transformers 5.0.0rc1__py3-none-any.whl → 5.0.0rc3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +27 -27
- transformers/activations.py +1 -1
- transformers/audio_utils.py +32 -33
- transformers/cache_utils.py +32 -139
- transformers/cli/chat.py +3 -3
- transformers/cli/serve.py +2 -2
- transformers/cli/transformers.py +2 -1
- transformers/configuration_utils.py +143 -101
- transformers/conversion_mapping.py +73 -6
- transformers/convert_slow_tokenizer.py +3 -8
- transformers/core_model_loading.py +215 -50
- transformers/data/processors/glue.py +0 -1
- transformers/data/processors/utils.py +0 -1
- transformers/data/processors/xnli.py +0 -1
- transformers/dependency_versions_table.py +5 -5
- transformers/distributed/configuration_utils.py +1 -2
- transformers/dynamic_module_utils.py +23 -23
- transformers/feature_extraction_sequence_utils.py +19 -23
- transformers/feature_extraction_utils.py +63 -31
- transformers/generation/candidate_generator.py +80 -33
- transformers/generation/configuration_utils.py +186 -131
- transformers/generation/continuous_batching/__init__.py +0 -1
- transformers/generation/continuous_batching/cache.py +81 -24
- transformers/generation/continuous_batching/cache_manager.py +155 -45
- transformers/generation/continuous_batching/continuous_api.py +152 -84
- transformers/generation/continuous_batching/requests.py +51 -3
- transformers/generation/continuous_batching/scheduler.py +127 -52
- transformers/generation/logits_process.py +0 -128
- transformers/generation/stopping_criteria.py +1 -1
- transformers/generation/streamers.py +0 -1
- transformers/generation/utils.py +107 -119
- transformers/generation/watermarking.py +8 -6
- transformers/hf_argparser.py +9 -13
- transformers/hyperparameter_search.py +1 -2
- transformers/image_processing_base.py +11 -21
- transformers/image_processing_utils.py +11 -12
- transformers/image_processing_utils_fast.py +68 -57
- transformers/image_transforms.py +29 -29
- transformers/image_utils.py +30 -32
- transformers/initialization.py +37 -0
- transformers/integrations/__init__.py +12 -0
- transformers/integrations/accelerate.py +44 -111
- transformers/integrations/aqlm.py +3 -5
- transformers/integrations/awq.py +3 -8
- transformers/integrations/bitnet.py +5 -8
- transformers/integrations/bitsandbytes.py +16 -15
- transformers/integrations/deepspeed.py +19 -4
- transformers/integrations/eetq.py +3 -6
- transformers/integrations/fbgemm_fp8.py +2 -3
- transformers/integrations/finegrained_fp8.py +14 -23
- transformers/integrations/flash_attention.py +2 -2
- transformers/integrations/flex_attention.py +1 -1
- transformers/integrations/fp_quant.py +4 -6
- transformers/integrations/ggml.py +0 -1
- transformers/integrations/higgs.py +2 -5
- transformers/integrations/hub_kernels.py +23 -5
- transformers/integrations/integration_utils.py +37 -3
- transformers/integrations/mistral.py +12 -0
- transformers/integrations/moe.py +240 -0
- transformers/integrations/mxfp4.py +9 -16
- transformers/integrations/peft.py +5 -0
- transformers/integrations/quanto.py +5 -2
- transformers/integrations/quark.py +2 -4
- transformers/integrations/spqr.py +3 -5
- transformers/integrations/tensor_parallel.py +167 -221
- transformers/integrations/torchao.py +4 -6
- transformers/integrations/vptq.py +3 -5
- transformers/loss/loss_lw_detr.py +356 -0
- transformers/loss/loss_utils.py +2 -0
- transformers/masking_utils.py +47 -51
- transformers/model_debugging_utils.py +4 -5
- transformers/modelcard.py +14 -192
- transformers/modeling_attn_mask_utils.py +19 -19
- transformers/modeling_flash_attention_utils.py +27 -27
- transformers/modeling_gguf_pytorch_utils.py +71 -24
- transformers/modeling_layers.py +21 -22
- transformers/modeling_outputs.py +242 -253
- transformers/modeling_rope_utils.py +110 -113
- transformers/modeling_utils.py +633 -576
- transformers/models/__init__.py +23 -0
- transformers/models/afmoe/configuration_afmoe.py +26 -29
- transformers/models/afmoe/modeling_afmoe.py +37 -49
- transformers/models/afmoe/modular_afmoe.py +21 -31
- transformers/models/aimv2/configuration_aimv2.py +2 -5
- transformers/models/aimv2/modeling_aimv2.py +24 -21
- transformers/models/aimv2/modular_aimv2.py +11 -9
- transformers/models/albert/configuration_albert.py +0 -1
- transformers/models/albert/modeling_albert.py +70 -69
- transformers/models/albert/tokenization_albert.py +1 -4
- transformers/models/align/configuration_align.py +0 -1
- transformers/models/align/modeling_align.py +73 -68
- transformers/models/align/processing_align.py +2 -30
- transformers/models/altclip/configuration_altclip.py +0 -1
- transformers/models/altclip/modeling_altclip.py +83 -80
- transformers/models/altclip/processing_altclip.py +2 -15
- transformers/models/apertus/__init__.py +0 -1
- transformers/models/apertus/configuration_apertus.py +18 -21
- transformers/models/apertus/modeling_apertus.py +35 -36
- transformers/models/apertus/modular_apertus.py +32 -31
- transformers/models/arcee/configuration_arcee.py +20 -23
- transformers/models/arcee/modeling_arcee.py +32 -35
- transformers/models/arcee/modular_arcee.py +20 -23
- transformers/models/aria/configuration_aria.py +20 -23
- transformers/models/aria/image_processing_aria.py +25 -27
- transformers/models/aria/modeling_aria.py +71 -70
- transformers/models/aria/modular_aria.py +85 -88
- transformers/models/aria/processing_aria.py +28 -35
- transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +0 -1
- transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py +3 -6
- transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +6 -8
- transformers/models/audioflamingo3/__init__.py +0 -1
- transformers/models/audioflamingo3/configuration_audioflamingo3.py +0 -1
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +22 -23
- transformers/models/audioflamingo3/modular_audioflamingo3.py +12 -17
- transformers/models/audioflamingo3/processing_audioflamingo3.py +33 -30
- transformers/models/auto/auto_factory.py +5 -6
- transformers/models/auto/configuration_auto.py +53 -5
- transformers/models/auto/feature_extraction_auto.py +12 -10
- transformers/models/auto/image_processing_auto.py +17 -28
- transformers/models/auto/modeling_auto.py +38 -188
- transformers/models/auto/processing_auto.py +6 -1
- transformers/models/auto/tokenization_auto.py +147 -169
- transformers/models/auto/video_processing_auto.py +12 -10
- transformers/models/autoformer/configuration_autoformer.py +4 -7
- transformers/models/autoformer/modeling_autoformer.py +98 -100
- transformers/models/aya_vision/configuration_aya_vision.py +0 -1
- transformers/models/aya_vision/modeling_aya_vision.py +42 -40
- transformers/models/aya_vision/modular_aya_vision.py +26 -29
- transformers/models/aya_vision/processing_aya_vision.py +25 -53
- transformers/models/bamba/configuration_bamba.py +29 -32
- transformers/models/bamba/modeling_bamba.py +78 -83
- transformers/models/bamba/modular_bamba.py +68 -71
- transformers/models/bark/configuration_bark.py +4 -7
- transformers/models/bark/generation_configuration_bark.py +3 -5
- transformers/models/bark/modeling_bark.py +49 -55
- transformers/models/bark/processing_bark.py +19 -41
- transformers/models/bart/configuration_bart.py +0 -2
- transformers/models/bart/modeling_bart.py +122 -117
- transformers/models/barthez/tokenization_barthez.py +1 -4
- transformers/models/bartpho/tokenization_bartpho.py +6 -7
- transformers/models/beit/configuration_beit.py +0 -11
- transformers/models/beit/image_processing_beit.py +53 -56
- transformers/models/beit/image_processing_beit_fast.py +8 -10
- transformers/models/beit/modeling_beit.py +51 -53
- transformers/models/bert/configuration_bert.py +0 -1
- transformers/models/bert/modeling_bert.py +114 -122
- transformers/models/bert/tokenization_bert.py +2 -4
- transformers/models/bert/tokenization_bert_legacy.py +3 -5
- transformers/models/bert_generation/configuration_bert_generation.py +0 -1
- transformers/models/bert_generation/modeling_bert_generation.py +49 -49
- transformers/models/bert_generation/tokenization_bert_generation.py +2 -3
- transformers/models/bert_japanese/tokenization_bert_japanese.py +5 -6
- transformers/models/bertweet/tokenization_bertweet.py +1 -3
- transformers/models/big_bird/configuration_big_bird.py +0 -1
- transformers/models/big_bird/modeling_big_bird.py +110 -109
- transformers/models/big_bird/tokenization_big_bird.py +1 -4
- transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py +0 -1
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +116 -111
- transformers/models/biogpt/configuration_biogpt.py +0 -1
- transformers/models/biogpt/modeling_biogpt.py +69 -71
- transformers/models/biogpt/modular_biogpt.py +59 -61
- transformers/models/biogpt/tokenization_biogpt.py +3 -5
- transformers/models/bit/configuration_bit.py +0 -1
- transformers/models/bit/image_processing_bit.py +21 -24
- transformers/models/bit/image_processing_bit_fast.py +0 -1
- transformers/models/bit/modeling_bit.py +14 -12
- transformers/models/bitnet/configuration_bitnet.py +18 -21
- transformers/models/bitnet/modeling_bitnet.py +32 -35
- transformers/models/bitnet/modular_bitnet.py +4 -6
- transformers/models/blenderbot/configuration_blenderbot.py +0 -1
- transformers/models/blenderbot/modeling_blenderbot.py +71 -95
- transformers/models/blenderbot/tokenization_blenderbot.py +6 -8
- transformers/models/blenderbot_small/configuration_blenderbot_small.py +0 -1
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +73 -68
- transformers/models/blenderbot_small/tokenization_blenderbot_small.py +1 -3
- transformers/models/blip/configuration_blip.py +0 -1
- transformers/models/blip/image_processing_blip.py +17 -20
- transformers/models/blip/image_processing_blip_fast.py +0 -1
- transformers/models/blip/modeling_blip.py +62 -71
- transformers/models/blip/modeling_blip_text.py +71 -65
- transformers/models/blip/processing_blip.py +5 -36
- transformers/models/blip_2/configuration_blip_2.py +0 -1
- transformers/models/blip_2/modeling_blip_2.py +72 -71
- transformers/models/blip_2/processing_blip_2.py +8 -38
- transformers/models/bloom/configuration_bloom.py +0 -1
- transformers/models/bloom/modeling_bloom.py +71 -103
- transformers/models/blt/configuration_blt.py +71 -74
- transformers/models/blt/modeling_blt.py +235 -78
- transformers/models/blt/modular_blt.py +225 -62
- transformers/models/bridgetower/configuration_bridgetower.py +0 -1
- transformers/models/bridgetower/image_processing_bridgetower.py +34 -35
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +7 -10
- transformers/models/bridgetower/modeling_bridgetower.py +113 -109
- transformers/models/bridgetower/processing_bridgetower.py +2 -16
- transformers/models/bros/configuration_bros.py +0 -1
- transformers/models/bros/modeling_bros.py +86 -80
- transformers/models/bros/processing_bros.py +2 -12
- transformers/models/byt5/tokenization_byt5.py +4 -6
- transformers/models/camembert/configuration_camembert.py +0 -1
- transformers/models/camembert/modeling_camembert.py +196 -195
- transformers/models/camembert/modular_camembert.py +51 -54
- transformers/models/camembert/tokenization_camembert.py +1 -4
- transformers/models/canine/configuration_canine.py +0 -1
- transformers/models/canine/modeling_canine.py +79 -75
- transformers/models/canine/tokenization_canine.py +2 -1
- transformers/models/chameleon/configuration_chameleon.py +24 -27
- transformers/models/chameleon/image_processing_chameleon.py +21 -24
- transformers/models/chameleon/image_processing_chameleon_fast.py +0 -1
- transformers/models/chameleon/modeling_chameleon.py +62 -60
- transformers/models/chameleon/processing_chameleon.py +16 -41
- transformers/models/chinese_clip/configuration_chinese_clip.py +0 -1
- transformers/models/chinese_clip/image_processing_chinese_clip.py +21 -24
- transformers/models/chinese_clip/image_processing_chinese_clip_fast.py +0 -1
- transformers/models/chinese_clip/modeling_chinese_clip.py +71 -69
- transformers/models/chinese_clip/processing_chinese_clip.py +2 -15
- transformers/models/clap/configuration_clap.py +0 -1
- transformers/models/clap/feature_extraction_clap.py +11 -12
- transformers/models/clap/modeling_clap.py +113 -104
- transformers/models/clap/processing_clap.py +2 -15
- transformers/models/clip/configuration_clip.py +0 -1
- transformers/models/clip/image_processing_clip.py +21 -24
- transformers/models/clip/image_processing_clip_fast.py +0 -1
- transformers/models/clip/modeling_clip.py +47 -46
- transformers/models/clip/processing_clip.py +2 -14
- transformers/models/clip/tokenization_clip.py +2 -5
- transformers/models/clipseg/configuration_clipseg.py +0 -1
- transformers/models/clipseg/modeling_clipseg.py +90 -87
- transformers/models/clipseg/processing_clipseg.py +8 -39
- transformers/models/clvp/configuration_clvp.py +1 -3
- transformers/models/clvp/feature_extraction_clvp.py +7 -10
- transformers/models/clvp/modeling_clvp.py +133 -118
- transformers/models/clvp/number_normalizer.py +1 -2
- transformers/models/clvp/processing_clvp.py +3 -20
- transformers/models/clvp/tokenization_clvp.py +0 -1
- transformers/models/code_llama/tokenization_code_llama.py +4 -7
- transformers/models/codegen/configuration_codegen.py +0 -1
- transformers/models/codegen/modeling_codegen.py +61 -52
- transformers/models/codegen/tokenization_codegen.py +5 -6
- transformers/models/cohere/configuration_cohere.py +20 -23
- transformers/models/cohere/modeling_cohere.py +36 -39
- transformers/models/cohere/modular_cohere.py +24 -28
- transformers/models/cohere/tokenization_cohere.py +5 -6
- transformers/models/cohere2/configuration_cohere2.py +21 -24
- transformers/models/cohere2/modeling_cohere2.py +35 -38
- transformers/models/cohere2/modular_cohere2.py +39 -41
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +6 -8
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +35 -33
- transformers/models/cohere2_vision/modular_cohere2_vision.py +21 -23
- transformers/models/cohere2_vision/processing_cohere2_vision.py +6 -36
- transformers/models/colpali/configuration_colpali.py +0 -1
- transformers/models/colpali/modeling_colpali.py +14 -16
- transformers/models/colpali/modular_colpali.py +11 -51
- transformers/models/colpali/processing_colpali.py +14 -52
- transformers/models/colqwen2/modeling_colqwen2.py +20 -22
- transformers/models/colqwen2/modular_colqwen2.py +29 -68
- transformers/models/colqwen2/processing_colqwen2.py +16 -52
- transformers/models/conditional_detr/configuration_conditional_detr.py +1 -2
- transformers/models/conditional_detr/image_processing_conditional_detr.py +64 -66
- transformers/models/conditional_detr/image_processing_conditional_detr_fast.py +22 -22
- transformers/models/conditional_detr/modeling_conditional_detr.py +82 -81
- transformers/models/conditional_detr/modular_conditional_detr.py +1 -3
- transformers/models/convbert/configuration_convbert.py +0 -1
- transformers/models/convbert/modeling_convbert.py +88 -87
- transformers/models/convbert/tokenization_convbert.py +0 -1
- transformers/models/convnext/configuration_convnext.py +0 -1
- transformers/models/convnext/image_processing_convnext.py +20 -23
- transformers/models/convnext/image_processing_convnext_fast.py +14 -19
- transformers/models/convnext/modeling_convnext.py +5 -8
- transformers/models/convnextv2/configuration_convnextv2.py +0 -1
- transformers/models/convnextv2/modeling_convnextv2.py +5 -8
- transformers/models/cpm/tokenization_cpm.py +6 -7
- transformers/models/cpm/tokenization_cpm_fast.py +3 -5
- transformers/models/cpmant/configuration_cpmant.py +0 -1
- transformers/models/cpmant/modeling_cpmant.py +38 -40
- transformers/models/cpmant/tokenization_cpmant.py +1 -3
- transformers/models/csm/configuration_csm.py +49 -51
- transformers/models/csm/generation_csm.py +31 -35
- transformers/models/csm/modeling_csm.py +81 -82
- transformers/models/csm/modular_csm.py +58 -58
- transformers/models/csm/processing_csm.py +25 -68
- transformers/models/ctrl/configuration_ctrl.py +0 -1
- transformers/models/ctrl/modeling_ctrl.py +52 -43
- transformers/models/ctrl/tokenization_ctrl.py +0 -1
- transformers/models/cvt/configuration_cvt.py +0 -1
- transformers/models/cvt/modeling_cvt.py +18 -16
- transformers/models/cwm/__init__.py +0 -1
- transformers/models/cwm/configuration_cwm.py +3 -5
- transformers/models/cwm/modeling_cwm.py +33 -35
- transformers/models/cwm/modular_cwm.py +10 -12
- transformers/models/d_fine/configuration_d_fine.py +3 -5
- transformers/models/d_fine/modeling_d_fine.py +127 -121
- transformers/models/d_fine/modular_d_fine.py +23 -13
- transformers/models/dab_detr/configuration_dab_detr.py +2 -3
- transformers/models/dab_detr/modeling_dab_detr.py +69 -71
- transformers/models/dac/configuration_dac.py +0 -1
- transformers/models/dac/feature_extraction_dac.py +6 -9
- transformers/models/dac/modeling_dac.py +21 -23
- transformers/models/data2vec/configuration_data2vec_audio.py +0 -1
- transformers/models/data2vec/configuration_data2vec_text.py +0 -1
- transformers/models/data2vec/configuration_data2vec_vision.py +0 -1
- transformers/models/data2vec/modeling_data2vec_audio.py +52 -56
- transformers/models/data2vec/modeling_data2vec_text.py +98 -93
- transformers/models/data2vec/modeling_data2vec_vision.py +41 -42
- transformers/models/data2vec/modular_data2vec_audio.py +6 -1
- transformers/models/data2vec/modular_data2vec_text.py +58 -54
- transformers/models/dbrx/configuration_dbrx.py +27 -20
- transformers/models/dbrx/modeling_dbrx.py +40 -43
- transformers/models/dbrx/modular_dbrx.py +31 -33
- transformers/models/deberta/configuration_deberta.py +0 -1
- transformers/models/deberta/modeling_deberta.py +59 -60
- transformers/models/deberta/tokenization_deberta.py +2 -5
- transformers/models/deberta_v2/configuration_deberta_v2.py +0 -1
- transformers/models/deberta_v2/modeling_deberta_v2.py +65 -65
- transformers/models/deberta_v2/tokenization_deberta_v2.py +1 -4
- transformers/models/decision_transformer/configuration_decision_transformer.py +0 -1
- transformers/models/decision_transformer/modeling_decision_transformer.py +56 -55
- transformers/models/deepseek_v2/configuration_deepseek_v2.py +34 -37
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +39 -37
- transformers/models/deepseek_v2/modular_deepseek_v2.py +44 -44
- transformers/models/deepseek_v3/configuration_deepseek_v3.py +35 -38
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +40 -38
- transformers/models/deepseek_v3/modular_deepseek_v3.py +10 -7
- transformers/models/deepseek_vl/configuration_deepseek_vl.py +2 -3
- transformers/models/deepseek_vl/image_processing_deepseek_vl.py +25 -26
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +7 -7
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +40 -36
- transformers/models/deepseek_vl/modular_deepseek_vl.py +14 -43
- transformers/models/deepseek_vl/processing_deepseek_vl.py +10 -41
- transformers/models/deepseek_vl_hybrid/configuration_deepseek_vl_hybrid.py +3 -5
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid.py +35 -35
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +16 -20
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +42 -38
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +80 -99
- transformers/models/deepseek_vl_hybrid/processing_deepseek_vl_hybrid.py +12 -44
- transformers/models/deformable_detr/configuration_deformable_detr.py +2 -3
- transformers/models/deformable_detr/image_processing_deformable_detr.py +59 -61
- transformers/models/deformable_detr/image_processing_deformable_detr_fast.py +17 -17
- transformers/models/deformable_detr/modeling_deformable_detr.py +67 -68
- transformers/models/deformable_detr/modular_deformable_detr.py +1 -3
- transformers/models/deit/configuration_deit.py +0 -1
- transformers/models/deit/image_processing_deit.py +18 -21
- transformers/models/deit/image_processing_deit_fast.py +0 -1
- transformers/models/deit/modeling_deit.py +16 -18
- transformers/models/depth_anything/configuration_depth_anything.py +2 -4
- transformers/models/depth_anything/modeling_depth_anything.py +5 -8
- transformers/models/depth_pro/configuration_depth_pro.py +0 -1
- transformers/models/depth_pro/image_processing_depth_pro.py +22 -23
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +6 -8
- transformers/models/depth_pro/modeling_depth_pro.py +21 -23
- transformers/models/detr/configuration_detr.py +1 -2
- transformers/models/detr/image_processing_detr.py +64 -66
- transformers/models/detr/image_processing_detr_fast.py +22 -23
- transformers/models/detr/modeling_detr.py +78 -73
- transformers/models/dia/configuration_dia.py +5 -8
- transformers/models/dia/feature_extraction_dia.py +6 -9
- transformers/models/dia/generation_dia.py +42 -45
- transformers/models/dia/modeling_dia.py +73 -65
- transformers/models/dia/modular_dia.py +63 -54
- transformers/models/dia/processing_dia.py +39 -29
- transformers/models/dia/tokenization_dia.py +3 -6
- transformers/models/diffllama/configuration_diffllama.py +20 -23
- transformers/models/diffllama/modeling_diffllama.py +44 -47
- transformers/models/diffllama/modular_diffllama.py +17 -19
- transformers/models/dinat/configuration_dinat.py +0 -1
- transformers/models/dinat/modeling_dinat.py +40 -42
- transformers/models/dinov2/configuration_dinov2.py +0 -1
- transformers/models/dinov2/modeling_dinov2.py +11 -13
- transformers/models/dinov2_with_registers/configuration_dinov2_with_registers.py +1 -1
- transformers/models/dinov2_with_registers/modeling_dinov2_with_registers.py +12 -13
- transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py +5 -7
- transformers/models/dinov3_convnext/configuration_dinov3_convnext.py +4 -7
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +3 -6
- transformers/models/dinov3_vit/configuration_dinov3_vit.py +5 -8
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +5 -7
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +17 -16
- transformers/models/dinov3_vit/modular_dinov3_vit.py +14 -13
- transformers/models/distilbert/configuration_distilbert.py +0 -1
- transformers/models/distilbert/modeling_distilbert.py +55 -55
- transformers/models/distilbert/tokenization_distilbert.py +0 -1
- transformers/models/doge/__init__.py +0 -1
- transformers/models/doge/configuration_doge.py +25 -28
- transformers/models/doge/modeling_doge.py +43 -46
- transformers/models/doge/modular_doge.py +57 -58
- transformers/models/donut/configuration_donut_swin.py +0 -1
- transformers/models/donut/image_processing_donut.py +26 -29
- transformers/models/donut/image_processing_donut_fast.py +5 -11
- transformers/models/donut/modeling_donut_swin.py +60 -58
- transformers/models/donut/processing_donut.py +5 -26
- transformers/models/dots1/configuration_dots1.py +27 -29
- transformers/models/dots1/modeling_dots1.py +45 -39
- transformers/models/dots1/modular_dots1.py +0 -1
- transformers/models/dpr/configuration_dpr.py +0 -1
- transformers/models/dpr/modeling_dpr.py +37 -39
- transformers/models/dpr/tokenization_dpr.py +7 -9
- transformers/models/dpr/tokenization_dpr_fast.py +7 -9
- transformers/models/dpt/configuration_dpt.py +1 -2
- transformers/models/dpt/image_processing_dpt.py +65 -66
- transformers/models/dpt/image_processing_dpt_fast.py +14 -16
- transformers/models/dpt/modeling_dpt.py +19 -21
- transformers/models/dpt/modular_dpt.py +11 -13
- transformers/models/edgetam/configuration_edgetam.py +1 -2
- transformers/models/edgetam/modeling_edgetam.py +44 -43
- transformers/models/edgetam/modular_edgetam.py +17 -20
- transformers/models/edgetam_video/__init__.py +0 -1
- transformers/models/edgetam_video/configuration_edgetam_video.py +0 -1
- transformers/models/edgetam_video/modeling_edgetam_video.py +131 -120
- transformers/models/edgetam_video/modular_edgetam_video.py +29 -37
- transformers/models/efficientloftr/configuration_efficientloftr.py +4 -5
- transformers/models/efficientloftr/image_processing_efficientloftr.py +14 -16
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +5 -6
