ Ernie4_5_MoeMLP,
69
+ Ernie4_5_MoeModel,
70
+ Ernie4_5_MoeRMSNorm,
71
+ Ernie4_5_MoeStatics,
72
+ Ernie4_5_MoeTopKRouter,
73
+ )
74
+ from ..glm4v.image_processing_glm4v import Glm4vImageProcessor, Glm4vImageProcessorKwargs
75
+ from ..glm4v.image_processing_glm4v_fast import Glm4vImageProcessorFast
76
+ from ..glm4v.modeling_glm4v import Glm4vForConditionalGeneration
77
+ from ..mixtral.modeling_mixtral import load_balancing_loss_func
78
+ from ..qwen2_5_vl.modeling_qwen2_5_vl import (
79
+ Qwen2_5_VisionPatchEmbed,
80
+ Qwen2_5_VisionRotaryEmbedding,
81
+ Qwen2_5_VLModel,
82
+ Qwen2_5_VLPreTrainedModel,
83
+ Qwen2_5_VLVisionBlock,
84
+ )
85
+ from ..qwen2_vl.configuration_qwen2_vl import Qwen2VLVisionConfig
86
+ from ..qwen2_vl.image_processing_qwen2_vl import smart_resize
87
+ from ..qwen2_vl.modeling_qwen2_vl import Qwen2VisionTransformerPretrainedModel, VisionMlp
88
+
89
+
90
+ logger = logging.get_logger(__name__)
91
+
92
+
93
+ class Ernie4_5_VL_MoeVisionConfig(Qwen2VLVisionConfig):
94
+ r"""
95
+ This is the configuration class to store the configuration of the [`Ernie4_5_VL_MoeVisionTransformerPretrainedModel`].
96
+ It is used to instantiate the vision models portion of the complete Ernie4.5-VL Moe model according to the specified
97
+ arguments, defining the model architecture.
98
+
99
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
100
+ documentation from [`PretrainedConfig`] for more information.
101
+
102
+ Args:
103
+ depth (`int`, *optional*, defaults to 32):
104
+ Number of layers (depth) in the model.
105
+ hidden_size (`int`, *optional*, defaults to 1280):
106
+ Dimensionality of the encoder layers and the pooler layer.
107
+ hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
108
+ The non-linear activation function (function or string) in the encoder and pooler.
109
+ intermediate_size (`int`, *optional*, defaults to 5120):
110
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
111
+ num_heads (`int`, *optional*, defaults to 16):
112
+ Number of attention heads for each attention layer in the Transformer encoder.
113
+ in_channels (`int`, *optional*, defaults to 3):
114
+ The number of input channels.
115
+ patch_size (`int`, *optional*, defaults to 14):
116
+ The size (resolution) of each patch.
117
+ spatial_merge_size (`int`, *optional*, defaults to 2):
118
+ The size used for merging spatial dimensions.
119
+ temporal_merge_size (`int`, *optional*, defaults to 2):
120
+ The size used for merge along the temporal dimension.
121
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
122
+ The epsilon used by the rms normalization layers.
123
+ initializer_range (`float`, *optional*, defaults to 0.02):
124
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
125
+ """
126
+
127
+ model_type = "ernie4_5_vl_moe_vision"
128
+
129
+ base_model_tp_plan = {
130
+ "blocks.*.attn.qkv": "colwise",
131
+ "blocks.*.attn.proj": "rowwise",
132
+ "blocks.*.mlp.fc1": "colwise",
133
+ "blocks.*.mlp.fc2": "rowwise",
134
+ }
135
+
136
+ def __init__(
137
+ self,
138
+ depth=32,
139
+ hidden_size=1280,
140
+ hidden_act="quick_gelu",
141
+ intermediate_size=4 * 1280,
142
+ num_heads=16,
143
+ in_channels=3,
144
+ patch_size=14,
145
+ spatial_merge_size=2,
146
+ temporal_merge_size=2,
147
+ rms_norm_eps=1e-6,
148
+ initializer_range=0.02,
149
+ **kwargs,
150
+ ):
151
+ super().__init__(
152
+ depth=depth,
153
+ hidden_size=hidden_size,
154
+ hidden_act=hidden_act,
155
+ intermediate_size=intermediate_size,
156
+ num_heads=num_heads,
157
+ in_channels=in_channels,
158
+ patch_size=patch_size,
159
+ spatial_merge_size=spatial_merge_size,
160
+ temporal_merge_size=temporal_merge_size,
161
+ rms_norm_eps=rms_norm_eps,
162
+ initializer_range=initializer_range,
163
+ **kwargs,
164
+ )
165
+
166
+ del self.embed_dim # noqa: F821
167
+ del self.mlp_ratio # noqa: F821
168
+ del self.temporal_patch_size # noqa: F821
169
+
170
+ self.intermediate_size = intermediate_size
171
+ self.temporal_merge_size = temporal_merge_size
172
+ self.rms_norm_eps = rms_norm_eps
173
+
174
+
175
+ class Ernie4_5_VL_MoeTextConfig(Ernie4_5_MoeConfig, PreTrainedConfig):
176
+ r"""
177
+ This is the configuration class to store the configuration of a [`Ernie4_5_VL_MoeTextModel`]. It is used to instantiate a
178
+ the text model portion of the complete Ernie4.5-VL Moe model according to the specified arguments, defining the model architecture.
179
+
180
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
181
+ documentation from [`PretrainedConfig`] for more information.
182
+
183
+ Args:
184
+ vocab_size (`int`, *optional*, defaults to 103424):
185
+ Vocabulary size of the Ernie 4.5 VL model. Defines the number of different tokens that can be represented by the
186
+ `inputs_ids` passed when calling [`Ernie4_5_VL_MoeTextModel`]
187
+ hidden_size (`int`, *optional*, defaults to 2560):
188
+ Dimension of the hidden representations.
189
+ intermediate_size (`int`, *optional*, defaults to 12288):
190
+ Dimension of the MLP representations.
191
+ num_hidden_layers (`int`, *optional*, defaults to 28):
192
+ Number of hidden layers in the Transformer encoder.
193
+ num_attention_heads (`int`, *optional*, defaults to 20):
194
+ Number of attention heads for each attention layer in the Transformer encoder.
195
+ num_key_value_heads (`int`, *optional*, defaults to 4):
196
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
197
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
198
+ `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
199
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
200
+ by meanpooling all the original heads within that group. For more details, check out [this
201
+ paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `4`.
202
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
203
+ The non-linear activation function (function or string) in the decoder.
204
+ max_position_embeddings (`int`, *optional*, defaults to 131072):
205
+ The maximum sequence length that this model might ever be used with.
206
+ initializer_range (`float`, *optional*, defaults to 0.02):
207
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
208
+ rms_norm_eps (`float`, *optional*, defaults to 1e-05):
209
+ The epsilon used by the rms normalization layers.
210
+ use_cache (`bool`, *optional*, defaults to `True`):
211
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
212
+ relevant if `config.is_decoder=True`.
213
+ use_bias (`bool`, *optional*, defaults to `False`):
214
+ Whether to use a bias in any of the projections including mlp and attention for example.
215
+ tie_word_embeddings (`bool`, *optional*, defaults to `True`):
216
+ Whether the model's input and output word embeddings should be tied.
217
+ rope_parameters (`RopeParameters`, *optional*):
218
+ Dictionary containing the configuration parameters for the RoPE embeddings. The dictionaty should contain
219
+ a value for `rope_theta` and optionally parameters used for scaling in case you want to use RoPE
220
+ with longer `max_position_embeddings`.
221
+ mlp_layer_types (`list`, *optional*):
222
+ MLP (Moe vs Dense) pattern for each layer.
223
+ moe_intermediate_size (`list[int]`, *optional*, defaults to `[1536, 512]`):
224
+ Intermediate size of the routed experts; differs between text (first) and image (second) experts.
225
+ moe_k (`int`, *optional*, defaults to 6):
226
+ Number of selected experts.
227
+ moe_num_experts (`int`, *optional*, defaults to 64):
228
+ Number of routed experts.
229
+ moe_num_shared_experts (`int`, *optional*, defaults to 2):
230
+ The number of experts that are shared for all MoE forwards.
231
+ moe_norm_min (`float`, *optional*, defaults to 1e-12):
232
+ Minimum division value during routing normalization.
233
+ output_router_logits (`bool`, *optional*, defaults to `False`):
234
+ Whether or not the router logits should be returned by the model. Enabling this will also
235
+ allow the model to output the auxiliary loss, including load balancing loss and router z-loss.
236
+ router_aux_loss_coef (`float`, *optional*, defaults to 0.001):
237
+ The aux loss factor for the total loss.
238
+ """
239
+
240
+ model_type = "ernie4_5_vl_moe_text"
241
+ base_config_key = "text_config"
242
+
243
+ base_model_tp_plan = {
244
+ "layers.*.self_attn.q_proj": "colwise",
245
+ "layers.*.self_attn.k_proj": "colwise",
246
+ "layers.*.self_attn.v_proj": "colwise",
247
+ "layers.*.self_attn.o_proj": "rowwise",
248
+ "layers.*.mlp.shared_experts.gate_proj": "colwise",
249
+ "layers.*.mlp.shared_experts.up_proj": "colwise",
250
+ "layers.*.mlp.shared_experts.down_proj": "rowwise",
251
+ "layers.*.mlp.gate_proj": "colwise",
252
+ "layers.*.mlp.up_proj": "colwise",
253
+ "layers.*.mlp.down_proj": "rowwise",
254
+ }
255
+
256
+ def __init__(
257
+ self,
258
+ vocab_size=103424,
259
+ hidden_size=2560,
260
+ intermediate_size=12288,
261
+ num_hidden_layers=28,
262
+ num_attention_heads=20,
263
+ num_key_value_heads=4,
264
+ hidden_act="silu",
265
+ max_position_embeddings=131072,
266
+ initializer_range=0.02,
267
+ rms_norm_eps=1e-5,
268
+ use_cache=True,
269
+ use_bias=False,
270
+ tie_word_embeddings=True,
271
+ rope_parameters=None,
272
+ mlp_layer_types=None,
273
+ moe_intermediate_size=None,
274
+ moe_k=6,
275
+ moe_num_experts=64,
276
+ moe_num_shared_experts=2,
277
+ moe_norm_min=1e-12,
278
+ output_router_logits=False,
279
+ router_aux_loss_coef=0.001,
280
+ **kwargs,
281
+ ):
282
+ self.vocab_size = vocab_size
283
+ self.hidden_size = hidden_size
284
+ self.intermediate_size = intermediate_size
285
+ self.num_hidden_layers = num_hidden_layers
286
+ self.num_attention_heads = num_attention_heads
287
+ self.num_key_value_heads = num_key_value_heads
288
+ self.hidden_act = hidden_act
289
+ self.max_position_embeddings = max_position_embeddings
290
+ self.initializer_range = initializer_range
291
+ self.rms_norm_eps = rms_norm_eps
292
+ self.use_cache = use_cache
293
+ self.use_bias = use_bias
294
+ self.rope_parameters = rope_parameters
295
+
296
+ # Default to MoE from the second layer and on
297
+ self.mlp_layer_types = mlp_layer_types
298
+ if self.mlp_layer_types is None:
299
+ self.mlp_layer_types = ["dense"] + ["sparse"] * (self.num_hidden_layers - 1)
300
+ layer_type_validation(self.mlp_layer_types, self.num_hidden_layers, attention=False)
301
+
302
+ self.moe_intermediate_size = moe_intermediate_size
303
+ if self.moe_intermediate_size is None:
304
+ self.moe_intermediate_size = [1536, 512]
305
+ self.moe_k = moe_k
306
+ self.moe_num_experts = moe_num_experts
307
+ self.moe_num_shared_experts = moe_num_shared_experts
308
+ self.moe_norm_min = moe_norm_min
309
+ self.output_router_logits = output_router_logits
310
+ self.router_aux_loss_coef = router_aux_loss_coef
311
+
312
+ PreTrainedConfig.__init__(
313
+ tie_word_embeddings=tie_word_embeddings, ignore_keys_at_rope_validation={"mrope_section"}, **kwargs
314
+ )
315
+
316
+
317
+ class Ernie4_5_VL_MoeConfig(PreTrainedConfig):
318
+ r"""
319
+ This is the configuration class to store the configuration of a [`Ernie4_5_VL_MoeModel`]. It is used to instantiate a
320
+ Ernie4.5-VL MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
321
+ with the defaults will yield a similar configuration to that of
322
+ Ernie 4.5 VL 28B A3B [baidu/ERNIE-4.5-VL-28B-A3B-PT](https://huggingface.co/baidu/ERNIE-4.5-VL-28B-A3B-PT).
