transformers 5.0.0__py3-none-any.whl → 5.0.0rc0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- transformers/__init__.py +36 -55
- transformers/activations.py +1 -1
- transformers/audio_utils.py +33 -32
- transformers/cache_utils.py +139 -32
- transformers/cli/chat.py +3 -3
- transformers/cli/serve.py +19 -49
- transformers/cli/transformers.py +1 -2
- transformers/configuration_utils.py +155 -129
- transformers/conversion_mapping.py +22 -158
- transformers/convert_slow_tokenizer.py +17 -227
- transformers/core_model_loading.py +185 -528
- transformers/data/data_collator.py +4 -12
- transformers/data/processors/glue.py +1 -0
- transformers/data/processors/utils.py +1 -0
- transformers/data/processors/xnli.py +1 -0
- transformers/dependency_versions_check.py +1 -0
- transformers/dependency_versions_table.py +7 -5
- transformers/distributed/configuration_utils.py +2 -1
- transformers/dynamic_module_utils.py +25 -24
- transformers/feature_extraction_sequence_utils.py +23 -19
- transformers/feature_extraction_utils.py +33 -64
- transformers/file_utils.py +1 -0
- transformers/generation/__init__.py +1 -11
- transformers/generation/candidate_generator.py +33 -80
- transformers/generation/configuration_utils.py +133 -189
- transformers/generation/continuous_batching/__init__.py +1 -4
- transformers/generation/continuous_batching/cache.py +25 -83
- transformers/generation/continuous_batching/cache_manager.py +45 -155
- transformers/generation/continuous_batching/continuous_api.py +147 -270
- transformers/generation/continuous_batching/requests.py +3 -51
- transformers/generation/continuous_batching/scheduler.py +105 -160
- transformers/generation/logits_process.py +128 -0
- transformers/generation/stopping_criteria.py +1 -1
- transformers/generation/streamers.py +1 -0
- transformers/generation/utils.py +123 -122
- transformers/generation/watermarking.py +6 -8
- transformers/hf_argparser.py +13 -9
- transformers/hyperparameter_search.py +2 -1
- transformers/image_processing_base.py +23 -12
- transformers/image_processing_utils.py +15 -11
- transformers/image_processing_utils_fast.py +75 -85
- transformers/image_transforms.py +42 -73
- transformers/image_utils.py +32 -30
- transformers/initialization.py +0 -37
- transformers/integrations/__init__.py +2 -16
- transformers/integrations/accelerate.py +113 -58
- transformers/integrations/aqlm.py +66 -36
- transformers/integrations/awq.py +516 -45
- transformers/integrations/bitnet.py +105 -47
- transformers/integrations/bitsandbytes.py +202 -91
- transformers/integrations/deepspeed.py +4 -161
- transformers/integrations/eetq.py +82 -84
- transformers/integrations/executorch.py +1 -1
- transformers/integrations/fbgemm_fp8.py +145 -190
- transformers/integrations/finegrained_fp8.py +215 -249
- transformers/integrations/flash_attention.py +3 -3
- transformers/integrations/flex_attention.py +1 -1
- transformers/integrations/fp_quant.py +0 -90
- transformers/integrations/ggml.py +2 -11
- transformers/integrations/higgs.py +62 -37
- transformers/integrations/hub_kernels.py +8 -65
- transformers/integrations/integration_utils.py +3 -47
- transformers/integrations/mistral.py +0 -12
- transformers/integrations/mxfp4.py +80 -33
- transformers/integrations/peft.py +191 -483
- transformers/integrations/quanto.py +56 -77
- transformers/integrations/spqr.py +90 -42
- transformers/integrations/tensor_parallel.py +221 -167
- transformers/integrations/torchao.py +43 -35
- transformers/integrations/vptq.py +59 -40
- transformers/kernels/__init__.py +0 -0
- transformers/{models/pe_audio_video/processing_pe_audio_video.py → kernels/falcon_mamba/__init__.py} +3 -12
- transformers/kernels/falcon_mamba/selective_scan_with_ln_interface.py +529 -0
- transformers/loss/loss_utils.py +0 -2
- transformers/masking_utils.py +55 -51
- transformers/model_debugging_utils.py +5 -4
- transformers/modelcard.py +194 -15
- transformers/modeling_attn_mask_utils.py +19 -19
- transformers/modeling_flash_attention_utils.py +27 -27
- transformers/modeling_gguf_pytorch_utils.py +24 -79
- transformers/modeling_layers.py +22 -21
- transformers/modeling_outputs.py +253 -242
- transformers/modeling_rope_utils.py +117 -138
- transformers/modeling_utils.py +739 -850
- transformers/models/__init__.py +0 -27
- transformers/models/afmoe/configuration_afmoe.py +33 -40
- transformers/models/afmoe/modeling_afmoe.py +54 -42
- transformers/models/afmoe/modular_afmoe.py +33 -23
- transformers/models/aimv2/configuration_aimv2.py +10 -2
- transformers/models/aimv2/modeling_aimv2.py +42 -47
- transformers/models/aimv2/modular_aimv2.py +19 -17
- transformers/models/albert/configuration_albert.py +2 -8
- transformers/models/albert/modeling_albert.py +69 -70
- transformers/models/albert/tokenization_albert.py +14 -5
- transformers/models/align/configuration_align.py +6 -8
- transformers/models/align/modeling_align.py +89 -94
- transformers/models/align/processing_align.py +30 -2
- transformers/models/altclip/configuration_altclip.py +7 -4
- transformers/models/altclip/modeling_altclip.py +103 -114
- transformers/models/altclip/processing_altclip.py +15 -2
- transformers/models/apertus/__init__.py +1 -0
- transformers/models/apertus/configuration_apertus.py +28 -23
- transformers/models/apertus/modeling_apertus.py +40 -39
- transformers/models/apertus/modular_apertus.py +38 -37
- transformers/models/arcee/configuration_arcee.py +30 -25
- transformers/models/arcee/modeling_arcee.py +39 -36
- transformers/models/arcee/modular_arcee.py +23 -20
- transformers/models/aria/configuration_aria.py +44 -31
- transformers/models/aria/image_processing_aria.py +27 -25
- transformers/models/aria/modeling_aria.py +106 -110
- transformers/models/aria/modular_aria.py +127 -118
- transformers/models/aria/processing_aria.py +35 -28
- transformers/models/audio_spectrogram_transformer/configuration_audio_spectrogram_transformer.py +1 -0
- transformers/models/audio_spectrogram_transformer/feature_extraction_audio_spectrogram_transformer.py +6 -3
- transformers/models/audio_spectrogram_transformer/modeling_audio_spectrogram_transformer.py +8 -6
- transformers/models/audioflamingo3/__init__.py +1 -0
- transformers/models/audioflamingo3/configuration_audioflamingo3.py +1 -0
- transformers/models/audioflamingo3/modeling_audioflamingo3.py +49 -58
- transformers/models/audioflamingo3/modular_audioflamingo3.py +43 -53
- transformers/models/audioflamingo3/processing_audioflamingo3.py +30 -33
- transformers/models/auto/auto_factory.py +7 -6
- transformers/models/auto/configuration_auto.py +5 -66
- transformers/models/auto/feature_extraction_auto.py +10 -14
- transformers/models/auto/image_processing_auto.py +41 -32
- transformers/models/auto/modeling_auto.py +188 -46
- transformers/models/auto/processing_auto.py +11 -24
- transformers/models/auto/tokenization_auto.py +588 -171
- transformers/models/auto/video_processing_auto.py +10 -12
- transformers/models/autoformer/configuration_autoformer.py +7 -4
- transformers/models/autoformer/modeling_autoformer.py +101 -104
- transformers/models/aya_vision/configuration_aya_vision.py +1 -4
- transformers/models/aya_vision/modeling_aya_vision.py +102 -71
- transformers/models/aya_vision/modular_aya_vision.py +74 -46
- transformers/models/aya_vision/processing_aya_vision.py +53 -25
- transformers/models/bamba/configuration_bamba.py +39 -34
- transformers/models/bamba/modeling_bamba.py +86 -82
- transformers/models/bamba/modular_bamba.py +72 -70
- transformers/models/bark/configuration_bark.py +8 -6
- transformers/models/bark/generation_configuration_bark.py +5 -3
- transformers/models/bark/modeling_bark.py +57 -54
- transformers/models/bark/processing_bark.py +41 -19
- transformers/models/bart/configuration_bart.py +6 -9
- transformers/models/bart/modeling_bart.py +126 -135
- transformers/models/barthez/tokenization_barthez.py +11 -3
- transformers/models/bartpho/tokenization_bartpho.py +7 -6
- transformers/models/beit/configuration_beit.py +11 -0
- transformers/models/beit/image_processing_beit.py +56 -53
- transformers/models/beit/image_processing_beit_fast.py +12 -10
- transformers/models/beit/modeling_beit.py +60 -69
- transformers/models/bert/configuration_bert.py +2 -12
- transformers/models/bert/modeling_bert.py +122 -114
- transformers/models/bert/tokenization_bert.py +23 -8
- transformers/models/bert/tokenization_bert_legacy.py +5 -3
- transformers/models/bert_generation/configuration_bert_generation.py +2 -17
- transformers/models/bert_generation/modeling_bert_generation.py +49 -49