- transformers/models/efficientloftr/modeling_efficientloftr.py +41 -30
- transformers/models/efficientloftr/modular_efficientloftr.py +1 -3
- transformers/models/efficientnet/configuration_efficientnet.py +0 -1
- transformers/models/efficientnet/image_processing_efficientnet.py +28 -32
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +15 -17
- transformers/models/efficientnet/modeling_efficientnet.py +17 -15
- transformers/models/electra/configuration_electra.py +0 -1
- transformers/models/electra/modeling_electra.py +108 -103
- transformers/models/emu3/configuration_emu3.py +5 -7
- transformers/models/emu3/image_processing_emu3.py +44 -39
- transformers/models/emu3/modeling_emu3.py +67 -64
- transformers/models/emu3/modular_emu3.py +39 -35
- transformers/models/emu3/processing_emu3.py +18 -43
- transformers/models/encodec/configuration_encodec.py +2 -4
- transformers/models/encodec/feature_extraction_encodec.py +10 -13
- transformers/models/encodec/modeling_encodec.py +39 -29
- transformers/models/encoder_decoder/configuration_encoder_decoder.py +0 -1
- transformers/models/encoder_decoder/modeling_encoder_decoder.py +17 -19
- transformers/models/eomt/configuration_eomt.py +0 -1
- transformers/models/eomt/image_processing_eomt.py +53 -55
- transformers/models/eomt/image_processing_eomt_fast.py +59 -28
- transformers/models/eomt/modeling_eomt.py +23 -18
- transformers/models/eomt/modular_eomt.py +18 -13
- transformers/models/ernie/configuration_ernie.py +0 -1
- transformers/models/ernie/modeling_ernie.py +127 -132
- transformers/models/ernie/modular_ernie.py +97 -103
- transformers/models/ernie4_5/configuration_ernie4_5.py +18 -20
- transformers/models/ernie4_5/modeling_ernie4_5.py +32 -34
- transformers/models/ernie4_5/modular_ernie4_5.py +1 -3
- transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py +27 -29
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +52 -51
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +16 -44
- transformers/models/ernie4_5_vl_moe/__init__.py +31 -0
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +329 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +455 -0
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +231 -0
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +1895 -0
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +1901 -0
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +249 -0
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +593 -0
- transformers/models/esm/configuration_esm.py +2 -4
- transformers/models/esm/modeling_esm.py +38 -34
- transformers/models/esm/modeling_esmfold.py +48 -45
- transformers/models/esm/openfold_utils/chunk_utils.py +6 -6
- transformers/models/esm/openfold_utils/loss.py +1 -2
- transformers/models/esm/openfold_utils/protein.py +13 -13
- transformers/models/esm/openfold_utils/tensor_utils.py +6 -6
- transformers/models/esm/tokenization_esm.py +2 -4
- transformers/models/evolla/configuration_evolla.py +29 -32
- transformers/models/evolla/modeling_evolla.py +67 -62
- transformers/models/evolla/modular_evolla.py +53 -47
- transformers/models/evolla/processing_evolla.py +23 -35
- transformers/models/exaone4/configuration_exaone4.py +19 -22
- transformers/models/exaone4/modeling_exaone4.py +33 -36
- transformers/models/exaone4/modular_exaone4.py +40 -42
- transformers/models/falcon/configuration_falcon.py +22 -25
- transformers/models/falcon/modeling_falcon.py +75 -78
- transformers/models/falcon_h1/configuration_falcon_h1.py +40 -43
- transformers/models/falcon_h1/modeling_falcon_h1.py +80 -78
- transformers/models/falcon_h1/modular_falcon_h1.py +54 -50
- transformers/models/falcon_mamba/configuration_falcon_mamba.py +0 -1
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +50 -47
- transformers/models/falcon_mamba/modular_falcon_mamba.py +16 -14
- transformers/models/fast_vlm/configuration_fast_vlm.py +1 -0
- transformers/models/fast_vlm/modeling_fast_vlm.py +43 -39
- transformers/models/fast_vlm/modular_fast_vlm.py +2 -3
- transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py +2 -5
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +68 -57
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +2 -3
- transformers/models/flaubert/configuration_flaubert.py +0 -1
- transformers/models/flaubert/modeling_flaubert.py +138 -143
- transformers/models/flaubert/tokenization_flaubert.py +3 -5
- transformers/models/flava/configuration_flava.py +5 -6
- transformers/models/flava/image_processing_flava.py +66 -67
- transformers/models/flava/image_processing_flava_fast.py +42 -45
- transformers/models/flava/modeling_flava.py +111 -107
- transformers/models/flava/processing_flava.py +2 -12
- transformers/models/flex_olmo/__init__.py +0 -1
- transformers/models/flex_olmo/configuration_flex_olmo.py +23 -25
- transformers/models/flex_olmo/modeling_flex_olmo.py +44 -43
- transformers/models/flex_olmo/modular_flex_olmo.py +35 -37
- transformers/models/florence2/configuration_florence2.py +0 -1
- transformers/models/florence2/modeling_florence2.py +59 -43
- transformers/models/florence2/modular_florence2.py +65 -81
- transformers/models/florence2/processing_florence2.py +18 -47
- transformers/models/fnet/configuration_fnet.py +0 -1
- transformers/models/fnet/modeling_fnet.py +76 -80
- transformers/models/fnet/tokenization_fnet.py +0 -1
- transformers/models/focalnet/configuration_focalnet.py +0 -1
- transformers/models/focalnet/modeling_focalnet.py +39 -41
- transformers/models/fsmt/configuration_fsmt.py +0 -1
- transformers/models/fsmt/modeling_fsmt.py +47 -48
- transformers/models/fsmt/tokenization_fsmt.py +3 -5
- transformers/models/funnel/configuration_funnel.py +0 -1
- transformers/models/funnel/modeling_funnel.py +91 -93
- transformers/models/funnel/tokenization_funnel.py +2 -5
- transformers/models/fuyu/configuration_fuyu.py +23 -26
- transformers/models/fuyu/image_processing_fuyu.py +29 -31
- transformers/models/fuyu/image_processing_fuyu_fast.py +12 -13
- transformers/models/fuyu/modeling_fuyu.py +29 -30
- transformers/models/fuyu/processing_fuyu.py +23 -34
- transformers/models/gemma/configuration_gemma.py +20 -23
- transformers/models/gemma/modeling_gemma.py +42 -46
- transformers/models/gemma/modular_gemma.py +37 -40
- transformers/models/gemma/tokenization_gemma.py +3 -6
- transformers/models/gemma2/configuration_gemma2.py +25 -28
- transformers/models/gemma2/modeling_gemma2.py +35 -38
- transformers/models/gemma2/modular_gemma2.py +56 -58
- transformers/models/gemma3/configuration_gemma3.py +28 -29
- transformers/models/gemma3/image_processing_gemma3.py +29 -31
- transformers/models/gemma3/image_processing_gemma3_fast.py +9 -11
- transformers/models/gemma3/modeling_gemma3.py +112 -94
- transformers/models/gemma3/modular_gemma3.py +110 -91
- transformers/models/gemma3/processing_gemma3.py +5 -5
- transformers/models/gemma3n/configuration_gemma3n.py +12 -10
- transformers/models/gemma3n/feature_extraction_gemma3n.py +9 -11
- transformers/models/gemma3n/modeling_gemma3n.py +127 -98
- transformers/models/gemma3n/modular_gemma3n.py +117 -84
- transformers/models/gemma3n/processing_gemma3n.py +12 -26
- transformers/models/git/configuration_git.py +0 -1
- transformers/models/git/modeling_git.py +250 -197
- transformers/models/git/processing_git.py +2 -14
- transformers/models/glm/configuration_glm.py +19 -21
- transformers/models/glm/modeling_glm.py +33 -36
- transformers/models/glm/modular_glm.py +4 -7
- transformers/models/glm4/configuration_glm4.py +19 -21
- transformers/models/glm4/modeling_glm4.py +36 -38
- transformers/models/glm4/modular_glm4.py +8 -10
- transformers/models/glm46v/configuration_glm46v.py +0 -1
- transformers/models/glm46v/image_processing_glm46v.py +35 -40
- transformers/models/glm46v/image_processing_glm46v_fast.py +7 -7
- transformers/models/glm46v/modeling_glm46v.py +54 -52
- transformers/models/glm46v/modular_glm46v.py +4 -3
- transformers/models/glm46v/processing_glm46v.py +7 -41
- transformers/models/glm46v/video_processing_glm46v.py +9 -11
- transformers/models/glm4_moe/configuration_glm4_moe.py +25 -28
- transformers/models/glm4_moe/modeling_glm4_moe.py +41 -40
- transformers/models/glm4_moe/modular_glm4_moe.py +27 -30
- transformers/models/glm4_moe_lite/__init__.py +28 -0
- transformers/models/glm4_moe_lite/configuration_glm4_moe_lite.py +235 -0
- transformers/models/glm4_moe_lite/modeling_glm4_moe_lite.py +740 -0
- transformers/models/glm4_moe_lite/modular_glm4_moe_lite.py +304 -0
- transformers/models/glm4v/configuration_glm4v.py +14 -17
- transformers/models/glm4v/image_processing_glm4v.py +34 -40
- transformers/models/glm4v/image_processing_glm4v_fast.py +6 -7
- transformers/models/glm4v/modeling_glm4v.py +148 -156
- transformers/models/glm4v/modular_glm4v.py +142 -185
- transformers/models/glm4v/processing_glm4v.py +7 -41
- transformers/models/glm4v/video_processing_glm4v.py +9 -11
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +119 -122
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +275 -319
- transformers/models/glm4v_moe/modular_glm4v_moe.py +66 -163
- transformers/models/glm_image/__init__.py +31 -0
- transformers/models/glm_image/configuration_glm_image.py +352 -0
- transformers/models/glm_image/image_processing_glm_image.py +503 -0
- transformers/models/glm_image/image_processing_glm_image_fast.py +296 -0
- transformers/models/glm_image/modeling_glm_image.py +1590 -0
- transformers/models/glm_image/modular_glm_image.py +1480 -0
- transformers/models/glm_image/processing_glm_image.py +217 -0
- transformers/models/glmasr/__init__.py +29 -0
- transformers/models/glmasr/configuration_glmasr.py +196 -0
- transformers/models/glmasr/modeling_glmasr.py +511 -0
- transformers/models/glmasr/modular_glmasr.py +431 -0
- transformers/models/glmasr/processing_glmasr.py +331 -0
- transformers/models/glpn/configuration_glpn.py +0 -1
- transformers/models/glpn/image_processing_glpn.py +11 -12
- transformers/models/glpn/image_processing_glpn_fast.py +8 -10
- transformers/models/glpn/modeling_glpn.py +10 -12
- transformers/models/got_ocr2/configuration_got_ocr2.py +5 -8
- transformers/models/got_ocr2/image_processing_got_ocr2.py +22 -24
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +6 -8
- transformers/models/got_ocr2/modeling_got_ocr2.py +48 -45
- transformers/models/got_ocr2/modular_got_ocr2.py +31 -34
- transformers/models/got_ocr2/processing_got_ocr2.py +42 -63
- transformers/models/gpt2/configuration_gpt2.py +0 -1
- transformers/models/gpt2/modeling_gpt2.py +114 -113
- transformers/models/gpt2/tokenization_gpt2.py +6 -9
- transformers/models/gpt_bigcode/configuration_gpt_bigcode.py +0 -1
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +76 -88
- transformers/models/gpt_neo/configuration_gpt_neo.py +0 -1
- transformers/models/gpt_neo/modeling_gpt_neo.py +77 -66
- transformers/models/gpt_neox/configuration_gpt_neox.py +19 -22
- transformers/models/gpt_neox/modeling_gpt_neox.py +71 -73
- transformers/models/gpt_neox/modular_gpt_neox.py +64 -66
- transformers/models/gpt_neox/tokenization_gpt_neox.py +2 -5
- transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py +15 -18
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +42 -45
- transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py +1 -3
- transformers/models/gpt_oss/configuration_gpt_oss.py +38 -24
- transformers/models/gpt_oss/modeling_gpt_oss.py +40 -44
- transformers/models/gpt_oss/modular_gpt_oss.py +22 -26
- transformers/models/gpt_sw3/tokenization_gpt_sw3.py +4 -4
- transformers/models/gptj/configuration_gptj.py +0 -1
- transformers/models/gptj/modeling_gptj.py +96 -86
- transformers/models/granite/configuration_granite.py +23 -26
- transformers/models/granite/modeling_granite.py +40 -42
- transformers/models/granite/modular_granite.py +29 -31
- transformers/models/granite_speech/configuration_granite_speech.py +0 -1
- transformers/models/granite_speech/feature_extraction_granite_speech.py +1 -3
- transformers/models/granite_speech/modeling_granite_speech.py +36 -24
- transformers/models/granite_speech/processing_granite_speech.py +11 -4
- transformers/models/granitemoe/configuration_granitemoe.py +26 -29
- transformers/models/granitemoe/modeling_granitemoe.py +37 -40
- transformers/models/granitemoe/modular_granitemoe.py +22 -25
- transformers/models/granitemoehybrid/__init__.py +0 -1
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +41 -40
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +92 -86
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +29 -21
- transformers/models/granitemoeshared/configuration_granitemoeshared.py +27 -30
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +50 -55
- transformers/models/granitemoeshared/modular_granitemoeshared.py +19 -21
- transformers/models/grounding_dino/configuration_grounding_dino.py +2 -4
- transformers/models/grounding_dino/image_processing_grounding_dino.py +60 -62
- transformers/models/grounding_dino/image_processing_grounding_dino_fast.py +17 -18
- transformers/models/grounding_dino/modeling_grounding_dino.py +95 -97
- transformers/models/grounding_dino/modular_grounding_dino.py +2 -3
- transformers/models/grounding_dino/processing_grounding_dino.py +10 -38
- transformers/models/groupvit/configuration_groupvit.py +0 -1
- transformers/models/groupvit/modeling_groupvit.py +75 -71
- transformers/models/helium/configuration_helium.py +20 -22
- transformers/models/helium/modeling_helium.py +34 -37
- transformers/models/helium/modular_helium.py +3 -7
- transformers/models/herbert/tokenization_herbert.py +4 -6
- transformers/models/hgnet_v2/configuration_hgnet_v2.py +0 -1
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +16 -9
- transformers/models/hgnet_v2/modular_hgnet_v2.py +16 -9
- transformers/models/hiera/configuration_hiera.py +0 -1
- transformers/models/hiera/modeling_hiera.py +60 -62
- transformers/models/hubert/configuration_hubert.py +0 -1
- transformers/models/hubert/modeling_hubert.py +39 -37
- transformers/models/hubert/modular_hubert.py +12 -11
- transformers/models/hunyuan_v1_dense/configuration_hunyuan_v1_dense.py +21 -24
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +31 -34
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +4 -6
- transformers/models/hunyuan_v1_moe/__init__.py +1 -1
- transformers/models/hunyuan_v1_moe/configuration_hunyuan_v1_moe.py +25 -28
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +44 -39
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +9 -9
- transformers/models/ibert/configuration_ibert.py +0 -1
- transformers/models/ibert/modeling_ibert.py +76 -62
- transformers/models/ibert/quant_modules.py +0 -1
- transformers/models/idefics/configuration_idefics.py +0 -1
- transformers/models/idefics/image_processing_idefics.py +13 -15
- transformers/models/idefics/modeling_idefics.py +70 -61
- transformers/models/idefics/perceiver.py +1 -3
- transformers/models/idefics/processing_idefics.py +32 -48
- transformers/models/idefics/vision.py +22 -24
- transformers/models/idefics2/configuration_idefics2.py +0 -1
- transformers/models/idefics2/image_processing_idefics2.py +31 -32
- transformers/models/idefics2/image_processing_idefics2_fast.py +7 -8
- transformers/models/idefics2/modeling_idefics2.py +63 -59
- transformers/models/idefics2/processing_idefics2.py +10 -68
- transformers/models/idefics3/configuration_idefics3.py +0 -1
- transformers/models/idefics3/image_processing_idefics3.py +42 -43
- transformers/models/idefics3/image_processing_idefics3_fast.py +11 -12
- transformers/models/idefics3/modeling_idefics3.py +57 -55
- transformers/models/idefics3/processing_idefics3.py +15 -69
- transformers/models/ijepa/configuration_ijepa.py +0 -1
- transformers/models/ijepa/modeling_ijepa.py +10 -11
- transformers/models/ijepa/modular_ijepa.py +5 -7
- transformers/models/imagegpt/configuration_imagegpt.py +0 -1
- transformers/models/imagegpt/image_processing_imagegpt.py +17 -18
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +9 -14
- transformers/models/imagegpt/modeling_imagegpt.py +66 -60
- transformers/models/informer/configuration_informer.py +6 -9
- transformers/models/informer/modeling_informer.py +84 -86
- transformers/models/informer/modular_informer.py +13 -16
- transformers/models/instructblip/configuration_instructblip.py +0 -1
- transformers/models/instructblip/modeling_instructblip.py +45 -44
- transformers/models/instructblip/processing_instructblip.py +10 -36
- transformers/models/instructblipvideo/configuration_instructblipvideo.py +0 -1
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +107 -105
- transformers/models/instructblipvideo/modular_instructblipvideo.py +34 -36
- transformers/models/instructblipvideo/processing_instructblipvideo.py +14 -33
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +4 -6
- transformers/models/internvl/configuration_internvl.py +0 -1
- transformers/models/internvl/modeling_internvl.py +52 -51
- transformers/models/internvl/modular_internvl.py +24 -30
- transformers/models/internvl/processing_internvl.py +12 -45
- transformers/models/internvl/video_processing_internvl.py +8 -10
- transformers/models/jais2/__init__.py +27 -0
- transformers/models/jais2/configuration_jais2.py +150 -0
- transformers/models/jais2/modeling_jais2.py +484 -0
- transformers/models/jais2/modular_jais2.py +194 -0
- transformers/models/jamba/configuration_jamba.py +0 -1
- transformers/models/jamba/modeling_jamba.py +67 -65
- transformers/models/jamba/modular_jamba.py +54 -55
- transformers/models/janus/configuration_janus.py +0 -1
- transformers/models/janus/image_processing_janus.py +35 -37
- transformers/models/janus/image_processing_janus_fast.py +12 -14
- transformers/models/janus/modeling_janus.py +56 -50
- transformers/models/janus/modular_janus.py +76 -70
- transformers/models/janus/processing_janus.py +17 -43
- transformers/models/jetmoe/configuration_jetmoe.py +20 -23
- transformers/models/jetmoe/modeling_jetmoe.py +41 -44
- transformers/models/jetmoe/modular_jetmoe.py +31 -33
- transformers/models/kosmos2/configuration_kosmos2.py +0 -1
- transformers/models/kosmos2/modeling_kosmos2.py +159 -148
- transformers/models/kosmos2/processing_kosmos2.py +40 -55
- transformers/models/kosmos2_5/__init__.py +0 -1
- transformers/models/kosmos2_5/configuration_kosmos2_5.py +0 -1
- transformers/models/kosmos2_5/image_processing_kosmos2_5.py +10 -12
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +4 -13
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +118 -110
- transformers/models/kosmos2_5/processing_kosmos2_5.py +8 -29
- transformers/models/kyutai_speech_to_text/configuration_kyutai_speech_to_text.py +23 -25
- transformers/models/kyutai_speech_to_text/feature_extraction_kyutai_speech_to_text.py +12 -14
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +67 -68
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +28 -22
- transformers/models/kyutai_speech_to_text/processing_kyutai_speech_to_text.py +2 -8
- transformers/models/lasr/configuration_lasr.py +5 -3
- transformers/models/lasr/feature_extraction_lasr.py +10 -12
- transformers/models/lasr/modeling_lasr.py +21 -23
- transformers/models/lasr/modular_lasr.py +16 -11
- transformers/models/lasr/processing_lasr.py +12 -8
- transformers/models/lasr/tokenization_lasr.py +2 -4
- transformers/models/layoutlm/configuration_layoutlm.py +0 -1
- transformers/models/layoutlm/modeling_layoutlm.py +72 -72
- transformers/models/layoutlmv2/configuration_layoutlmv2.py +0 -1
- transformers/models/layoutlmv2/image_processing_layoutlmv2.py +18 -21
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +5 -7
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +60 -50
- transformers/models/layoutlmv2/processing_layoutlmv2.py +14 -44
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +64 -74
- transformers/models/layoutlmv3/configuration_layoutlmv3.py +0 -1
- transformers/models/layoutlmv3/image_processing_layoutlmv3.py +24 -26
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +7 -9
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +78 -56
- transformers/models/layoutlmv3/processing_layoutlmv3.py +14 -46
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +64 -75
- transformers/models/layoutxlm/configuration_layoutxlm.py +0 -1
- transformers/models/layoutxlm/modular_layoutxlm.py +0 -1
- transformers/models/layoutxlm/processing_layoutxlm.py +14 -44
- transformers/models/layoutxlm/tokenization_layoutxlm.py +65 -76
- transformers/models/led/configuration_led.py +1 -4
- transformers/models/led/modeling_led.py +119 -267
- transformers/models/levit/configuration_levit.py +0 -1
- transformers/models/levit/image_processing_levit.py +19 -21
- transformers/models/levit/image_processing_levit_fast.py +0 -1
- transformers/models/levit/modeling_levit.py +35 -19
- transformers/models/lfm2/configuration_lfm2.py +22 -23
- transformers/models/lfm2/modeling_lfm2.py +43 -45
- transformers/models/lfm2/modular_lfm2.py +29 -29
- transformers/models/lfm2_moe/__init__.py +0 -1
- transformers/models/lfm2_moe/configuration_lfm2_moe.py +1 -2
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +58 -49
- transformers/models/lfm2_moe/modular_lfm2_moe.py +13 -37
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +4 -1
- transformers/models/lfm2_vl/image_processing_lfm2_vl_fast.py +34 -5
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +42 -38
- transformers/models/lfm2_vl/modular_lfm2_vl.py +28 -29
- transformers/models/lfm2_vl/processing_lfm2_vl.py +96 -76
- transformers/models/lightglue/image_processing_lightglue.py +16 -15
- transformers/models/lightglue/image_processing_lightglue_fast.py +5 -6
- transformers/models/lightglue/modeling_lightglue.py +28 -30
- transformers/models/lightglue/modular_lightglue.py +28 -28
- transformers/models/lighton_ocr/__init__.py +28 -0
- transformers/models/lighton_ocr/configuration_lighton_ocr.py +128 -0
- transformers/models/lighton_ocr/modeling_lighton_ocr.py +460 -0
- transformers/models/lighton_ocr/modular_lighton_ocr.py +403 -0
- transformers/models/lighton_ocr/processing_lighton_ocr.py +229 -0
- transformers/models/lilt/configuration_lilt.py +0 -1
- transformers/models/lilt/modeling_lilt.py +72 -70
- transformers/models/llama/configuration_llama.py +21 -24
- transformers/models/llama/modeling_llama.py +32 -35
- transformers/models/llama/tokenization_llama.py +2 -4
- transformers/models/llama4/configuration_llama4.py +20 -22
- transformers/models/llama4/image_processing_llama4_fast.py +9 -11
- transformers/models/llama4/modeling_llama4.py +78 -75
- transformers/models/llama4/processing_llama4.py +33 -57
- transformers/models/llava/configuration_llava.py +0 -1
- transformers/models/llava/image_processing_llava.py +25 -28
- transformers/models/llava/image_processing_llava_fast.py +6 -8
- transformers/models/llava/modeling_llava.py +47 -44
- transformers/models/llava/processing_llava.py +18 -51
- transformers/models/llava_next/configuration_llava_next.py +0 -1
- transformers/models/llava_next/image_processing_llava_next.py +43 -45
- transformers/models/llava_next/image_processing_llava_next_fast.py +5 -7
- transformers/models/llava_next/modeling_llava_next.py +49 -47
- transformers/models/llava_next/processing_llava_next.py +18 -47
- transformers/models/llava_next_video/configuration_llava_next_video.py +0 -1
- transformers/models/llava_next_video/modeling_llava_next_video.py +60 -58
- transformers/models/llava_next_video/modular_llava_next_video.py +51 -49
- transformers/models/llava_next_video/processing_llava_next_video.py +21 -63
- transformers/models/llava_next_video/video_processing_llava_next_video.py +0 -1
- transformers/models/llava_onevision/configuration_llava_onevision.py +0 -1
- transformers/models/llava_onevision/image_processing_llava_onevision.py +40 -42
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +6 -8
- transformers/models/llava_onevision/modeling_llava_onevision.py +67 -65
- transformers/models/llava_onevision/modular_llava_onevision.py +58 -56