323
+
324
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
325
+ documentation from [`PretrainedConfig`] for more information.
326
+
327
+ Args:
328
+ text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `Ernie4_5_VL_MoeTextConfig`):
329
+ The config object or dictionary of the text backbone.
330
+ vision_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `Ernie4_5_VL_MoeVisionConfig`):
331
+ The config object or dictionary of the vision backbone.
332
+ image_start_token_id (`int`, *optional*, defaults to 101304):
333
+ The image token index to encode the start of image.
334
+ image_end_token_id (`int`, *optional*, defaults to 101305):
335
+ The image token index to encode the end of image.
336
+ image_token_id (`int`, *optional*, defaults to 100295):
337
+ The image token index to encode the image prompt.
338
+ video_start_token_id (`int`, *optional*, defaults to 101306):
339
+ The video token index to encode the start of video.
340
+ video_end_token_id (`int`, *optional*, defaults to 101307):
341
+ The video token index to encode the end of video.
342
+ video_token_id (`int`, *optional*, defaults to 103367):
343
+ The video token index to encode the video prompt.
344
+
345
+ ```python
346
+ >>> from transformers import Ernie4_5_VL_MoeForConditionalGeneration, Ernie4_5_VL_MoeConfig
347
+
348
+ >>> # Initializing a Ernie4_5_VL_Moe style configuration
349
+ >>> configuration = Ernie4_5_VL_MoeConfig()
350
+
351
+ >>> # Initializing a model from the Ernie 4.5 VL 28B A3B configuration
352
+ >>> model = Ernie4_5_VL_MoeForConditionalGeneration(configuration)
353
+
354
+ >>> # Accessing the model configuration
355
+ >>> configuration = model.config
356
+ ```"""
357
+
358
+ model_type = "ernie4_5_vl_moe"
359
+ sub_configs = {"vision_config": Ernie4_5_VL_MoeVisionConfig, "text_config": Ernie4_5_VL_MoeTextConfig}
360
+ keys_to_ignore_at_inference = ["past_key_values"]
361
+
362
+ def __init__(
363
+ self,
364
+ text_config=None,
365
+ vision_config=None,
366
+ image_start_token_id=101304,
367
+ image_end_token_id=101305,
368
+ image_token_id=100295,
369
+ video_start_token_id=101306,
370
+ video_end_token_id=101307,
371
+ video_token_id=103367,
372
+ **kwargs,
373
+ ):
374
+ if isinstance(vision_config, dict):
375
+ self.vision_config = self.sub_configs["vision_config"](**vision_config)
376
+ elif isinstance(vision_config, Ernie4_5_VL_MoeVisionConfig):
377
+ self.vision_config = vision_config
378
+ elif vision_config is None:
379
+ self.vision_config = self.sub_configs["vision_config"]()
380
+
381
+ if isinstance(text_config, dict):
382
+ self.text_config = self.sub_configs["text_config"](**text_config)
383
+ elif isinstance(text_config, Ernie4_5_VL_MoeTextConfig):
384
+ self.text_config = text_config
385
+ elif text_config is None:
386
+ self.text_config = self.sub_configs["text_config"](**kwargs)
387
+
388
+ self.image_start_token_id = image_start_token_id
389
+ self.image_end_token_id = image_end_token_id
390
+ self.image_token_id = image_token_id
391
+ self.video_start_token_id = video_start_token_id
392
+ self.video_end_token_id = video_end_token_id
393
+ self.video_token_id = video_token_id
394
+
395
+ super().__init__(**kwargs)
396
+
397
+
398
+ class Ernie4_5_VL_MoeTextRotaryEmbedding(nn.Module):
399
+ inv_freq: torch.Tensor # fix linting for `register_buffer`
400
+
401
+ def __init__(self, config, device=None):
402
+ super().__init__()
403
+ self.max_seq_len_cached = config.max_position_embeddings
404
+ self.original_max_seq_len = config.max_position_embeddings
405
+
406
+ self.config = config
407
+
408
+ self.rope_type = self.config.rope_parameters["rope_type"]
409
+ rope_init_fn: Callable = self.compute_default_rope_parameters
410
+ if self.rope_type != "default":
411
+ raise ValueError(f"Ernie 4.5 VL requires the `default` rope type, but found {self.rope_type} instead.")
412
+ inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
413
+
414
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
415
+ self.original_inv_freq = inv_freq
416
+
417
+ self.mrope_section = config.rope_parameters.get("mrope_section", [22, 22, 20])
418
+
419
+ @staticmethod
420
+ def compute_default_rope_parameters(
421
+ config: Ernie4_5_VL_MoeTextConfig | None = None,
422
+ device: Optional["torch.device"] = None,
423
+ seq_len: int | None = None,
424
+ ) -> tuple["torch.Tensor", float]:
425
+ """
426
+ Computes the inverse frequencies according to the original RoPE implementation
427
+ Args:
428
+ config ([`~transformers.PreTrainedConfig`]):
429
+ The model configuration.
430
+ device (`torch.device`):
431
+ The device to use for initialization of the inverse frequencies.
432
+ seq_len (`int`, *optional*):
433
+ The current sequence length. Unused for this type of RoPE.
434
+ Returns:
435
+ Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
436
+ post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
437
+ """
438
+ base = config.rope_parameters["rope_theta"]
439
+ dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
440
+
441
+ attention_factor = 1.0 # Unused in this type of RoPE
442
+
443
+ # Compute the inverse frequencies
444
+ inv_freq = 1.0 / (
445
+ base ** (torch.arange(0, dim, 2, dtype=torch.int64).to(device=device, dtype=torch.float) / dim)
446
+ )
447
+
448
+ # Special to ernie, we prerotate on the hw dim
449
+ mrope_section = config.rope_parameters.get("mrope_section", [22, 22, 20])
450
+ hw_dim = mrope_section[0] + mrope_section[1]
451
+ t_dim = mrope_section[2]
452
+
453
+ inv_freq_3d = torch.empty_like(inv_freq)
454
+ # (Pre-)Rotate to avoid another rotation during the forward
455
+ inv_freq_3d[:hw_dim] = torch.cat([inv_freq[:-t_dim][0::2], inv_freq[:-t_dim][1::2]])
456
+ inv_freq_3d[-t_dim:] = inv_freq[-t_dim:]
457
+
458
+ return inv_freq_3d, attention_factor
459
+
460
+ @torch.no_grad()
461
+ @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
462
+ def forward(self, x, position_ids):
463
+ inv_freq_expanded = (
464
+ self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1).to(x.device)
465
+ )
466
+ position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions)
467
+
468
+ device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
469
+ with maybe_autocast(device_type=device_type, enabled=False): # Force float32
470
+ freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
471
+ cos = freqs.cos() * self.attention_scaling
472
+ sin = freqs.sin() * self.attention_scaling
473
+
474
+ sin = self.recomposition_to_3d(sin)
475
+ cos = self.recomposition_to_3d(cos)
476
+
477
+ return cos, sin
478
+
479
+ def recomposition_to_3d(self, freq):
480
+ freq_h, freq_w, freq_t = (m[(i + 1) % 3] for i, m in enumerate(freq.split([*self.mrope_section], dim=-1)))
481
+ freq_hw = torch.stack([freq_h, freq_w], dim=-1).flatten(-2)
482
+ freq_hwt = torch.cat([freq_hw, freq_t], dim=-1)
483
+ return freq_hwt.repeat_interleave(2, dim=-1)
484
+
485
+
486
+ def rotate_half_text(x):
487
+ """Rotates half the hidden dims of the input."""
488
+ x1 = x[..., 0::2]
489
+ x2 = x[..., 1::2]
490
+ return torch.stack((-x2, x1), dim=-1).flatten(-2)
491
+
492
+
493
+ def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
494
+ """Applies Rotary Position Embedding to the query and key tensors.
495
+
496
+ Args:
497
+ q (`torch.Tensor`): The query tensor.
498
+ k (`torch.Tensor`): The key tensor.