- transformers/models/bert_generation/tokenization_bert_generation.py +3 -2
- transformers/models/bert_japanese/tokenization_bert_japanese.py +6 -5
- transformers/models/bertweet/tokenization_bertweet.py +3 -1
- transformers/models/big_bird/configuration_big_bird.py +9 -12
- transformers/models/big_bird/modeling_big_bird.py +109 -116
- transformers/models/big_bird/tokenization_big_bird.py +43 -16
- transformers/models/bigbird_pegasus/configuration_bigbird_pegasus.py +9 -9
- transformers/models/bigbird_pegasus/modeling_bigbird_pegasus.py +117 -130
- transformers/models/biogpt/configuration_biogpt.py +2 -8
- transformers/models/biogpt/modeling_biogpt.py +76 -72
- transformers/models/biogpt/modular_biogpt.py +66 -62
- transformers/models/biogpt/tokenization_biogpt.py +5 -3
- transformers/models/bit/configuration_bit.py +1 -0
- transformers/models/bit/image_processing_bit.py +24 -21
- transformers/models/bit/image_processing_bit_fast.py +1 -0
- transformers/models/bit/modeling_bit.py +12 -25
- transformers/models/bitnet/configuration_bitnet.py +28 -23
- transformers/models/bitnet/modeling_bitnet.py +39 -36
- transformers/models/bitnet/modular_bitnet.py +6 -4
- transformers/models/blenderbot/configuration_blenderbot.py +5 -8
- transformers/models/blenderbot/modeling_blenderbot.py +96 -77
- transformers/models/blenderbot/tokenization_blenderbot.py +24 -18
- transformers/models/blenderbot_small/configuration_blenderbot_small.py +5 -8
- transformers/models/blenderbot_small/modeling_blenderbot_small.py +69 -79
- transformers/models/blenderbot_small/tokenization_blenderbot_small.py +3 -1
- transformers/models/blip/configuration_blip.py +10 -9
- transformers/models/blip/image_processing_blip.py +20 -17
- transformers/models/blip/image_processing_blip_fast.py +1 -0
- transformers/models/blip/modeling_blip.py +108 -117
- transformers/models/blip/modeling_blip_text.py +65 -73
- transformers/models/blip/processing_blip.py +36 -5
- transformers/models/blip_2/configuration_blip_2.py +2 -2
- transformers/models/blip_2/modeling_blip_2.py +118 -146
- transformers/models/blip_2/processing_blip_2.py +38 -8
- transformers/models/bloom/configuration_bloom.py +2 -5
- transformers/models/bloom/modeling_bloom.py +104 -77
- transformers/models/blt/configuration_blt.py +86 -94
- transformers/models/blt/modeling_blt.py +81 -238
- transformers/models/blt/modular_blt.py +65 -228
- transformers/models/bridgetower/configuration_bridgetower.py +2 -7
- transformers/models/bridgetower/image_processing_bridgetower.py +35 -34
- transformers/models/bridgetower/image_processing_bridgetower_fast.py +16 -13
- transformers/models/bridgetower/modeling_bridgetower.py +119 -141
- transformers/models/bridgetower/processing_bridgetower.py +16 -2
- transformers/models/bros/configuration_bros.py +18 -24
- transformers/models/bros/modeling_bros.py +80 -90
- transformers/models/bros/processing_bros.py +12 -2
- transformers/models/byt5/tokenization_byt5.py +6 -4
- transformers/models/camembert/configuration_camembert.py +2 -8
- transformers/models/camembert/modeling_camembert.py +195 -196
- transformers/models/camembert/modular_camembert.py +54 -51
- transformers/models/camembert/tokenization_camembert.py +13 -6
- transformers/models/canine/configuration_canine.py +2 -4
- transformers/models/canine/modeling_canine.py +75 -84
- transformers/models/canine/tokenization_canine.py +1 -2
- transformers/models/chameleon/configuration_chameleon.py +34 -29
- transformers/models/chameleon/image_processing_chameleon.py +24 -21
- transformers/models/chameleon/image_processing_chameleon_fast.py +6 -5
- transformers/models/chameleon/modeling_chameleon.py +93 -142
- transformers/models/chameleon/processing_chameleon.py +41 -16
- transformers/models/chinese_clip/configuration_chinese_clip.py +8 -10
- transformers/models/chinese_clip/image_processing_chinese_clip.py +24 -21
- transformers/models/chinese_clip/image_processing_chinese_clip_fast.py +1 -0
- transformers/models/chinese_clip/modeling_chinese_clip.py +92 -96
- transformers/models/chinese_clip/processing_chinese_clip.py +15 -2
- transformers/models/clap/configuration_clap.py +9 -4
- transformers/models/clap/feature_extraction_clap.py +12 -11
- transformers/models/clap/modeling_clap.py +123 -136
- transformers/models/clap/processing_clap.py +15 -2
- transformers/models/clip/configuration_clip.py +2 -4
- transformers/models/clip/image_processing_clip.py +24 -21
- transformers/models/clip/image_processing_clip_fast.py +1 -9
- transformers/models/clip/modeling_clip.py +65 -65
- transformers/models/clip/processing_clip.py +14 -2
- transformers/models/clip/tokenization_clip.py +46 -21
- transformers/models/clipseg/configuration_clipseg.py +2 -4
- transformers/models/clipseg/modeling_clipseg.py +109 -119
- transformers/models/clipseg/processing_clipseg.py +42 -19
- transformers/models/clvp/configuration_clvp.py +5 -15
- transformers/models/clvp/feature_extraction_clvp.py +10 -7
- transformers/models/clvp/modeling_clvp.py +146 -155
- transformers/models/clvp/number_normalizer.py +2 -1
- transformers/models/clvp/processing_clvp.py +20 -3
- transformers/models/clvp/tokenization_clvp.py +64 -1
- transformers/models/code_llama/tokenization_code_llama.py +44 -18
- transformers/models/codegen/configuration_codegen.py +4 -4
- transformers/models/codegen/modeling_codegen.py +53 -63
- transformers/models/codegen/tokenization_codegen.py +47 -17
- transformers/models/cohere/configuration_cohere.py +30 -25
- transformers/models/cohere/modeling_cohere.py +42 -40
- transformers/models/cohere/modular_cohere.py +29 -26
- transformers/models/cohere/tokenization_cohere.py +46 -15
- transformers/models/cohere2/configuration_cohere2.py +32 -31
- transformers/models/cohere2/modeling_cohere2.py +44 -42
- transformers/models/cohere2/modular_cohere2.py +54 -54
- transformers/models/cohere2_vision/image_processing_cohere2_vision_fast.py +14 -13
- transformers/models/cohere2_vision/modeling_cohere2_vision.py +58 -59
- transformers/models/cohere2_vision/modular_cohere2_vision.py +46 -45
- transformers/models/cohere2_vision/processing_cohere2_vision.py +36 -6
- transformers/models/colpali/configuration_colpali.py +1 -0
- transformers/models/colpali/modeling_colpali.py +16 -14
- transformers/models/colpali/modular_colpali.py +51 -11
- transformers/models/colpali/processing_colpali.py +52 -14
- transformers/models/colqwen2/modeling_colqwen2.py +28 -28
- transformers/models/colqwen2/modular_colqwen2.py +74 -37
- transformers/models/colqwen2/processing_colqwen2.py +52 -16
- transformers/models/conditional_detr/configuration_conditional_detr.py +2 -1
- transformers/models/conditional_detr/image_processing_conditional_detr.py +70 -67
- transformers/models/conditional_detr/image_processing_conditional_detr_fast.py +36 -36
- transformers/models/conditional_detr/modeling_conditional_detr.py +87 -99
- transformers/models/conditional_detr/modular_conditional_detr.py +3 -49
- transformers/models/convbert/configuration_convbert.py +8 -11
- transformers/models/convbert/modeling_convbert.py +87 -94
- transformers/models/convbert/tokenization_convbert.py +1 -0
- transformers/models/convnext/configuration_convnext.py +1 -0
- transformers/models/convnext/image_processing_convnext.py +23 -20
- transformers/models/convnext/image_processing_convnext_fast.py +21 -16
- transformers/models/convnext/modeling_convnext.py +12 -9
- transformers/models/convnextv2/configuration_convnextv2.py +1 -0
- transformers/models/convnextv2/modeling_convnextv2.py +12 -9
- transformers/models/cpm/tokenization_cpm.py +7 -6
- transformers/models/cpm/tokenization_cpm_fast.py +5 -3
- transformers/models/cpmant/configuration_cpmant.py +1 -4
- transformers/models/cpmant/modeling_cpmant.py +40 -38
- transformers/models/cpmant/tokenization_cpmant.py +3 -1
- transformers/models/csm/configuration_csm.py +66 -58
- transformers/models/csm/generation_csm.py +35 -31
- transformers/models/csm/modeling_csm.py +85 -85
- transformers/models/csm/modular_csm.py +58 -58
- transformers/models/csm/processing_csm.py +68 -25
- transformers/models/ctrl/configuration_ctrl.py +1 -16
- transformers/models/ctrl/modeling_ctrl.py +44 -54
- transformers/models/ctrl/tokenization_ctrl.py +1 -0
- transformers/models/cvt/configuration_cvt.py +1 -0
- transformers/models/cvt/modeling_cvt.py +16 -20
- transformers/models/cwm/__init__.py +1 -0
- transformers/models/cwm/configuration_cwm.py +12 -8
- transformers/models/cwm/modeling_cwm.py +39 -37
- transformers/models/cwm/modular_cwm.py +12 -10