- transformers/models/llava_onevision/processing_llava_onevision.py +21 -53
- transformers/models/llava_onevision/video_processing_llava_onevision.py +0 -1
- transformers/models/longcat_flash/__init__.py +0 -1
- transformers/models/longcat_flash/configuration_longcat_flash.py +32 -35
- transformers/models/longcat_flash/modeling_longcat_flash.py +32 -32
- transformers/models/longcat_flash/modular_longcat_flash.py +18 -19
- transformers/models/longformer/configuration_longformer.py +1 -4
- transformers/models/longformer/modeling_longformer.py +99 -101
- transformers/models/longt5/configuration_longt5.py +0 -1
- transformers/models/longt5/modeling_longt5.py +43 -48
- transformers/models/luke/configuration_luke.py +0 -1
- transformers/models/luke/modeling_luke.py +179 -181
- transformers/models/luke/tokenization_luke.py +99 -105
- transformers/models/lw_detr/__init__.py +27 -0
- transformers/models/lw_detr/configuration_lw_detr.py +374 -0
- transformers/models/lw_detr/modeling_lw_detr.py +1698 -0
- transformers/models/lw_detr/modular_lw_detr.py +1611 -0
- transformers/models/lxmert/configuration_lxmert.py +0 -1
- transformers/models/lxmert/modeling_lxmert.py +63 -74
- transformers/models/m2m_100/configuration_m2m_100.py +0 -1
- transformers/models/m2m_100/modeling_m2m_100.py +79 -71
- transformers/models/m2m_100/tokenization_m2m_100.py +8 -8
- transformers/models/mamba/configuration_mamba.py +0 -1
- transformers/models/mamba/modeling_mamba.py +44 -44
- transformers/models/mamba2/configuration_mamba2.py +0 -1
- transformers/models/mamba2/modeling_mamba2.py +67 -68
- transformers/models/marian/configuration_marian.py +1 -2
- transformers/models/marian/modeling_marian.py +87 -86
- transformers/models/marian/tokenization_marian.py +6 -6
- transformers/models/markuplm/configuration_markuplm.py +0 -1
- transformers/models/markuplm/feature_extraction_markuplm.py +1 -2
- transformers/models/markuplm/modeling_markuplm.py +65 -70
- transformers/models/markuplm/processing_markuplm.py +31 -38
- transformers/models/markuplm/tokenization_markuplm.py +67 -77
- transformers/models/mask2former/configuration_mask2former.py +5 -8
- transformers/models/mask2former/image_processing_mask2former.py +84 -85
- transformers/models/mask2former/image_processing_mask2former_fast.py +30 -33
- transformers/models/mask2former/modeling_mask2former.py +99 -92
- transformers/models/mask2former/modular_mask2former.py +6 -8
- transformers/models/maskformer/configuration_maskformer.py +6 -9
- transformers/models/maskformer/configuration_maskformer_swin.py +0 -1
- transformers/models/maskformer/image_processing_maskformer.py +84 -85
- transformers/models/maskformer/image_processing_maskformer_fast.py +29 -33
- transformers/models/maskformer/modeling_maskformer.py +65 -59
- transformers/models/maskformer/modeling_maskformer_swin.py +34 -32
- transformers/models/mbart/configuration_mbart.py +1 -1
- transformers/models/mbart/modeling_mbart.py +118 -113
- transformers/models/mbart/tokenization_mbart.py +2 -4
- transformers/models/mbart50/tokenization_mbart50.py +3 -5
- transformers/models/megatron_bert/configuration_megatron_bert.py +0 -1
- transformers/models/megatron_bert/modeling_megatron_bert.py +141 -150
- transformers/models/metaclip_2/modeling_metaclip_2.py +48 -46
- transformers/models/metaclip_2/modular_metaclip_2.py +21 -21
- transformers/models/mgp_str/configuration_mgp_str.py +0 -1
- transformers/models/mgp_str/modeling_mgp_str.py +14 -16
- transformers/models/mgp_str/processing_mgp_str.py +3 -20
- transformers/models/mgp_str/tokenization_mgp_str.py +1 -3
- transformers/models/mimi/configuration_mimi.py +38 -40
- transformers/models/mimi/modeling_mimi.py +100 -82
- transformers/models/minimax/__init__.py +0 -1
- transformers/models/minimax/configuration_minimax.py +32 -36
- transformers/models/minimax/modeling_minimax.py +57 -47
- transformers/models/minimax/modular_minimax.py +62 -54
- transformers/models/minimax_m2/__init__.py +28 -0
- transformers/models/minimax_m2/configuration_minimax_m2.py +211 -0
- transformers/models/minimax_m2/modeling_minimax_m2.py +704 -0
- transformers/models/minimax_m2/modular_minimax_m2.py +369 -0
- transformers/models/ministral/configuration_ministral.py +20 -22
- transformers/models/ministral/modeling_ministral.py +32 -34
- transformers/models/ministral/modular_ministral.py +27 -29
- transformers/models/ministral3/configuration_ministral3.py +19 -22
- transformers/models/ministral3/modeling_ministral3.py +32 -34
- transformers/models/ministral3/modular_ministral3.py +4 -5
- transformers/models/mistral/configuration_mistral.py +19 -22
- transformers/models/mistral/modeling_mistral.py +32 -34
- transformers/models/mistral/modular_mistral.py +11 -12
- transformers/models/mistral3/configuration_mistral3.py +0 -1
- transformers/models/mistral3/modeling_mistral3.py +53 -46
- transformers/models/mistral3/modular_mistral3.py +38 -36
- transformers/models/mixtral/configuration_mixtral.py +24 -27
- transformers/models/mixtral/modeling_mixtral.py +47 -42
- transformers/models/mixtral/modular_mixtral.py +32 -31
- transformers/models/mlcd/configuration_mlcd.py +0 -1
- transformers/models/mlcd/modeling_mlcd.py +16 -12
- transformers/models/mlcd/modular_mlcd.py +13 -11
- transformers/models/mllama/configuration_mllama.py +5 -8
- transformers/models/mllama/image_processing_mllama.py +23 -25
- transformers/models/mllama/image_processing_mllama_fast.py +5 -6
- transformers/models/mllama/modeling_mllama.py +94 -86
- transformers/models/mllama/processing_mllama.py +6 -55
- transformers/models/mluke/tokenization_mluke.py +97 -103
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +1 -3
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +95 -97
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +1 -3
- transformers/models/mobilebert/configuration_mobilebert.py +0 -1
- transformers/models/mobilebert/modeling_mobilebert.py +77 -85
- transformers/models/mobilebert/tokenization_mobilebert.py +0 -1
- transformers/models/mobilenet_v1/configuration_mobilenet_v1.py +0 -1
- transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py +20 -23
- transformers/models/mobilenet_v1/image_processing_mobilenet_v1_fast.py +0 -1
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +13 -16
- transformers/models/mobilenet_v2/configuration_mobilenet_v2.py +0 -1
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py +48 -51
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +10 -12
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +17 -20
- transformers/models/mobilevit/configuration_mobilevit.py +0 -1
- transformers/models/mobilevit/image_processing_mobilevit.py +46 -49
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +9 -11
- transformers/models/mobilevit/modeling_mobilevit.py +21 -19
- transformers/models/mobilevitv2/configuration_mobilevitv2.py +0 -1
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +21 -20
- transformers/models/modernbert/configuration_modernbert.py +34 -34
- transformers/models/modernbert/modeling_modernbert.py +135 -126
- transformers/models/modernbert/modular_modernbert.py +167 -156
- transformers/models/modernbert_decoder/configuration_modernbert_decoder.py +30 -32
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +54 -48
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +78 -71
- transformers/models/moonshine/configuration_moonshine.py +22 -24
- transformers/models/moonshine/modeling_moonshine.py +64 -66
- transformers/models/moonshine/modular_moonshine.py +72 -73
- transformers/models/moshi/configuration_moshi.py +18 -21
- transformers/models/moshi/modeling_moshi.py +150 -183
- transformers/models/mpnet/configuration_mpnet.py +0 -1
- transformers/models/mpnet/modeling_mpnet.py +57 -57
- transformers/models/mpnet/tokenization_mpnet.py +1 -4
- transformers/models/mpt/configuration_mpt.py +1 -9
- transformers/models/mpt/modeling_mpt.py +58 -60
- transformers/models/mra/configuration_mra.py +0 -1
- transformers/models/mra/modeling_mra.py +58 -57
- transformers/models/mt5/configuration_mt5.py +2 -4
- transformers/models/mt5/modeling_mt5.py +75 -87
- transformers/models/musicgen/configuration_musicgen.py +0 -1
- transformers/models/musicgen/modeling_musicgen.py +113 -120
- transformers/models/musicgen/processing_musicgen.py +3 -21
- transformers/models/musicgen_melody/configuration_musicgen_melody.py +0 -1
- transformers/models/musicgen_melody/feature_extraction_musicgen_melody.py +8 -9
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +110 -109
- transformers/models/musicgen_melody/processing_musicgen_melody.py +3 -22
- transformers/models/mvp/configuration_mvp.py +0 -1
- transformers/models/mvp/modeling_mvp.py +122 -119
- transformers/models/myt5/tokenization_myt5.py +8 -10
- transformers/models/nanochat/configuration_nanochat.py +0 -1
- transformers/models/nanochat/modeling_nanochat.py +33 -36
- transformers/models/nanochat/modular_nanochat.py +12 -14
- transformers/models/nemotron/configuration_nemotron.py +20 -23
- transformers/models/nemotron/modeling_nemotron.py +51 -54
- transformers/models/nllb/tokenization_nllb.py +7 -9
- transformers/models/nllb_moe/configuration_nllb_moe.py +1 -1
- transformers/models/nllb_moe/modeling_nllb_moe.py +77 -69
- transformers/models/nougat/image_processing_nougat.py +29 -32
- transformers/models/nougat/image_processing_nougat_fast.py +4 -6
- transformers/models/nougat/processing_nougat.py +37 -39
- transformers/models/nougat/tokenization_nougat.py +16 -23
- transformers/models/nystromformer/configuration_nystromformer.py +0 -1
- transformers/models/nystromformer/modeling_nystromformer.py +68 -63
- transformers/models/olmo/configuration_olmo.py +18 -21
- transformers/models/olmo/modeling_olmo.py +32 -35
- transformers/models/olmo/modular_olmo.py +5 -9
- transformers/models/olmo2/configuration_olmo2.py +18 -21
- transformers/models/olmo2/modeling_olmo2.py +33 -36
- transformers/models/olmo2/modular_olmo2.py +29 -31
- transformers/models/olmo3/__init__.py +0 -1
- transformers/models/olmo3/configuration_olmo3.py +20 -23
- transformers/models/olmo3/modeling_olmo3.py +32 -35
- transformers/models/olmo3/modular_olmo3.py +31 -33
- transformers/models/olmoe/configuration_olmoe.py +24 -26
- transformers/models/olmoe/modeling_olmoe.py +49 -43
- transformers/models/olmoe/modular_olmoe.py +16 -15
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +2 -3
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +42 -40
- transformers/models/omdet_turbo/processing_omdet_turbo.py +19 -67
- transformers/models/oneformer/configuration_oneformer.py +5 -8
- transformers/models/oneformer/image_processing_oneformer.py +83 -84
- transformers/models/oneformer/image_processing_oneformer_fast.py +33 -34
- transformers/models/oneformer/modeling_oneformer.py +130 -162
- transformers/models/oneformer/processing_oneformer.py +28 -43
- transformers/models/openai/configuration_openai.py +0 -1
- transformers/models/openai/modeling_openai.py +62 -51
- transformers/models/openai/tokenization_openai.py +2 -5
- transformers/models/opt/configuration_opt.py +0 -1
- transformers/models/opt/modeling_opt.py +74 -75
- transformers/models/ovis2/__init__.py +0 -1
- transformers/models/ovis2/configuration_ovis2.py +0 -1
- transformers/models/ovis2/image_processing_ovis2.py +22 -24
- transformers/models/ovis2/image_processing_ovis2_fast.py +6 -8
- transformers/models/ovis2/modeling_ovis2.py +58 -48
- transformers/models/ovis2/modular_ovis2.py +38 -32
- transformers/models/ovis2/processing_ovis2.py +12 -40
- transformers/models/owlv2/configuration_owlv2.py +0 -1
- transformers/models/owlv2/image_processing_owlv2.py +20 -21
- transformers/models/owlv2/image_processing_owlv2_fast.py +7 -10
- transformers/models/owlv2/modeling_owlv2.py +89 -90
- transformers/models/owlv2/modular_owlv2.py +6 -9
- transformers/models/owlv2/processing_owlv2.py +20 -49
- transformers/models/owlvit/configuration_owlvit.py +0 -1
- transformers/models/owlvit/image_processing_owlvit.py +21 -22
- transformers/models/owlvit/image_processing_owlvit_fast.py +2 -3
- transformers/models/owlvit/modeling_owlvit.py +88 -89
- transformers/models/owlvit/processing_owlvit.py +20 -48
- transformers/models/paddleocr_vl/__init__.py +0 -1
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +19 -19
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +37 -37
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +12 -12
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +104 -90
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +90 -80
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +1 -3
- transformers/models/paligemma/configuration_paligemma.py +0 -1
- transformers/models/paligemma/modeling_paligemma.py +73 -67
- transformers/models/paligemma/processing_paligemma.py +13 -66
- transformers/models/parakeet/configuration_parakeet.py +1 -4
- transformers/models/parakeet/feature_extraction_parakeet.py +10 -12
- transformers/models/parakeet/modeling_parakeet.py +23 -22
- transformers/models/parakeet/modular_parakeet.py +21 -18
- transformers/models/parakeet/processing_parakeet.py +12 -5
- transformers/models/parakeet/{tokenization_parakeet_fast.py → tokenization_parakeet.py} +5 -7
- transformers/models/patchtsmixer/configuration_patchtsmixer.py +5 -8
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +64 -62
- transformers/models/patchtst/configuration_patchtst.py +6 -9
- transformers/models/patchtst/modeling_patchtst.py +77 -78
- transformers/models/pe_audio/__init__.py +29 -0
- transformers/models/pe_audio/configuration_pe_audio.py +204 -0
- transformers/models/pe_audio/feature_extraction_pe_audio.py +160 -0
- transformers/models/pe_audio/modeling_pe_audio.py +819 -0
- transformers/models/pe_audio/modular_pe_audio.py +298 -0
- transformers/models/pe_audio/processing_pe_audio.py +23 -0
- transformers/models/pe_audio_video/__init__.py +28 -0
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +223 -0
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +971 -0
- transformers/models/pe_audio_video/modular_pe_audio_video.py +763 -0
- transformers/models/pe_audio_video/processing_pe_audio_video.py +24 -0
- transformers/models/pe_video/__init__.py +29 -0
- transformers/models/pe_video/configuration_pe_video.py +209 -0
- transformers/models/pe_video/modeling_pe_video.py +635 -0
- transformers/models/pe_video/modular_pe_video.py +218 -0
- transformers/models/pe_video/processing_pe_video.py +10 -0
- transformers/models/pe_video/video_processing_pe_video.py +64 -0
- transformers/models/pegasus/configuration_pegasus.py +1 -1
- transformers/models/pegasus/modeling_pegasus.py +66 -65
- transformers/models/pegasus/tokenization_pegasus.py +1 -4
- transformers/models/pegasus_x/configuration_pegasus_x.py +0 -1
- transformers/models/pegasus_x/modeling_pegasus_x.py +51 -52
- transformers/models/perceiver/configuration_perceiver.py +0 -1
- transformers/models/perceiver/image_processing_perceiver.py +22 -25
- transformers/models/perceiver/image_processing_perceiver_fast.py +5 -7
- transformers/models/perceiver/modeling_perceiver.py +140 -137
- transformers/models/perceiver/tokenization_perceiver.py +3 -6
- transformers/models/perception_lm/configuration_perception_lm.py +0 -1
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +8 -10
- transformers/models/perception_lm/modeling_perception_lm.py +45 -43
- transformers/models/perception_lm/modular_perception_lm.py +38 -36
- transformers/models/perception_lm/processing_perception_lm.py +13 -47
- transformers/models/perception_lm/video_processing_perception_lm.py +0 -1
- transformers/models/persimmon/configuration_persimmon.py +18 -21
- transformers/models/persimmon/modeling_persimmon.py +40 -43
- transformers/models/phi/configuration_phi.py +19 -22
- transformers/models/phi/modeling_phi.py +36 -38
- transformers/models/phi/modular_phi.py +23 -23
- transformers/models/phi3/configuration_phi3.py +23 -26
- transformers/models/phi3/modeling_phi3.py +34 -37
- transformers/models/phi3/modular_phi3.py +13 -17
- transformers/models/phi4_multimodal/configuration_phi4_multimodal.py +25 -26
- transformers/models/phi4_multimodal/feature_extraction_phi4_multimodal.py +7 -9
- transformers/models/phi4_multimodal/image_processing_phi4_multimodal_fast.py +7 -7
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +58 -57
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +62 -60
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +7 -44
- transformers/models/phimoe/configuration_phimoe.py +26 -29
- transformers/models/phimoe/modeling_phimoe.py +47 -42
- transformers/models/phimoe/modular_phimoe.py +1 -2
- transformers/models/phobert/tokenization_phobert.py +4 -6
- transformers/models/pix2struct/configuration_pix2struct.py +0 -1
- transformers/models/pix2struct/image_processing_pix2struct.py +15 -19
- transformers/models/pix2struct/image_processing_pix2struct_fast.py +7 -10
- transformers/models/pix2struct/modeling_pix2struct.py +42 -45
- transformers/models/pix2struct/processing_pix2struct.py +5 -30
- transformers/models/pixio/__init__.py +29 -0
- transformers/models/pixio/configuration_pixio.py +150 -0
- transformers/models/pixio/modeling_pixio.py +505 -0
- transformers/models/pixio/modular_pixio.py +401 -0
- transformers/models/pixtral/configuration_pixtral.py +11 -14
- transformers/models/pixtral/image_processing_pixtral.py +26 -28
- transformers/models/pixtral/image_processing_pixtral_fast.py +5 -6
- transformers/models/pixtral/modeling_pixtral.py +23 -26
- transformers/models/pixtral/processing_pixtral.py +21 -53
- transformers/models/plbart/configuration_plbart.py +1 -1
- transformers/models/plbart/modeling_plbart.py +107 -102
- transformers/models/plbart/modular_plbart.py +36 -32
- transformers/models/plbart/tokenization_plbart.py +4 -5
- transformers/models/poolformer/configuration_poolformer.py +0 -1
- transformers/models/poolformer/image_processing_poolformer.py +21 -24
- transformers/models/poolformer/image_processing_poolformer_fast.py +6 -8
- transformers/models/poolformer/modeling_poolformer.py +21 -13
- transformers/models/pop2piano/configuration_pop2piano.py +0 -2
- transformers/models/pop2piano/feature_extraction_pop2piano.py +6 -9
- transformers/models/pop2piano/modeling_pop2piano.py +22 -23
- transformers/models/pop2piano/processing_pop2piano.py +25 -33
- transformers/models/pop2piano/tokenization_pop2piano.py +15 -23
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +3 -3
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything.py +28 -28
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py +14 -15
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +9 -10
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +9 -10
- transformers/models/prophetnet/configuration_prophetnet.py +26 -28
- transformers/models/prophetnet/modeling_prophetnet.py +111 -131
- transformers/models/prophetnet/tokenization_prophetnet.py +14 -16
- transformers/models/pvt/configuration_pvt.py +0 -1
- transformers/models/pvt/image_processing_pvt.py +17 -20
- transformers/models/pvt/image_processing_pvt_fast.py +0 -1
- transformers/models/pvt/modeling_pvt.py +19 -21
- transformers/models/pvt_v2/configuration_pvt_v2.py +2 -4
- transformers/models/pvt_v2/modeling_pvt_v2.py +21 -23
- transformers/models/qwen2/configuration_qwen2.py +18 -21
- transformers/models/qwen2/modeling_qwen2.py +32 -34
- transformers/models/qwen2/modular_qwen2.py +11 -12
- transformers/models/qwen2/tokenization_qwen2.py +2 -5
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +20 -23
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +239 -192
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +174 -127
- transformers/models/qwen2_5_omni/processing_qwen2_5_omni.py +41 -49
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +22 -25
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +112 -101
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +72 -107
- transformers/models/qwen2_5_vl/processing_qwen2_5_vl.py +7 -43
- transformers/models/qwen2_audio/configuration_qwen2_audio.py +0 -1
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +29 -31
- transformers/models/qwen2_audio/processing_qwen2_audio.py +13 -42
- transformers/models/qwen2_moe/configuration_qwen2_moe.py +28 -31
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +48 -43
- transformers/models/qwen2_moe/modular_qwen2_moe.py +7 -10
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +22 -24
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +41 -42
- transformers/models/qwen2_vl/image_processing_qwen2_vl_fast.py +8 -9
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +108 -96
- transformers/models/qwen2_vl/processing_qwen2_vl.py +7 -44
- transformers/models/qwen2_vl/video_processing_qwen2_vl.py +35 -13
- transformers/models/qwen3/configuration_qwen3.py +20 -23
- transformers/models/qwen3/modeling_qwen3.py +32 -35
- transformers/models/qwen3/modular_qwen3.py +4 -6
- transformers/models/qwen3_moe/configuration_qwen3_moe.py +25 -28
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +48 -43
- transformers/models/qwen3_moe/modular_qwen3_moe.py +10 -13
- transformers/models/qwen3_next/configuration_qwen3_next.py +31 -34
- transformers/models/qwen3_next/modeling_qwen3_next.py +43 -48
- transformers/models/qwen3_next/modular_qwen3_next.py +33 -34
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +89 -88
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +199 -156
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +170 -152
- transformers/models/qwen3_omni_moe/processing_qwen3_omni_moe.py +40 -48
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +21 -24
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +91 -81
- transformers/models/qwen3_vl/modular_qwen3_vl.py +86 -112
- transformers/models/qwen3_vl/processing_qwen3_vl.py +6 -42
- transformers/models/qwen3_vl/video_processing_qwen3_vl.py +10 -12
- transformers/models/qwen3_vl_moe/configuration_qwen3_vl_moe.py +21 -25
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +174 -195
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +65 -117
- transformers/models/rag/configuration_rag.py +0 -9
- transformers/models/rag/modeling_rag.py +123 -127
- transformers/models/rag/retrieval_rag.py +2 -4
- transformers/models/rag/tokenization_rag.py +0 -50
- transformers/models/recurrent_gemma/configuration_recurrent_gemma.py +21 -24
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +34 -36
- transformers/models/reformer/configuration_reformer.py +0 -1
- transformers/models/reformer/modeling_reformer.py +76 -69
- transformers/models/reformer/tokenization_reformer.py +3 -6
- transformers/models/regnet/configuration_regnet.py +0 -1
- transformers/models/regnet/modeling_regnet.py +11 -9
- transformers/models/rembert/configuration_rembert.py +0 -1
- transformers/models/rembert/modeling_rembert.py +115 -111
- transformers/models/rembert/tokenization_rembert.py +1 -4
- transformers/models/resnet/configuration_resnet.py +0 -1
- transformers/models/resnet/modeling_resnet.py +16 -13
- transformers/models/roberta/configuration_roberta.py +0 -1
- transformers/models/roberta/modeling_roberta.py +94 -93
- transformers/models/roberta/modular_roberta.py +58 -58
- transformers/models/roberta/tokenization_roberta.py +2 -5
- transformers/models/roberta/tokenization_roberta_old.py +2 -4
- transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py +0 -1
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +94 -93
- transformers/models/roc_bert/configuration_roc_bert.py +0 -1
- transformers/models/roc_bert/modeling_roc_bert.py +122 -121
- transformers/models/roc_bert/tokenization_roc_bert.py +88 -94
- transformers/models/roformer/configuration_roformer.py +0 -1
- transformers/models/roformer/modeling_roformer.py +79 -81
- transformers/models/roformer/tokenization_roformer.py +3 -6
- transformers/models/roformer/tokenization_utils.py +0 -1
- transformers/models/rt_detr/configuration_rt_detr.py +1 -2
- transformers/models/rt_detr/configuration_rt_detr_resnet.py +0 -1