499
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
500
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
501
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
502
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
503
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
504
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
505
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
506
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
507
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
508
+ Returns:
509
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
510
+ """
511
+ original_dtype = q.dtype
512
+
513
+ cos = cos.unsqueeze(unsqueeze_dim)
514
+ sin = sin.unsqueeze(unsqueeze_dim)
515
+
516
+ q_embed = (q.float() * cos) + (rotate_half_text(q).float() * sin)
517
+ k_embed = (k.float() * cos) + (rotate_half_text(k).float() * sin)
518
+
519
+ return q_embed.to(original_dtype), k_embed.to(original_dtype)
520
+
521
+
522
+ class Ernie4_5_VL_MoeTextAttention(Ernie4_5_MoeAttention):
523
+ pass
524
+
525
+
526
+ class Ernie4_5_VL_MoeRMSNorm(Ernie4_5_MoeRMSNorm):
527
+ pass
528
+
529
+
530
+ class Ernie4_5_VL_MoeMLP(Ernie4_5_MoeMLP):
531
+ pass
532
+
533
+
534
+ class Ernie4_5_VL_MoeMoeStatics(Ernie4_5_MoeStatics):
535
+ pass
536
+
537
+
538
+ class Ernie4_5_VL_MoeMoeTopKRouter(Ernie4_5_MoeTopKRouter):
539
+ def __init__(self, config):
540
+ super().__init__(config)
541
+ self.moe_statics = Ernie4_5_VL_MoeMoeStatics(config)
542
+
543
+
544
+ class Ernie4_5_VL_MoeMoeExperts(Ernie4_5_MoeExperts):
545
+ def __init__(self, config, intermediate_size=None):
546
+ super().__init__(config)
547
+ self.intermediate_dim = config.moe_intermediate_size if intermediate_size is None else intermediate_size
548
+
549
+
550
+ class Ernie4_5_VL_MoeSparseMoeBlock(nn.Module):
551
+ def __init__(self, config, intermediate_size):
552
+ super().__init__()
553
+ self.hidden_dim = config.hidden_size
554
+ self.num_experts = config.moe_num_experts
555
+ self.top_k = config.moe_k
556
+ self.gate = Ernie4_5_VL_MoeMoeTopKRouter(config)
557
+ self.experts = Ernie4_5_VL_MoeMoeExperts(config, intermediate_size)
558
+
559
+ def forward(
560
+ self,
561
+ hidden_states: torch.Tensor,
562
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
563
+ hidden_states = hidden_states.view(-1, self.hidden_dim)
564
+
565
+ router_logits, top_k_index, top_k_weights = self.gate(hidden_states)
566
+ final_hidden_states = self.experts(hidden_states, top_k_index, top_k_weights)
567
+
568
+ # moe results are changed to a flattened shape to ease the modality isolated assigning of results
569
+ return final_hidden_states.flatten(), router_logits.flatten()
570
+
571
+
572
+ class Ernie4_5_VL_MoeMoeBlock(nn.Module):
573
+ """
574
+ Similar to `Ernie4_5_Moe` where we have modality isolated experts:
575
+ - A set of text experts that are only run on text tokens
576
+ - A set of vision experts that are only run on vision (image/video) tokens
577
+
578
+ This modality isolation is unique to the Ernie 4.5 VL Moe models.
579
+ """
580
+
581
+ def __init__(self, config):
582
+ super().__init__()
583
+ self.num_experts = config.moe_num_experts
584
+
585
+ self.text_moe = Ernie4_5_VL_MoeSparseMoeBlock(config, intermediate_size=config.moe_intermediate_size[0])
586
+ self.vision_moe = Ernie4_5_VL_MoeSparseMoeBlock(config, intermediate_size=config.moe_intermediate_size[1])
587
+
588
+ self.shared_experts = None
589
+ if config.moe_num_shared_experts > 0:
590
+ self.shared_experts = Ernie4_5_VL_MoeMLP(
591
+ config, config.moe_intermediate_size[0] * config.moe_num_shared_experts
592
+ )
593
+
594
+ def forward(
595
+ self,
596
+ hidden_states: torch.Tensor,
597
+ moe_mm_token_type_ids: torch.IntTensor | None = None,
598
+ ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
599
+ batch_size, sequence_length, hidden_dim = hidden_states.shape
600
+
601
+ # (Optional) shared experts
602
+ if self.shared_experts is not None:
603
+ shared_output = self.shared_experts(hidden_states)
604
+
605
+ if moe_mm_token_type_ids is not None and moe_mm_token_type_ids.any():
606
+ final_hidden_states = torch.zeros_like(hidden_states)
607
+ router_logits = torch.zeros(
608
+ size=(batch_size * sequence_length, self.num_experts),
609
+ device=final_hidden_states.device,
610
+ dtype=torch.float,
611
+ )
612
+
613
+ # True (1 or 2) == vision, False (0) == text tokens
614
+ moe_mm_token_type_ids = moe_mm_token_type_ids.bool()
615
+ token_type_ids_router = moe_mm_token_type_ids.reshape(-1)[:, None].expand(-1, self.num_experts)
616
+ token_type_ids_states = moe_mm_token_type_ids[..., None].expand(-1, -1, hidden_dim)
617
+
618
+ # Run moe on each modality and assign their results to the original token positions
619
+ final_hidden_states[~token_type_ids_states], router_logits[~token_type_ids_router] = self.text_moe(
620
+ hidden_states[~token_type_ids_states]
621
+ )
622
+ final_hidden_states[token_type_ids_states], router_logits[token_type_ids_router] = self.vision_moe(
623
+ hidden_states[token_type_ids_states]
624
+ )
625
+ else:
626
+ final_hidden_states, router_logits = self.text_moe(hidden_states)
627
+ final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
628
+ router_logits = router_logits.reshape(-1, self.num_experts)
629
+
630
+ # Add (optional) shared experts to the result
631
+ if self.shared_experts is not None:
632
+ final_hidden_states = final_hidden_states + shared_output
633
+
634
+ return final_hidden_states, router_logits
635
+
636
+
637
+ class Ernie4_5_VL_MoeDecoderLayer(GradientCheckpointingLayer):
638
+ def __init__(self, config, layer_idx):
639
+ super().__init__()
640
+ self.hidden_size = config.hidden_size
641
+
642
+ self.self_attn = Ernie4_5_VL_MoeTextAttention(config, layer_idx)
643
+
644
+ if config.mlp_layer_types[layer_idx] == "sparse":
645
+ self.mlp = Ernie4_5_VL_MoeMoeBlock(config)
646
+ else:
647
+ self.mlp = Ernie4_5_VL_MoeMLP(config)
648
+
649
+ self.input_layernorm = Ernie4_5_VL_MoeRMSNorm(config.hidden_size, config.rms_norm_eps)
650
+ self.post_attention_layernorm = Ernie4_5_VL_MoeRMSNorm(config.hidden_size, config.rms_norm_eps)
651
+
652
+ def forward(
653
+ self,
654
+ hidden_states: torch.Tensor,
655
+ position_embeddings: tuple[torch.Tensor, torch.Tensor],
656
+ attention_mask: torch.Tensor | None = None,
657
+ position_ids: torch.Tensor | None = None,
658
+ moe_mm_token_type_ids: torch.IntTensor | None = None,
659
+ past_key_values: Cache | None = None,
660
+ cache_position: torch.LongTensor | None = None,
661
+ **kwargs: Unpack[FlashAttentionKwargs],
662
+ ) -> tuple[torch.Tensor, tuple[torch.Tensor, torch.Tensor] | None]:
663
+ residual = hidden_states
664
+
665
+ hidden_states = self.input_layernorm(hidden_states)
666
+
667
+ # Self Attention
668
+ hidden_states, _ = self.self_attn(
669
+ hidden_states=hidden_states,
670
+ position_embeddings=position_embeddings,
671
+ attention_mask=attention_mask,
672
+ position_ids=position_ids,
673
+ past_key_values=past_key_values,
674
+ cache_position=cache_position,
675
+ **kwargs,
676
+ )
677
+ hidden_states = hidden_states + residual
678
+
679
+ # Fully Connected
680
+ residual = hidden_states
681
+ hidden_states = self.post_attention_layernorm(hidden_states)
682
+ if isinstance(self.mlp, Ernie4_5_VL_MoeMoeBlock):
683
+ hidden_states, _ = self.mlp(hidden_states, moe_mm_token_type_ids)
684
+ else:
685
+ hidden_states = self.mlp(hidden_states)
686
+ hidden_states = hidden_states + residual
687
+
688
+ return hidden_states
689
+
690
+
691
+ class Ernie4_5_VL_MoePreTrainedModel(Qwen2_5_VLPreTrainedModel):
692
+ _can_compile_fullgraph = False
693
+
694
+ _can_record_outputs = {
695
+ "router_logits": OutputRecorder(Ernie4_5_VL_MoeMoeBlock, index=1),
696
+ "hidden_states": Ernie4_5_VL_MoeDecoderLayer,
697
+ "attentions": Ernie4_5_VL_MoeTextAttention,
698
+ }
699
+ _keep_in_fp32_modules_strict = ["gate.weight", "moe_statics"]
700
+
701
+ def _init_weights(self, module):
702
+ PreTrainedModel._init_weights(self, module)
703
+ if isinstance(module, Ernie4_5_VL_MoeMoeTopKRouter):
704
+ init.zeros_(module.moe_statics.e_score_correction_bias)
705
+ init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
706
+ elif isinstance(module, Ernie4_5_VL_MoeMoeExperts):
707
+ init.normal_(module.gate_up_proj, mean=0.0, std=self.config.initializer_range)
708
+ init.normal_(module.down_proj, mean=0.0, std=self.config.initializer_range)
709
+ elif isinstance(module, Ernie4_5_VL_MoeVisionRotaryEmbedding):
710
+ inv_freq = 1.0 / (module.theta ** (torch.arange(0, module.dim, 2, dtype=torch.float) / module.dim))
711
+ init.copy_(module.inv_freq, inv_freq)
712
+
713
+
714
+ class Ernie4_5_VL_MoeTextModel(Ernie4_5_MoeModel):
715
+ config: Ernie4_5_VL_MoeTextConfig
716
+
717
+ def __init__(self, config: Ernie4_5_VL_MoeTextConfig):
718
+ super().__init__(config)
719
+ self.rotary_emb = Ernie4_5_VL_MoeTextRotaryEmbedding(config=config)
720
+
721
+ @check_model_inputs
722
+ @auto_docstring
723
+ def forward(
724
+ self,
725
+ input_ids: torch.LongTensor | None = None,
726
+ attention_mask: torch.Tensor | None = None,
727
+ position_ids: torch.LongTensor | None = None,
728
+ moe_mm_token_type_ids: torch.IntTensor | None = None,
729
+ past_key_values: Cache | None = None,
730
+ inputs_embeds: torch.FloatTensor | None = None,
731
+ use_cache: bool | None = None,
732
+ cache_position: torch.LongTensor | None = None,
733
+ **kwargs: Unpack[FlashAttentionKwargs],
734
+ ) -> MoeModelOutputWithPast:
735
+ r"""
736
+ moe_mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
737
+ The same as `mm_token_type_ids` while additionally considering start/end image/video tokens as respective vision tokens.
738
+ """
739
+ if (input_ids is None) ^ (inputs_embeds is not None):
740
+ raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
741
+
742
+ if use_cache and past_key_values is None:
743
+ past_key_values = DynamicCache(config=self.config)
744
+
745
+ if inputs_embeds is None:
746
+ inputs_embeds = self.embed_tokens(input_ids)
747
+
748
+ if cache_position is None:
749
+ past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
750
+ cache_position = torch.arange(
751
+ past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
752
+ )
753
+
754
+ # the hard coded `3` is for temporal, height and width.
755
+ if position_ids is None:
756
+ position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
757
+ elif position_ids.ndim == 2:
758
+ position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
759
+
760
+ # NOTE: we need to pass text position ids for packing. Ernie 4.5 VL uses 3D positions
761
+ # where each dim indicates visual spatial positions for temporal/height/width grids.