- transformers/models/d_fine/configuration_d_fine.py +5 -7
- transformers/models/d_fine/modeling_d_fine.py +128 -138
- transformers/models/d_fine/modular_d_fine.py +18 -33
- transformers/models/dab_detr/configuration_dab_detr.py +3 -6
- transformers/models/dab_detr/modeling_dab_detr.py +75 -81
- transformers/models/dac/configuration_dac.py +1 -0
- transformers/models/dac/feature_extraction_dac.py +9 -6
- transformers/models/dac/modeling_dac.py +26 -24
- transformers/models/data2vec/configuration_data2vec_audio.py +2 -4
- transformers/models/data2vec/configuration_data2vec_text.py +3 -11
- transformers/models/data2vec/configuration_data2vec_vision.py +1 -0
- transformers/models/data2vec/modeling_data2vec_audio.py +56 -57
- transformers/models/data2vec/modeling_data2vec_text.py +93 -98
- transformers/models/data2vec/modeling_data2vec_vision.py +45 -49
- transformers/models/data2vec/modular_data2vec_audio.py +1 -6
- transformers/models/data2vec/modular_data2vec_text.py +54 -58
- transformers/models/dbrx/configuration_dbrx.py +22 -36
- transformers/models/dbrx/modeling_dbrx.py +45 -42
- transformers/models/dbrx/modular_dbrx.py +33 -31
- transformers/models/deberta/configuration_deberta.py +1 -6
- transformers/models/deberta/modeling_deberta.py +60 -64
- transformers/models/deberta/tokenization_deberta.py +21 -9
- transformers/models/deberta_v2/configuration_deberta_v2.py +1 -6
- transformers/models/deberta_v2/modeling_deberta_v2.py +65 -71
- transformers/models/deberta_v2/tokenization_deberta_v2.py +29 -11
- transformers/models/decision_transformer/configuration_decision_transformer.py +2 -3
- transformers/models/decision_transformer/modeling_decision_transformer.py +56 -60
- transformers/models/deepseek_v2/configuration_deepseek_v2.py +44 -39
- transformers/models/deepseek_v2/modeling_deepseek_v2.py +43 -43
- transformers/models/deepseek_v2/modular_deepseek_v2.py +49 -48
- transformers/models/deepseek_v3/configuration_deepseek_v3.py +45 -40
- transformers/models/deepseek_v3/modeling_deepseek_v3.py +42 -45
- transformers/models/deepseek_v3/modular_deepseek_v3.py +9 -14
- transformers/models/deepseek_vl/configuration_deepseek_vl.py +3 -2
- transformers/models/deepseek_vl/image_processing_deepseek_vl.py +26 -25
- transformers/models/deepseek_vl/image_processing_deepseek_vl_fast.py +10 -10
- transformers/models/deepseek_vl/modeling_deepseek_vl.py +48 -57
- transformers/models/deepseek_vl/modular_deepseek_vl.py +43 -14
- transformers/models/deepseek_vl/processing_deepseek_vl.py +41 -10
- transformers/models/deepseek_vl_hybrid/configuration_deepseek_vl_hybrid.py +5 -3
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid.py +35 -35
- transformers/models/deepseek_vl_hybrid/image_processing_deepseek_vl_hybrid_fast.py +24 -20
- transformers/models/deepseek_vl_hybrid/modeling_deepseek_vl_hybrid.py +61 -109
- transformers/models/deepseek_vl_hybrid/modular_deepseek_vl_hybrid.py +118 -146
- transformers/models/deepseek_vl_hybrid/processing_deepseek_vl_hybrid.py +44 -12
- transformers/models/deformable_detr/configuration_deformable_detr.py +3 -2
- transformers/models/deformable_detr/image_processing_deformable_detr.py +61 -59
- transformers/models/deformable_detr/image_processing_deformable_detr_fast.py +28 -28
- transformers/models/deformable_detr/modeling_deformable_detr.py +82 -88
- transformers/models/deformable_detr/modular_deformable_detr.py +3 -1
- transformers/models/deit/configuration_deit.py +1 -0
- transformers/models/deit/image_processing_deit.py +21 -18
- transformers/models/deit/image_processing_deit_fast.py +1 -0
- transformers/models/deit/modeling_deit.py +22 -24
- transformers/models/depth_anything/configuration_depth_anything.py +4 -2
- transformers/models/depth_anything/modeling_depth_anything.py +10 -10
- transformers/models/depth_pro/configuration_depth_pro.py +1 -0
- transformers/models/depth_pro/image_processing_depth_pro.py +23 -22
- transformers/models/depth_pro/image_processing_depth_pro_fast.py +10 -8
- transformers/models/depth_pro/modeling_depth_pro.py +27 -31
- transformers/models/detr/configuration_detr.py +2 -1
- transformers/models/detr/image_processing_detr.py +66 -64
- transformers/models/detr/image_processing_detr_fast.py +34 -33
- transformers/models/detr/modeling_detr.py +79 -95
- transformers/models/dia/configuration_dia.py +15 -9
- transformers/models/dia/feature_extraction_dia.py +9 -6
- transformers/models/dia/generation_dia.py +50 -48
- transformers/models/dia/modeling_dia.py +69 -78
- transformers/models/dia/modular_dia.py +56 -64
- transformers/models/dia/processing_dia.py +29 -39
- transformers/models/dia/tokenization_dia.py +6 -3
- transformers/models/diffllama/configuration_diffllama.py +30 -25
- transformers/models/diffllama/modeling_diffllama.py +49 -46
- transformers/models/diffllama/modular_diffllama.py +19 -17
- transformers/models/dinat/configuration_dinat.py +1 -0
- transformers/models/dinat/modeling_dinat.py +44 -47
- transformers/models/dinov2/configuration_dinov2.py +1 -0
- transformers/models/dinov2/modeling_dinov2.py +15 -15
- transformers/models/dinov2_with_registers/configuration_dinov2_with_registers.py +1 -1
- transformers/models/dinov2_with_registers/modeling_dinov2_with_registers.py +15 -16
- transformers/models/dinov2_with_registers/modular_dinov2_with_registers.py +9 -9
- transformers/models/dinov3_convnext/configuration_dinov3_convnext.py +7 -4
- transformers/models/dinov3_convnext/modeling_dinov3_convnext.py +6 -3
- transformers/models/dinov3_vit/configuration_dinov3_vit.py +8 -5
- transformers/models/dinov3_vit/image_processing_dinov3_vit_fast.py +9 -7
- transformers/models/dinov3_vit/modeling_dinov3_vit.py +18 -19
- transformers/models/dinov3_vit/modular_dinov3_vit.py +15 -16
- transformers/models/distilbert/configuration_distilbert.py +2 -8
- transformers/models/distilbert/modeling_distilbert.py +55 -55
- transformers/models/distilbert/tokenization_distilbert.py +1 -13
- transformers/models/doge/__init__.py +1 -0
- transformers/models/doge/configuration_doge.py +32 -39
- transformers/models/doge/modeling_doge.py +49 -45
- transformers/models/doge/modular_doge.py +63 -71
- transformers/models/donut/configuration_donut_swin.py +1 -0
- transformers/models/donut/image_processing_donut.py +29 -26
- transformers/models/donut/image_processing_donut_fast.py +15 -9
- transformers/models/donut/modeling_donut_swin.py +58 -62
- transformers/models/donut/processing_donut.py +26 -5
- transformers/models/dots1/configuration_dots1.py +33 -41
- transformers/models/dots1/modeling_dots1.py +45 -54
- transformers/models/dots1/modular_dots1.py +4 -5
- transformers/models/dpr/configuration_dpr.py +2 -19
- transformers/models/dpr/modeling_dpr.py +39 -42
- transformers/models/dpr/tokenization_dpr.py +9 -19
- transformers/models/dpr/tokenization_dpr_fast.py +9 -7
- transformers/models/dpt/configuration_dpt.py +2 -1
- transformers/models/dpt/image_processing_dpt.py +66 -65
- transformers/models/dpt/image_processing_dpt_fast.py +20 -18
- transformers/models/dpt/modeling_dpt.py +30 -32
- transformers/models/dpt/modular_dpt.py +17 -15
- transformers/models/edgetam/configuration_edgetam.py +3 -2
- transformers/models/edgetam/modeling_edgetam.py +86 -86
- transformers/models/edgetam/modular_edgetam.py +26 -21
- transformers/models/edgetam_video/__init__.py +1 -0
- transformers/models/edgetam_video/configuration_edgetam_video.py +1 -0
- transformers/models/edgetam_video/modeling_edgetam_video.py +158 -169
- transformers/models/edgetam_video/modular_edgetam_video.py +37 -30
- transformers/models/efficientloftr/configuration_efficientloftr.py +5 -4
- transformers/models/efficientloftr/image_processing_efficientloftr.py +16 -14
- transformers/models/efficientloftr/image_processing_efficientloftr_fast.py +9 -9
- transformers/models/efficientloftr/modeling_efficientloftr.py +38 -59
- transformers/models/efficientloftr/modular_efficientloftr.py +3 -1
- transformers/models/efficientnet/configuration_efficientnet.py +1 -0
- transformers/models/efficientnet/image_processing_efficientnet.py +32 -28
- transformers/models/efficientnet/image_processing_efficientnet_fast.py +19 -17
- transformers/models/efficientnet/modeling_efficientnet.py +15 -19
- transformers/models/electra/configuration_electra.py +3 -13
- transformers/models/electra/modeling_electra.py +103 -108
- transformers/models/emu3/configuration_emu3.py +17 -13
- transformers/models/emu3/image_processing_emu3.py +39 -44
- transformers/models/emu3/modeling_emu3.py +108 -148