- transformers/models/rt_detr/image_processing_rt_detr.py +54 -55
- transformers/models/rt_detr/image_processing_rt_detr_fast.py +15 -15
- transformers/models/rt_detr/modeling_rt_detr.py +84 -82
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +10 -7
- transformers/models/rt_detr/modular_rt_detr.py +14 -14
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +2 -4
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +86 -81
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +10 -7
- transformers/models/rwkv/configuration_rwkv.py +0 -1
- transformers/models/rwkv/modeling_rwkv.py +30 -32
- transformers/models/sam/configuration_sam.py +1 -1
- transformers/models/sam/image_processing_sam.py +59 -60
- transformers/models/sam/image_processing_sam_fast.py +21 -23
- transformers/models/sam/modeling_sam.py +37 -36
- transformers/models/sam/processing_sam.py +39 -27
- transformers/models/sam2/configuration_sam2.py +1 -2
- transformers/models/sam2/image_processing_sam2_fast.py +14 -15
- transformers/models/sam2/modeling_sam2.py +50 -48
- transformers/models/sam2/modular_sam2.py +48 -45
- transformers/models/sam2/processing_sam2.py +31 -47
- transformers/models/sam2_video/configuration_sam2_video.py +0 -1
- transformers/models/sam2_video/modeling_sam2_video.py +119 -112
- transformers/models/sam2_video/modular_sam2_video.py +91 -97
- transformers/models/sam2_video/processing_sam2_video.py +49 -66
- transformers/models/sam2_video/video_processing_sam2_video.py +1 -4
- transformers/models/sam3/configuration_sam3.py +21 -2
- transformers/models/sam3/image_processing_sam3_fast.py +17 -20
- transformers/models/sam3/modeling_sam3.py +77 -56
- transformers/models/sam3/modular_sam3.py +3 -8
- transformers/models/sam3/processing_sam3.py +29 -48
- transformers/models/sam3_tracker/__init__.py +0 -1
- transformers/models/sam3_tracker/configuration_sam3_tracker.py +0 -1
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +36 -36
- transformers/models/sam3_tracker/modular_sam3_tracker.py +2 -1
- transformers/models/sam3_tracker/processing_sam3_tracker.py +31 -47
- transformers/models/sam3_tracker_video/__init__.py +0 -1
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +25 -1
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +96 -85
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +27 -6
- transformers/models/sam3_tracker_video/processing_sam3_tracker_video.py +50 -66
- transformers/models/sam3_video/configuration_sam3_video.py +14 -1
- transformers/models/sam3_video/modeling_sam3_video.py +32 -34
- transformers/models/sam3_video/processing_sam3_video.py +26 -46
- transformers/models/sam_hq/__init__.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +1 -1
- transformers/models/sam_hq/modeling_sam_hq.py +65 -64
- transformers/models/sam_hq/modular_sam_hq.py +17 -19
- transformers/models/sam_hq/{processing_samhq.py → processing_sam_hq.py} +39 -28
- transformers/models/seamless_m4t/configuration_seamless_m4t.py +0 -1
- transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py +8 -11
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +207 -193
- transformers/models/seamless_m4t/processing_seamless_m4t.py +18 -39
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +15 -20
- transformers/models/seamless_m4t_v2/configuration_seamless_m4t_v2.py +0 -1
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +199 -195
- transformers/models/seed_oss/configuration_seed_oss.py +23 -25
- transformers/models/seed_oss/modeling_seed_oss.py +31 -33
- transformers/models/seed_oss/modular_seed_oss.py +3 -4
- transformers/models/segformer/configuration_segformer.py +0 -10
- transformers/models/segformer/image_processing_segformer.py +39 -42
- transformers/models/segformer/image_processing_segformer_fast.py +7 -9
- transformers/models/segformer/modeling_segformer.py +26 -28
- transformers/models/segformer/modular_segformer.py +5 -7
- transformers/models/seggpt/configuration_seggpt.py +0 -1
- transformers/models/seggpt/image_processing_seggpt.py +38 -41
- transformers/models/seggpt/modeling_seggpt.py +28 -30
- transformers/models/sew/configuration_sew.py +0 -1
- transformers/models/sew/modeling_sew.py +33 -35
- transformers/models/sew/modular_sew.py +10 -12
- transformers/models/sew_d/configuration_sew_d.py +0 -1
- transformers/models/sew_d/modeling_sew_d.py +28 -30
- transformers/models/shieldgemma2/configuration_shieldgemma2.py +0 -1
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +16 -17
- transformers/models/shieldgemma2/processing_shieldgemma2.py +3 -5
- transformers/models/siglip/configuration_siglip.py +0 -1
- transformers/models/siglip/image_processing_siglip.py +17 -20
- transformers/models/siglip/image_processing_siglip_fast.py +0 -1
- transformers/models/siglip/modeling_siglip.py +62 -41
- transformers/models/siglip/processing_siglip.py +2 -14
- transformers/models/siglip/tokenization_siglip.py +6 -7
- transformers/models/siglip2/configuration_siglip2.py +1 -1
- transformers/models/siglip2/image_processing_siglip2.py +15 -16
- transformers/models/siglip2/image_processing_siglip2_fast.py +4 -5
- transformers/models/siglip2/modeling_siglip2.py +114 -92
- transformers/models/siglip2/modular_siglip2.py +23 -25
- transformers/models/siglip2/processing_siglip2.py +2 -14
- transformers/models/smollm3/configuration_smollm3.py +23 -26
- transformers/models/smollm3/modeling_smollm3.py +32 -35
- transformers/models/smollm3/modular_smollm3.py +27 -29
- transformers/models/smolvlm/configuration_smolvlm.py +1 -1
- transformers/models/smolvlm/image_processing_smolvlm.py +42 -43
- transformers/models/smolvlm/image_processing_smolvlm_fast.py +12 -12
- transformers/models/smolvlm/modeling_smolvlm.py +56 -53
- transformers/models/smolvlm/modular_smolvlm.py +15 -17
- transformers/models/smolvlm/processing_smolvlm.py +15 -76
- transformers/models/smolvlm/video_processing_smolvlm.py +7 -9
- transformers/models/speech_encoder_decoder/configuration_speech_encoder_decoder.py +0 -1
- transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py +20 -23
- transformers/models/speech_to_text/configuration_speech_to_text.py +0 -1
- transformers/models/speech_to_text/feature_extraction_speech_to_text.py +10 -13
- transformers/models/speech_to_text/modeling_speech_to_text.py +62 -54
- transformers/models/speech_to_text/processing_speech_to_text.py +4 -30
- transformers/models/speech_to_text/tokenization_speech_to_text.py +5 -6
- transformers/models/speecht5/configuration_speecht5.py +0 -1
- transformers/models/speecht5/feature_extraction_speecht5.py +16 -37
- transformers/models/speecht5/modeling_speecht5.py +200 -174
- transformers/models/speecht5/number_normalizer.py +0 -1
- transformers/models/speecht5/processing_speecht5.py +3 -37
- transformers/models/speecht5/tokenization_speecht5.py +4 -5
- transformers/models/splinter/configuration_splinter.py +0 -1
- transformers/models/splinter/modeling_splinter.py +63 -59
- transformers/models/splinter/tokenization_splinter.py +2 -4
- transformers/models/squeezebert/configuration_squeezebert.py +0 -1
- transformers/models/squeezebert/modeling_squeezebert.py +62 -62
- transformers/models/squeezebert/tokenization_squeezebert.py +0 -1
- transformers/models/stablelm/configuration_stablelm.py +20 -23
- transformers/models/stablelm/modeling_stablelm.py +40 -43
- transformers/models/starcoder2/configuration_starcoder2.py +19 -22
- transformers/models/starcoder2/modeling_starcoder2.py +34 -37
- transformers/models/starcoder2/modular_starcoder2.py +13 -15
- transformers/models/superglue/configuration_superglue.py +3 -3
- transformers/models/superglue/image_processing_superglue.py +15 -15
- transformers/models/superglue/image_processing_superglue_fast.py +5 -7
- transformers/models/superglue/modeling_superglue.py +32 -33
- transformers/models/superpoint/image_processing_superpoint.py +15 -15
- transformers/models/superpoint/image_processing_superpoint_fast.py +5 -7
- transformers/models/superpoint/modeling_superpoint.py +13 -14
- transformers/models/swiftformer/configuration_swiftformer.py +0 -1
- transformers/models/swiftformer/modeling_swiftformer.py +16 -14
- transformers/models/swin/configuration_swin.py +0 -1
- transformers/models/swin/modeling_swin.py +74 -82
- transformers/models/swin2sr/configuration_swin2sr.py +0 -1
- transformers/models/swin2sr/image_processing_swin2sr.py +10 -13
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +2 -6
- transformers/models/swin2sr/modeling_swin2sr.py +75 -61
- transformers/models/swinv2/configuration_swinv2.py +0 -1
- transformers/models/swinv2/modeling_swinv2.py +96 -100
- transformers/models/switch_transformers/configuration_switch_transformers.py +0 -1
- transformers/models/switch_transformers/modeling_switch_transformers.py +34 -41
- transformers/models/switch_transformers/modular_switch_transformers.py +31 -38
- transformers/models/t5/configuration_t5.py +7 -2
- transformers/models/t5/modeling_t5.py +76 -84
- transformers/models/t5/tokenization_t5.py +1 -3
- transformers/models/t5gemma/configuration_t5gemma.py +33 -34
- transformers/models/t5gemma/modeling_t5gemma.py +97 -100
- transformers/models/t5gemma/modular_t5gemma.py +117 -118
- transformers/models/t5gemma2/configuration_t5gemma2.py +59 -96
- transformers/models/t5gemma2/modeling_t5gemma2.py +109 -103
- transformers/models/t5gemma2/modular_t5gemma2.py +375 -91
- transformers/models/table_transformer/configuration_table_transformer.py +1 -2
- transformers/models/table_transformer/modeling_table_transformer.py +47 -49
- transformers/models/tapas/configuration_tapas.py +0 -1
- transformers/models/tapas/modeling_tapas.py +64 -66
- transformers/models/tapas/tokenization_tapas.py +115 -153
- transformers/models/textnet/configuration_textnet.py +0 -1
- transformers/models/textnet/image_processing_textnet.py +22 -25
- transformers/models/textnet/image_processing_textnet_fast.py +5 -7
- transformers/models/textnet/modeling_textnet.py +13 -14
- transformers/models/time_series_transformer/configuration_time_series_transformer.py +5 -8
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +79 -81
- transformers/models/timesfm/configuration_timesfm.py +0 -1
- transformers/models/timesfm/modeling_timesfm.py +29 -19
- transformers/models/timesfm/modular_timesfm.py +28 -18
- transformers/models/timesformer/configuration_timesformer.py +0 -1
- transformers/models/timesformer/modeling_timesformer.py +13 -16
- transformers/models/timm_backbone/configuration_timm_backbone.py +0 -1
- transformers/models/timm_backbone/modeling_timm_backbone.py +17 -15
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +5 -3
- transformers/models/timm_wrapper/image_processing_timm_wrapper.py +4 -5
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +32 -28
- transformers/models/trocr/configuration_trocr.py +0 -1
- transformers/models/trocr/modeling_trocr.py +39 -42
- transformers/models/trocr/processing_trocr.py +5 -25
- transformers/models/tvp/configuration_tvp.py +5 -2
- transformers/models/tvp/image_processing_tvp.py +50 -52
- transformers/models/tvp/image_processing_tvp_fast.py +9 -10
- transformers/models/tvp/modeling_tvp.py +25 -27
- transformers/models/tvp/processing_tvp.py +2 -14
- transformers/models/udop/configuration_udop.py +1 -1
- transformers/models/udop/modeling_udop.py +63 -70
- transformers/models/udop/processing_udop.py +7 -26
- transformers/models/udop/tokenization_udop.py +80 -93
- transformers/models/umt5/configuration_umt5.py +2 -3
- transformers/models/umt5/modeling_umt5.py +80 -87
- transformers/models/unispeech/configuration_unispeech.py +0 -1
- transformers/models/unispeech/modeling_unispeech.py +47 -49
- transformers/models/unispeech/modular_unispeech.py +20 -22
- transformers/models/unispeech_sat/configuration_unispeech_sat.py +0 -1
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +63 -65
- transformers/models/unispeech_sat/modular_unispeech_sat.py +21 -23
- transformers/models/univnet/feature_extraction_univnet.py +14 -14
- transformers/models/univnet/modeling_univnet.py +7 -8
- transformers/models/upernet/configuration_upernet.py +0 -1
- transformers/models/upernet/modeling_upernet.py +10 -13
- transformers/models/vaultgemma/__init__.py +0 -1
- transformers/models/vaultgemma/configuration_vaultgemma.py +24 -26
- transformers/models/vaultgemma/modeling_vaultgemma.py +35 -37
- transformers/models/vaultgemma/modular_vaultgemma.py +29 -31
- transformers/models/video_llama_3/image_processing_video_llama_3.py +43 -42
- transformers/models/video_llama_3/image_processing_video_llama_3_fast.py +8 -8
- transformers/models/video_llama_3/modeling_video_llama_3.py +77 -66
- transformers/models/video_llama_3/modular_video_llama_3.py +110 -112
- transformers/models/video_llama_3/processing_video_llama_3.py +5 -39
- transformers/models/video_llama_3/video_processing_video_llama_3.py +18 -18
- transformers/models/video_llava/configuration_video_llava.py +0 -1
- transformers/models/video_llava/image_processing_video_llava.py +35 -38
- transformers/models/video_llava/modeling_video_llava.py +59 -57
- transformers/models/video_llava/processing_video_llava.py +38 -78
- transformers/models/video_llava/video_processing_video_llava.py +0 -1
- transformers/models/videomae/configuration_videomae.py +0 -1
- transformers/models/videomae/image_processing_videomae.py +31 -34
- transformers/models/videomae/modeling_videomae.py +13 -15
- transformers/models/videomae/video_processing_videomae.py +0 -1
- transformers/models/vilt/configuration_vilt.py +2 -3
- transformers/models/vilt/image_processing_vilt.py +29 -30
- transformers/models/vilt/image_processing_vilt_fast.py +9 -10
- transformers/models/vilt/modeling_vilt.py +83 -78
- transformers/models/vilt/processing_vilt.py +2 -14
- transformers/models/vipllava/configuration_vipllava.py +0 -1
- transformers/models/vipllava/modeling_vipllava.py +45 -42
- transformers/models/vipllava/modular_vipllava.py +30 -32
- transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py +0 -1
- transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py +18 -21
- transformers/models/vision_text_dual_encoder/configuration_vision_text_dual_encoder.py +0 -1
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +18 -21
- transformers/models/vision_text_dual_encoder/processing_vision_text_dual_encoder.py +2 -16
- transformers/models/visual_bert/configuration_visual_bert.py +0 -1
- transformers/models/visual_bert/modeling_visual_bert.py +92 -92
- transformers/models/vit/configuration_vit.py +0 -1
- transformers/models/vit/image_processing_vit.py +19 -22
- transformers/models/vit/image_processing_vit_fast.py +0 -1
- transformers/models/vit/modeling_vit.py +13 -15
- transformers/models/vit_mae/configuration_vit_mae.py +0 -1
- transformers/models/vit_mae/modeling_vit_mae.py +21 -23
- transformers/models/vit_msn/configuration_vit_msn.py +0 -1
- transformers/models/vit_msn/modeling_vit_msn.py +10 -12
- transformers/models/vitdet/configuration_vitdet.py +0 -1
- transformers/models/vitdet/modeling_vitdet.py +12 -14
- transformers/models/vitmatte/configuration_vitmatte.py +2 -5
- transformers/models/vitmatte/image_processing_vitmatte.py +15 -18
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +14 -16
- transformers/models/vitmatte/modeling_vitmatte.py +13 -11
- transformers/models/vitpose/configuration_vitpose.py +4 -7
- transformers/models/vitpose/image_processing_vitpose.py +24 -25
- transformers/models/vitpose/image_processing_vitpose_fast.py +9 -11
- transformers/models/vitpose/modeling_vitpose.py +10 -12
- transformers/models/vitpose_backbone/configuration_vitpose_backbone.py +0 -1
- transformers/models/vitpose_backbone/modeling_vitpose_backbone.py +8 -10
- transformers/models/vits/configuration_vits.py +0 -1
- transformers/models/vits/modeling_vits.py +34 -35
- transformers/models/vits/tokenization_vits.py +3 -4
- transformers/models/vivit/configuration_vivit.py +0 -1
- transformers/models/vivit/image_processing_vivit.py +36 -39
- transformers/models/vivit/modeling_vivit.py +5 -7
- transformers/models/vjepa2/__init__.py +0 -1
- transformers/models/vjepa2/configuration_vjepa2.py +0 -1
- transformers/models/vjepa2/modeling_vjepa2.py +30 -32
- transformers/models/vjepa2/video_processing_vjepa2.py +0 -1
- transformers/models/voxtral/__init__.py +0 -1
- transformers/models/voxtral/configuration_voxtral.py +0 -1
- transformers/models/voxtral/modeling_voxtral.py +19 -27
- transformers/models/voxtral/modular_voxtral.py +12 -21
- transformers/models/voxtral/processing_voxtral.py +25 -48
- transformers/models/wav2vec2/configuration_wav2vec2.py +0 -1
- transformers/models/wav2vec2/feature_extraction_wav2vec2.py +7 -10
- transformers/models/wav2vec2/modeling_wav2vec2.py +67 -122
- transformers/models/wav2vec2/processing_wav2vec2.py +6 -35
- transformers/models/wav2vec2/tokenization_wav2vec2.py +20 -332
- transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py +0 -1
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +65 -62
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +52 -48
- transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py +6 -35
- transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py +0 -1
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +84 -77
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +37 -30
- transformers/models/wav2vec2_phoneme/tokenization_wav2vec2_phoneme.py +16 -17
- transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py +36 -55
- transformers/models/wavlm/configuration_wavlm.py +0 -1
- transformers/models/wavlm/modeling_wavlm.py +45 -48
- transformers/models/wavlm/modular_wavlm.py +4 -5
- transformers/models/whisper/configuration_whisper.py +0 -1
- transformers/models/whisper/english_normalizer.py +3 -4
- transformers/models/whisper/feature_extraction_whisper.py +9 -24
- transformers/models/whisper/generation_whisper.py +27 -48
- transformers/models/whisper/modeling_whisper.py +73 -73
- transformers/models/whisper/processing_whisper.py +3 -20
- transformers/models/whisper/tokenization_whisper.py +9 -30
- transformers/models/x_clip/configuration_x_clip.py +0 -1
- transformers/models/x_clip/modeling_x_clip.py +70 -69
- transformers/models/x_clip/processing_x_clip.py +2 -14
- transformers/models/xcodec/configuration_xcodec.py +4 -6
- transformers/models/xcodec/modeling_xcodec.py +20 -17
- transformers/models/xglm/configuration_xglm.py +0 -1
- transformers/models/xglm/modeling_xglm.py +59 -55
- transformers/models/xglm/tokenization_xglm.py +1 -4
- transformers/models/xlm/configuration_xlm.py +0 -1
- transformers/models/xlm/modeling_xlm.py +139 -144
- transformers/models/xlm/tokenization_xlm.py +3 -5
- transformers/models/xlm_roberta/configuration_xlm_roberta.py +0 -1
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +195 -194
- transformers/models/xlm_roberta/modular_xlm_roberta.py +50 -53
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +1 -4
- transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py +0 -1
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +94 -93
- transformers/models/xlm_roberta_xl/modular_xlm_roberta_xl.py +67 -70
- transformers/models/xlnet/configuration_xlnet.py +0 -11
- transformers/models/xlnet/modeling_xlnet.py +152 -163
- transformers/models/xlnet/tokenization_xlnet.py +1 -4
- transformers/models/xlstm/configuration_xlstm.py +3 -5
- transformers/models/xlstm/modeling_xlstm.py +62 -65
- transformers/models/xmod/configuration_xmod.py +0 -1
- transformers/models/xmod/modeling_xmod.py +101 -100
- transformers/models/yolos/configuration_yolos.py +0 -1
- transformers/models/yolos/image_processing_yolos.py +60 -62
- transformers/models/yolos/image_processing_yolos_fast.py +18 -18
- transformers/models/yolos/modeling_yolos.py +12 -14
- transformers/models/yolos/modular_yolos.py +2 -4
- transformers/models/yoso/configuration_yoso.py +0 -1
- transformers/models/yoso/modeling_yoso.py +64 -63
- transformers/models/zamba/configuration_zamba.py +0 -1
- transformers/models/zamba/modeling_zamba.py +70 -70
- transformers/models/zamba2/configuration_zamba2.py +36 -37
- transformers/models/zamba2/modeling_zamba2.py +87 -89
- transformers/models/zamba2/modular_zamba2.py +43 -45
- transformers/models/zoedepth/configuration_zoedepth.py +1 -2
- transformers/models/zoedepth/image_processing_zoedepth.py +28 -29
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +12 -15
- transformers/models/zoedepth/modeling_zoedepth.py +21 -16
- transformers/pipelines/__init__.py +59 -55
- transformers/pipelines/any_to_any.py +14 -22
- transformers/pipelines/audio_utils.py +1 -2
- transformers/pipelines/automatic_speech_recognition.py +20 -12
- transformers/pipelines/base.py +13 -17
- transformers/pipelines/deprecated/__init__.py +0 -1
- transformers/pipelines/document_question_answering.py +1 -1
- transformers/pipelines/image_text_to_text.py +0 -1
- transformers/pipelines/image_to_text.py +4 -44
- transformers/pipelines/question_answering.py +5 -44
- transformers/pipelines/text_classification.py +1 -14
- transformers/pipelines/text_to_audio.py +2 -2
- transformers/pipelines/token_classification.py +1 -22
- transformers/pipelines/video_classification.py +1 -9
- transformers/pipelines/zero_shot_audio_classification.py +0 -1
- transformers/pipelines/zero_shot_classification.py +0 -6
- transformers/pipelines/zero_shot_image_classification.py +0 -7
- transformers/processing_utils.py +222 -151
- transformers/quantizers/auto.py +2 -4
- transformers/quantizers/base.py +19 -64
- transformers/quantizers/quantizer_aqlm.py +1 -18
- transformers/quantizers/quantizer_auto_round.py +1 -10
- transformers/quantizers/quantizer_awq.py +3 -8
- transformers/quantizers/quantizer_bitnet.py +1 -6
- transformers/quantizers/quantizer_bnb_4bit.py +9 -49
- transformers/quantizers/quantizer_bnb_8bit.py +9 -19
- transformers/quantizers/quantizer_compressed_tensors.py +1 -4
- transformers/quantizers/quantizer_eetq.py +2 -12
- transformers/quantizers/quantizer_fbgemm_fp8.py +5 -14
- transformers/quantizers/quantizer_finegrained_fp8.py +15 -10
- transformers/quantizers/quantizer_fp_quant.py +4 -4
- transformers/quantizers/quantizer_gptq.py +1 -4
- transformers/quantizers/quantizer_higgs.py +2 -6
- transformers/quantizers/quantizer_mxfp4.py +2 -28
- transformers/quantizers/quantizer_quanto.py +14 -14
- transformers/quantizers/quantizer_quark.py +0 -1
- transformers/quantizers/quantizer_spqr.py +3 -8
- transformers/quantizers/quantizer_torchao.py +31 -127
- transformers/quantizers/quantizer_vptq.py +1 -10
- transformers/testing_utils.py +31 -49
- transformers/tokenization_mistral_common.py +554 -902
- transformers/tokenization_utils_base.py +112 -124
- transformers/tokenization_utils_sentencepiece.py +5 -6
- transformers/tokenization_utils_tokenizers.py +30 -7
- transformers/trainer.py +30 -11
- transformers/trainer_callback.py +8 -0
- transformers/trainer_jit_checkpoint.py +1 -2
- transformers/trainer_seq2seq.py +4 -0
- transformers/training_args.py +11 -13
- transformers/utils/__init__.py +4 -0
- transformers/utils/attention_visualizer.py +5 -5
- transformers/utils/auto_docstring.py +598 -37
- transformers/utils/doc.py +1 -1
- transformers/utils/dummy_pt_objects.py +0 -42
- transformers/utils/generic.py +21 -1
- transformers/utils/import_utils.py +51 -9
- transformers/utils/kernel_config.py +71 -18
- transformers/utils/loading_report.py +3 -3
- transformers/utils/quantization_config.py +16 -18
- transformers/video_processing_utils.py +35 -32
- transformers/video_utils.py +18 -22
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc3.dist-info}/METADATA +23 -24
- transformers-5.0.0rc3.dist-info/RECORD +2067 -0
- transformers-5.0.0rc1.dist-info/RECORD +0 -2003
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc3.dist-info}/WHEEL +0 -0
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc3.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc3.dist-info}/licenses/LICENSE +0 -0
- {transformers-5.0.0rc1.dist-info → transformers-5.0.0rc3.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,1590 @@