762
+ # There are is only one scenario when FA2-like packed masking might be activated.
763
+ # 1. User specifically passed packed `position_ids` and no attention mask.
764
+ # In this case we expect the useer to create correct position ids for all 3 grids
765
+ # and prepend text-only position ids to it. The final tensor will be [4, bs, seq-len]
766
+ if position_ids.ndim == 3 and position_ids.shape[0] == 4:
767
+ text_position_ids = position_ids[0]
768
+ position_ids = position_ids[1:]
769
+ else:
770
+ # If inputs are not packed (usual 3D positions), do not prepare mask from position_ids
771
+ text_position_ids = None
772
+
773
+ attention_mask = create_causal_mask(
774
+ config=self.config,
775
+ input_embeds=inputs_embeds,
776
+ attention_mask=attention_mask,
777
+ cache_position=cache_position,
778
+ past_key_values=past_key_values,
779
+ position_ids=text_position_ids,
780
+ )
781
+
782
+ hidden_states = inputs_embeds
783
+
784
+ # create position embeddings to be shared across the decoder layers
785
+ position_embeddings = self.rotary_emb(hidden_states, position_ids)
786
+
787
+ for decoder_layer in self.layers[: self.config.num_hidden_layers]:
788
+ hidden_states = decoder_layer(
789
+ hidden_states,
790
+ position_embeddings=position_embeddings,
791
+ attention_mask=attention_mask,
792
+ position_ids=position_ids,
793
+ moe_mm_token_type_ids=moe_mm_token_type_ids,
794
+ past_key_values=past_key_values,
795
+ cache_position=cache_position,
796
+ **kwargs,
797
+ )
798
+
799
+ hidden_states = self.norm(hidden_states)
800
+
801
+ return MoeModelOutputWithPast(
802
+ last_hidden_state=hidden_states,
803
+ past_key_values=past_key_values,
804
+ )
805
+
806
+
807
+ class Ernie4_5VLVisionMLP(VisionMlp):
808
+ pass
809
+
810
+
811
+ class Ernie4_5_VL_MoePatchEmbed(Qwen2_5_VisionPatchEmbed):
812
+ def __init__(
813
+ self,
814
+ patch_size: int = 14,
815
+ in_channels: int = 3,
816
+ embed_dim: int = 1152,
817
+ ) -> None:
818
+ super().__init__(patch_size, in_channels, embed_dim)
819
+
820
+ del self.temporal_patch_size
821
+ del kernel_size # noqa: F821
822
+ self.proj = nn.Linear(in_channels * patch_size * patch_size, embed_dim, bias=False)
823
+
824
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
825
+ target_dtype = self.proj.weight.dtype
826
+ return self.proj(hidden_states.to(target_dtype))
827
+
828
+
829
+ class Ernie4_5_VL_MoeVisionRotaryEmbedding(Qwen2_5_VisionRotaryEmbedding):
830
+ pass
831
+
832
+
833
+ class Ernie4_5_VL_MoeVisionBlock(Qwen2_5_VLVisionBlock):
834
+ def __init__(self, config) -> None:
835
+ super().__init__(config, None)
836
+
837
+ self.norm1 = nn.LayerNorm(config.hidden_size, config.rms_norm_eps)
838
+ self.norm2 = nn.LayerNorm(config.hidden_size, config.rms_norm_eps)
839
+ self.mlp = Ernie4_5VLVisionMLP(
840
+ dim=config.hidden_size,
841
+ hidden_dim=config.intermediate_size,
842
+ hidden_act=config.hidden_act,
843
+ )
844
+
845
+
846
+ class Ernie4_5_VL_MoeVisionTransformerPretrainedModel(Qwen2VisionTransformerPretrainedModel):
847
+ def __init__(self, config) -> None:
848
+ super().__init__(config)
849
+
850
+ del self.merger
851
+
852
+ self.patch_embed = Ernie4_5_VL_MoePatchEmbed(
853
+ patch_size=config.patch_size,
854
+ in_channels=config.in_channels,
855
+ embed_dim=config.hidden_size,
856
+ )
857
+
858
+ head_dim = config.hidden_size // config.num_heads
859
+ self.rotary_pos_emb = Ernie4_5_VL_MoeVisionRotaryEmbedding(head_dim // 2)
860
+
861
+ self.ln = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps)
862
+
863
+ def get_dtype(self):
864
+ raise AttributeError("Ernie 4.5 VL Moe does not need this!")
865
+
866
+ def get_device(self):
867
+ raise AttributeError("Ernie 4.5 VL Moe does not need this!")
868
+
869
+ def forward(
870
+ self,
871
+ hidden_states: torch.Tensor,
872
+ grid_thw: torch.Tensor,
873
+ **kwargs,
874
+ ) -> torch.Tensor:
875
+ hidden_states = self.patch_embed(hidden_states)
876
+ rotary_pos_emb = self.rot_pos_emb(grid_thw)
877
+ emb = torch.cat((rotary_pos_emb, rotary_pos_emb), dim=-1)
878
+ position_embeddings = (emb.cos(), emb.sin())
879
+
880
+ cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
881
+ dim=0,
882
+ # Select dtype based on the following factors:
883
+ # - FA2 requires that cu_seqlens_q must have dtype int32
884
+ # - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
885
+ # See https://github.com/huggingface/transformers/pull/34852 for more information
886
+ dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
887
+ )
888
+ cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
889
+
890
+ for block in self.blocks:
891
+ hidden_states = block(
892
+ hidden_states,
893
+ cu_seqlens=cu_seqlens,
894
+ position_embeddings=position_embeddings,
895
+ **kwargs,
896
+ )
897
+ hidden_states = self.ln(hidden_states)
898
+ return hidden_states
899
+
900
+
901
+ class Ernie4_5_VL_MoeVisionMLP(nn.Module):
902
+ def __init__(self, config, in_dim, out_dim):
903
+ super().__init__()
904
+
905
+ self.fc1 = nn.Linear(in_dim, out_dim)
906
+ self.act_fn = nn.GELU()
907
+ self.fc2 = nn.Linear(out_dim, out_dim)
908
+ self.ln = nn.LayerNorm(out_dim, eps=config.vision_config.rms_norm_eps)
909
+
910
+ def forward(self, hidden_states):
911
+ hidden_states = self.fc1(hidden_states)
912
+ hidden_states = self.act_fn(hidden_states)
913
+ hidden_states = self.fc2(hidden_states)
914
+ hidden_states = self.ln(hidden_states)
915
+ return hidden_states
916
+
917
+
918
+ class Ernie4_5_VL_MoeVariableResolutionResamplerModel(nn.Module):
919
+ def __init__(self, config: Ernie4_5_VL_MoeConfig):
920
+ super().__init__()
921
+ self.config = config
922
+
923
+ self.in_dim = config.vision_config.hidden_size
924
+ self.out_dim = config.text_config.hidden_size
925
+ self.spatial_merge_size = config.vision_config.spatial_merge_size
926
+ self.temporal_merge_size = config.vision_config.temporal_merge_size
927
+
928
+ # compress 2d conv(picture) to 1d
929
+ self.spatial_dim = self.in_dim * self.spatial_merge_size**2
930
+ # compress 3d conv(video) to 1d
931
+ self.temporal_dim = self.in_dim * self.spatial_merge_size**2 * self.temporal_merge_size
932
+
933
+ self.spatial_linear = Ernie4_5_VL_MoeVisionMLP(config, self.spatial_dim, self.spatial_dim)
934
+ self.temporal_linear = Ernie4_5_VL_MoeVisionMLP(config, self.temporal_dim, self.spatial_dim)
935
+
936
+ self.mlp = nn.Linear(self.spatial_dim, self.out_dim)
937
+ self.after_norm = Ernie4_5_VL_MoeRMSNorm(self.out_dim, config.text_config.rms_norm_eps)
938
+
939
+ def _temporal_slicing(self, hidden_states, grid_thw):
940
+ """
941
+ Slices along the temporal dimension in even/odd patterns (usually if we have a video input)
942
+ or duplicates along temporal dimension (usually if we have an image input).
943
+
944
+ Example:
945
+ Video input with temporal pattern of [1, -1, 2, -2, 3, -3]
946
+ > Even input [1, 2, 3], odd input [-1, -2, -3]
947
+ > Reorderd via slices to [1, 2, 3, -1, -2, -3]
948
+ Image input with temporal pattern [1]
949
+ > Duplicate input [1], [1]
950
+ > Reordered to [1, 1]
951
+
952
+ NOTE: This is hard-coded for `temporal_merge_size == 2` and won't work otherwise.