- transformers/models/emu3/modular_emu3.py +73 -115
- transformers/models/emu3/processing_emu3.py +43 -18
- transformers/models/encodec/configuration_encodec.py +4 -2
- transformers/models/encodec/feature_extraction_encodec.py +13 -10
- transformers/models/encodec/modeling_encodec.py +29 -39
- transformers/models/encoder_decoder/configuration_encoder_decoder.py +2 -12
- transformers/models/encoder_decoder/modeling_encoder_decoder.py +43 -37
- transformers/models/eomt/configuration_eomt.py +1 -0
- transformers/models/eomt/image_processing_eomt.py +56 -66
- transformers/models/eomt/image_processing_eomt_fast.py +33 -76
- transformers/models/eomt/modeling_eomt.py +18 -23
- transformers/models/eomt/modular_eomt.py +13 -18
- transformers/models/ernie/configuration_ernie.py +3 -24
- transformers/models/ernie/modeling_ernie.py +132 -127
- transformers/models/ernie/modular_ernie.py +103 -97
- transformers/models/ernie4_5/configuration_ernie4_5.py +27 -23
- transformers/models/ernie4_5/modeling_ernie4_5.py +38 -36
- transformers/models/ernie4_5/modular_ernie4_5.py +4 -3
- transformers/models/ernie4_5_moe/configuration_ernie4_5_moe.py +36 -32
- transformers/models/ernie4_5_moe/modeling_ernie4_5_moe.py +55 -56
- transformers/models/ernie4_5_moe/modular_ernie4_5_moe.py +46 -18
- transformers/models/esm/configuration_esm.py +15 -11
- transformers/models/esm/modeling_esm.py +34 -38
- transformers/models/esm/modeling_esmfold.py +49 -53
- transformers/models/esm/openfold_utils/chunk_utils.py +6 -6
- transformers/models/esm/openfold_utils/loss.py +2 -1
- transformers/models/esm/openfold_utils/protein.py +16 -15
- transformers/models/esm/openfold_utils/tensor_utils.py +6 -6
- transformers/models/esm/tokenization_esm.py +4 -2
- transformers/models/evolla/configuration_evolla.py +40 -50
- transformers/models/evolla/modeling_evolla.py +66 -71
- transformers/models/evolla/modular_evolla.py +47 -53
- transformers/models/evolla/processing_evolla.py +35 -23
- transformers/models/exaone4/configuration_exaone4.py +25 -23
- transformers/models/exaone4/modeling_exaone4.py +38 -35
- transformers/models/exaone4/modular_exaone4.py +46 -44
- transformers/models/falcon/configuration_falcon.py +26 -31
- transformers/models/falcon/modeling_falcon.py +80 -82
- transformers/models/falcon_h1/configuration_falcon_h1.py +51 -45
- transformers/models/falcon_h1/modeling_falcon_h1.py +82 -85
- transformers/models/falcon_h1/modular_falcon_h1.py +51 -56
- transformers/models/falcon_mamba/configuration_falcon_mamba.py +2 -1
- transformers/models/falcon_mamba/modeling_falcon_mamba.py +82 -75
- transformers/models/falcon_mamba/modular_falcon_mamba.py +45 -28
- transformers/models/fastspeech2_conformer/configuration_fastspeech2_conformer.py +6 -2
- transformers/models/fastspeech2_conformer/modeling_fastspeech2_conformer.py +60 -76
- transformers/models/fastspeech2_conformer/tokenization_fastspeech2_conformer.py +3 -2
- transformers/models/flaubert/configuration_flaubert.py +5 -10
- transformers/models/flaubert/modeling_flaubert.py +143 -145
- transformers/models/flaubert/tokenization_flaubert.py +5 -3
- transformers/models/flava/configuration_flava.py +6 -5
- transformers/models/flava/image_processing_flava.py +67 -66
- transformers/models/flava/image_processing_flava_fast.py +49 -46
- transformers/models/flava/modeling_flava.py +136 -153
- transformers/models/flava/processing_flava.py +12 -2
- transformers/models/flex_olmo/__init__.py +1 -0
- transformers/models/flex_olmo/configuration_flex_olmo.py +32 -28
- transformers/models/flex_olmo/modeling_flex_olmo.py +47 -47
- transformers/models/flex_olmo/modular_flex_olmo.py +44 -40
- transformers/models/florence2/configuration_florence2.py +1 -0
- transformers/models/florence2/modeling_florence2.py +69 -111
- transformers/models/florence2/modular_florence2.py +101 -104
- transformers/models/florence2/processing_florence2.py +47 -18
- transformers/models/fnet/configuration_fnet.py +2 -6
- transformers/models/fnet/modeling_fnet.py +80 -83
- transformers/models/fnet/tokenization_fnet.py +1 -0
- transformers/models/focalnet/configuration_focalnet.py +1 -0
- transformers/models/focalnet/modeling_focalnet.py +45 -51
- transformers/models/fsmt/configuration_fsmt.py +17 -12
- transformers/models/fsmt/modeling_fsmt.py +48 -49
- transformers/models/fsmt/tokenization_fsmt.py +5 -3
- transformers/models/funnel/configuration_funnel.py +1 -8
- transformers/models/funnel/modeling_funnel.py +93 -99
- transformers/models/funnel/tokenization_funnel.py +27 -17
- transformers/models/fuyu/configuration_fuyu.py +34 -28
- transformers/models/fuyu/image_processing_fuyu.py +31 -29
- transformers/models/fuyu/image_processing_fuyu_fast.py +17 -17
- transformers/models/fuyu/modeling_fuyu.py +53 -53
- transformers/models/fuyu/processing_fuyu.py +34 -23
- transformers/models/gemma/configuration_gemma.py +30 -25
- transformers/models/gemma/modeling_gemma.py +50 -46
- transformers/models/gemma/modular_gemma.py +47 -42
- transformers/models/gemma/tokenization_gemma.py +30 -10
- transformers/models/gemma2/configuration_gemma2.py +35 -30
- transformers/models/gemma2/modeling_gemma2.py +42 -39
- transformers/models/gemma2/modular_gemma2.py +66 -63
- transformers/models/gemma3/configuration_gemma3.py +44 -44
- transformers/models/gemma3/image_processing_gemma3.py +31 -29
- transformers/models/gemma3/image_processing_gemma3_fast.py +13 -11
- transformers/models/gemma3/modeling_gemma3.py +207 -159
- transformers/models/gemma3/modular_gemma3.py +204 -153
- transformers/models/gemma3/processing_gemma3.py +5 -5
- transformers/models/gemma3n/configuration_gemma3n.py +26 -36
- transformers/models/gemma3n/feature_extraction_gemma3n.py +11 -9
- transformers/models/gemma3n/modeling_gemma3n.py +356 -222
- transformers/models/gemma3n/modular_gemma3n.py +207 -230
- transformers/models/gemma3n/processing_gemma3n.py +26 -12
- transformers/models/git/configuration_git.py +8 -5
- transformers/models/git/modeling_git.py +204 -266
- transformers/models/git/processing_git.py +14 -2
- transformers/models/glm/configuration_glm.py +28 -24
- transformers/models/glm/modeling_glm.py +40 -37
- transformers/models/glm/modular_glm.py +7 -4
- transformers/models/glm4/configuration_glm4.py +28 -24
- transformers/models/glm4/modeling_glm4.py +42 -40
- transformers/models/glm4/modular_glm4.py +10 -8
- transformers/models/glm46v/configuration_glm46v.py +1 -0
- transformers/models/glm46v/image_processing_glm46v.py +40 -35
- transformers/models/glm46v/image_processing_glm46v_fast.py +9 -9
- transformers/models/glm46v/modeling_glm46v.py +90 -137
- transformers/models/glm46v/modular_glm46v.py +3 -4
- transformers/models/glm46v/processing_glm46v.py +41 -7
- transformers/models/glm46v/video_processing_glm46v.py +11 -9
- transformers/models/glm4_moe/configuration_glm4_moe.py +32 -40
- transformers/models/glm4_moe/modeling_glm4_moe.py +42 -45
- transformers/models/glm4_moe/modular_glm4_moe.py +34 -42
- transformers/models/glm4v/configuration_glm4v.py +20 -18
- transformers/models/glm4v/image_processing_glm4v.py +40 -34
- transformers/models/glm4v/image_processing_glm4v_fast.py +9 -8
- transformers/models/glm4v/modeling_glm4v.py +205 -254
- transformers/models/glm4v/modular_glm4v.py +224 -210
- transformers/models/glm4v/processing_glm4v.py +41 -7
- transformers/models/glm4v/video_processing_glm4v.py +11 -9
- transformers/models/glm4v_moe/configuration_glm4v_moe.py +125 -136
- transformers/models/glm4v_moe/modeling_glm4v_moe.py +368 -377
- transformers/models/glm4v_moe/modular_glm4v_moe.py +169 -83
- transformers/models/glpn/configuration_glpn.py +1 -0
- transformers/models/glpn/image_processing_glpn.py +12 -11
- transformers/models/glpn/image_processing_glpn_fast.py +13 -11
- transformers/models/glpn/modeling_glpn.py +14 -16
- transformers/models/got_ocr2/configuration_got_ocr2.py +12 -4
- transformers/models/got_ocr2/image_processing_got_ocr2.py +24 -22
- transformers/models/got_ocr2/image_processing_got_ocr2_fast.py +11 -9
- transformers/models/got_ocr2/modeling_got_ocr2.py +80 -77
- transformers/models/got_ocr2/modular_got_ocr2.py +51 -54
- transformers/models/got_ocr2/processing_got_ocr2.py +63 -42
- transformers/models/gpt2/configuration_gpt2.py +2 -13
- transformers/models/gpt2/modeling_gpt2.py +115 -120
- transformers/models/gpt2/tokenization_gpt2.py +46 -15
- transformers/models/gpt_bigcode/configuration_gpt_bigcode.py +2 -5
- transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +89 -79