|
|
|
1
|
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
2
|
+
# This file was automatically generated from src/transformers/models/glm_image/modular_glm_image.py.
|
|
3
|
+
# Do NOT edit this file manually as any edits will be overwritten by the generation of
|
|
4
|
+
# the file from the modular. If any change should be done, please apply the change to the
|
|
5
|
+
# modular_glm_image.py file directly. One of our CI enforces this.
|
|
6
|
+
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
|
|
7
|
+
# Copyright 2025 the HuggingFace Team. All rights reserved.
|
|
8
|
+
#
|
|
9
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
10
|
+
# you may not use this file except in compliance with the License.
|
|
11
|
+
# You may obtain a copy of the License at
|
|
12
|
+
#
|
|
13
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
14
|
+
#
|
|
15
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
16
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
17
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
18
|
+
# See the License for the specific language governing permissions and
|
|
19
|
+
# limitations under the License.
|
|
20
|
+
|
|
21
|
+
from collections.abc import Callable
|
|
22
|
+
from dataclasses import dataclass
|
|
23
|
+
from typing import Any, Optional
|
|
24
|
+
|
|
25
|
+
import torch.nn as nn
|
|
26
|
+
import torch.nn.functional as F
|
|
27
|
+
|
|
28
|
+
from ...activations import ACT2FN
|
|
29
|
+
from ...cache_utils import Cache, DynamicCache
|
|
30
|
+
from ...generation import GenerationMixin
|
|
31
|
+
from ...integrations import use_kernel_forward_from_hub, use_kernelized_func
|
|
32
|
+
from ...masking_utils import create_causal_mask
|
|
33
|
+
from ...modeling_flash_attention_utils import FlashAttentionKwargs
|
|
34
|
+
from ...modeling_layers import GradientCheckpointingLayer
|
|
35
|
+
from ...modeling_outputs import BaseModelOutputWithPast, ModelOutput
|
|
36
|
+
from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
|
37
|
+
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
|
38
|
+
from ...processing_utils import Unpack
|
|
39
|
+
from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, is_torch_available
|
|
40
|
+
from ...utils.generic import check_model_inputs, maybe_autocast
|
|
41
|
+
from .configuration_glm_image import GlmImageConfig, GlmImageTextConfig, GlmImageVisionConfig, GlmImageVQVAEConfig
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
if is_torch_available():
|
|
45
|
+
import torch
|
|
46
|
+
|
|
47
|
+
|
|
48
|
+
class GlmImageVisionMLP(nn.Module):
|
|
49
|
+
def __init__(self, config):
|
|
50
|
+
super().__init__()
|
|
51
|
+
self.config = config
|
|
52
|
+
self.activation_fn = ACT2FN[config.hidden_act]
|
|
53
|
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
|
54
|
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
|
55
|
+
|
|
56
|
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
57
|
+
hidden_states = self.fc1(hidden_states)
|
|
58
|
+
hidden_states = self.activation_fn(hidden_states)
|
|
59
|
+
hidden_states = self.fc2(hidden_states)
|
|
60
|
+
return hidden_states
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
64
|
+
"""
|
|
65
|
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
|
66
|
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
|
67
|
+
"""
|
|
68
|
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
|
69
|
+
if n_rep == 1:
|
|
70
|
+
return hidden_states
|
|
71
|
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
|
72
|
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
|
73
|
+
|
|
74
|
+
|
|
75
|
+
def eager_attention_forward(
|
|
76
|
+
module: nn.Module,
|
|
77
|
+
query: torch.Tensor,
|
|
78
|
+
key: torch.Tensor,
|
|
79
|
+
value: torch.Tensor,
|
|
80
|
+
attention_mask: torch.Tensor | None,
|
|
81
|
+
scaling: float,
|
|
82
|
+
dropout: float = 0.0,
|
|
83
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
84
|
+
):
|
|
85
|
+
key_states = repeat_kv(key, module.num_key_value_groups)
|
|
86
|
+
value_states = repeat_kv(value, module.num_key_value_groups)
|
|
87
|
+
|
|
88
|
+
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
|
|
89
|
+
if attention_mask is not None:
|
|
90
|
+
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
|
91
|
+
attn_weights = attn_weights + causal_mask
|
|
92
|
+
|
|
93
|
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
|
|
94
|
+
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
|
|
95
|
+
attn_output = torch.matmul(attn_weights, value_states)
|
|
96
|
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
|
97
|
+
|
|
98
|
+
return attn_output, attn_weights
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
class GlmImageVisionAttention(nn.Module):
|
|
102
|
+
def __init__(self, config: GlmImageVisionConfig) -> None:
|
|
103
|
+
super().__init__()
|
|
104
|
+
self.dim = config.hidden_size
|
|
105
|
+
self.num_heads = config.num_heads
|
|
106
|
+
self.head_dim = self.dim // self.num_heads
|
|
107
|
+
self.num_key_value_groups = 1 # needed for eager attention
|
|
108
|
+
self.qkv = nn.Linear(config.hidden_size, config.hidden_size * 3, bias=config.attention_bias)
|
|
109
|
+
self.proj = nn.Linear(config.hidden_size, config.hidden_size, bias=config.attention_bias)
|
|
110
|
+
self.scaling = self.head_dim**-0.5
|
|
111
|
+
self.config = config
|
|
112
|
+
self.attention_dropout = config.attention_dropout
|
|
113
|
+
self.is_causal = False
|
|
114
|
+
|
|
115
|
+
def forward(
|
|
116
|
+
self,
|
|
117
|
+
hidden_states: torch.Tensor,
|
|
118
|
+
cu_seqlens: torch.Tensor,
|
|
119
|
+
**kwargs,
|
|
120
|
+
) -> torch.Tensor:
|
|
121
|
+
seq_length = hidden_states.shape[0]
|
|
122
|
+
query_states, key_states, value_states = (
|
|
123
|
+
self.qkv(hidden_states).reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
|
|
124
|
+
)
|
|
125
|
+
query_states = query_states.transpose(0, 1).unsqueeze(0)
|
|
126
|
+
key_states = key_states.transpose(0, 1).unsqueeze(0)
|
|
127
|
+
value_states = value_states.transpose(0, 1).unsqueeze(0)
|
|
128
|
+
|
|
129
|
+
attention_interface: Callable = eager_attention_forward
|
|
130
|
+
if self.config._attn_implementation != "eager":
|
|
131
|
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
|
132
|
+
|
|
133
|
+
if "flash" in self.config._attn_implementation:
|
|
134
|
+
# Flash Attention: Use cu_seqlens for variable length attention
|
|
135
|
+
max_seqlen = (cu_seqlens[1:] - cu_seqlens[:-1]).max()
|
|
136
|
+
attn_output, _ = attention_interface(
|
|
137
|
+
self,
|
|
138
|
+
query_states,
|
|
139
|
+
key_states,
|
|
140
|
+
value_states,
|
|
141
|
+
attention_mask=None,
|
|
142
|
+
scaling=self.scaling,
|
|
143
|
+
dropout=0.0 if not self.training else self.attention_dropout,
|
|
144
|
+
cu_seq_lens_q=cu_seqlens,
|
|
145
|
+
cu_seq_lens_k=cu_seqlens,
|
|
146
|
+
max_length_q=max_seqlen,
|
|
147
|
+
max_length_k=max_seqlen,
|
|
148
|
+
is_causal=False,
|
|
149
|
+
**kwargs,
|
|
150
|
+
)
|
|
151
|
+
else:
|
|
152
|
+
# Other implementations: Process each chunk separately
|
|
153
|
+
lengths = cu_seqlens[1:] - cu_seqlens[:-1]
|
|
154
|
+
splits = [
|
|
155
|
+
torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states)
|
|
156
|
+
]
|
|
157
|
+
|
|
158
|
+
attn_outputs = [
|
|
159
|
+
attention_interface(
|
|
160
|
+
self,
|
|
161
|
+
q,
|
|
162
|
+
k,
|
|
163
|
+
v,
|
|
164
|
+
attention_mask=None,
|
|
165
|
+
scaling=self.scaling,
|
|
166
|
+
dropout=0.0 if not self.training else self.attention_dropout,
|
|
167
|
+
is_causal=False,
|
|
168
|
+
**kwargs,
|
|
169
|
+
)[0]
|
|
170
|
+
for q, k, v in zip(*splits)
|
|
171
|
+
]
|
|
172
|
+
attn_output = torch.cat(attn_outputs, dim=1)
|
|
173
|
+
|
|
174
|
+
attn_output = attn_output.reshape(seq_length, -1).contiguous()
|
|
175
|
+
attn_output = self.proj(attn_output)
|
|
176
|
+
return attn_output
|
|
177
|
+
|
|
178
|
+
|
|
179
|
+
class GlmImageVisionPatchEmbed(nn.Module):
|
|
180
|
+
def __init__(self, config: GlmImageVisionConfig) -> None:
|
|
181
|
+
super().__init__()
|
|
182
|
+
self.patch_size = config.patch_size
|
|
183
|
+
self.in_channels = config.in_channels
|
|
184
|
+
self.embed_dim = config.hidden_size
|
|
185
|
+
kernel_size = [self.patch_size, self.patch_size]
|
|
186
|
+
self.proj = nn.Conv2d(self.in_channels, self.embed_dim, kernel_size=kernel_size, stride=kernel_size)
|
|
187
|
+
|
|
188
|
+
def forward(self, hidden_states) -> torch.Tensor:
|
|
189
|
+
target_dtype = self.proj.weight.dtype
|
|
190
|
+
hidden_states = hidden_states.view(-1, self.in_channels, self.patch_size, self.patch_size)
|
|
191
|
+
hidden_states = self.proj(hidden_states.to(dtype=target_dtype)).view(-1, self.embed_dim)
|
|
192
|
+
return hidden_states
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
class GlmImageVisionEmbeddings(nn.Module):
|
|
196
|
+
def __init__(self, config: GlmImageVisionConfig) -> None:
|
|
197
|
+
super().__init__()
|
|
198
|
+
self.config = config
|
|
199
|
+
self.embed_dim = config.hidden_size
|
|
200
|
+
self.image_size = config.image_size
|
|
201
|
+
self.patch_size = config.patch_size
|
|
202
|
+
|
|
203
|
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
|
204
|
+
self.num_positions = self.num_patches
|
|
205
|
+
self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
|
|
206
|
+
self.interpolated_method = "bilinear"
|
|
207
|
+
|
|
208
|
+
def forward(self, embeddings, lengths, image_shapes, h_coords, w_coords) -> torch.Tensor:
|
|
209
|
+
"""
|
|
210
|
+
Forward pass with integrated position encoding adaptation using 2D interpolation.
|
|
211
|
+
|
|
212
|
+
Args:
|
|
213
|
+
embeddings: Input embeddings tensor
|
|
214
|
+
lengths (torch.Tensor): Sequence lengths for each image in the batch.
|
|
215
|
+
image_shapes (torch.Tensor): Tensor of shape [batch_size, 3] representing the image shapes (t, h, w).
|
|
216
|
+
h_coords (torch.Tensor): Tensor of shape [total_seq] representing the h coordinate for each patch.
|
|
217
|
+
w_coords (torch.Tensor): Tensor of shape [total_seq] representing the w coordinate for each patch.
|
|
218
|
+
|
|
219
|
+
Returns:
|
|
220
|
+
torch.Tensor: Embeddings with adapted position encoding added.
|
|
221
|
+
"""
|
|
222
|
+
# Get position embedding parameters
|
|
223
|
+
pos_embed_weight = self.position_embedding.weight
|
|
224
|
+
hidden_size = pos_embed_weight.shape[1]
|
|
225
|
+
device = pos_embed_weight.device
|
|
226
|
+
|
|
227
|
+
# Convert inputs to tensors if needed
|
|
228
|
+
if isinstance(lengths, list):
|
|
229
|
+
lengths = torch.tensor(lengths, device=device, dtype=torch.long)
|
|
230
|
+
|
|
231
|
+
# Prepare 2D position embedding
|
|
232
|
+
orig_size_sq = pos_embed_weight.shape[0]
|
|
233
|
+
orig_size = int(orig_size_sq**0.5)
|
|
234
|
+
pos_embed_2d = (
|
|
235
|
+
pos_embed_weight.view(orig_size, orig_size, hidden_size)
|
|
236
|
+
.permute(2, 0, 1)
|
|
237
|
+
.unsqueeze(0)
|
|
238
|
+
.to(device=device, dtype=torch.float32)
|
|
239
|
+
)
|
|
240
|
+
|
|
241
|
+
# Calculate target dimensions for each patch
|
|
242
|
+
target_h = torch.cat([image_shapes[i, 1].repeat(lengths[i]) for i in range(len(lengths))]).to(
|
|
243
|
+
device=device, dtype=torch.float32
|
|
244
|
+
)
|
|
245
|
+
target_w = torch.cat([image_shapes[i, 2].repeat(lengths[i]) for i in range(len(lengths))]).to(
|
|
246
|
+
device=device, dtype=torch.float32
|
|
247
|
+
)
|
|
248
|
+
|
|
249
|
+
# Normalize coordinates to [-1, 1] range for grid_sample
|
|
250
|
+
norm_w = ((w_coords + 0.5) / target_w) * 2 - 1
|
|
251
|
+
norm_h = ((h_coords + 0.5) / target_h) * 2 - 1
|
|
252
|
+
|
|
253
|
+
# Create sampling grid
|
|
254
|
+
grid = torch.stack((norm_w, norm_h), dim=-1).unsqueeze(0).unsqueeze(2)
|
|
255
|
+
|
|
256
|
+
# Perform bicubic interpolation
|
|
257
|
+
interpolated_embed_fp32 = F.grid_sample(
|
|
258
|
+
pos_embed_2d, grid, mode=self.interpolated_method, align_corners=False, padding_mode="border"
|
|
259
|
+
)
|
|
260
|
+
|
|
261
|
+
# Reshape and convert back to original dtype
|
|
262
|
+
adapted_pos_embed_fp32 = interpolated_embed_fp32.squeeze(0).squeeze(-1).permute(1, 0)
|
|
263
|
+
adapted_pos_embed = adapted_pos_embed_fp32.to(pos_embed_weight.dtype).to(embeddings.device)
|
|
264
|
+
|
|
265
|
+
# Add adapted position encoding to embeddings
|
|
266
|
+
embeddings = embeddings + adapted_pos_embed
|
|
267
|
+
return embeddings
|
|
268
|
+
|
|
269
|
+
|
|
270
|
+
class GlmImageVisionBlock(GradientCheckpointingLayer):
|
|
271
|
+
def __init__(self, config: GlmImageVisionConfig) -> None:
|
|
272
|
+
super().__init__()
|
|
273
|
+
self.norm1 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
274
|
+
self.norm2 = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
|
275
|
+
self.attn = GlmImageVisionAttention(config)
|
|
276
|
+
self.mlp = GlmImageVisionMLP(config)
|
|
277
|
+
|
|
278
|
+
def forward(
|
|
279
|
+
self,
|
|
280
|
+
hidden_states: torch.Tensor,
|
|
281
|
+
cu_seqlens: torch.Tensor,
|
|
282
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
283
|
+
) -> torch.Tensor:
|
|
284
|
+
r"""
|
|
285
|
+
cu_seqlens (`torch.Tensor` of shape `(num_images_or_videos + 1,)`):
|
|
286
|
+
The cumulative sequence lengths of each image or video feature.
|
|
287
|
+
position_embeddings (`tuple(torch.Tensor, torch.Tensor)` of shape `(num_patches, head_dim // 2)`):
|
|
288
|
+
The cosine and sine position embeddings for vision attention.
|
|
289
|
+
"""
|
|
290
|
+
residual = hidden_states
|
|
291
|
+
|
|
292
|
+
hidden_states = self.norm1(hidden_states)
|
|
293
|
+
hidden_states = self.attn(
|
|
294
|
+
hidden_states,
|
|
295
|
+
cu_seqlens=cu_seqlens,
|
|
296
|
+
**kwargs,
|
|
297
|
+
)
|
|
298
|
+
hidden_states = residual + hidden_states
|
|
299
|
+
|
|
300
|
+
residual = hidden_states
|
|
301
|
+
hidden_states = self.norm2(hidden_states)
|
|
302
|
+
hidden_states = self.mlp(hidden_states)
|
|
303
|
+
hidden_states = residual + hidden_states
|
|
304
|
+
|
|
305
|
+
return hidden_states
|
|
306
|
+
|
|
307
|
+
|
|
308
|
+
def rotate_half(x):
|
|
309
|
+
"""Rotates half the hidden dims of the input."""
|
|
310
|
+
x1 = x[..., : x.shape[-1] // 2]
|
|
311
|
+
x2 = x[..., x.shape[-1] // 2 :]
|
|
312
|
+
return torch.cat((-x2, x1), dim=-1)
|
|
313
|
+
|
|
314
|
+
|
|
315
|
+
def apply_rotary_pos_emb(q, k, cos, sin, unsqueeze_dim=1):
|
|
316
|
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
|
317
|
+
|
|
318
|
+
Args:
|
|
319
|
+
q (`torch.Tensor`): The query tensor.
|
|
320
|
+
k (`torch.Tensor`): The key tensor.