953
+ """
954
+ # Calculating offsets on spatial dim (based on flattened tensors)
955
+ grid_t, grid_hw = grid_thw[:, 0], grid_thw[:, 1:]
956
+ grid_hw_after_conv = grid_hw.prod(-1) // (self.spatial_merge_size**2)
957
+
958
+ # Calculating offsets on batch dim (based on flattened tensors)
959
+ tokens_per_img_or_vid = (grid_thw.prod(-1) // (self.spatial_merge_size**2)).flatten()
960
+ batch_offsets = torch.empty(tokens_per_img_or_vid.size(), dtype=tokens_per_img_or_vid.dtype)
961
+ batch_offsets[0] = 0
962
+ batch_offsets[1:] = tokens_per_img_or_vid.cumsum(dim=0)[:-1]
963
+
964
+ first_slice_offsets = []
965
+ second_slice_offsets = []
966
+ for temporal_size, spatial_size, batch_offset in zip(grid_t, grid_hw_after_conv, batch_offsets):
967
+ # Depending on temporal, we may interleave:
968
+ # - Images have temporal == 1 --> same offsets (duplicate "frame" image)
969
+ # - Videos have temporal > 1 --> different offsets (even, odd)
970
+ first_offset_range = range(0, temporal_size, 2)
971
+ second_offset_range = range(1 if temporal_size > 1 else 0, temporal_size, 2)
972
+
973
+ for temporal_offset_even, temporal_offset_odd in zip(first_offset_range, second_offset_range):
974
+ first_slice_offsets.append(
975
+ torch.arange(
976
+ batch_offset + (temporal_offset_even) * spatial_size,
977
+ batch_offset + (temporal_offset_even + 1) * spatial_size,
978
+ )
979
+ )
980
+ second_slice_offsets.append(
981
+ torch.arange(
982
+ batch_offset + (temporal_offset_odd) * spatial_size,
983
+ batch_offset + (temporal_offset_odd + 1) * spatial_size,
984
+ )
985
+ )
986
+
987
+ # Input: [1, -1, 2, -2, 3, -3] or [1]
988
+ # Indices: [0, 2, 4] (even) or [0] (duplicate)
989
+ first_slice_offsets = torch.cat(first_slice_offsets, dim=-1).to(hidden_states.device)
990
+ # Indices: [1, 3, 5] (odd) or [0] (duplicate)
991
+ second_slice_offsets = torch.cat(second_slice_offsets, dim=-1).to(hidden_states.device)
992
+
993
+ # Output: [1, 2, 3, -1, -2, -3] or [1, 1]
994
+ return torch.concat(
995
+ [
996
+ torch.index_select(hidden_states, dim=0, index=first_slice_offsets),
997
+ torch.index_select(hidden_states, dim=0, index=second_slice_offsets),
998
+ ],
999
+ dim=-1,
1000
+ )
1001
+
1002
+ def forward(self, hidden_states, grid_thw):
1003
+ # image spatial
1004
+ # reshape imitates convolution via linear projection
1005
+ hidden_states = hidden_states.reshape([-1, hidden_states.shape[-1] * (self.spatial_merge_size**2)])
1006
+ hidden_states = self.spatial_linear(hidden_states)
1007
+
1008
+ # video temporal
1009
+ hidden_states = self._temporal_slicing(hidden_states, grid_thw)
1010
+ hidden_states = self.temporal_linear(hidden_states)
1011
+
1012
+ # final mlp
1013
+ hidden_states = self.mlp(hidden_states)
1014
+ hidden_states = self.after_norm(hidden_states)
1015
+
1016
+ return hidden_states
1017
+
1018
+
1019
+ class Ernie4_5_VL_MoeModel(Qwen2_5_VLModel):
1020
+ _checkpoint_conversion_mapping = {"^norm": "language_model.norm"}
1021
+
1022
+ def __init__(self, config: Ernie4_5_VL_MoeConfig):
1023
+ super().__init__(config)
1024
+
1025
+ del self.visual
1026
+ self.vision_tower = Ernie4_5_VL_MoeVisionTransformerPretrainedModel._from_config(config.vision_config)
1027
+ self.resampler_model = Ernie4_5_VL_MoeVariableResolutionResamplerModel(config)
1028
+
1029
+ # TODO: Should be moved to generation loop instead in the future
1030
+ # Relevant PR(s): https://github.com/huggingface/transformers/pull/42088
1031
+ def get_position_ids(
1032
+ self,
1033
+ input_ids: torch.LongTensor = None,
1034
+ attention_mask: torch.Tensor | None = None,
1035
+ past_key_values: Cache | None = None,
1036
+ inputs_embeds: torch.FloatTensor | None = None,
1037
+ image_grid_thw: torch.LongTensor | None = None,
1038
+ video_grid_thw: torch.LongTensor | None = None,
1039
+ cache_position: torch.LongTensor | None = None,
1040
+ mm_token_type_ids: torch.IntTensor | None = None,
1041
+ ):
1042
+ """
1043
+ Calculating the 3D position ids with a custom mechanism / caching
1044
+ - First forward calculates the initial positions and the respective
1045
+ deltas (offset) for subsequent positions. See `get_rope_index` for
1046
+ more details.
1047
+ - Second and on (generation), uses the cache position combined with the
1048
+ cached deltas to determine the current position.
1049
+
1050
+ NOTE: We assume that the position ids are `None` and recalculate them here in any case.
1051
+ """
1052
+ # Calculate RoPE index once per generation in the pre-fill stage only.
1053
+ # When compiling, we can't check tensor values thus we check only input length
1054
+ # It is safe to assume that `length!=1` means we're in pre-fill because compiled
1055
+ # models currently cannot do asssisted decoding
1056
+ prefill_compiled_stage = is_torchdynamo_compiling() and (
1057
+ (input_ids is not None and input_ids.shape[1] != 1)
1058
+ or (inputs_embeds is not None and inputs_embeds.shape[1] != 1)
1059
+ )
1060
+ prefill_noncompiled_stage = not is_torchdynamo_compiling() and (
1061
+ (cache_position is not None and cache_position[0] == 0)
1062
+ or (past_key_values is None or past_key_values.get_seq_length() == 0)
1063
+ )
1064
+ if (prefill_compiled_stage or prefill_noncompiled_stage) or self.rope_deltas is None:
1065
+ position_ids, rope_deltas = self.get_rope_index(
1066
+ input_ids,
1067
+ image_grid_thw,
1068
+ video_grid_thw,
1069
+ attention_mask=attention_mask,
1070
+ mm_token_type_ids=mm_token_type_ids,
1071
+ )
1072
+ self.rope_deltas = rope_deltas
1073
+ # then use the prev pre-calculated rope-deltas to get the correct position ids
1074
+ else:
1075
+ if input_ids is not None:
1076
+ batch_size, seq_length, device = input_ids.shape[0], 1, input_ids.device
1077
+ elif inputs_embeds is not None:
1078
+ batch_size, seq_length, device = inputs_embeds.shape[0], 1, inputs_embeds.device
1079
+ else:
1080
+ raise ValueError(
1081
+ "Cannot calculate position ids without any input to the model. "
1082
+ "Need either `input_ids` or `inputs_embeds`!"
1083
+ )
1084
+
1085
+ delta = (cache_position[0] + self.rope_deltas).to(device) if cache_position is not None else 0
1086
+ position_ids = torch.arange(seq_length, device=device)
1087
+ position_ids = position_ids.view(1, -1).expand(batch_size, -1)
1088
+ if cache_position is not None: # otherwise `deltas` is an int `0`
1089
+ delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
1090
+ position_ids = position_ids.add(delta)
1091
+ position_ids = position_ids.unsqueeze(0).expand(3, -1, -1)
1092
+
1093
+ return position_ids
1094
+
1095
+ def get_rope_index(
1096
+ self,
1097
+ input_ids: torch.LongTensor | None = None,
1098
+ image_grid_thw: torch.LongTensor | None = None,
1099
+ video_grid_thw: torch.LongTensor | None = None,
1100
+ attention_mask: torch.Tensor | None = None,
1101
+ mm_token_type_ids: torch.IntTensor | None = None,
1102
+ ) -> tuple[torch.Tensor, torch.Tensor]:
1103
+ """
1104
+ Calculate the 3D rope index based on image and video's temporal, height and width in LLM.
1105
+
1106
+ Explanation:
1107
+ Each embedding sequence contains vision embedding and text embedding or just contains text embedding.
1108
+
1109
+ For pure text embedding sequence, the rotary position embedding has no difference with modern LLMs.
1110
+ Examples:
1111
+ input_ids: [T T T T T], here T is for text.
1112
+ temporal position_ids: [0, 1, 2, 3, 4]
1113
+ height position_ids: [0, 1, 2, 3, 4]
1114
+ width position_ids: [0, 1, 2, 3, 4]
1115
+
1116
+ For vision and text embedding sequence, we calculate 3D rotary position embedding for vision part
1117
+ and 1D rotary position embedding for text part.
1118
+ Examples:
1119
+ Temporal (Time): 3 patches, representing different segments of the video in time.
1120
+ Height: 2 patches, dividing each frame vertically.
1121
+ Width: 2 patches, dividing each frame horizontally.
1122
+ We also have some important parameters:
1123
+ fps (Frames Per Second): The video's frame rate, set to 1. This means one frame is processed each second.
1124
+ tokens_per_second: This is a crucial parameter. It dictates how many "time-steps" or "temporal tokens" are conceptually packed into a one-second interval of the video. In this case, we have 25 tokens per second. So each second of the video will be represented with 25 separate time points. It essentially defines the temporal granularity.
1125
+ temporal_patch_size: The number of frames that compose one temporal patch. Here, it's 2 frames.
1126
+ interval: The step size for the temporal position IDs, calculated as tokens_per_second * temporal_patch_size / fps. In this case, 25 * 2 / 1 = 50. This means that each temporal patch will be have a difference of 50 in the temporal position IDs.
1127
+ input_ids: [V V V V V V V V V V V V T T T T T], here V is for vision.
1128
+ vision temporal position_ids: [0, 0, 0, 0, 50, 50, 50, 50, 100, 100, 100, 100]
1129
+ vision height position_ids: [0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1]
1130
+ vision width position_ids: [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
1131
+ text temporal position_ids: [101, 102, 103, 104, 105]
1132
+ text height position_ids: [101, 102, 103, 104, 105]
1133
+ text width position_ids: [101, 102, 103, 104, 105]
1134
+ Here we calculate the text start position_ids as the max vision position_ids plus 1.
1135
+
1136
+ Args:
1137
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1138
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1139
+ it.
1140
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
1141
+ The temporal, height and width of feature shape of each image in LLM.
1142
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
1143
+ The temporal, height and width of feature shape of each video in LLM.
1144
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1145
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1146
+
1147
+ - 1 for tokens that are **not masked**,
1148
+ - 0 for tokens that are **masked**.
1149
+ mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
1150
+ Token type ids matching each modality to a different value in the input sequence, i.e. text (0), image (1), video (2).