- transformers/models/gpt_neo/configuration_gpt_neo.py +2 -9
- transformers/models/gpt_neo/modeling_gpt_neo.py +67 -83
- transformers/models/gpt_neox/configuration_gpt_neox.py +25 -25
- transformers/models/gpt_neox/modeling_gpt_neox.py +75 -76
- transformers/models/gpt_neox/modular_gpt_neox.py +66 -67
- transformers/models/gpt_neox/tokenization_gpt_neox.py +51 -9
- transformers/models/gpt_neox_japanese/configuration_gpt_neox_japanese.py +19 -24
- transformers/models/gpt_neox_japanese/modeling_gpt_neox_japanese.py +47 -46
- transformers/models/gpt_neox_japanese/tokenization_gpt_neox_japanese.py +3 -1
- transformers/models/gpt_oss/configuration_gpt_oss.py +28 -46
- transformers/models/gpt_oss/modeling_gpt_oss.py +121 -83
- transformers/models/gpt_oss/modular_gpt_oss.py +103 -64
- transformers/models/gpt_sw3/tokenization_gpt_sw3.py +4 -4
- transformers/models/gptj/configuration_gptj.py +4 -4
- transformers/models/gptj/modeling_gptj.py +87 -101
- transformers/models/granite/configuration_granite.py +33 -28
- transformers/models/granite/modeling_granite.py +46 -44
- transformers/models/granite/modular_granite.py +31 -29
- transformers/models/granite_speech/configuration_granite_speech.py +1 -0
- transformers/models/granite_speech/feature_extraction_granite_speech.py +3 -1
- transformers/models/granite_speech/modeling_granite_speech.py +52 -82
- transformers/models/granite_speech/processing_granite_speech.py +4 -11
- transformers/models/granitemoe/configuration_granitemoe.py +36 -31
- transformers/models/granitemoe/modeling_granitemoe.py +46 -41
- transformers/models/granitemoe/modular_granitemoe.py +27 -22
- transformers/models/granitemoehybrid/__init__.py +1 -0
- transformers/models/granitemoehybrid/configuration_granitemoehybrid.py +47 -46
- transformers/models/granitemoehybrid/modeling_granitemoehybrid.py +93 -97
- transformers/models/granitemoehybrid/modular_granitemoehybrid.py +21 -54
- transformers/models/granitemoeshared/configuration_granitemoeshared.py +37 -33
- transformers/models/granitemoeshared/modeling_granitemoeshared.py +61 -54
- transformers/models/granitemoeshared/modular_granitemoeshared.py +21 -19
- transformers/models/grounding_dino/configuration_grounding_dino.py +4 -6
- transformers/models/grounding_dino/image_processing_grounding_dino.py +62 -60
- transformers/models/grounding_dino/image_processing_grounding_dino_fast.py +29 -28
- transformers/models/grounding_dino/modeling_grounding_dino.py +140 -155
- transformers/models/grounding_dino/modular_grounding_dino.py +3 -2
- transformers/models/grounding_dino/processing_grounding_dino.py +38 -10
- transformers/models/groupvit/configuration_groupvit.py +2 -4
- transformers/models/groupvit/modeling_groupvit.py +93 -107
- transformers/models/helium/configuration_helium.py +29 -25
- transformers/models/helium/modeling_helium.py +40 -38
- transformers/models/helium/modular_helium.py +7 -3
- transformers/models/herbert/tokenization_herbert.py +28 -10
- transformers/models/hgnet_v2/configuration_hgnet_v2.py +1 -0
- transformers/models/hgnet_v2/modeling_hgnet_v2.py +10 -24
- transformers/models/hgnet_v2/modular_hgnet_v2.py +10 -24
- transformers/models/hiera/configuration_hiera.py +1 -0
- transformers/models/hiera/modeling_hiera.py +66 -72
- transformers/models/hubert/configuration_hubert.py +2 -4
- transformers/models/hubert/modeling_hubert.py +37 -42
- transformers/models/hubert/modular_hubert.py +11 -13
- transformers/models/hunyuan_v1_dense/configuration_hunyuan_v1_dense.py +31 -26
- transformers/models/hunyuan_v1_dense/modeling_hunyuan_v1_dense.py +38 -35
- transformers/models/hunyuan_v1_dense/modular_hunyuan_v1_dense.py +6 -4
- transformers/models/hunyuan_v1_moe/__init__.py +1 -1
- transformers/models/hunyuan_v1_moe/configuration_hunyuan_v1_moe.py +36 -31
- transformers/models/hunyuan_v1_moe/modeling_hunyuan_v1_moe.py +42 -47
- transformers/models/hunyuan_v1_moe/modular_hunyuan_v1_moe.py +9 -9
- transformers/models/ibert/configuration_ibert.py +2 -4
- transformers/models/ibert/modeling_ibert.py +62 -82
- transformers/models/ibert/quant_modules.py +1 -0
- transformers/models/idefics/configuration_idefics.py +8 -5
- transformers/models/idefics/image_processing_idefics.py +15 -13
- transformers/models/idefics/modeling_idefics.py +82 -75
- transformers/models/idefics/perceiver.py +3 -1
- transformers/models/idefics/processing_idefics.py +48 -32
- transformers/models/idefics/vision.py +25 -24
- transformers/models/idefics2/configuration_idefics2.py +3 -1
- transformers/models/idefics2/image_processing_idefics2.py +32 -31
- transformers/models/idefics2/image_processing_idefics2_fast.py +8 -8
- transformers/models/idefics2/modeling_idefics2.py +101 -127
- transformers/models/idefics2/processing_idefics2.py +68 -10
- transformers/models/idefics3/configuration_idefics3.py +4 -1
- transformers/models/idefics3/image_processing_idefics3.py +43 -42
- transformers/models/idefics3/image_processing_idefics3_fast.py +15 -40
- transformers/models/idefics3/modeling_idefics3.py +90 -115
- transformers/models/idefics3/processing_idefics3.py +69 -15
- transformers/models/ijepa/configuration_ijepa.py +1 -0
- transformers/models/ijepa/modeling_ijepa.py +11 -10
- transformers/models/ijepa/modular_ijepa.py +7 -5
- transformers/models/imagegpt/configuration_imagegpt.py +2 -9
- transformers/models/imagegpt/image_processing_imagegpt.py +18 -17
- transformers/models/imagegpt/image_processing_imagegpt_fast.py +16 -11
- transformers/models/imagegpt/modeling_imagegpt.py +65 -76
- transformers/models/informer/configuration_informer.py +9 -6
- transformers/models/informer/modeling_informer.py +86 -88
- transformers/models/informer/modular_informer.py +16 -14
- transformers/models/instructblip/configuration_instructblip.py +2 -2
- transformers/models/instructblip/modeling_instructblip.py +63 -103
- transformers/models/instructblip/processing_instructblip.py +36 -10
- transformers/models/instructblipvideo/configuration_instructblipvideo.py +2 -2
- transformers/models/instructblipvideo/modeling_instructblipvideo.py +139 -157
- transformers/models/instructblipvideo/modular_instructblipvideo.py +64 -73
- transformers/models/instructblipvideo/processing_instructblipvideo.py +33 -14
- transformers/models/instructblipvideo/video_processing_instructblipvideo.py +8 -6
- transformers/models/internvl/configuration_internvl.py +1 -0
- transformers/models/internvl/modeling_internvl.py +106 -85
- transformers/models/internvl/modular_internvl.py +67 -47
- transformers/models/internvl/processing_internvl.py +45 -12
- transformers/models/internvl/video_processing_internvl.py +12 -10
- transformers/models/jamba/configuration_jamba.py +8 -5
- transformers/models/jamba/modeling_jamba.py +66 -68
- transformers/models/jamba/modular_jamba.py +55 -54
- transformers/models/janus/configuration_janus.py +1 -0
- transformers/models/janus/image_processing_janus.py +37 -35
- transformers/models/janus/image_processing_janus_fast.py +20 -18
- transformers/models/janus/modeling_janus.py +191 -115
- transformers/models/janus/modular_janus.py +84 -133
- transformers/models/janus/processing_janus.py +43 -17
- transformers/models/jetmoe/configuration_jetmoe.py +26 -24
- transformers/models/jetmoe/modeling_jetmoe.py +46 -43
- transformers/models/jetmoe/modular_jetmoe.py +33 -31
- transformers/models/kosmos2/configuration_kosmos2.py +9 -10
- transformers/models/kosmos2/modeling_kosmos2.py +173 -208
- transformers/models/kosmos2/processing_kosmos2.py +55 -40
- transformers/models/kosmos2_5/__init__.py +1 -0
- transformers/models/kosmos2_5/configuration_kosmos2_5.py +9 -8
- transformers/models/kosmos2_5/image_processing_kosmos2_5.py +12 -10
- transformers/models/kosmos2_5/image_processing_kosmos2_5_fast.py +13 -4
- transformers/models/kosmos2_5/modeling_kosmos2_5.py +118 -132
- transformers/models/kosmos2_5/processing_kosmos2_5.py +29 -8
- transformers/models/kyutai_speech_to_text/configuration_kyutai_speech_to_text.py +28 -31
- transformers/models/kyutai_speech_to_text/feature_extraction_kyutai_speech_to_text.py +14 -12
- transformers/models/kyutai_speech_to_text/modeling_kyutai_speech_to_text.py +100 -110
- transformers/models/kyutai_speech_to_text/modular_kyutai_speech_to_text.py +22 -28
- transformers/models/kyutai_speech_to_text/processing_kyutai_speech_to_text.py +8 -2
- transformers/models/layoutlm/configuration_layoutlm.py +2 -14
- transformers/models/layoutlm/modeling_layoutlm.py +72 -77
- transformers/models/layoutlmv2/configuration_layoutlmv2.py +17 -14
- transformers/models/layoutlmv2/image_processing_layoutlmv2.py +21 -18