|
|
321
|
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
|
322
|
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
|
323
|
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
|
324
|
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
|
325
|
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
|
326
|
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
|
327
|
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
|
328
|
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
|
329
|
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
|
330
|
+
Returns:
|
|
331
|
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
|
332
|
+
"""
|
|
333
|
+
cos = cos.unsqueeze(unsqueeze_dim)
|
|
334
|
+
sin = sin.unsqueeze(unsqueeze_dim)
|
|
335
|
+
|
|
336
|
+
# Keep half or full tensor for later concatenation
|
|
337
|
+
rotary_dim = cos.shape[-1]
|
|
338
|
+
q_rot, q_pass = q[..., :rotary_dim], q[..., rotary_dim:]
|
|
339
|
+
k_rot, k_pass = k[..., :rotary_dim], k[..., rotary_dim:]
|
|
340
|
+
|
|
341
|
+
# Apply rotary embeddings on the first half or full tensor
|
|
342
|
+
q_embed = (q_rot * cos) + (rotate_half(q_rot) * sin)
|
|
343
|
+
k_embed = (k_rot * cos) + (rotate_half(k_rot) * sin)
|
|
344
|
+
|
|
345
|
+
# Concatenate back to full shape
|
|
346
|
+
q_embed = torch.cat([q_embed, q_pass], dim=-1)
|
|
347
|
+
k_embed = torch.cat([k_embed, k_pass], dim=-1)
|
|
348
|
+
return q_embed, k_embed
|
|
349
|
+
|
|
350
|
+
|
|
351
|
+
@use_kernelized_func(apply_rotary_pos_emb)
|
|
352
|
+
class GlmImageTextAttention(nn.Module):
|
|
353
|
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
|
354
|
+
|
|
355
|
+
def __init__(self, config: GlmImageTextConfig, layer_idx: int | None = None):
|
|
356
|
+
super().__init__()
|
|
357
|
+
self.config = config
|
|
358
|
+
self.layer_idx = layer_idx
|
|
359
|
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
|
360
|
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
|
361
|
+
self.scaling = self.head_dim**-0.5
|
|
362
|
+
self.attention_dropout = config.attention_dropout
|
|
363
|
+
self.is_causal = True
|
|
364
|
+
|
|
365
|
+
self.q_proj = nn.Linear(
|
|
366
|
+
config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
|
|
367
|
+
)
|
|
368
|
+
self.k_proj = nn.Linear(
|
|
369
|
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
|
370
|
+
)
|
|
371
|
+
self.v_proj = nn.Linear(
|
|
372
|
+
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
|
|
373
|
+
)
|
|
374
|
+
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
|
|
375
|
+
self.rope_parameters = config.rope_parameters
|
|
376
|
+
|
|
377
|
+
def forward(
|
|
378
|
+
self,
|
|
379
|
+
hidden_states: torch.Tensor,
|
|
380
|
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
|
381
|
+
attention_mask: torch.Tensor | None,
|
|
382
|
+
past_key_values: Cache | None = None,
|
|
383
|
+
cache_position: torch.LongTensor | None = None,
|
|
384
|
+
**kwargs: Unpack[FlashAttentionKwargs],
|
|
385
|
+
) -> tuple[torch.Tensor, torch.Tensor | None, tuple[torch.Tensor] | None]:
|
|
386
|
+
input_shape = hidden_states.shape[:-1]
|
|
387
|
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
|
388
|
+
|
|
389
|
+
query_states = self.q_proj(hidden_states).view(hidden_shape)
|
|
390
|
+
key_states = self.k_proj(hidden_states).view(hidden_shape)
|
|
391
|
+
value_states = self.v_proj(hidden_states).view(hidden_shape)
|
|
392
|
+
|
|
393
|
+
query_states = query_states.transpose(1, 2)
|
|
394
|
+
key_states = key_states.transpose(1, 2)
|
|
395
|
+
value_states = value_states.transpose(1, 2)
|
|
396
|
+
|
|
397
|
+
cos, sin = position_embeddings
|
|
398
|
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
|
399
|
+
|
|
400
|
+
if past_key_values is not None:
|
|
401
|
+
# sin and cos are specific to RoPE models; position_ids needed for the static cache
|
|
402
|
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
|
403
|
+
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
404
|
+
|
|
405
|
+
attention_interface: Callable = eager_attention_forward
|
|
406
|
+
if self.config._attn_implementation != "eager":
|
|
407
|
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
|
408
|
+
|
|
409
|
+
attn_output, attn_weights = attention_interface(
|
|
410
|
+
self,
|
|
411
|
+
query_states,
|
|
412
|
+
key_states,
|
|
413
|
+
value_states,
|
|
414
|
+
attention_mask,
|
|
415
|
+
dropout=0.0 if not self.training else self.attention_dropout,
|
|
416
|
+
scaling=self.scaling,
|
|
417
|
+
**kwargs,
|
|
418
|
+
)
|
|
419
|
+
|
|
420
|
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
|
421
|
+
attn_output = self.o_proj(attn_output)
|
|
422
|
+
return attn_output, attn_weights
|
|
423
|
+
|
|
424
|
+
|
|
425
|
+
@use_kernel_forward_from_hub("RMSNorm")
|
|
426
|
+
class GlmImageRMSNorm(nn.Module):
|
|
427
|
+
def __init__(self, hidden_size, eps=1e-6):
|
|
428
|
+
"""
|
|
429
|
+
GlmImageRMSNorm is equivalent to T5LayerNorm
|
|
430
|
+
"""
|
|
431
|
+
super().__init__()
|
|
432
|
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
|
433
|
+
self.variance_epsilon = eps
|
|
434
|
+
|
|
435
|
+
def forward(self, hidden_states):
|
|
436
|
+
input_dtype = hidden_states.dtype
|
|
437
|
+
hidden_states = hidden_states.to(torch.float32)
|
|
438
|
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
|
439
|
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
|
440
|
+
return self.weight * hidden_states.to(input_dtype)
|
|
441
|
+
|
|
442
|
+
def extra_repr(self):
|
|
443
|
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
|
444
|
+
|
|
445
|
+
|
|
446
|
+
class GlmImageTextMLP(nn.Module):
|
|
447
|
+
def __init__(self, config):
|
|
448
|
+
super().__init__()
|
|
449
|
+
|
|
450
|
+
self.config = config
|
|
451
|
+
self.gate_up_proj = nn.Linear(config.hidden_size, 2 * config.intermediate_size, bias=False)
|
|
452
|
+
self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)
|
|
453
|
+
self.activation_fn = ACT2FN[config.hidden_act]
|
|
454
|
+
|
|
455
|
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
|
|
456
|
+
up_states = self.gate_up_proj(hidden_states)
|
|
457
|
+
|
|
458
|
+
gate, up_states = up_states.chunk(2, dim=-1)
|
|
459
|
+
up_states = up_states * self.activation_fn(gate)
|
|
460
|
+
|
|
461
|
+
return self.down_proj(up_states)
|
|
462
|
+
|
|
463
|
+
|
|
464
|
+
class GlmImageTextDecoderLayer(GradientCheckpointingLayer):
|
|
465
|
+
def __init__(self, config: GlmImageTextConfig, layer_idx: int):
|
|
466
|
+
super().__init__()
|
|
467
|
+
self.hidden_size = config.hidden_size
|
|
468
|
+
self.self_attn = GlmImageTextAttention(config, layer_idx)
|
|
469
|
+
self.mlp = GlmImageTextMLP(config)
|
|
470
|
+
self.input_layernorm = GlmImageRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
471
|
+
self.post_attention_layernorm = GlmImageRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
472
|
+
self.post_self_attn_layernorm = GlmImageRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
473
|
+
self.post_mlp_layernorm = GlmImageRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
474
|
+
|
|
475
|
+
@auto_docstring
|
|
476
|
+
def forward(
|
|
477
|
+
self,
|
|
478
|
+
hidden_states: torch.Tensor,
|
|
479
|
+
position_embeddings: tuple[torch.Tensor, torch.Tensor] | None = None,
|
|
480
|
+
attention_mask: torch.Tensor | None = None,
|
|
481
|
+
position_ids: torch.LongTensor | None = None,
|
|
482
|
+
past_key_values: Cache | None = None,
|
|
483
|
+
use_cache: bool | None = False,
|
|
484
|
+
cache_position: torch.LongTensor | None = None,
|
|
485
|
+
**kwargs,
|
|
486
|
+
) -> tuple[torch.FloatTensor, tuple[torch.FloatTensor, torch.FloatTensor] | None]:
|
|
487
|
+
residual = hidden_states
|
|
488
|
+
|
|
489
|
+
hidden_states = self.input_layernorm(hidden_states)
|
|
490
|
+
|
|
491
|
+
# Self Attention
|
|
492
|
+
hidden_states, _ = self.self_attn(
|
|
493
|
+
hidden_states=hidden_states,
|
|
494
|
+
position_embeddings=position_embeddings,
|
|
495
|
+
attention_mask=attention_mask,
|
|
496
|
+
position_ids=position_ids,
|
|
497
|
+
past_key_values=past_key_values,
|
|
498
|
+
use_cache=use_cache,
|
|
499
|
+
cache_position=cache_position,
|
|
500
|
+
**kwargs,
|
|
501
|
+
)
|
|
502
|
+
|
|
503
|
+
hidden_states = self.post_self_attn_layernorm(hidden_states)
|
|
504
|
+
hidden_states = residual + hidden_states
|
|
505
|
+
|
|
506
|
+
# Fully Connected
|
|
507
|
+
residual = hidden_states
|
|
508
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
509
|
+
hidden_states = self.mlp(hidden_states)
|
|
510
|
+
hidden_states = self.post_mlp_layernorm(hidden_states)
|
|
511
|
+
hidden_states = residual + hidden_states
|
|
512
|
+
|
|
513
|
+
return hidden_states
|
|
514
|
+
|
|
515
|
+
|
|
516
|
+
@auto_docstring
|
|
517
|
+
class GlmImagePreTrainedModel(PreTrainedModel):
|
|
518
|
+
config: GlmImageConfig
|
|
519
|
+
base_model_prefix = "model"
|
|
520
|
+
input_modalities = ("image", "text")
|
|
521
|
+
supports_gradient_checkpointing = True
|
|
522
|
+
_no_split_modules = ["GlmImageTextDecoderLayer", "GlmImageVisionBlock"]
|
|
523
|
+
_skip_keys_device_placement = "past_key_values"
|
|
524
|
+
_supports_flash_attn = True
|
|
525
|
+
_supports_sdpa = True
|
|
526
|
+
|
|
527
|
+
_can_compile_fullgraph = True
|
|
528
|
+
_supports_attention_backend = True
|
|
529
|
+
_can_record_outputs = {
|
|
530
|
+
"hidden_states": GlmImageTextDecoderLayer,
|
|
531
|
+
"attentions": GlmImageTextAttention,
|
|
532
|
+
}
|
|
533
|
+
|
|
534
|
+
@torch.no_grad()
|
|
535
|
+
def _init_weights(self, module):
|
|
536
|
+
super()._init_weights(module)
|
|
537
|
+
|
|
538
|
+
|
|
539
|
+
@dataclass
|
|
540
|
+
@auto_docstring(
|
|
541
|
+
custom_intro="""
|
|
542
|
+
Base class for Llava outputs, with hidden states and attentions.
|
|
543
|
+
"""
|
|
544
|
+
)
|
|
545
|
+
class GlmImageModelOutputWithPast(ModelOutput):
|
|
546
|
+
r"""
|
|
547
|
+
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
548
|
+
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
|
549
|
+
|
|
550
|
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
|
551
|
+
`past_key_values` input) to speed up sequential decoding.
|
|
552
|
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
|
553
|
+
The rope index difference between sequence length and multimodal rope.
|
|
554
|
+
"""
|
|
555
|
+
|
|
556
|
+
last_hidden_state: torch.FloatTensor | None = None
|
|
557
|
+
past_key_values: Cache | None = None
|
|
558
|
+
hidden_states: tuple[torch.FloatTensor] | None = None
|
|
559
|
+
attentions: tuple[torch.FloatTensor] | None = None
|
|
560
|
+
rope_deltas: torch.LongTensor | None = None
|
|
561
|
+
|
|
562
|
+
|
|
563
|
+
class GlmImageVQVAEVectorQuantizer(nn.Module):
|
|
564
|
+
"""
|
|
565
|
+
A module for vector quantization using learned embedding vectors.
|
|
566
|
+
|
|
567
|
+
This module implements the quantization process similar to te one described in
|
|
568
|
+
the VQ-VAE (Vector Quantized Variational AutoEncoder) paper. It quantizes continuous
|
|
569
|
+
input vectors into discrete codebook vectors, which are learned during training.
|
|
570
|
+
Current implementation improves over previous ones by avoiding costly matrix multiplications
|
|
571
|
+
and allowing for post-hoc remapping of indices.
|
|
572
|
+
"""
|
|
573
|
+
|
|
574
|
+
def __init__(self, config: GlmImageVQVAEConfig):
|
|
575
|
+
super().__init__()
|
|
576
|
+
self.num_embeddings = config.num_embeddings
|
|
577
|
+
self.embedding_dim = config.embed_dim
|
|
578
|
+
self.beta = getattr(config, "beta", 0.25)
|
|
579
|
+
|
|
580
|
+
self.embedding = nn.Embedding(self.num_embeddings, self.embedding_dim)
|
|
581
|
+
|
|
582
|
+
def forward(self, hidden_state: torch.Tensor):
|
|
583
|
+
hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous()
|
|
584
|
+
hidden_state_flattened = hidden_state.view(-1, self.embedding_dim)
|
|
585
|
+
|
|
586
|
+
# L2 normalize
|
|
587
|
+
hidden_state = F.normalize(hidden_state, p=2, dim=-1)
|
|
588
|
+
hidden_state_flattened = F.normalize(hidden_state_flattened, p=2, dim=-1)
|
|
589
|
+
embedding = F.normalize(self.embedding.weight, p=2, dim=-1)
|
|
590
|
+
|
|
591
|
+
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
|
592
|
+
distances = (
|
|
593
|
+
torch.sum(hidden_state_flattened**2, dim=1, keepdim=True)
|
|
594
|
+
+ torch.sum(embedding**2, dim=1)
|
|
595
|
+
- 2 * torch.einsum("bd,dn->bn", hidden_state_flattened, embedding.transpose(0, 1))
|
|
596
|
+
)
|
|
597
|
+
|
|
598
|
+
min_encoding_indices = torch.argmin(distances, dim=1)
|
|
599
|
+
hidden_state_quant = embedding[min_encoding_indices].view(hidden_state.shape)
|
|
600
|
+
|
|
601
|
+
# compute loss for embedding
|
|
602
|
+
loss = torch.mean((hidden_state_quant.detach() - hidden_state) ** 2) + self.beta * torch.mean(
|
|
603
|
+
(hidden_state_quant - hidden_state.detach()) ** 2
|
|
604
|
+
)
|
|
605
|
+
|
|
606
|
+
# preserve gradients
|
|
607
|
+
hidden_state_quant = hidden_state + (hidden_state_quant - hidden_state).detach()
|
|
608
|
+
|
|
609
|
+
# reshape back to match original input shape
|
|
610
|
+
hidden_state_quant = hidden_state_quant.permute(0, 3, 1, 2).contiguous()
|
|
611
|
+
|
|
612
|
+
return hidden_state_quant, loss, min_encoding_indices
|
|
613
|
+
|
|
614
|
+
|
|
615
|
+
@auto_docstring(
|
|
616
|
+
custom_intro="""
|
|
617
|
+
The VQ-VAE model used in GlmImage for encoding/decoding images into discrete tokens.
|
|
618
|
+
This model follows the "Make-a-scene: Scene-based text-to-image generation with human priors" paper from
|
|
619
|
+
[ Oran Gafni, Adam Polyak, Oron Ashual, Shelly Sheynin, Devi Parikh, and Yaniv
|
|
620
|
+
Taigman](https://huggingface.co/papers/2203.13131).
|
|
621
|
+
"""
|
|
622
|
+
)
|
|
623
|
+
class GlmImageVQVAE(GlmImagePreTrainedModel):
|
|
624
|
+
config: GlmImageVQVAEConfig
|
|
625
|
+
_no_split_modules = [
|
|
626
|
+
"GlmImageVQVAEVectorQuantizer",
|
|
627
|
+
]
|
|
628
|
+
|
|
629
|
+
def __init__(self, config: GlmImageVQVAEConfig):
|
|
630
|
+
super().__init__(config)
|
|
631
|
+
self.quantize = GlmImageVQVAEVectorQuantizer(config)
|
|
632
|
+
self.quant_conv = torch.nn.Conv2d(config.latent_channels, config.embed_dim, 1)
|
|
633
|
+
self.post_quant_conv = torch.nn.Conv2d(config.embed_dim, config.latent_channels, 1)
|
|
634
|
+
self.eval() # GlmImage's VQ model is frozen
|
|
635
|
+
self.post_init()
|
|
636
|
+
|
|
637
|
+
def encode(self, hidden_states):
|
|
638
|
+
hidden_states = self.quant_conv(hidden_states)
|
|
639
|
+
quant, emb_loss, indices = self.quantize(hidden_states)
|
|
640
|
+
return quant, emb_loss, indices
|
|
641
|
+
|
|
642
|
+
|
|
643
|
+
class GlmImageVisionModel(GlmImagePreTrainedModel):
|
|
644
|
+
config: GlmImageVisionConfig
|
|
645
|
+
input_modalities = ("image",)
|
|
646
|
+
_no_split_modules = ["GlmImageVisionBlock"]
|
|
647
|
+
main_input_name = "pixel_values"
|
|
648
|
+
|
|
649
|
+
def __init__(self, config: GlmImageVisionConfig) -> None:
|
|
650
|
+
super().__init__(config)
|
|
651
|
+
self.spatial_merge_size = config.spatial_merge_size
|
|
652
|
+
self.patch_size = config.patch_size
|
|
653
|
+
|
|
654
|
+
self.embeddings = GlmImageVisionEmbeddings(config)
|
|
655
|
+
self.patch_embed = GlmImageVisionPatchEmbed(config)
|
|
656
|
+
|
|
657
|
+
head_dim = config.hidden_size // config.num_heads
|
|
658
|
+
|
|
659
|
+
self.blocks = nn.ModuleList([GlmImageVisionBlock(config) for _ in range(config.depth)])
|
|
660
|
+
|
|
661
|
+
self.gradient_checkpointing = False
|
|
662
|
+
self.head_dim = head_dim
|
|
663
|
+
self.post_init()
|
|
664
|
+
|
|
665
|
+
def rot_pos_emb(self, grid_thw):
|
|
666
|
+
pos_ids = []
|
|
667
|
+
for t, h, w in grid_thw:
|
|
668
|
+
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
|
|
669
|
+
hpos_ids = hpos_ids.reshape(
|
|
670
|
+
h // self.spatial_merge_size,
|
|
671
|
+
self.spatial_merge_size,
|
|
672
|
+
w // self.spatial_merge_size,
|
|
673
|
+
self.spatial_merge_size,
|
|
674
|
+
)
|
|
675
|
+
hpos_ids = hpos_ids.permute(0, 2, 1, 3)
|
|
676
|
+
hpos_ids = hpos_ids.flatten()
|
|
677
|
+
|
|
678
|
+
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
|
|
679
|
+
wpos_ids = wpos_ids.reshape(
|
|
680
|
+
h // self.spatial_merge_size,
|
|
681
|
+
self.spatial_merge_size,
|
|
682
|
+
w // self.spatial_merge_size,
|
|
683
|
+
self.spatial_merge_size,
|
|
684
|
+
)
|
|
685
|
+
wpos_ids = wpos_ids.permute(0, 2, 1, 3)
|
|
686
|
+
wpos_ids = wpos_ids.flatten()
|
|
687
|
+
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
|
|
688
|
+
pos_ids = torch.cat(pos_ids, dim=0)
|
|
689
|
+
return pos_ids
|
|
690
|
+
|
|
691
|
+
def forward(self, pixel_values: torch.Tensor, grid_thw: torch.Tensor, **kwargs) -> torch.Tensor:
|
|
692
|
+
"""
|
|
693
|
+
Args:
|
|
694
|
+
pixel_values (`torch.Tensor` of shape `(total_patches, num_channels * patch_size * patch_size)`):
|
|
695
|
+
Packed pixel values.
|
|
696
|
+
grid_thw (`torch.Tensor` of shape `(num_images, 3)`):
|
|
697
|
+
The temporal, height and width of feature shape of each image.
|
|
698
|
+
|
|
699
|
+
Returns:
|
|
700
|
+
`torch.Tensor` of shape `(total_patches, hidden_size)`: Hidden states.
|
|
701
|
+
"""
|
|
702
|
+
|
|
703
|
+
hidden_states = self.patch_embed(pixel_values)
|
|
704
|
+
image_type_ids = self.rot_pos_emb(grid_thw)
|
|
705
|
+
|
|
706
|
+
cu_seqlens = torch.repeat_interleave(grid_thw[:, 1] * grid_thw[:, 2], grid_thw[:, 0]).cumsum(
|
|
707
|
+
dim=0,
|
|
708
|
+
dtype=grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
|
|
709
|
+
)
|
|
710
|
+
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
|
|
711
|
+
seqlens = (cu_seqlens[1:] - cu_seqlens[:-1]).tolist()
|
|
712
|
+
hidden_states = self.embeddings(
|
|
713
|
+
hidden_states,
|
|
714
|
+
seqlens,
|
|
715
|
+
grid_thw,
|
|
716
|
+
image_type_ids[:, 0].to(hidden_states.device),
|
|
717
|
+
image_type_ids[:, 1].to(hidden_states.device),
|
|
718
|
+
)
|
|
719
|
+
|
|
720
|
+
# Transformer blocks (no position_embeddings needed, already added above)
|
|
721
|
+
for blk in self.blocks:
|
|
722
|
+
hidden_states = blk(
|
|
723
|
+
hidden_states,
|
|
724
|
+
cu_seqlens=cu_seqlens,
|
|
725
|
+
)
|
|
726
|
+
return hidden_states
|
|
727
|
+
|
|
728
|
+
|
|
729
|
+
class GlmImageTextRotaryEmbedding(nn.Module):
|
|
730
|
+
inv_freq: torch.Tensor # fix linting for `register_buffer`
|
|
731
|
+
|
|
732
|
+
def __init__(self, config: GlmImageTextConfig, device=None):
|
|
733
|
+
super().__init__()
|
|
734
|
+
self.max_seq_len_cached = config.max_position_embeddings
|
|
735
|
+
self.original_max_seq_len = config.max_position_embeddings
|
|
736
|
+
|
|
737
|
+
self.config = config
|
|
738
|
+
|
|
739
|
+
self.rope_type = self.config.rope_parameters["rope_type"]
|
|
740
|
+
rope_init_fn: Callable = self.compute_default_rope_parameters
|
|
741
|
+
if self.rope_type != "default":
|
|
742
|
+
rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
|
743
|
+
inv_freq, self.attention_scaling = rope_init_fn(self.config, device)
|
|
744
|
+
|
|
745
|
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
|
746
|
+
self.register_buffer("original_inv_freq", inv_freq.clone(), persistent=False)
|
|
747
|
+
self.mrope_section = config.rope_parameters.get("mrope_section", [8, 12, 12])
|
|
748
|
+
|
|
749
|
+
@staticmethod
|
|
750
|
+
def compute_default_rope_parameters(
|
|
751
|
+
config: GlmImageTextConfig | None = None,
|
|
752
|
+
device: Optional["torch.device"] = None,
|
|
753
|
+
seq_len: int | None = None,
|
|
754
|
+
) -> tuple["torch.Tensor", float]:
|
|
755
|
+
"""
|
|
756
|
+
Computes the inverse frequencies according to the original RoPE implementation
|
|
757
|
+
Args:
|
|
758
|
+
config ([`~transformers.PreTrainedConfig`]):
|
|
759
|
+
The model configuration.
|
|
760
|
+
device (`torch.device`):
|
|
761
|
+
The device to use for initialization of the inverse frequencies.
|
|
762
|
+
seq_len (`int`, *optional*):
|
|
763
|
+
The current sequence length. Unused for this type of RoPE.
|
|
764
|
+
Returns:
|
|
765
|
+
Tuple of (`torch.Tensor`, `float`), containing the inverse frequencies for the RoPE embeddings and the
|
|
766
|
+
post-processing scaling factor applied to the computed cos/sin (unused in this type of RoPE).