1151
+
1152
+ Returns:
1153
+ position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`)
1154
+ mrope_position_deltas (`torch.Tensor` of shape `(batch_size)`)
1155
+ """
1156
+
1157
+ temporal_merge_size = self.config.vision_config.temporal_merge_size
1158
+ spatial_merge_size = self.config.vision_config.spatial_merge_size
1159
+
1160
+ mrope_position_deltas = []
1161
+ if input_ids is not None and (image_grid_thw is not None or video_grid_thw is not None):
1162
+ total_input_ids = input_ids
1163
+ if attention_mask is None:
1164
+ attention_mask = torch.ones_like(total_input_ids)
1165
+ position_ids = torch.ones(
1166
+ 3,
1167
+ input_ids.shape[0],
1168
+ input_ids.shape[1],
1169
+ dtype=input_ids.dtype,
1170
+ device=input_ids.device,
1171
+ )
1172
+ image_index, video_index = 0, 0
1173
+ attention_mask = attention_mask.to(total_input_ids.device)
1174
+ for i, input_ids in enumerate(total_input_ids):
1175
+ # If we don't have `mm_token_type_ids`, then we have text tokens only (== 0)
1176
+ if mm_token_type_ids is None:
1177
+ input_token_type = torch.zeros_like(input_ids)[attention_mask[i] == 1].tolist()
1178
+ else:
1179
+ input_token_type = mm_token_type_ids[i, attention_mask[i] == 1].tolist()
1180
+
1181
+ input_type_group = []
1182
+ for key, group in itertools.groupby(enumerate(input_token_type), lambda x: x[1]):
1183
+ group = list(group)
1184
+ start_index = group[0][0]
1185
+ end_index = group[-1][0] + 1
1186
+ input_type_group.append((key, start_index, end_index))
1187
+
1188
+ llm_pos_ids_list = []
1189
+ for modality_type, start_idx, end_idx in input_type_group:
1190
+ st_idx = llm_pos_ids_list[-1].max() + 1 if len(llm_pos_ids_list) > 0 else 0
1191
+
1192
+ # text == 0
1193
+ if modality_type == 0:
1194
+ text_len = end_idx - start_idx
1195
+ llm_pos_ids_list.append(torch.arange(text_len).view(1, -1).expand(3, -1) + st_idx)
1196
+
1197
+ # image == 1, video == 2
1198
+ else:
1199
+ grid_thw = image_grid_thw if modality_type == 1 else video_grid_thw
1200
+ mm_index = image_index if modality_type == 1 else video_index
1201
+ t_merge_size = 1 if modality_type == 1 else temporal_merge_size
1202
+
1203
+ t, h, w = (
1204
+ grid_thw[mm_index][0],
1205
+ grid_thw[mm_index][1],
1206
+ grid_thw[mm_index][2],
1207
+ )
1208
+ llm_grid_t, llm_grid_h, llm_grid_w = (
1209
+ t.item() // t_merge_size,
1210
+ h.item() // spatial_merge_size,
1211
+ w.item() // spatial_merge_size,
1212
+ )
1213
+
1214
+ for t_idx in range(llm_grid_t):
1215
+ t_index = torch.tensor(t_idx).view(-1, 1).expand(-1, llm_grid_h * llm_grid_w).flatten()
1216
+ h_index = torch.arange(llm_grid_h).view(1, -1, 1).expand(1, -1, llm_grid_w).flatten()
1217
+ w_index = torch.arange(llm_grid_w).view(1, 1, -1).expand(1, llm_grid_h, -1).flatten()
1218
+ llm_pos_ids_list.append(torch.stack([t_index, h_index, w_index]) + st_idx)
1219
+
1220
+ if modality_type == 1:
1221
+ image_index += 1
1222
+ else:
1223
+ video_index += 1
1224
+
1225
+ llm_positions = torch.cat(llm_pos_ids_list, dim=1).reshape(3, -1)
1226
+ position_ids[..., i, attention_mask[i] == 1] = llm_positions.to(position_ids.device)
1227
+ mrope_position_deltas.append(llm_positions.max() + 1 - len(total_input_ids[i]))
1228
+ mrope_position_deltas = torch.tensor(mrope_position_deltas, device=input_ids.device).unsqueeze(1)
1229
+ return position_ids, mrope_position_deltas
1230
+ else:
1231
+ if attention_mask is not None:
1232
+ position_ids = attention_mask.long().cumsum(-1) - 1
1233
+ position_ids.masked_fill_(attention_mask == 0, 1)
1234
+ position_ids = position_ids.unsqueeze(0).expand(3, -1, -1).to(attention_mask.device)
1235
+ max_position_ids = position_ids.max(0, keepdim=False)[0].max(-1, keepdim=True)[0]
1236
+ mrope_position_deltas = max_position_ids + 1 - attention_mask.shape[-1]
1237
+ else:
1238
+ position_ids = (
1239
+ torch.arange(input_ids.shape[1], device=input_ids.device)
1240
+ .view(1, 1, -1)
1241
+ .expand(3, input_ids.shape[0], -1)
1242
+ )
1243
+ mrope_position_deltas = torch.zeros(
1244
+ [input_ids.shape[0], 1],
1245
+ device=input_ids.device,
1246
+ dtype=input_ids.dtype,
1247
+ )
1248
+
1249
+ return position_ids, mrope_position_deltas
1250
+
1251
+ def get_video_features(
1252
+ self, pixel_values_videos: torch.FloatTensor, video_grid_thw: torch.LongTensor | None = None
1253
+ ):
1254
+ """
1255
+ Encodes videos into continuous embeddings that can be forwarded to the language model.
1256
+
1257
+ Args:
1258
+ pixel_values_videos (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
1259
+ The tensors corresponding to the input videos.
1260
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
1261
+ The temporal, height and width of feature shape of each video in LLM.
1262
+ """
1263
+ video_embeds = self.vision_tower(pixel_values_videos, video_grid_thw)
1264
+ video_embeds = self.resampler_model(video_embeds, video_grid_thw)
1265
+ split_sizes = (
1266
+ video_grid_thw.prod(-1)
1267
+ // self.vision_tower.spatial_merge_size**2
1268
+ // self.resampler_model.temporal_merge_size
1269
+ ).tolist()
1270
+ video_embeds = torch.split(video_embeds, split_sizes)
1271
+ return video_embeds
1272
+
1273
+ def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: torch.LongTensor | None = None):
1274
+ """
1275
+ Encodes images into continuous embeddings that can be forwarded to the language model.
1276
+
1277
+ Args:
1278
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
1279
+ The tensors corresponding to the input images.
1280
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
1281
+ The temporal, height and width of feature shape of each image in LLM.
1282
+ """
1283
+ image_embeds = self.vision_tower(pixel_values, image_grid_thw)
1284
+ image_embeds = self.resampler_model(image_embeds, image_grid_thw)
1285
+ split_sizes = (image_grid_thw.prod(-1) // self.vision_tower.spatial_merge_size**2).tolist()
1286
+ image_embeds = torch.split(image_embeds, split_sizes)
1287
+ return image_embeds
1288
+
1289
+ @auto_docstring
1290
+ @can_return_tuple
1291
+ def forward(
1292
+ self,
1293
+ input_ids: torch.LongTensor = None,
1294
+ attention_mask: torch.Tensor | None = None,
1295
+ position_ids: torch.LongTensor | None = None,
1296
+ mm_token_type_ids: torch.IntTensor | None = None,
1297
+ moe_mm_token_type_ids: torch.IntTensor | None = None,
1298
+ past_key_values: Cache | None = None,
1299
+ inputs_embeds: torch.FloatTensor | None = None,
1300
+ use_cache: bool | None = None,
1301
+ pixel_values: torch.Tensor | None = None,
1302
+ pixel_values_videos: torch.FloatTensor | None = None,
1303
+ image_grid_thw: torch.LongTensor | None = None,
1304
+ video_grid_thw: torch.LongTensor | None = None,
1305
+ rope_deltas: torch.LongTensor | None = None,
1306
+ cache_position: torch.LongTensor | None = None,
1307
+ **kwargs: Unpack[TransformersKwargs],
1308
+ ) -> tuple | MoeModelOutputWithPast:
1309
+ r"""
1310
+ mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
1311
+ Token type ids matching each modality to a different value in the input sequence, i.e. text (0), image (1), video (2).
1312
+ moe_mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
1313
+ The same as `mm_token_type_ids` while additionally considering start/end image/video tokens as respective vision tokens.
1314
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
1315
+ The temporal, height and width of feature shape of each image in LLM.
1316
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
1317
+ The temporal, height and width of feature shape of each video in LLM.
1318
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
1319
+ The rope index difference between sequence length and multimodal rope.
1320
+ """
1321
+ if inputs_embeds is None:
1322
+ inputs_embeds = self.get_input_embeddings()(input_ids)
1323
+
1324
+ if pixel_values is not None:
1325
+ image_embeds = self.get_image_features(pixel_values, image_grid_thw)
1326
+ image_embeds = torch.cat(image_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
1327
+ image_mask, _ = self.get_placeholder_mask(
1328
+ input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds
1329
+ )
1330
+ inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
1331
+
1332
+ if pixel_values_videos is not None:
1333
+ video_embeds = self.get_video_features(pixel_values_videos, video_grid_thw)
1334
+ video_embeds = torch.cat(video_embeds, dim=0).to(inputs_embeds.device, inputs_embeds.dtype)
1335
+ _, video_mask = self.get_placeholder_mask(
1336
+ input_ids, inputs_embeds=inputs_embeds, video_features=video_embeds
1337
+ )
1338
+ inputs_embeds = inputs_embeds.masked_scatter(video_mask, video_embeds)
1339
+
1340
+ if position_ids is None:
1341
+ position_ids = self.get_position_ids(
1342
+ input_ids=input_ids,
1343
+ attention_mask=attention_mask,
1344
+ past_key_values=past_key_values,
1345
+ inputs_embeds=inputs_embeds,
1346
+ image_grid_thw=image_grid_thw,
1347
+ video_grid_thw=video_grid_thw,
1348
+ cache_position=cache_position,
1349
+ mm_token_type_ids=mm_token_type_ids,
1350
+ )
1351
+
1352
+ outputs = self.language_model(
1353
+ input_ids=None,
1354
+ position_ids=position_ids,
1355
+ moe_mm_token_type_ids=moe_mm_token_type_ids,
1356
+ attention_mask=attention_mask,
1357
+ use_cache=use_cache,
1358
+ past_key_values=past_key_values,
1359
+ inputs_embeds=inputs_embeds,
1360
+ return_dict=True,
1361
+ cache_position=cache_position,
1362
+ **kwargs,
1363
+ )
1364
+
1365
+ return MoeModelOutputWithPast(
1366
+ last_hidden_state=outputs.last_hidden_state,
1367
+ past_key_values=outputs.past_key_values,
1368
+ hidden_states=outputs.hidden_states,
1369
+ attentions=outputs.attentions,
1370
+ router_logits=outputs.router_logits,
1371
+ )
1372
+
1373
+
1374
+ class Ernie4_5_VL_MoeForConditionalGeneration(Glm4vForConditionalGeneration, GenerationMixin):
1375
+ _checkpoint_conversion_mapping = {"^model.norm": "model.language_model.norm"}
1376
+
1377
+ def __init__(self, config):
1378
+ super().__init__(config)
1379
+
1380
+ self.router_aux_loss_coef = config.text_config.router_aux_loss_coef
1381
+ self.num_experts = config.text_config.moe_num_experts
1382
+ self.num_experts_per_tok = config.text_config.moe_k
1383
+
1384
+ def prepare_inputs_for_generation(
1385
+ self,
1386
+ input_ids,
1387
+ inputs_embeds=None,
1388
+ attention_mask=None,
1389
+ cache_position=None,
1390
+ past_key_values=None,
1391
+ image_grid_thw=None,
1392
+ video_grid_thw=None,
1393
+ use_cache=True,
1394
+ is_first_iteration=False,
1395
+ # Intentionally ignore position ids to force custom cache logic
1396
+ position_ids=None,
1397
+ **kwargs,
1398
+ ):
1399
+ model_inputs = super().prepare_inputs_for_generation(
1400
+ input_ids,
1401
+ inputs_embeds=inputs_embeds,
1402
+ attention_mask=attention_mask,
1403
+ cache_position=cache_position,
1404
+ past_key_values=past_key_values,
1405
+ image_grid_thw=image_grid_thw,
1406
+ video_grid_thw=video_grid_thw,
1407
+ use_cache=use_cache,
1408
+ is_first_iteration=is_first_iteration,
1409
+ **kwargs,
1410
+ )
1411
+
1412
+ # Using our own caching with rope delta
1413
+ model_inputs["position_ids"] = self.model.get_position_ids(
1414
+ input_ids=model_inputs.get("input_ids"),
1415
+ attention_mask=model_inputs.get("attention_mask"),
1416
+ past_key_values=model_inputs.get("past_key_values"),
1417
+ inputs_embeds=model_inputs.get("inputs_embeds"),
1418
+ image_grid_thw=model_inputs.get("image_grid_thw"),
1419
+ video_grid_thw=model_inputs.get("video_grid_thw"),
1420
+ cache_position=model_inputs.get("cache_position"),
1421
+ mm_token_type_ids=model_inputs.get("mm_token_type_ids"),
1422
+ )
1423
+
1424
+ if not is_first_iteration and use_cache:
1425
+ model_inputs["pixel_values"] = None
1426
+ model_inputs["pixel_values_videos"] = None
1427
+ model_inputs["mm_token_type_ids"] = None
1428
+ model_inputs["moe_mm_token_type_ids"] = None
1429
+
1430
+ return model_inputs
1431
+
1432
+ @auto_docstring
1433
+ @can_return_tuple
1434
+ def forward(
1435
+ self,
1436
+ input_ids: torch.LongTensor = None,
1437
+ attention_mask: torch.Tensor | None = None,
1438
+ position_ids: torch.LongTensor | None = None,
1439
+ mm_token_type_ids: torch.IntTensor | None = None,
1440
+ moe_mm_token_type_ids: torch.IntTensor | None = None,
1441
+ past_key_values: Cache | None = None,
1442
+ inputs_embeds: torch.FloatTensor | None = None,
1443
+ labels: torch.LongTensor | None = None,
1444
+ use_cache: bool | None = None,
1445
+ output_router_logits: bool | None = None,
1446
+ pixel_values: torch.Tensor | None = None,
1447
+ pixel_values_videos: torch.FloatTensor | None = None,
1448
+ image_grid_thw: torch.LongTensor | None = None,
1449
+ video_grid_thw: torch.LongTensor | None = None,
1450
+ rope_deltas: torch.LongTensor | None = None,
1451
+ cache_position: torch.LongTensor | None = None,
1452
+ logits_to_keep: int | torch.Tensor = 0,
1453
+ **kwargs: Unpack[TransformersKwargs],
1454
+ ) -> tuple | MoeCausalLMOutputWithPast:
1455
+ r"""
1456
+ mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
1457
+ Token type ids matching each modality to a different value in the input sequence, i.e. text (0), image (1), video (2).