- transformers/models/layoutlmv2/image_processing_layoutlmv2_fast.py +9 -7
- transformers/models/layoutlmv2/modeling_layoutlmv2.py +50 -64
- transformers/models/layoutlmv2/processing_layoutlmv2.py +44 -14
- transformers/models/layoutlmv2/tokenization_layoutlmv2.py +126 -73
- transformers/models/layoutlmv3/configuration_layoutlmv3.py +19 -16
- transformers/models/layoutlmv3/image_processing_layoutlmv3.py +26 -24
- transformers/models/layoutlmv3/image_processing_layoutlmv3_fast.py +11 -9
- transformers/models/layoutlmv3/modeling_layoutlmv3.py +56 -82
- transformers/models/layoutlmv3/processing_layoutlmv3.py +46 -14
- transformers/models/layoutlmv3/tokenization_layoutlmv3.py +134 -74
- transformers/models/layoutxlm/configuration_layoutxlm.py +17 -14
- transformers/models/layoutxlm/modular_layoutxlm.py +1 -0
- transformers/models/layoutxlm/processing_layoutxlm.py +44 -14
- transformers/models/layoutxlm/tokenization_layoutxlm.py +113 -77
- transformers/models/led/configuration_led.py +12 -8
- transformers/models/led/modeling_led.py +266 -124
- transformers/models/levit/configuration_levit.py +1 -0
- transformers/models/levit/image_processing_levit.py +21 -19
- transformers/models/levit/image_processing_levit_fast.py +5 -4
- transformers/models/levit/modeling_levit.py +19 -38
- transformers/models/lfm2/configuration_lfm2.py +30 -27
- transformers/models/lfm2/modeling_lfm2.py +50 -47
- transformers/models/lfm2/modular_lfm2.py +30 -29
- transformers/models/lfm2_moe/__init__.py +1 -0
- transformers/models/lfm2_moe/configuration_lfm2_moe.py +9 -6
- transformers/models/lfm2_moe/modeling_lfm2_moe.py +53 -61
- transformers/models/lfm2_moe/modular_lfm2_moe.py +37 -13
- transformers/models/lfm2_vl/configuration_lfm2_vl.py +1 -4
- transformers/models/lfm2_vl/image_processing_lfm2_vl_fast.py +12 -41
- transformers/models/lfm2_vl/modeling_lfm2_vl.py +66 -84
- transformers/models/lfm2_vl/modular_lfm2_vl.py +56 -70
- transformers/models/lfm2_vl/processing_lfm2_vl.py +76 -96
- transformers/models/lightglue/image_processing_lightglue.py +15 -16
- transformers/models/lightglue/image_processing_lightglue_fast.py +9 -9
- transformers/models/lightglue/modeling_lightglue.py +31 -31
- transformers/models/lightglue/modular_lightglue.py +28 -29
- transformers/models/lilt/configuration_lilt.py +2 -6
- transformers/models/lilt/modeling_lilt.py +70 -76
- transformers/models/llama/configuration_llama.py +31 -26
- transformers/models/llama/modeling_llama.py +39 -36
- transformers/models/llama/tokenization_llama.py +44 -14
- transformers/models/llama4/configuration_llama4.py +30 -27
- transformers/models/llama4/image_processing_llama4_fast.py +14 -12
- transformers/models/llama4/modeling_llama4.py +113 -120
- transformers/models/llama4/processing_llama4.py +57 -33
- transformers/models/llava/configuration_llava.py +1 -10
- transformers/models/llava/image_processing_llava.py +28 -25
- transformers/models/llava/image_processing_llava_fast.py +11 -9
- transformers/models/llava/modeling_llava.py +109 -85
- transformers/models/llava/processing_llava.py +51 -18
- transformers/models/llava_next/configuration_llava_next.py +2 -2
- transformers/models/llava_next/image_processing_llava_next.py +45 -43
- transformers/models/llava_next/image_processing_llava_next_fast.py +13 -11
- transformers/models/llava_next/modeling_llava_next.py +107 -110
- transformers/models/llava_next/processing_llava_next.py +47 -18
- transformers/models/llava_next_video/configuration_llava_next_video.py +7 -4
- transformers/models/llava_next_video/modeling_llava_next_video.py +158 -175
- transformers/models/llava_next_video/modular_llava_next_video.py +150 -155
- transformers/models/llava_next_video/processing_llava_next_video.py +63 -21
- transformers/models/llava_next_video/video_processing_llava_next_video.py +1 -0
- transformers/models/llava_onevision/configuration_llava_onevision.py +7 -4
- transformers/models/llava_onevision/image_processing_llava_onevision.py +42 -40
- transformers/models/llava_onevision/image_processing_llava_onevision_fast.py +15 -14
- transformers/models/llava_onevision/modeling_llava_onevision.py +169 -177
- transformers/models/llava_onevision/modular_llava_onevision.py +156 -163
- transformers/models/llava_onevision/processing_llava_onevision.py +53 -21
- transformers/models/llava_onevision/video_processing_llava_onevision.py +1 -0
- transformers/models/longcat_flash/__init__.py +1 -0
- transformers/models/longcat_flash/configuration_longcat_flash.py +42 -37
- transformers/models/longcat_flash/modeling_longcat_flash.py +36 -36
- transformers/models/longcat_flash/modular_longcat_flash.py +21 -21
- transformers/models/longformer/configuration_longformer.py +5 -5
- transformers/models/longformer/modeling_longformer.py +101 -105
- transformers/models/longt5/configuration_longt5.py +7 -9
- transformers/models/longt5/modeling_longt5.py +49 -49
- transformers/models/luke/configuration_luke.py +2 -8
- transformers/models/luke/modeling_luke.py +181 -188
- transformers/models/luke/tokenization_luke.py +140 -107
- transformers/models/lxmert/configuration_lxmert.py +1 -16
- transformers/models/lxmert/modeling_lxmert.py +74 -65
- transformers/models/m2m_100/configuration_m2m_100.py +9 -7
- transformers/models/m2m_100/modeling_m2m_100.py +71 -83
- transformers/models/m2m_100/tokenization_m2m_100.py +8 -8
- transformers/models/mamba/configuration_mamba.py +2 -1
- transformers/models/mamba/modeling_mamba.py +66 -58
- transformers/models/mamba2/configuration_mamba2.py +8 -5
- transformers/models/mamba2/modeling_mamba2.py +69 -68
- transformers/models/marian/configuration_marian.py +5 -10
- transformers/models/marian/modeling_marian.py +87 -93
- transformers/models/marian/tokenization_marian.py +6 -6
- transformers/models/markuplm/configuration_markuplm.py +7 -4
- transformers/models/markuplm/feature_extraction_markuplm.py +2 -1
- transformers/models/markuplm/modeling_markuplm.py +70 -69
- transformers/models/markuplm/processing_markuplm.py +38 -31
- transformers/models/markuplm/tokenization_markuplm.py +136 -93
- transformers/models/mask2former/configuration_mask2former.py +8 -5
- transformers/models/mask2former/image_processing_mask2former.py +85 -84
- transformers/models/mask2former/image_processing_mask2former_fast.py +40 -37
- transformers/models/mask2former/modeling_mask2former.py +103 -118
- transformers/models/mask2former/modular_mask2former.py +8 -6
- transformers/models/maskformer/configuration_maskformer.py +9 -6
- transformers/models/maskformer/configuration_maskformer_swin.py +1 -0
- transformers/models/maskformer/image_processing_maskformer.py +85 -84
- transformers/models/maskformer/image_processing_maskformer_fast.py +40 -36
- transformers/models/maskformer/modeling_maskformer.py +65 -79
- transformers/models/maskformer/modeling_maskformer_swin.py +32 -36
- transformers/models/mbart/configuration_mbart.py +4 -9
- transformers/models/mbart/modeling_mbart.py +116 -131
- transformers/models/mbart/tokenization_mbart.py +54 -11
- transformers/models/mbart50/tokenization_mbart50.py +13 -8
- transformers/models/megatron_bert/configuration_megatron_bert.py +3 -13
- transformers/models/megatron_bert/modeling_megatron_bert.py +150 -148
- transformers/models/metaclip_2/configuration_metaclip_2.py +1 -4
- transformers/models/metaclip_2/modeling_metaclip_2.py +84 -91
- transformers/models/metaclip_2/modular_metaclip_2.py +45 -61
- transformers/models/mgp_str/configuration_mgp_str.py +1 -0
- transformers/models/mgp_str/modeling_mgp_str.py +18 -20
- transformers/models/mgp_str/processing_mgp_str.py +20 -3
- transformers/models/mgp_str/tokenization_mgp_str.py +3 -1
- transformers/models/mimi/configuration_mimi.py +40 -42
- transformers/models/mimi/modeling_mimi.py +113 -142
- transformers/models/minimax/__init__.py +1 -0
- transformers/models/minimax/configuration_minimax.py +43 -37
- transformers/models/minimax/modeling_minimax.py +51 -61
- transformers/models/minimax/modular_minimax.py +62 -68
- transformers/models/ministral/configuration_ministral.py +29 -25
- transformers/models/ministral/modeling_ministral.py +38 -36
- transformers/models/ministral/modular_ministral.py +37 -32
- transformers/models/ministral3/configuration_ministral3.py +27 -24
- transformers/models/ministral3/modeling_ministral3.py +37 -36
- transformers/models/ministral3/modular_ministral3.py +5 -4
- transformers/models/mistral/configuration_mistral.py +29 -24
- transformers/models/mistral/modeling_mistral.py +37 -36