|
|
767
|
+
"""
|
|
768
|
+
base = config.rope_parameters["rope_theta"]
|
|
769
|
+
partial_rotary_factor = config.rope_parameters.get("partial_rotary_factor", 1.0)
|
|
770
|
+
head_dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads
|
|
771
|
+
dim = int(head_dim * partial_rotary_factor)
|
|
772
|
+
|
|
773
|
+
attention_factor = 1.0 # Unused in this type of RoPE
|
|
774
|
+
|
|
775
|
+
# Compute the inverse frequencies
|
|
776
|
+
inv_freq = 1.0 / (
|
|
777
|
+
base ** (torch.arange(0, dim, 2, dtype=torch.int64).to(device=device, dtype=torch.float) / dim)
|
|
778
|
+
)
|
|
779
|
+
return inv_freq, attention_factor
|
|
780
|
+
|
|
781
|
+
@torch.no_grad()
|
|
782
|
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
|
783
|
+
def forward(self, x, position_ids):
|
|
784
|
+
# In contrast to other models, GLM-V has different position ids for the grids
|
|
785
|
+
# So we expand the inv_freq to shape (3, ...)
|
|
786
|
+
inv_freq_expanded = self.inv_freq[None, None, :, None].float().expand(3, position_ids.shape[1], -1, 1)
|
|
787
|
+
position_ids_expanded = position_ids[:, :, None, :].float() # shape (3, bs, 1, positions)
|
|
788
|
+
|
|
789
|
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
|
790
|
+
with maybe_autocast(device_type=device_type, enabled=False): # Force float32
|
|
791
|
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(2, 3)
|
|
792
|
+
freqs = self.apply_mrope(freqs, self.mrope_section)
|
|
793
|
+
emb = torch.cat((freqs, freqs), dim=-1)
|
|
794
|
+
cos = emb.cos() * self.attention_scaling
|
|
795
|
+
sin = emb.sin() * self.attention_scaling
|
|
796
|
+
|
|
797
|
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
|
798
|
+
|
|
799
|
+
def apply_mrope(self, freqs, mrope_section):
|
|
800
|
+
section = mrope_section
|
|
801
|
+
chunks = freqs.split(section, dim=-1)
|
|
802
|
+
result = torch.cat([chunk[i % 3] for i, chunk in enumerate(chunks)], dim=-1)
|
|
803
|
+
return result
|
|
804
|
+
|
|
805
|
+
|
|
806
|
+
@auto_docstring
|
|
807
|
+
class GlmImageTextModel(GlmImagePreTrainedModel):
|
|
808
|
+
config: GlmImageTextConfig
|
|
809
|
+
input_modalities = ("text",)
|
|
810
|
+
|
|
811
|
+
def __init__(self, config: GlmImageTextConfig):
|
|
812
|
+
super().__init__(config)
|
|
813
|
+
self.padding_idx = config.pad_token_id
|
|
814
|
+
self.vocab_size = config.vocab_size
|
|
815
|
+
|
|
816
|
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
|
817
|
+
self.layers = nn.ModuleList(
|
|
818
|
+
[GlmImageTextDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
|
819
|
+
)
|
|
820
|
+
self.norm = GlmImageRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
|
821
|
+
self.rotary_emb = GlmImageTextRotaryEmbedding(config=config)
|
|
822
|
+
|
|
823
|
+
self.gradient_checkpointing = False
|
|
824
|
+
# Initialize weights and apply final processing
|
|
825
|
+
self.post_init()
|
|
826
|
+
|
|
827
|
+
@auto_docstring
|
|
828
|
+
@check_model_inputs
|
|
829
|
+
def forward(
|
|
830
|
+
self,
|
|
831
|
+
input_ids: torch.LongTensor | None = None,
|
|
832
|
+
attention_mask: torch.Tensor | None = None,
|
|
833
|
+
position_ids: torch.LongTensor | None = None,
|
|
834
|
+
past_key_values: Cache | None = None,
|
|
835
|
+
inputs_embeds: torch.FloatTensor | None = None,
|
|
836
|
+
use_cache: bool | None = None,
|
|
837
|
+
cache_position: torch.LongTensor | None = None,
|
|
838
|
+
**kwargs: Unpack[FlashAttentionKwargs],
|
|
839
|
+
) -> tuple | BaseModelOutputWithPast:
|
|
840
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
841
|
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
842
|
+
|
|
843
|
+
# torch.jit.trace() doesn't support cache objects in the output
|
|
844
|
+
if use_cache and past_key_values is None and not torch.jit.is_tracing():
|
|
845
|
+
past_key_values = DynamicCache(config=self.config)
|
|
846
|
+
|
|
847
|
+
if inputs_embeds is None:
|
|
848
|
+
inputs_embeds = self.embed_tokens(input_ids)
|
|
849
|
+
|
|
850
|
+
if cache_position is None:
|
|
851
|
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
852
|
+
cache_position = torch.arange(
|
|
853
|
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
854
|
+
)
|
|
855
|
+
|
|
856
|
+
# the hard coded `3` is for temporal, height and width.
|
|
857
|
+
if position_ids is None:
|
|
858
|
+
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
|
|
859
|
+
elif position_ids.ndim == 2:
|
|
860
|
+
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
|
|
861
|
+
|
|
862
|
+
# NOTE: we need to pass text position ids for packing. Qwen2-VL uses 3D positions
|
|
863
|
+
# where each dim indicates visual spatial positions for temporal/height/width grids.
|
|
864
|
+
# There are two scenarios when FA2-like packed masking might be activated.
|
|
865
|
+
# 1. User specifically passed packed `position_ids` and no attention mask.
|
|
866
|
+
# In this case we expect the useer to create correct position ids for all 3 grids
|
|
867
|
+
# and prepend text-only position ids to it. The final tensor will be [4, bs, seq-len]
|
|
868
|
+
# 2. User runs forward with no attention mask and no position ids. In this case, position ids
|
|
869
|
+
# are prepared by the model (`get_rope_index`) as `[4, bs, seq-len]` tensor. Text-only positions are
|
|
870
|
+
# prepended by us when creating positions so that the mask is constructed correctly. NOTE: failing to pass
|
|
871
|
+
# text-only positions will cause incorrect mask construction, do not change `prepare_input_for_generation`
|
|
872
|
+
if position_ids.ndim == 3 and position_ids.shape[0] == 4:
|
|
873
|
+
text_position_ids = position_ids[0]
|
|
874
|
+
position_ids = position_ids[1:]
|
|
875
|
+
else:
|
|
876
|
+
# If inputs are not packed (usual 3D positions), do not prepare mask from position_ids
|
|
877
|
+
text_position_ids = None
|
|
878
|
+
|
|
879
|
+
mask_kwargs = {
|
|
880
|
+
"config": self.config,
|
|
881
|
+
"input_embeds": inputs_embeds,
|
|
882
|
+
"attention_mask": attention_mask,
|
|
883
|
+
"cache_position": cache_position,
|
|
884
|
+
"past_key_values": past_key_values,
|
|
885
|
+
"position_ids": text_position_ids,
|
|
886
|
+
}
|
|
887
|
+
# Create the masks
|
|
888
|
+
causal_mask = create_causal_mask(**mask_kwargs)
|
|
889
|
+
|
|
890
|
+
hidden_states = inputs_embeds
|
|
891
|
+
position_embeddings = self.rotary_emb(hidden_states, position_ids=position_ids)
|
|
892
|
+
|
|
893
|
+
for decoder_layer in self.layers:
|
|
894
|
+
layer_outputs = decoder_layer(
|
|
895
|
+
hidden_states,
|
|
896
|
+
attention_mask=causal_mask,
|
|
897
|
+
position_ids=text_position_ids,
|
|
898
|
+
past_key_values=past_key_values,
|
|
899
|
+
cache_position=cache_position,
|
|
900
|
+
position_embeddings=position_embeddings,
|
|
901
|
+
**kwargs,
|
|
902
|
+
)
|
|
903
|
+
hidden_states = layer_outputs
|
|
904
|
+
|
|
905
|
+
hidden_states = self.norm(hidden_states)
|
|
906
|
+
|
|
907
|
+
return BaseModelOutputWithPast(
|
|
908
|
+
last_hidden_state=hidden_states,
|
|
909
|
+
past_key_values=past_key_values,
|
|
910
|
+
)
|
|
911
|
+
|
|
912
|
+
|
|
913
|
+
@auto_docstring
|
|
914
|
+
class GlmImageModel(GlmImagePreTrainedModel):
|
|
915
|
+
base_model_prefix = "model"
|
|
916
|
+
_checkpoint_conversion_mapping = {}
|
|
917
|
+
# Reference: fix gemma3 grad acc #37208
|
|
918
|
+
accepts_loss_kwargs = False
|
|
919
|
+
config: GlmImageConfig
|
|
920
|
+
_no_split_modules = ["GlmImageTextDecoderLayer", "GlmImageVisionBlock"]
|
|
921
|
+
|
|
922
|
+
def __init__(self, config):
|
|
923
|
+
super().__init__(config)
|
|
924
|
+
self.visual = GlmImageVisionModel._from_config(config.vision_config)
|
|
925
|
+
self.language_model = GlmImageTextModel._from_config(config.text_config)
|
|
926
|
+
|
|
927
|
+
self.rope_deltas = None # cache rope_deltas here
|
|
928
|
+
self.vqmodel = GlmImageVQVAE._from_config(config.vq_config)
|
|
929
|
+
|
|
930
|
+
# Initialize weights and apply final processing
|
|
931
|
+
self.post_init()
|
|
932
|
+
|
|
933
|
+
def get_input_embeddings(self):
|
|
934
|
+
return self.language_model.get_input_embeddings()
|
|
935
|
+
|
|
936
|
+
def set_input_embeddings(self, value):
|
|
937
|
+
self.language_model.set_input_embeddings(value)
|
|
938
|
+
|
|
939
|
+
def get_rope_index(
|
|
940
|
+
self,
|
|
941
|
+
input_ids: torch.LongTensor | None = None,
|
|
942
|
+
image_grid_thw: torch.LongTensor | None = None,
|
|
943
|
+
attention_mask: torch.LongTensor | None = None,
|
|
944
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
945
|
+
"""
|
|
946
|
+
Calculate the 3D rope index for image generation task.
|
|
947
|
+
|
|
948
|
+
Explanation:
|
|
949
|
+
Each embedding sequence may contain image tokens (for generation) and text tokens,
|
|
950
|
+
or just text tokens.
|
|
951
|
+
|
|
952
|
+
Input format:
|
|
953
|
+
- Text-to-Image: [text tokens] + <|dit_token_16384|>
|
|
954
|
+
- Image-to-Image: <|dit_token_16384|> [image tokens] <|dit_token_16385|> + [text tokens] + <|dit_token_16384|>
|
|
955
|
+
|
|
956
|
+
For pure text embedding sequence, the rotary position embedding is the same across all 3 dimensions.
|
|
957
|
+
Examples:
|
|
958
|
+
input_ids: [T T T T T], here T is for text.
|
|
959
|
+
temporal position_ids: [0, 1, 2, 3, 4]
|
|
960
|
+
height position_ids: [0, 1, 2, 3, 4]
|
|
961
|
+
width position_ids: [0, 1, 2, 3, 4]
|
|
962
|
+
|
|
963
|
+
For sequences with image tokens, we use special markers to denote image regions:
|
|
964
|
+
- <|dit_token_16384|>: image start marker
|
|
965
|
+
- <|dit_token_16385|>: image end marker
|
|
966
|
+
- Image tokens between these markers use 2D spatial position encoding.
|
|
967
|
+
|
|
968
|
+
For image tokens:
|
|
969
|
+
- temporal: stays constant at (image_start_pos + 1)
|
|
970
|
+
- height: increments every w tokens, representing row position
|
|
971
|
+
- width: cycles from 0 to w-1, representing column position
|
|
972
|
+
|
|
973
|
+
After each image region, the next position jumps to: image_start_pos + 1 + max(h, w)
|
|
974
|
+
This ensures sufficient positional separation between images and subsequent tokens.
|
|
975
|
+
|
|
976
|
+
Examples:
|
|
977
|
+
=== Case 1: Image-to-Image Generation ===
|
|
978
|
+
|
|
979
|
+
Source image with grid [1, 3, 2], followed by text, then generation.
|
|
980
|
+
input_ids: [<|dit_token_16384|> V V V V V V <|dit_token_16385|> T T T T <|dit_token_16384|>]
|
|
981
|
+
image_grid_thw: [[1, 3, 2], [1, 4, 4]] # first is source, second is target
|
|
982
|
+
|
|
983
|
+
For source image (h=3, w=2, 6 tokens):
|
|
984
|
+
Start marker at position 0
|
|
985
|
+
Image tokens at temporal=1, height=[1,1,2,2,3,3], width=[1,2,1,2,1,2]
|
|
986
|
+
End marker at position 4 (= 0 + 1 + max(3,2))
|
|
987
|
+
|
|
988
|
+
Text tokens and trailing start marker continue from position 5.
|
|
989
|
+
|
|
990
|
+
Full prefill position_ids:
|
|
991
|
+
temporal: [0, 1,1,1,1,1,1, 4, 5,6,7,8, 9]
|
|
992
|
+
height: [0, 1,1,2,2,3,3, 4, 5,6,7,8, 9]
|
|
993
|
+
width: [0, 1,2,1,2,1,2, 4, 5,6,7,8, 9]
|
|
994
|
+
|
|
995
|
+
Decode stage: use image_grid_thw[-1] = [1, 4, 4] to build cached position_ids,
|
|
996
|
+
starting from gen_st_idx = 10.
|
|
997
|
+
|
|
998
|
+
=== Case 2: Text-to-Image Generation (multi-resolution) ===
|
|
999
|
+
|
|
1000
|
+
Pure text input with two image_grids for progressive generation.
|
|
1001
|
+
input_ids: [hello<sop>3 3<eop><sop>3 2<eop><|dit_token_16384|>]
|
|
1002
|
+
Assume "hello<sop>3 3<eop><sop>3 2<eop>" = 4 tokens (positions 0-3)
|
|
1003
|
+
<|dit_token_16384|> at position 4
|
|
1004
|
+
image_grid_thw: [[1, 3, 3], [1, 3, 2]]
|
|
1005
|
+
- image_grid_thw[-1] = [1, 3, 2]: first generated image (smaller/draft)
|
|
1006
|
+
- image_grid_thw[-2] = [1, 3, 3]: second generated image (larger/final)
|
|
1007
|
+
|
|
1008
|
+
Prefill position_ids (5 tokens: 4 text + 1 start marker):
|
|
1009
|
+
temporal: [0, 1, 2, 3, 4]
|
|
1010
|
+
height: [0, 1, 2, 3, 4]
|
|
1011
|
+
width: [0, 1, 2, 3, 4]
|
|
1012
|
+
|
|
1013
|
+
Decode stage builds position_ids in reverse order of image_grid_thw:
|
|
1014
|
+
|
|
1015
|
+
First: image_grid_thw[-1] = [1, 3, 2] (6 tokens), starting at position 5:
|
|
1016
|
+
temporal: [5, 5, 5, 5, 5, 5]
|
|
1017
|
+
height: [5, 5, 6, 6, 7, 7]
|
|
1018
|
+
width: [5, 6, 5, 6, 5, 6]
|
|
1019
|
+
next_pos = 5 + max(3, 2) = 8
|
|
1020
|
+
|
|
1021
|
+
Then: image_grid_thw[-2] = [1, 3, 3] (9 tokens), starting at position 8:
|
|
1022
|
+
temporal: [8, 8, 8, 8, 8, 8, 8, 8, 8]
|
|
1023
|
+
height: [8, 8, 8, 9, 9, 9, 10, 10, 10]
|
|
1024
|
+
width: [8, 9, 10, 8, 9, 10, 8, 9, 10]
|
|
1025
|
+
next_pos = 8 + max(3, 3) = 11
|
|
1026
|
+
|
|
1027
|
+
Finally: <|dit_token_16385|> end marker at position 11
|
|
1028
|
+
|
|
1029
|
+
Full sequence position_ids (prefill + decode):
|
|
1030
|
+
temporal: [0,1,2,3, 4, 5,5,5,5,5,5, 8,8,8,8,8,8,8,8,8, 11]
|
|
1031
|
+
height: [0,1,2,3, 4, 5,5,6,6,7,7, 8,8,8,9,9,9,10,10,10, 11]
|
|
1032
|
+
width: [0,1,2,3, 4, 5,6,5,6,5,6, 8,9,10,8,9,10,8,9,10, 11]
|
|
1033
|
+
|
|
1034
|
+
_cached_decode_position_ids shape: [3, 6 + 9 + 1] = [3, 16]
|
|
1035
|
+
(includes all generated image tokens + end marker)
|
|
1036
|
+
|
|
1037
|
+
Args:
|
|
1038
|
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
|
1039
|
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default
|
|
1040
|
+
should you provide it.
|
|
1041
|
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
1042
|
+
The temporal, height and width of feature shape of each image. For image generation,
|
|
1043
|
+
temporal is typically 1.
|
|
1044
|
+
- For image-to-image: includes source image grids + target image grid(s)
|
|
1045
|
+
- For text-to-image with multi-resolution: includes multiple target grids,
|
|
1046
|
+
processed in reverse order (last grid first, second-to-last grid second, etc.)
|
|
1047
|
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
1048
|
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
|
1049
|
+
- 1 for tokens that are **not masked**,
|
|
1050
|
+
- 0 for tokens that are **masked**.
|
|
1051
|
+
|
|
1052
|
+
Returns:
|
|
1053
|
+
position_ids (`torch.LongTensor` of shape `(3, batch_size, sequence_length)`):
|
|
1054
|
+
Position IDs for temporal, height, and width dimensions.
|
|
1055
|
+
mrope_position_deltas (`torch.Tensor` of shape `(batch_size, 1)`):
|
|
1056
|
+
Position deltas for multi-modal rotary position embedding (zeros for this task).
|
|
1057
|
+
"""
|
|
1058
|
+
|
|
1059
|
+
batch_size, seq_len = input_ids.shape
|
|
1060
|
+
device = input_ids.device
|
|
1061
|
+
dtype = input_ids.dtype
|
|
1062
|
+
|
|
1063
|
+
image_start_token_id = self.config.image_start_token_id
|
|
1064
|
+
image_end_token_id = self.config.image_end_token_id
|
|
1065
|
+
num_complete_images = (input_ids == image_end_token_id).sum().item()
|
|
1066
|
+
|
|
1067
|
+
position_ids = torch.ones(
|
|
1068
|
+
3, input_ids.shape[0], input_ids.shape[1], dtype=input_ids.dtype, device=input_ids.device
|
|
1069
|
+
)
|
|
1070
|
+
text_positions = torch.arange(seq_len)[None, :].repeat(3, 1)
|
|
1071
|
+
for batch_idx in range(batch_size):
|
|
1072
|
+
curr_input_ids = input_ids[batch_idx]
|
|
1073
|
+
if attention_mask is not None:
|
|
1074
|
+
curr_input_ids = curr_input_ids[attention_mask[batch_idx] == 1]
|
|
1075
|
+
|
|
1076
|
+
image_end = torch.where(curr_input_ids == image_end_token_id)[0]
|
|
1077
|
+
image_start = torch.where(curr_input_ids == image_start_token_id)[0] + 1
|
|
1078
|
+
current_pos = 0 # track the current position value
|
|
1079
|
+
prev_image_end = 0
|
|
1080
|
+
curr_position_ids = []
|
|
1081
|
+
for start, end, grid in zip(image_start, image_end, image_grid_thw):
|
|
1082
|
+
_, num_width_grid, num_height_grid = grid
|
|
1083
|
+
|
|
1084
|
+
# Create text position ids first if there are text tokens before image
|
|
1085
|
+
llm_pos_length = start - prev_image_end
|
|
1086
|
+
llm_position_ids = text_positions[:, current_pos : current_pos + llm_pos_length].to(
|
|
1087
|
+
device=input_ids.device
|
|
1088
|
+
)
|
|
1089
|
+
current_pos += llm_position_ids.shape[-1]
|
|
1090
|
+
|
|
1091
|
+
# Now create image position ids for each grid
|
|
1092
|
+
image_seq_length = num_height_grid * num_width_grid
|
|
1093
|
+
h_grids = image_seq_length // num_height_grid + current_pos
|
|
1094
|
+
w_grids = image_seq_length // num_width_grid + current_pos
|
|
1095
|
+
position_width = torch.arange(current_pos, w_grids, device=input_ids.device).repeat(num_width_grid)
|
|
1096
|
+
position_height = torch.arange(current_pos, h_grids, device=input_ids.device).repeat_interleave(
|
|
1097
|
+
num_height_grid
|
|
1098
|
+
)
|
|
1099
|
+
position_temporal = torch.full(
|
|
1100
|
+
(image_seq_length,), current_pos, device=input_ids.device, dtype=torch.long
|
|
1101
|
+
)
|
|
1102
|
+
vision_position_ids = torch.stack([position_temporal, position_height, position_width], dim=0)
|
|
1103
|
+
current_pos += max(num_height_grid, num_width_grid)
|
|
1104
|
+
|
|
1105
|
+
prev_image_end = end
|
|
1106
|
+
curr_position_ids.append(torch.cat([llm_position_ids, vision_position_ids], dim=-1))
|
|
1107
|
+
|
|
1108
|
+
# Add position ids for the last text tokens if any
|
|
1109
|
+
end_position = len(curr_input_ids) - prev_image_end
|
|
1110
|
+
llm_position_ids = text_positions[:, current_pos : current_pos + end_position].to(device=input_ids.device)
|
|
1111
|
+
current_pos += llm_position_ids.shape[-1]
|
|
1112
|
+
curr_position_ids.append(llm_position_ids)
|
|
1113
|
+
curr_position_ids = torch.cat(curr_position_ids, dim=-1)
|
|
1114
|
+
if attention_mask is not None:
|
|
1115
|
+
position_ids[:, batch_idx, attention_mask[batch_idx] == 1] = curr_position_ids.to(position_ids.device)
|
|
1116
|
+
else:
|
|
1117
|
+
position_ids[:, batch_idx, :] = curr_position_ids.to(position_ids.device)
|
|
1118
|
+
|
|
1119
|
+
# Build and store position ids for tokens that will be generated. Later we will just
|
|
1120
|
+
# slice these instead of computing each decoding step
|
|
1121
|
+
self._prefill_len = seq_len
|
|
1122
|
+
if image_grid_thw is not None and len(image_grid_thw) > 0:
|
|
1123
|
+
num_decode_grids = len(image_grid_thw) - num_complete_images
|
|
1124
|
+
num_decode_grids = max(num_decode_grids, 0)
|
|
1125
|
+
decode_pos = current_pos
|
|
1126
|
+
|
|
1127
|
+
decode_temporal_list = []
|
|
1128
|
+
decode_height_list = []
|
|
1129
|
+
decode_width_list = []
|
|
1130
|
+
|
|
1131
|
+
for i in range(1, num_decode_grids + 1):
|
|
1132
|
+
grid_idx = -i
|
|
1133
|
+
h = image_grid_thw[grid_idx, 1].item()
|
|
1134
|
+
w = image_grid_thw[grid_idx, 2].item()
|
|
1135
|
+
total_tokens = h * w
|
|
1136
|
+
|
|
1137
|
+
h_indices = torch.arange(h, device=device).unsqueeze(1).expand(h, w).flatten()
|
|
1138
|
+
w_indices = torch.arange(w, device=device).unsqueeze(0).expand(h, w).flatten()
|
|
1139
|
+
|
|
1140
|
+
decode_temporal_list.append(torch.full((total_tokens,), decode_pos, device=device, dtype=torch.long))
|
|
1141
|
+
decode_height_list.append(decode_pos + h_indices)
|
|
1142
|
+
decode_width_list.append(decode_pos + w_indices)
|
|
1143
|
+
decode_pos = decode_pos + max(h, w)
|
|
1144
|
+
|
|
1145
|
+
decode_temporal_list.append(torch.tensor([decode_pos], device=device, dtype=torch.long))
|
|
1146
|
+
decode_height_list.append(torch.tensor([decode_pos], device=device, dtype=torch.long))
|
|
1147
|
+
decode_width_list.append(torch.tensor([decode_pos], device=device, dtype=torch.long))
|
|
1148
|
+
|
|
1149
|
+
self._cached_decode_position_ids = torch.stack(
|
|
1150
|
+
[
|
|
1151
|
+
torch.cat(decode_temporal_list, dim=0),
|
|
1152
|
+
torch.cat(decode_height_list, dim=0),
|
|
1153
|
+
torch.cat(decode_width_list, dim=0),
|
|
1154
|
+
],
|
|
1155
|
+
dim=0,
|
|
1156
|
+
)
|
|
1157
|
+
else:
|
|
1158
|
+
self._cached_decode_position_ids = None
|
|
1159
|
+
|
|
1160
|
+
mrope_position_deltas = torch.zeros([batch_size, 1], dtype=dtype, device=device)
|
|
1161
|
+
|
|
1162
|
+
return position_ids, mrope_position_deltas
|
|
1163
|
+
|
|
1164
|
+
def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: torch.LongTensor | None = None):
|
|
1165
|
+
"""
|
|
1166
|
+
Encodes images into continuous embeddings that can be forwarded to the language model.
|
|
1167
|
+
|
|
1168
|
+
Args:
|
|
1169
|
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
|
1170
|
+
The tensors corresponding to the input images.
|
|
1171
|
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
1172
|
+
The temporal, height and width of feature shape of each image in LLM.
|
|
1173
|
+
"""
|
|
1174
|
+
pixel_values = pixel_values.type(self.visual.dtype)
|
|
1175
|
+
image_embeds = self.visual(pixel_values, grid_thw=image_grid_thw)
|
|
1176
|
+
split_sizes = (image_grid_thw.prod(-1) // self.visual.spatial_merge_size**2).tolist()
|
|
1177
|
+
image_embeds = torch.split(image_embeds, split_sizes)
|
|
1178
|
+
return image_embeds
|
|
1179
|
+
|
|
1180
|
+
def get_placeholder_mask(
|
|
1181
|
+
self,
|
|
1182
|
+
input_ids: torch.LongTensor,
|
|
1183
|
+
image_ids: torch.LongTensor,
|
|
1184
|
+
):
|
|
1185
|
+
"""
|
|
1186
|
+
Replace image placeholder tokens in input_ids with actual image token ids from VQVAE.