1458
+ moe_mm_token_type_ids (`torch.IntTensor` of shape `(batch_size, sequence_length)`, *optional*):
1459
+ The same as `mm_token_type_ids` while additionally considering start/end image/video tokens as respective vision tokens.
1460
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1461
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
1462
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1463
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
1464
+ image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
1465
+ The temporal, height and width of feature shape of each image in LLM.
1466
+ video_grid_thw (`torch.LongTensor` of shape `(num_videos, 3)`, *optional*):
1467
+ The temporal, height and width of feature shape of each video in LLM.
1468
+ rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
1469
+ The rope index difference between sequence length and multimodal rope.
1470
+ """
1471
+ output_router_logits = (
1472
+ output_router_logits if output_router_logits is not None else self.config.text_config.output_router_logits
1473
+ )
1474
+
1475
+ outputs = self.model(
1476
+ input_ids=input_ids,
1477
+ attention_mask=attention_mask,
1478
+ position_ids=position_ids,
1479
+ mm_token_type_ids=mm_token_type_ids,
1480
+ moe_mm_token_type_ids=moe_mm_token_type_ids,
1481
+ past_key_values=past_key_values,
1482
+ inputs_embeds=inputs_embeds,
1483
+ use_cache=use_cache,
1484
+ output_router_logits=output_router_logits,
1485
+ return_dict=True,
1486
+ pixel_values=pixel_values,
1487
+ pixel_values_videos=pixel_values_videos,
1488
+ image_grid_thw=image_grid_thw,
1489
+ video_grid_thw=video_grid_thw,
1490
+ rope_deltas=rope_deltas,
1491
+ cache_position=cache_position,
1492
+ **kwargs,
1493
+ )
1494
+
1495
+ hidden_states = outputs.last_hidden_state
1496
+ # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
1497
+ slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
1498
+ logits = self.lm_head(hidden_states[:, slice_indices, :])
1499
+
1500
+ loss = None
1501
+ if labels is not None:
1502
+ loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size)
1503
+
1504
+ aux_loss = None
1505
+ if output_router_logits:
1506
+ aux_loss = load_balancing_loss_func(
1507
+ outputs.router_logits,
1508
+ self.num_experts,
1509
+ self.num_experts_per_tok,
1510
+ attention_mask,
1511
+ )
1512
+ if labels is not None:
1513
+ loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
1514
+
1515
+ return MoeCausalLMOutputWithPast(
1516
+ loss=loss,
1517
+ aux_loss=aux_loss,
1518
+ logits=logits,
1519
+ past_key_values=outputs.past_key_values,
1520
+ hidden_states=outputs.hidden_states,
1521
+ attentions=outputs.attentions,
1522
+ router_logits=outputs.router_logits,
1523
+ )
1524
+
1525
+
1526
+ class Ernie4_5_VL_MoeImageProcessorKwargs(Glm4vImageProcessorKwargs):
1527
+ r"""
1528
+ patch_size (`int`, *optional*, defaults to 14):
1529
+ The spatial patch size of the vision encoder.
1530
+ temporal_patch_size (`int`, *optional*):
1531
+ The temporal patch size of the vision encoder. Unused in the image processor, only used for videos.
1532
+ merge_size (`int`, *optional*, defaults to 2):
1533
+ The merge size of the vision encoder to llm encoder.
1534
+ """
1535
+
1536
+
1537
+ class Ernie4_5_VL_MoeImageProcessor(Glm4vImageProcessor):
1538
+ r"""
1539
+ Constructs a Ernie 4.5 VL image processor that dynamically resizes images based on the original images.
1540
+
1541
+ Args:
1542
+ do_resize (`bool`, *optional*, defaults to `True`):
1543
+ Whether to resize the image's (height, width) dimensions.
1544
+ size (`dict[str, int]`, *optional*, defaults to `{"shortest_edge": 56 * 56, "longest_edge": 28 * 28 * 6177}`):
1545
+ Size of the image after resizing. `shortest_edge` and `longest_edge` keys must be present.
1546
+ resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
1547
+ Resampling filter to use when resizing the image.
1548
+ do_rescale (`bool`, *optional*, defaults to `True`):
1549
+ Whether to rescale the image by the specified scale `rescale_factor`.
1550
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
1551
+ Scale factor to use if rescaling the image.
1552
+ do_normalize (`bool`, *optional*, defaults to `True`):
1553
+ Whether to normalize the image.
1554
+ image_mean (`float` or `list[float]`, *optional*, defaults to `[0.48145466, 0.4578275, 0.40821073]`):
1555
+ Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
1556
+ image_std (`float` or `list[float]`, *optional*, defaults to `[0.26862954, 0.26130258, 0.27577711]`):
1557
+ Standard deviation to use if normalizing the image. This is a float or list of floats for each channel
1558
+ in the image.
1559
+ do_convert_rgb (`bool`, *optional*, defaults to `True`):
1560
+ Whether to convert the image to RGB.
1561
+ patch_size (`int`, *optional*, defaults to 14):
1562
+ The spatial patch size of the vision encoder.
1563
+ temporal_patch_size (`int`, *optional*):
1564
+ The temporal patch size of the vision encoder. Unused in the image processor, only used for videos.
1565
+ merge_size (`int`, *optional*, defaults to 2):
1566
+ The merge size of the vision encoder to llm encoder.
1567
+ """
1568
+
1569
+ def __init__(
1570
+ self,
1571
+ do_resize: bool = True,
1572
+ size: dict[str, int] | None = None,
1573
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
1574
+ do_rescale: bool = True,
1575
+ rescale_factor: int | float = 1 / 255,
1576
+ do_normalize: bool = True,
1577
+ image_mean: float | list[float] | None = None,
1578
+ image_std: float | list[float] | None = None,
1579
+ do_convert_rgb: bool = True,
1580
+ patch_size: int = 14,
1581
+ temporal_patch_size: int | None = None,
1582
+ merge_size: int = 2,
1583
+ **kwargs,
1584
+ ) -> None:
1585
+ BaseImageProcessor.__init__(**kwargs)
1586
+ if size is not None:
1587
+ if "shortest_edge" not in size or "longest_edge" not in size:
1588
+ raise ValueError("size must contain 'shortest_edge' and 'longest_edge' keys.")
1589
+ size = {"shortest_edge": size["shortest_edge"], "longest_edge": size["longest_edge"]}
1590
+ else:
1591
+ size = {"shortest_edge": 56 * 56, "longest_edge": 6177 * 28 * 28}
1592
+ self.size = size
1593
+
1594
+ self.do_resize = do_resize
1595
+ self.resample = resample
1596
+ self.do_rescale = do_rescale
1597
+ self.rescale_factor = rescale_factor
1598
+ self.do_normalize = do_normalize
1599
+ self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
1600
+ self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
1601
+
1602
+ self.patch_size = patch_size
1603
+ self.temporal_patch_size = temporal_patch_size
1604
+ self.merge_size = merge_size
1605
+ self.do_convert_rgb = do_convert_rgb
1606
+
1607
+ def _preprocess(
1608
+ self,
1609
+ images: ImageInput,
1610
+ do_resize: bool | None = None,
1611
+ size: dict[str, int] | None = None,
1612
+ resample: PILImageResampling = None,
1613
+ do_rescale: bool | None = None,
1614
+ rescale_factor: float | None = None,
1615
+ do_normalize: bool | None = None,
1616
+ image_mean: float | list[float] | None = None,
1617
+ image_std: float | list[float] | None = None,
1618
+ patch_size: int | None = None,
1619
+ temporal_patch_size: int | None = None,
1620
+ merge_size: int | None = None,
1621
+ do_convert_rgb: bool | None = None,
1622
+ data_format: ChannelDimension | None = ChannelDimension.FIRST,
1623
+ input_data_format: str | ChannelDimension | None = None,
1624
+ ):
1625
+ """
1626
+ Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
1627
+
1628
+ Args:
1629
+ images (`ImageInput`):
1630
+ Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
1631
+ vision_info (`list[Dict]`, *optional*):
1632
+ Optional list of dictionaries containing additional information about vision inputs.
1633
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
1634
+ Whether to resize the image.
1635
+ size (`dict[str, int]`, *optional*, defaults to `self.size`):
1636
+ Size of the image after resizing. `shortest_edge` and `longest_edge` keys must be present.
1637
+ resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
1638
+ Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
1639
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
1640
+ Whether to rescale the image.
1641
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
1642
+ Scale factor to use if rescaling the image.
1643
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
1644
+ Whether to normalize the image.
1645
+ image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`):
1646
+ Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
1647
+ image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`):
1648
+ Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
1649
+ patch_size (`int`, *optional*, defaults to `self.patch_size`):
1650
+ The spatial patch size of the vision encoder.
1651
+ temporal_patch_size (`int`, *optional*):
1652
+ The temporal patch size of the vision encoder. Unused in the image processor, only used for videos.