- transformers/models/mistral/modular_mistral.py +12 -11
- transformers/models/mistral3/configuration_mistral3.py +1 -4
- transformers/models/mistral3/modeling_mistral3.py +86 -89
- transformers/models/mistral3/modular_mistral3.py +68 -69
- transformers/models/mixtral/configuration_mixtral.py +34 -29
- transformers/models/mixtral/modeling_mixtral.py +45 -50
- transformers/models/mixtral/modular_mixtral.py +31 -32
- transformers/models/mlcd/configuration_mlcd.py +1 -0
- transformers/models/mlcd/modeling_mlcd.py +14 -20
- transformers/models/mlcd/modular_mlcd.py +13 -17
- transformers/models/mllama/configuration_mllama.py +15 -10
- transformers/models/mllama/image_processing_mllama.py +25 -23
- transformers/models/mllama/image_processing_mllama_fast.py +11 -11
- transformers/models/mllama/modeling_mllama.py +94 -105
- transformers/models/mllama/processing_mllama.py +55 -6
- transformers/models/mluke/tokenization_mluke.py +107 -101
- transformers/models/mm_grounding_dino/configuration_mm_grounding_dino.py +3 -5
- transformers/models/mm_grounding_dino/modeling_mm_grounding_dino.py +140 -155
- transformers/models/mm_grounding_dino/modular_mm_grounding_dino.py +3 -5
- transformers/models/mobilebert/configuration_mobilebert.py +2 -4
- transformers/models/mobilebert/modeling_mobilebert.py +85 -77
- transformers/models/mobilebert/tokenization_mobilebert.py +1 -0
- transformers/models/mobilenet_v1/configuration_mobilenet_v1.py +1 -0
- transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py +23 -20
- transformers/models/mobilenet_v1/image_processing_mobilenet_v1_fast.py +1 -0
- transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +16 -15
- transformers/models/mobilenet_v2/configuration_mobilenet_v2.py +1 -0
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2.py +51 -48
- transformers/models/mobilenet_v2/image_processing_mobilenet_v2_fast.py +15 -13
- transformers/models/mobilenet_v2/modeling_mobilenet_v2.py +22 -24
- transformers/models/mobilevit/configuration_mobilevit.py +1 -0
- transformers/models/mobilevit/image_processing_mobilevit.py +49 -46
- transformers/models/mobilevit/image_processing_mobilevit_fast.py +14 -12
- transformers/models/mobilevit/modeling_mobilevit.py +21 -28
- transformers/models/mobilevitv2/configuration_mobilevitv2.py +1 -0
- transformers/models/mobilevitv2/modeling_mobilevitv2.py +22 -28
- transformers/models/modernbert/configuration_modernbert.py +42 -44
- transformers/models/modernbert/modeling_modernbert.py +133 -145
- transformers/models/modernbert/modular_modernbert.py +170 -186
- transformers/models/modernbert_decoder/configuration_modernbert_decoder.py +40 -40
- transformers/models/modernbert_decoder/modeling_modernbert_decoder.py +57 -62
- transformers/models/modernbert_decoder/modular_modernbert_decoder.py +86 -94
- transformers/models/moonshine/configuration_moonshine.py +31 -34
- transformers/models/moonshine/modeling_moonshine.py +71 -71
- transformers/models/moonshine/modular_moonshine.py +83 -88
- transformers/models/moshi/configuration_moshi.py +23 -46
- transformers/models/moshi/modeling_moshi.py +187 -157
- transformers/models/mpnet/configuration_mpnet.py +2 -6
- transformers/models/mpnet/modeling_mpnet.py +57 -62
- transformers/models/mpnet/tokenization_mpnet.py +15 -4
- transformers/models/mpt/configuration_mpt.py +9 -5
- transformers/models/mpt/modeling_mpt.py +60 -60
- transformers/models/mra/configuration_mra.py +2 -8
- transformers/models/mra/modeling_mra.py +57 -64
- transformers/models/mt5/configuration_mt5.py +8 -10
- transformers/models/mt5/modeling_mt5.py +95 -87
- transformers/models/musicgen/configuration_musicgen.py +8 -12
- transformers/models/musicgen/modeling_musicgen.py +122 -118
- transformers/models/musicgen/processing_musicgen.py +21 -3
- transformers/models/musicgen_melody/configuration_musicgen_melody.py +8 -15
- transformers/models/musicgen_melody/feature_extraction_musicgen_melody.py +9 -8
- transformers/models/musicgen_melody/modeling_musicgen_melody.py +123 -117
- transformers/models/musicgen_melody/processing_musicgen_melody.py +22 -3
- transformers/models/mvp/configuration_mvp.py +5 -8
- transformers/models/mvp/modeling_mvp.py +123 -135
- transformers/models/myt5/tokenization_myt5.py +10 -8
- transformers/models/nanochat/configuration_nanochat.py +8 -5
- transformers/models/nanochat/modeling_nanochat.py +40 -37
- transformers/models/nanochat/modular_nanochat.py +14 -12
- transformers/models/nemotron/configuration_nemotron.py +30 -25
- transformers/models/nemotron/modeling_nemotron.py +57 -56
- transformers/models/nllb/tokenization_nllb.py +28 -12
- transformers/models/nllb_moe/configuration_nllb_moe.py +9 -7
- transformers/models/nllb_moe/modeling_nllb_moe.py +69 -77
- transformers/models/nougat/image_processing_nougat.py +32 -29
- transformers/models/nougat/image_processing_nougat_fast.py +14 -12
- transformers/models/nougat/processing_nougat.py +39 -37
- transformers/models/nougat/tokenization_nougat.py +73 -18
- transformers/models/nystromformer/configuration_nystromformer.py +2 -8
- transformers/models/nystromformer/modeling_nystromformer.py +63 -74
- transformers/models/olmo/configuration_olmo.py +28 -23
- transformers/models/olmo/modeling_olmo.py +39 -36
- transformers/models/olmo/modular_olmo.py +11 -7
- transformers/models/olmo2/configuration_olmo2.py +28 -23
- transformers/models/olmo2/modeling_olmo2.py +41 -37
- transformers/models/olmo2/modular_olmo2.py +32 -29
- transformers/models/olmo3/__init__.py +1 -0
- transformers/models/olmo3/configuration_olmo3.py +30 -26
- transformers/models/olmo3/modeling_olmo3.py +39 -36
- transformers/models/olmo3/modular_olmo3.py +40 -37
- transformers/models/olmoe/configuration_olmoe.py +33 -29
- transformers/models/olmoe/modeling_olmoe.py +46 -52
- transformers/models/olmoe/modular_olmoe.py +15 -16
- transformers/models/omdet_turbo/configuration_omdet_turbo.py +4 -2
- transformers/models/omdet_turbo/modeling_omdet_turbo.py +47 -53
- transformers/models/omdet_turbo/processing_omdet_turbo.py +67 -19
- transformers/models/oneformer/configuration_oneformer.py +8 -5
- transformers/models/oneformer/image_processing_oneformer.py +84 -83
- transformers/models/oneformer/image_processing_oneformer_fast.py +42 -41
- transformers/models/oneformer/modeling_oneformer.py +171 -147
- transformers/models/oneformer/processing_oneformer.py +43 -28
- transformers/models/openai/configuration_openai.py +1 -16
- transformers/models/openai/modeling_openai.py +51 -65
- transformers/models/openai/tokenization_openai.py +47 -8
- transformers/models/opt/configuration_opt.py +7 -6
- transformers/models/opt/modeling_opt.py +76 -78
- transformers/models/ovis2/__init__.py +1 -0
- transformers/models/ovis2/configuration_ovis2.py +1 -0
- transformers/models/ovis2/image_processing_ovis2.py +24 -22
- transformers/models/ovis2/image_processing_ovis2_fast.py +11 -9
- transformers/models/ovis2/modeling_ovis2.py +142 -111
- transformers/models/ovis2/modular_ovis2.py +45 -90
- transformers/models/ovis2/processing_ovis2.py +40 -12
- transformers/models/owlv2/configuration_owlv2.py +2 -4
- transformers/models/owlv2/image_processing_owlv2.py +21 -20
- transformers/models/owlv2/image_processing_owlv2_fast.py +15 -12
- transformers/models/owlv2/modeling_owlv2.py +117 -133
- transformers/models/owlv2/modular_owlv2.py +14 -11
- transformers/models/owlv2/processing_owlv2.py +49 -20
- transformers/models/owlvit/configuration_owlvit.py +2 -4
- transformers/models/owlvit/image_processing_owlvit.py +22 -21
- transformers/models/owlvit/image_processing_owlvit_fast.py +3 -2
- transformers/models/owlvit/modeling_owlvit.py +116 -132
- transformers/models/owlvit/processing_owlvit.py +48 -20
- transformers/models/paligemma/configuration_paligemma.py +1 -4
- transformers/models/paligemma/modeling_paligemma.py +93 -103
- transformers/models/paligemma/processing_paligemma.py +66 -13
- transformers/models/parakeet/configuration_parakeet.py +14 -7
- transformers/models/parakeet/feature_extraction_parakeet.py +12 -10
- transformers/models/parakeet/modeling_parakeet.py +28 -32
- transformers/models/parakeet/modular_parakeet.py +20 -23
- transformers/models/parakeet/processing_parakeet.py +5 -13
- transformers/models/parakeet/{tokenization_parakeet.py → tokenization_parakeet_fast.py} +7 -5
- transformers/models/patchtsmixer/configuration_patchtsmixer.py +8 -5
- transformers/models/patchtsmixer/modeling_patchtsmixer.py +62 -70
- transformers/models/patchtst/configuration_patchtst.py +9 -6