|
|
1187
|
+
|
|
1188
|
+
Args:
|
|
1189
|
+
input_ids (`torch.LongTensor` of shape `(batch_size, seq_len)`):
|
|
1190
|
+
Input token ids with image placeholders.
|
|
1191
|
+
image_ids (`torch.LongTensor` of shape `(num_images, num_tokens_per_image)` or flattened):
|
|
1192
|
+
Discrete token indices from the VQVAE codebook.
|
|
1193
|
+
|
|
1194
|
+
Returns:
|
|
1195
|
+
special_image_mask (`torch.LongTensor` of shape `(batch_size, seq_len)`):
|
|
1196
|
+
Mask indicating positions in input ids that will be replaced by actual image tokens.
|
|
1197
|
+
"""
|
|
1198
|
+
|
|
1199
|
+
special_image_mask = input_ids == self.config.image_token_id
|
|
1200
|
+
n_placeholder_tokens = special_image_mask.sum().item()
|
|
1201
|
+
n_image_tokens = image_ids.shape[0]
|
|
1202
|
+
|
|
1203
|
+
if n_placeholder_tokens != n_image_tokens:
|
|
1204
|
+
raise ValueError(
|
|
1205
|
+
f"Number of image placeholder tokens ({n_placeholder_tokens}) does not match "
|
|
1206
|
+
f"number of image tokens from VQVAE ({n_image_tokens})"
|
|
1207
|
+
)
|
|
1208
|
+
|
|
1209
|
+
return special_image_mask
|
|
1210
|
+
|
|
1211
|
+
@auto_docstring
|
|
1212
|
+
@can_return_tuple
|
|
1213
|
+
def forward(
|
|
1214
|
+
self,
|
|
1215
|
+
input_ids: torch.LongTensor | None = None,
|
|
1216
|
+
attention_mask: torch.Tensor | None = None,
|
|
1217
|
+
position_ids: torch.LongTensor | None = None,
|
|
1218
|
+
past_key_values: Cache | None = None,
|
|
1219
|
+
inputs_embeds: torch.FloatTensor | None = None,
|
|
1220
|
+
pixel_values: torch.Tensor | None = None,
|
|
1221
|
+
image_grid_thw: torch.LongTensor | None = None,
|
|
1222
|
+
rope_deltas: torch.LongTensor | None = None,
|
|
1223
|
+
cache_position: torch.LongTensor | None = None,
|
|
1224
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1225
|
+
) -> tuple | GlmImageModelOutputWithPast:
|
|
1226
|
+
r"""
|
|
1227
|
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
1228
|
+
The temporal, height and width of feature shape of each image in LLM.
|
|
1229
|
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
|
1230
|
+
The rope index difference between sequence length and multimodal rope.
|
|
1231
|
+
"""
|
|
1232
|
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
1233
|
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
1234
|
+
|
|
1235
|
+
if pixel_values is not None:
|
|
1236
|
+
image_embeds = self.get_image_features(pixel_values, image_grid_thw[:-1])
|
|
1237
|
+
image_embeds = torch.cat(image_embeds, dim=0)
|
|
1238
|
+
image_ids = self.get_image_tokens(image_embeds, image_grid_thw[:-1])
|
|
1239
|
+
image_ids = image_ids.view(-1).to(input_ids.device)
|
|
1240
|
+
special_image_mask = self.get_placeholder_mask(input_ids, image_ids)
|
|
1241
|
+
input_ids = input_ids.masked_scatter(special_image_mask, image_ids)
|
|
1242
|
+
|
|
1243
|
+
if inputs_embeds is None:
|
|
1244
|
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
|
1245
|
+
|
|
1246
|
+
if position_ids is None:
|
|
1247
|
+
attention_mask_2d = attention_mask
|
|
1248
|
+
if attention_mask is not None and attention_mask.ndim == 4:
|
|
1249
|
+
attention_mask_2d = torch.diagonal(attention_mask[:, 0], dim1=1, dim2=2)
|
|
1250
|
+
# Only apply conversion for floating point tensors (inverted masks)
|
|
1251
|
+
if attention_mask_2d.dtype.is_floating_point:
|
|
1252
|
+
attention_mask_2d = attention_mask_2d / torch.finfo(attention_mask_2d.dtype).min
|
|
1253
|
+
attention_mask_2d = (1.0 - attention_mask_2d).int()
|
|
1254
|
+
|
|
1255
|
+
# Calculate RoPE index once per generation in the pre-fill stage only.
|
|
1256
|
+
# It is safe to assume that `length!=1` means we're in pre-fill because the
|
|
1257
|
+
# model is used only by DiT pipeline without assisted decoding, etc. techniques
|
|
1258
|
+
is_prefill_stage = (input_ids is not None and input_ids.shape[1] != 1) or (
|
|
1259
|
+
inputs_embeds is not None and inputs_embeds.shape[1] != 1
|
|
1260
|
+
)
|
|
1261
|
+
if is_prefill_stage or self.rope_deltas is None:
|
|
1262
|
+
position_ids, rope_deltas = self.get_rope_index(
|
|
1263
|
+
input_ids,
|
|
1264
|
+
image_grid_thw,
|
|
1265
|
+
attention_mask=attention_mask_2d,
|
|
1266
|
+
)
|
|
1267
|
+
self.rope_deltas = rope_deltas
|
|
1268
|
+
# then use the prev pre-calculated rope-deltas to get the correct position ids
|
|
1269
|
+
else:
|
|
1270
|
+
batch_size, seq_length, _ = inputs_embeds.shape
|
|
1271
|
+
# Use prefill token length, not position value
|
|
1272
|
+
step = cache_position[0].item() - self._prefill_len
|
|
1273
|
+
# Direct lookup - no tensor creation overhead
|
|
1274
|
+
position_ids = self._cached_decode_position_ids[:, step : step + seq_length]
|
|
1275
|
+
position_ids = position_ids.unsqueeze(1).expand(-1, batch_size, -1)
|
|
1276
|
+
|
|
1277
|
+
outputs = self.language_model(
|
|
1278
|
+
input_ids=None,
|
|
1279
|
+
position_ids=position_ids,
|
|
1280
|
+
attention_mask=attention_mask,
|
|
1281
|
+
past_key_values=past_key_values,
|
|
1282
|
+
inputs_embeds=inputs_embeds,
|
|
1283
|
+
cache_position=cache_position,
|
|
1284
|
+
**kwargs,
|
|
1285
|
+
)
|
|
1286
|
+
|
|
1287
|
+
return GlmImageModelOutputWithPast(
|
|
1288
|
+
last_hidden_state=outputs.last_hidden_state,
|
|
1289
|
+
past_key_values=outputs.past_key_values,
|
|
1290
|
+
hidden_states=outputs.hidden_states,
|
|
1291
|
+
attentions=outputs.attentions,
|
|
1292
|
+
rope_deltas=self.rope_deltas,
|
|
1293
|
+
)
|
|
1294
|
+
|
|
1295
|
+
def get_image_tokens(
|
|
1296
|
+
self,
|
|
1297
|
+
hidden_states: torch.FloatTensor,
|
|
1298
|
+
image_grid_thw: torch.LongTensor,
|
|
1299
|
+
) -> torch.LongTensor:
|
|
1300
|
+
"""
|
|
1301
|
+
Tokenizes image features into discrete tokens with VQVAE module.
|
|
1302
|
+
|
|
1303
|
+
Args:
|
|
1304
|
+
hidden_states (`torch.FloatTensor` of shape `(total_patches, hidden_size)`):
|
|
1305
|
+
The packed image features from vision encoder.
|
|
1306
|
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`):
|
|
1307
|
+
The temporal, height and width of feature shape of each image.
|
|
1308
|
+
|
|
1309
|
+
Returns:
|
|
1310
|
+
image_tokens (`torch.LongTensor` of shape `(total_patches,)`):
|
|
1311
|
+
Discrete token indices from the VQVAE codebook.
|
|
1312
|
+
"""
|
|
1313
|
+
hidden_size = hidden_states.shape[-1]
|
|
1314
|
+
split_sizes = (image_grid_thw.prod(dim=-1)).tolist()
|
|
1315
|
+
hidden_states_list = torch.split(hidden_states, split_sizes, dim=0)
|
|
1316
|
+
|
|
1317
|
+
all_image_toks = []
|
|
1318
|
+
for i, hs in enumerate(hidden_states_list):
|
|
1319
|
+
grid_t, grid_h, grid_w = image_grid_thw[i].tolist()
|
|
1320
|
+
hs = hs.view(grid_t, grid_h, grid_w, hidden_size)
|
|
1321
|
+
hs = hs.permute(0, 3, 1, 2).contiguous()
|
|
1322
|
+
_, _, image_toks = self.vqmodel.encode(hs)
|
|
1323
|
+
all_image_toks.append(image_toks)
|
|
1324
|
+
return torch.cat(all_image_toks, dim=0)
|
|
1325
|
+
|
|
1326
|
+
|
|
1327
|
+
@dataclass
|
|
1328
|
+
@auto_docstring(
|
|
1329
|
+
custom_intro="""
|
|
1330
|
+
Base class for GlmImage causal language model (or autoregressive) outputs.
|
|
1331
|
+
"""
|
|
1332
|
+
)
|
|
1333
|
+
class GlmImageCausalLMOutputWithPast(ModelOutput):
|
|
1334
|
+
r"""
|
|
1335
|
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
|
1336
|
+
Language modeling loss (for next-token prediction).
|
|
1337
|
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
|
1338
|
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
|
1339
|
+
past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
|
1340
|
+
It is a [`~cache_utils.Cache`] instance. For more details, see our [kv cache guide](https://huggingface.co/docs/transformers/en/kv_cache).
|
|
1341
|
+
|
|
1342
|
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
|
1343
|
+
`past_key_values` input) to speed up sequential decoding.
|
|
1344
|
+
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
|
1345
|
+
The rope index difference between sequence length and multimodal rope.
|
|
1346
|
+
"""
|
|
1347
|
+
|
|
1348
|
+
loss: torch.FloatTensor | None = None
|
|
1349
|
+
logits: torch.FloatTensor | None = None
|
|
1350
|
+
past_key_values: Cache | None = None
|
|
1351
|
+
hidden_states: tuple[torch.FloatTensor] | None = None
|
|
1352
|
+
attentions: tuple[torch.FloatTensor] | None = None
|
|
1353
|
+
rope_deltas: torch.LongTensor | None = None
|
|
1354
|
+
|
|
1355
|
+
|
|
1356
|
+
class GlmImageForConditionalGeneration(GlmImagePreTrainedModel, GenerationMixin):
|
|
1357
|
+
_checkpoint_conversion_mapping = {}
|
|
1358
|
+
_tied_weights_keys = {}
|
|
1359
|
+
# Reference: fix gemma3 grad acc #37208
|
|
1360
|
+
accepts_loss_kwargs = False
|
|
1361
|
+
base_model_prefix = "model"
|
|
1362
|
+
config: GlmImageConfig
|
|
1363
|
+
|
|
1364
|
+
def __init__(self, config):
|
|
1365
|
+
super().__init__(config)
|
|
1366
|
+
self.model = GlmImageModel(config)
|
|
1367
|
+
self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vision_vocab_size, bias=False)
|
|
1368
|
+
|
|
1369
|
+
# Initialize weights and apply final processing
|
|
1370
|
+
self.post_init()
|
|
1371
|
+
|
|
1372
|
+
def get_image_features(self, pixel_values: torch.FloatTensor, image_grid_thw: torch.LongTensor | None = None):
|
|
1373
|
+
return self.model.get_image_features(pixel_values, image_grid_thw)
|
|
1374
|
+
|
|
1375
|
+
def get_image_tokens(self, hidden_states: torch.FloatTensor, image_grid_thw: torch.LongTensor | None = None):
|
|
1376
|
+
return self.model.get_image_tokens(hidden_states, image_grid_thw)
|
|
1377
|
+
|
|
1378
|
+
def forward(
|
|
1379
|
+
self,
|
|
1380
|
+
input_ids: torch.LongTensor | None = None,
|
|
1381
|
+
attention_mask: torch.Tensor | None = None,
|
|
1382
|
+
position_ids: torch.LongTensor | None = None,
|
|
1383
|
+
past_key_values: Cache | None = None,
|
|
1384
|
+
inputs_embeds: torch.FloatTensor | None = None,
|
|
1385
|
+
labels: torch.LongTensor | None = None,
|
|
1386
|
+
pixel_values: torch.Tensor | None = None,
|
|
1387
|
+
image_grid_thw: torch.LongTensor | None = None,
|
|
1388
|
+
cache_position: torch.LongTensor | None = None,
|
|
1389
|
+
logits_to_keep: int | torch.Tensor = 0,
|
|
1390
|
+
**kwargs: Unpack[TransformersKwargs],
|
|
1391
|
+
) -> tuple | GlmImageCausalLMOutputWithPast:
|
|
1392
|
+
r"""
|
|
1393
|
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
1394
|
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
1395
|
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
1396
|
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
1397
|
+
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
1398
|
+
The temporal, height and width of feature shape of each image in LLM.
|
|
1399
|
+
|
|
1400
|
+
Example:
|
|
1401
|
+
|
|
1402
|
+
```python
|
|
1403
|
+
>>> from PIL import Image
|
|
1404
|
+
>>> import requests
|
|
1405
|
+
>>> from transformers import AutoProcessor, GlmImageForConditionalGeneration
|
|
1406
|
+
|
|
1407
|
+
>>> model = GlmImageForConditionalGeneration.from_pretrained("zai-org/GLM-Image")
|
|
1408
|
+
>>> processor = AutoProcessor.from_pretrained("zai-org/GLM-Image")
|
|
1409
|
+
|
|
1410
|
+
>>> messages = [
|
|
1411
|
+
{
|
|
1412
|
+
"role": "user",
|
|
1413
|
+
"content": [
|
|
1414
|
+
{"type": "image"},
|
|
1415
|
+
{"type": "text", "text": "Add a truck of this photo.<sop>28 40<eop>"},
|
|
1416
|
+
],
|
|
1417
|
+
},
|
|
1418
|
+
]
|
|
1419
|
+
>>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
|
|
1420
|
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
|
1421
|
+
|
|
1422
|
+
>>> text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
|
1423
|
+
>>> inputs = processor(text=[text], images=[image], vision_infos=[vision_infos])
|
|
1424
|
+
|
|
1425
|
+
>>> # Generate
|
|
1426
|
+
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
1427
|
+
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
1428
|
+
"The image shows a street scene with a red stop sign in the foreground. In the background, there is a large red gate with Chinese characters ..."
|
|
1429
|
+
```"""
|
|
1430
|
+
outputs = self.model(
|
|
1431
|
+
input_ids=input_ids,
|
|
1432
|
+
pixel_values=pixel_values,
|
|
1433
|
+
image_grid_thw=image_grid_thw,
|
|
1434
|
+
position_ids=position_ids,
|
|
1435
|
+
attention_mask=attention_mask,
|
|
1436
|
+
past_key_values=past_key_values,
|
|
1437
|
+
inputs_embeds=inputs_embeds,
|
|
1438
|
+
cache_position=cache_position,
|
|
1439
|
+
**kwargs,
|
|
1440
|
+
)
|
|
1441
|
+
|
|
1442
|
+
hidden_states = outputs[0]
|
|
1443
|
+
|
|
1444
|
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
|
1445
|
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
1446
|
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
|
1447
|
+
|
|
1448
|
+
loss = None
|
|
1449
|
+
if labels is not None:
|
|
1450
|
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size)
|
|
1451
|
+
|
|
1452
|
+
return GlmImageCausalLMOutputWithPast(
|
|
1453
|
+
loss=loss,
|
|
1454
|
+
logits=logits,
|
|
1455
|
+
past_key_values=outputs.past_key_values,
|
|
1456
|
+
hidden_states=outputs.hidden_states,
|
|
1457
|
+
attentions=outputs.attentions,
|
|
1458
|
+
rope_deltas=outputs.rope_deltas,
|
|
1459
|
+
)
|
|
1460
|
+
|
|
1461
|
+
def prepare_inputs_for_generation(
|
|
1462
|
+
self,
|
|
1463
|
+
input_ids,
|
|
1464
|
+
past_key_values=None,
|
|
1465
|
+
attention_mask=None,
|
|
1466
|
+
inputs_embeds=None,
|
|
1467
|
+
cache_position=None,
|
|
1468
|
+
position_ids=None,
|
|
1469
|
+
use_cache=True,
|
|
1470
|
+
pixel_values=None,
|
|
1471
|
+
image_grid_thw=None,
|
|
1472
|
+
is_first_iteration=False,
|
|
1473
|
+
**kwargs,
|
|
1474
|
+
):
|
|
1475
|
+
model_inputs = super().prepare_inputs_for_generation(
|
|
1476
|
+
input_ids,
|
|
1477
|
+
past_key_values=past_key_values,
|
|
1478
|
+
attention_mask=attention_mask,
|
|
1479
|
+
inputs_embeds=inputs_embeds,
|
|
1480
|
+
cache_position=cache_position,
|
|
1481
|
+
position_ids=position_ids,
|
|
1482
|
+
pixel_values=pixel_values,
|
|
1483
|
+
image_grid_thw=image_grid_thw,
|
|
1484
|
+
is_first_iteration=is_first_iteration,
|
|
1485
|
+
use_cache=use_cache,
|
|
1486
|
+
**kwargs,
|
|
1487
|
+
)
|
|
1488
|
+
|
|
1489
|
+
model_inputs["position_ids"] = None
|
|
1490
|
+
|
|
1491
|
+
if not is_first_iteration and use_cache:
|
|
1492
|
+
model_inputs["pixel_values"] = None
|
|
1493
|
+
|
|
1494
|
+
return model_inputs
|
|
1495
|
+
|
|
1496
|
+
def _get_image_nums(
|
|
1497
|
+
self,
|
|
1498
|
+
input_ids: torch.LongTensor | None,
|
|
1499
|
+
) -> torch.Tensor:
|
|
1500
|
+
"""
|
|
1501
|
+
Get the number of images for each sample.
|
|
1502
|
+
For GLM-Image, only input_ids allow us to get the number of images.
|
|
1503
|
+
|
|
1504
|
+
Returns:
|
|
1505
|
+
image_counts (`torch.LongTensor` of shape `(batch_size,)`)
|
|
1506
|
+
"""
|
|
1507
|
+
is_image = input_ids == self.config.image_start_token_id
|
|
1508
|
+
|
|
1509
|
+
return is_image.sum(dim=1)
|
|
1510
|
+
|
|
1511
|
+
def _expand_inputs_for_generation(
|
|
1512
|
+
self,
|
|
1513
|
+
expand_size: int = 1,
|
|
1514
|
+
is_encoder_decoder: bool = False,
|
|
1515
|
+
input_ids: torch.LongTensor | None = None,
|
|
1516
|
+
**model_kwargs,
|
|
1517
|
+
) -> tuple[torch.LongTensor, dict[str, Any]]:
|
|
1518
|
+
# Overwritten -- Support for expanding tensors without a batch size dimension
|
|
1519
|
+
# e.g., pixel_values, image_grid_thw
|
|
1520
|
+
# pixel_values.shape[0] is sum(seqlen_images for samples)
|
|
1521
|
+
# image_grid_thw.shape[0] is sum(num_images for samples)
|
|
1522
|
+
|
|
1523
|
+
if expand_size == 1:
|
|
1524
|
+
return input_ids, model_kwargs
|
|
1525
|
+
|
|
1526
|
+
visual_keys = ["pixel_values", "image_grid_thw"]
|
|
1527
|
+
|
|
1528
|
+
def _expand_dict_for_generation_visual(dict_to_expand):
|
|
1529
|
+
image_grid_thw = model_kwargs.get("image_grid_thw", None)
|
|
1530
|
+
image_nums = self._get_image_nums(input_ids)
|
|
1531
|
+
|
|
1532
|
+
def _repeat_interleave_samples(x, lengths, repeat_times):
|
|
1533
|
+
samples = torch.split(x, lengths)
|
|
1534
|
+
repeat_args = [repeat_times] + [1] * (x.dim() - 1)
|
|
1535
|
+
result = torch.cat([sample.repeat(*repeat_args) for sample in samples], dim=0)
|
|
1536
|
+
return result
|
|
1537
|
+
|
|
1538
|
+
for key in dict_to_expand:
|
|
1539
|
+
if key == "pixel_values":
|
|
1540
|
+
# split images into samples
|
|
1541
|
+
samples = torch.split(image_grid_thw[: sum(image_nums)], list(image_nums))
|
|
1542
|
+
# compute the sequence length of images for each sample
|
|
1543
|
+
lengths = [torch.prod(sample, dim=1).sum() for sample in samples]
|
|
1544
|
+
dict_to_expand[key] = _repeat_interleave_samples(
|
|
1545
|
+
dict_to_expand[key], lengths=lengths, repeat_times=expand_size
|
|
1546
|
+
)
|
|
1547
|
+
elif key == "image_grid_thw":
|
|
1548
|
+
# get the num of images for each sample and +1 for the image being generated
|
|
1549
|
+
lengths = list(image_nums)
|
|
1550
|
+
last_image = dict_to_expand[key][:-1]
|
|
1551
|
+
dict_to_expand[key] = _repeat_interleave_samples(
|
|
1552
|
+
dict_to_expand[key][: sum(image_nums)], lengths=lengths, repeat_times=expand_size
|
|
1553
|
+
)
|
|
1554
|
+
dict_to_expand[key] = torch.cat([dict_to_expand[key], last_image], dim=0)
|
|
1555
|
+
return dict_to_expand
|
|
1556
|
+
|
|
1557
|
+
def _expand_dict_for_generation(dict_to_expand):
|
|
1558
|
+
for key in dict_to_expand:
|
|
1559
|
+
if (
|
|
1560
|
+
key != "cache_position"
|
|
1561
|
+
and dict_to_expand[key] is not None
|
|
1562
|
+
and isinstance(dict_to_expand[key], torch.Tensor)
|
|
1563
|
+
and key not in visual_keys
|
|
1564
|
+
):
|
|
1565
|
+
dict_to_expand[key] = dict_to_expand[key].repeat_interleave(expand_size, dim=0)
|
|
1566
|
+
return dict_to_expand
|
|
1567
|
+
|
|
1568
|
+
model_kwargs = _expand_dict_for_generation_visual(model_kwargs)
|
|
1569
|
+
|
|
1570
|
+
if input_ids is not None:
|
|
1571
|
+
input_ids = input_ids.repeat_interleave(expand_size, dim=0)
|
|
1572
|
+
|
|
1573
|
+
model_kwargs = _expand_dict_for_generation(model_kwargs)
|
|
1574
|
+
|
|
1575
|
+
if is_encoder_decoder:
|
|
1576
|
+
if model_kwargs.get("encoder_outputs") is None:
|
|
1577
|
+
raise ValueError("If `is_encoder_decoder` is True, make sure that `encoder_outputs` is defined.")
|
|
1578
|
+
model_kwargs["encoder_outputs"] = _expand_dict_for_generation(model_kwargs["encoder_outputs"])
|
|
1579
|
+
|
|
1580
|
+
return input_ids, model_kwargs
|
|
1581
|
+
|
|
1582
|
+
|
|
1583
|
+
__all__ = [
|
|
1584
|
+
"GlmImagePreTrainedModel",
|
|
1585
|
+
"GlmImageVQVAE",
|
|
1586
|
+
"GlmImageVisionModel",
|
|
1587
|
+
"GlmImageTextModel",
|
|
1588
|
+
"GlmImageModel",
|
|
1589
|
+
"GlmImageForConditionalGeneration",
|
|
1590
|
+
]
|