1653
+ merge_size (`int`, *optional*, defaults to `self.merge_size`):
1654
+ The merge size of the vision encoder to llm encoder.
1655
+ do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
1656
+ Whether to convert the image to RGB.
1657
+ data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
1658
+ The channel dimension format for the output image. Can be one of:
1659
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
1660
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
1661
+ - Unset: Use the channel dimension format of the input image.
1662
+ input_data_format (`ChannelDimension` or `str`, *optional*):
1663
+ The channel dimension format for the input image. Can be one of:
1664
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
1665
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
1666
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
1667
+ """
1668
+ images = make_list_of_images(images)
1669
+
1670
+ if do_convert_rgb:
1671
+ images = [convert_to_rgb(image) for image in images]
1672
+
1673
+ # All transformations expect numpy arrays.
1674
+ images = [to_numpy_array(image) for image in images]
1675
+
1676
+ if do_rescale and is_scaled_image(images[0]):
1677
+ logger.warning_once(
1678
+ "It looks like you are trying to rescale already rescaled images. If the input"
1679
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
1680
+ )
1681
+ if input_data_format is None:
1682
+ # We assume that all images have the same channel dimension format.
1683
+ input_data_format = infer_channel_dimension_format(images[0])
1684
+
1685
+ height, width = get_image_size(images[0], channel_dim=input_data_format)
1686
+ resized_height, resized_width = height, width
1687
+ processed_images = []
1688
+ for image in images:
1689
+ if do_resize:
1690
+ resized_height, resized_width = smart_resize(
1691
+ height,
1692
+ width,
1693
+ factor=patch_size * merge_size,
1694
+ min_pixels=size["shortest_edge"],
1695
+ max_pixels=size["longest_edge"],
1696
+ )
1697
+ image = resize(
1698
+ image, size=(resized_height, resized_width), resample=resample, input_data_format=input_data_format
1699
+ )
1700
+
1701
+ if do_rescale:
1702
+ image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
1703
+
1704
+ if do_normalize:
1705
+ image = self.normalize(
1706
+ image=image, mean=image_mean, std=image_std, input_data_format=input_data_format
1707
+ )
1708
+
1709
+ image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
1710
+ processed_images.append(image)
1711
+
1712
+ patches = np.array(processed_images)
1713
+ if data_format == ChannelDimension.LAST:
1714
+ patches = patches.transpose([0, 3, 1, 2])
1715
+
1716
+ # Main difference to Qwen2 VL - no temporal patches
1717
+ channel = patches.shape[1]
1718
+ grid_t = patches.shape[0]
1719
+ grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
1720
+ patches = patches.reshape(
1721
+ [
1722
+ grid_t,
1723
+ channel,
1724
+ grid_h // merge_size,
1725
+ merge_size,
1726
+ patch_size,
1727
+ grid_w // merge_size,
1728
+ merge_size,
1729
+ patch_size,
1730
+ ]
1731
+ )
1732
+ # [grid_t, grid_h/merge, grid_w/merge, merge, merge, channel, patch, patch]
1733
+ patches = patches.transpose([0, 2, 5, 3, 6, 1, 4, 7])
1734
+ flatten_patches = patches.reshape(grid_t * grid_h * grid_w, channel * patch_size * patch_size)
1735
+
1736
+ return flatten_patches, (grid_t, grid_h, grid_w)
1737
+
1738
+ def get_number_of_image_patches(self, height: int, width: int, images_kwargs=None):
1739
+ """
1740
+ A utility that returns number of image patches for a given image size.
1741
+
1742
+ Args:
1743
+ height (`int`):
1744
+ Height of the input image.
1745
+ width (`int`):
1746
+ Width of the input image.
1747
+ images_kwargs (`dict`, *optional*)
1748
+ Any kwargs to override defaults of the image processor.
1749
+ Returns:
1750
+ `int`: Number of image patches per image.
1751
+ """
1752
+ min_pixels = self.size["shortest_edge"]
1753
+ max_pixels = self.size["longest_edge"]
1754
+ patch_size = images_kwargs.get("patch_size", self.patch_size)
1755
+ merge_size = images_kwargs.get("merge_size", self.merge_size)
1756
+
1757
+ factor = patch_size * merge_size
1758
+ resized_height, resized_width = smart_resize(
1759
+ height, width, factor, min_pixels=min_pixels, max_pixels=max_pixels
1760
+ )
1761
+ grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
1762
+ return grid_h * grid_w
1763
+
1764
+
1765
+ class Ernie4_5_VL_MoeImageProcessorFast(Glm4vImageProcessorFast):
1766
+ size = {"shortest_edge": 56 * 56, "longest_edge": 28 * 28 * 6177}
1767
+ temporal_patch_size = None # Unused
1768
+
1769
+ def _preprocess(
1770
+ self,
1771
+ images: list["torch.Tensor"],
1772
+ do_resize: bool,
1773
+ size: SizeDict,
1774
+ interpolation: Optional["F.InterpolationMode"],
1775
+ do_rescale: bool,
1776
+ rescale_factor: float,
1777
+ do_normalize: bool,
1778
+ image_mean: float | list[float] | None,
1779
+ image_std: float | list[float] | None,
1780
+ patch_size: int,
1781
+ merge_size: int,
1782
+ disable_grouping: bool | None,
1783
+ return_tensors: str | TensorType | None,
1784
+ **kwargs,
1785
+ ):
1786
+ # Group images by size for batched resizing
1787
+ grouped_images, grouped_images_index = group_images_by_shape(images, disable_grouping=disable_grouping)
1788
+ resized_images_grouped = {}
1789
+ for shape, stacked_images in grouped_images.items():
1790
+ height, width = stacked_images.shape[-2:]
1791
+ if do_resize:
1792
+ resized_height, resized_width = smart_resize(
1793
+ height,
1794
+ width,
1795
+ factor=patch_size * merge_size,
1796
+ min_pixels=size["shortest_edge"],
1797
+ max_pixels=size["longest_edge"],
1798
+ )
1799
+ stacked_images = self.resize(
1800
+ image=stacked_images,
1801
+ size=SizeDict(height=resized_height, width=resized_width),
1802
+ interpolation=interpolation,
1803
+ )
1804
+ resized_images_grouped[shape] = stacked_images
1805
+ resized_images = reorder_images(resized_images_grouped, grouped_images_index)
1806
+
1807
+ # Group images by size for further processing
1808
+ # Needed in case do_resize is False, or resize returns images with different sizes
1809
+ grouped_images, grouped_images_index = group_images_by_shape(resized_images, disable_grouping=disable_grouping)
1810
+ processed_images_grouped = {}
1811
+ processed_grids = {}
1812
+ for shape, stacked_images in grouped_images.items():
1813
+ resized_height, resized_width = stacked_images.shape[-2:]
1814
+ # Fused rescale and normalize
1815
+ patches = self.rescale_and_normalize(
1816
+ stacked_images, do_rescale, rescale_factor, do_normalize, image_mean, image_std
1817
+ )
1818
+ if patches.ndim == 4:
1819
+ # add a temporal dimension if we have images
1820
+ patches = patches.unsqueeze(1)
1821
+
1822
+ # Main difference to Qwen2 VL - no temporal patches
1823
+ batch_size, grid_t, channel = patches.shape[:3]
1824
+ grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
1825
+
1826
+ patches = patches.view(
1827
+ batch_size,
1828
+ grid_t,
1829
+ channel,
1830
+ grid_h // merge_size,
1831
+ merge_size,
1832
+ patch_size,
1833
+ grid_w // merge_size,
1834
+ merge_size,
1835
+ patch_size,
1836
+ )
1837
+ # Reorder dimensions to group grid and patch information for subsequent flattening.
1838
+ # [batch, grid_t, grid_h/merge, grid_w/merge, merge, merge, channel, patch, patch]
1839
+ patches = patches.permute(0, 1, 3, 6, 4, 7, 2, 5, 8)
1840
+
1841
+ flatten_patches = patches.reshape(
1842
+ batch_size,
1843
+ grid_t * grid_h * grid_w,
1844
+ channel * patch_size * patch_size,
1845
+ )
1846
+
1847
+ processed_images_grouped[shape] = flatten_patches
1848
+ processed_grids[shape] = [[grid_t, grid_h, grid_w]] * batch_size
1849
+
1850
+ processed_images = reorder_images(processed_images_grouped, grouped_images_index)
1851
+ processed_grids = reorder_images(processed_grids, grouped_images_index)
1852
+ pixel_values = torch.cat(processed_images, dim=0)
1853
+ image_grid_thw = torch.tensor(processed_grids)
1854
+
1855
+ return BatchFeature(
1856
+ data={"pixel_values": pixel_values, "image_grid_thw": image_grid_thw}, tensor_type=return_tensors
1857
+ )
1858
+
1859
+ def get_number_of_image_patches(self, height: int, width: int, images_kwargs=None):
1860
+ """
1861
+ A utility that returns number of image patches for a given image size.
1862
+
1863
+ Note: Do not remove this method! It is used by vLLM to infer the number of patches and placeholders
1864
+ without an image input.
1865
+
1866
+ Args:
1867
+ height (`int`):
1868
+ Height of the input image.
1869
+ width (`int`):
1870
+ Width of the input image.
1871
+ images_kwargs (`dict`, *optional*)
1872
+ Any kwargs to override defaults of the image processor.
1873
+ Returns:
1874
+ `int`: Number of image patches per image.
1875
+ """
1876
+ min_pixels = self.size["shortest_edge"]
1877
+ max_pixels = self.size["longest_edge"]
1878
+ patch_size = images_kwargs.get("patch_size", self.patch_size)
1879
+ merge_size = images_kwargs.get("merge_size", self.merge_size)
1880
+
1881
+ factor = patch_size * merge_size
1882
+ resized_height, resized_width = smart_resize(
1883
+ height, width, factor, min_pixels=min_pixels, max_pixels=max_pixels
1884
+ )
1885
+ grid_h, grid_w = resized_height // patch_size, resized_width // patch_size
1886
+ return grid_h * grid_w
1887
+
1888
+
1889
+ __all__ = [
1890
+ "Ernie4_5_VL_MoeConfig",
1891
+ "Ernie4_5_VL_MoeTextConfig",
1892
+ "Ernie4_5_VL_MoeVisionConfig",
1893
+ "Ernie4_5_VL_MoePreTrainedModel",
1894
+ "Ernie4_5_VL_MoeForConditionalGeneration",
1895
+ "Ernie4_5_VL_MoeModel",
1896
+ "Ernie4_5_VL_MoeTextModel",
1897
+ "Ernie4_5_VL_MoeVisionTransformerPretrainedModel",
1898
+ "Ernie4_5_VL_MoeVariableResolutionResamplerModel",
1899
+ "Ernie4_5_VL_MoeImageProcessor",
1900
+ "Ernie4_5_VL_MoeImageProcessorFast",
1901
+ ]