- transformers/models/patchtst/modeling_patchtst.py +80 -97
- transformers/models/pegasus/configuration_pegasus.py +5 -8
- transformers/models/pegasus/modeling_pegasus.py +66 -72
- transformers/models/pegasus/tokenization_pegasus.py +45 -15
- transformers/models/pegasus_x/configuration_pegasus_x.py +4 -5
- transformers/models/pegasus_x/modeling_pegasus_x.py +52 -55
- transformers/models/perceiver/configuration_perceiver.py +1 -0
- transformers/models/perceiver/image_processing_perceiver.py +25 -22
- transformers/models/perceiver/image_processing_perceiver_fast.py +9 -7
- transformers/models/perceiver/modeling_perceiver.py +146 -165
- transformers/models/perceiver/tokenization_perceiver.py +6 -3
- transformers/models/perception_lm/configuration_perception_lm.py +1 -0
- transformers/models/perception_lm/image_processing_perception_lm_fast.py +10 -8
- transformers/models/perception_lm/modeling_perception_lm.py +70 -71
- transformers/models/perception_lm/modular_perception_lm.py +61 -65
- transformers/models/perception_lm/processing_perception_lm.py +47 -13
- transformers/models/perception_lm/video_processing_perception_lm.py +1 -0
- transformers/models/persimmon/configuration_persimmon.py +28 -23
- transformers/models/persimmon/modeling_persimmon.py +45 -43
- transformers/models/phi/configuration_phi.py +28 -23
- transformers/models/phi/modeling_phi.py +43 -40
- transformers/models/phi/modular_phi.py +24 -23
- transformers/models/phi3/configuration_phi3.py +33 -28
- transformers/models/phi3/modeling_phi3.py +38 -36
- transformers/models/phi3/modular_phi3.py +17 -13
- transformers/models/phi4_multimodal/configuration_phi4_multimodal.py +33 -30
- transformers/models/phi4_multimodal/feature_extraction_phi4_multimodal.py +9 -7
- transformers/models/phi4_multimodal/image_processing_phi4_multimodal_fast.py +11 -11
- transformers/models/phi4_multimodal/modeling_phi4_multimodal.py +78 -95
- transformers/models/phi4_multimodal/modular_phi4_multimodal.py +80 -98
- transformers/models/phi4_multimodal/processing_phi4_multimodal.py +44 -7
- transformers/models/phimoe/configuration_phimoe.py +36 -31
- transformers/models/phimoe/modeling_phimoe.py +45 -50
- transformers/models/phimoe/modular_phimoe.py +4 -3
- transformers/models/phobert/tokenization_phobert.py +6 -4
- transformers/models/pix2struct/configuration_pix2struct.py +10 -12
- transformers/models/pix2struct/image_processing_pix2struct.py +19 -15
- transformers/models/pix2struct/image_processing_pix2struct_fast.py +15 -12
- transformers/models/pix2struct/modeling_pix2struct.py +52 -58
- transformers/models/pix2struct/processing_pix2struct.py +30 -5
- transformers/models/pixtral/configuration_pixtral.py +14 -11
- transformers/models/pixtral/image_processing_pixtral.py +28 -26
- transformers/models/pixtral/image_processing_pixtral_fast.py +11 -10
- transformers/models/pixtral/modeling_pixtral.py +34 -28
- transformers/models/pixtral/processing_pixtral.py +53 -21
- transformers/models/plbart/configuration_plbart.py +5 -8
- transformers/models/plbart/modeling_plbart.py +106 -119
- transformers/models/plbart/modular_plbart.py +33 -39
- transformers/models/plbart/tokenization_plbart.py +7 -4
- transformers/models/poolformer/configuration_poolformer.py +1 -0
- transformers/models/poolformer/image_processing_poolformer.py +24 -21
- transformers/models/poolformer/image_processing_poolformer_fast.py +15 -13
- transformers/models/poolformer/modeling_poolformer.py +13 -23
- transformers/models/pop2piano/configuration_pop2piano.py +8 -7
- transformers/models/pop2piano/feature_extraction_pop2piano.py +9 -6
- transformers/models/pop2piano/modeling_pop2piano.py +24 -26
- transformers/models/pop2piano/processing_pop2piano.py +33 -25
- transformers/models/pop2piano/tokenization_pop2piano.py +23 -15
- transformers/models/prompt_depth_anything/configuration_prompt_depth_anything.py +3 -3
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything.py +28 -28
- transformers/models/prompt_depth_anything/image_processing_prompt_depth_anything_fast.py +21 -20
- transformers/models/prompt_depth_anything/modeling_prompt_depth_anything.py +13 -16
- transformers/models/prompt_depth_anything/modular_prompt_depth_anything.py +13 -16
- transformers/models/prophetnet/configuration_prophetnet.py +38 -37
- transformers/models/prophetnet/modeling_prophetnet.py +131 -114
- transformers/models/prophetnet/tokenization_prophetnet.py +16 -14
- transformers/models/pvt/configuration_pvt.py +1 -0
- transformers/models/pvt/image_processing_pvt.py +27 -24
- transformers/models/pvt/image_processing_pvt_fast.py +2 -1
- transformers/models/pvt/modeling_pvt.py +21 -21
- transformers/models/pvt_v2/configuration_pvt_v2.py +4 -2
- transformers/models/pvt_v2/modeling_pvt_v2.py +25 -28
- transformers/models/qwen2/configuration_qwen2.py +25 -32
- transformers/models/qwen2/modeling_qwen2.py +38 -36
- transformers/models/qwen2/modular_qwen2.py +12 -11
- transformers/models/qwen2/tokenization_qwen2.py +23 -12
- transformers/models/qwen2_5_omni/configuration_qwen2_5_omni.py +26 -32
- transformers/models/qwen2_5_omni/modeling_qwen2_5_omni.py +277 -340
- transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py +211 -278
- transformers/models/qwen2_5_omni/processing_qwen2_5_omni.py +49 -41
- transformers/models/qwen2_5_vl/configuration_qwen2_5_vl.py +35 -29
- transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +148 -203
- transformers/models/qwen2_5_vl/modular_qwen2_5_vl.py +118 -93
- transformers/models/qwen2_5_vl/processing_qwen2_5_vl.py +43 -7
- transformers/models/qwen2_audio/configuration_qwen2_audio.py +1 -0
- transformers/models/qwen2_audio/modeling_qwen2_audio.py +40 -40
- transformers/models/qwen2_audio/processing_qwen2_audio.py +42 -13
- transformers/models/qwen2_moe/configuration_qwen2_moe.py +35 -42
- transformers/models/qwen2_moe/modeling_qwen2_moe.py +46 -51
- transformers/models/qwen2_moe/modular_qwen2_moe.py +10 -7
- transformers/models/qwen2_vl/configuration_qwen2_vl.py +34 -29
- transformers/models/qwen2_vl/image_processing_qwen2_vl.py +42 -41
- transformers/models/qwen2_vl/image_processing_qwen2_vl_fast.py +15 -12
- transformers/models/qwen2_vl/modeling_qwen2_vl.py +153 -199
- transformers/models/qwen2_vl/processing_qwen2_vl.py +44 -7
- transformers/models/qwen2_vl/video_processing_qwen2_vl.py +18 -38
- transformers/models/qwen3/configuration_qwen3.py +27 -34
- transformers/models/qwen3/modeling_qwen3.py +39 -36
- transformers/models/qwen3/modular_qwen3.py +6 -4
- transformers/models/qwen3_moe/configuration_qwen3_moe.py +32 -39
- transformers/models/qwen3_moe/modeling_qwen3_moe.py +46 -51
- transformers/models/qwen3_moe/modular_qwen3_moe.py +13 -10
- transformers/models/qwen3_next/configuration_qwen3_next.py +35 -45
- transformers/models/qwen3_next/modeling_qwen3_next.py +51 -47
- transformers/models/qwen3_next/modular_qwen3_next.py +35 -34
- transformers/models/qwen3_omni_moe/configuration_qwen3_omni_moe.py +101 -135
- transformers/models/qwen3_omni_moe/modeling_qwen3_omni_moe.py +252 -355
- transformers/models/qwen3_omni_moe/modular_qwen3_omni_moe.py +196 -250
- transformers/models/qwen3_omni_moe/processing_qwen3_omni_moe.py +48 -40
- transformers/models/qwen3_vl/configuration_qwen3_vl.py +29 -27
- transformers/models/qwen3_vl/modeling_qwen3_vl.py +155 -233
- transformers/models/qwen3_vl/modular_qwen3_vl.py +179 -206
- transformers/models/qwen3_vl/processing_qwen3_vl.py +42 -6
- transformers/models/qwen3_vl/video_processing_qwen3_vl.py +12 -10
- transformers/models/qwen3_vl_moe/configuration_qwen3_vl_moe.py +30 -23
- transformers/models/qwen3_vl_moe/modeling_qwen3_vl_moe.py +303 -358
- transformers/models/qwen3_vl_moe/modular_qwen3_vl_moe.py +124 -87
- transformers/models/rag/configuration_rag.py +15 -6
- transformers/models/rag/modeling_rag.py +130 -127
- transformers/models/rag/retrieval_rag.py +5 -3
- transformers/models/rag/tokenization_rag.py +50 -0
- transformers/models/recurrent_gemma/configuration_recurrent_gemma.py +30 -29
- transformers/models/recurrent_gemma/modeling_recurrent_gemma.py +42 -53
- transformers/models/reformer/configuration_reformer.py +8 -7
- transformers/models/reformer/modeling_reformer.py +69 -80
- transformers/models/reformer/tokenization_reformer.py +31 -11
- transformers/models/regnet/configuration_regnet.py +1 -0
- transformers/models/regnet/modeling_regnet.py +8 -15
- transformers/models/rembert/configuration_rembert.py +2 -8
- transformers/models/rembert/modeling_rembert.py +111 -121
- transformers/models/rembert/tokenization_rembert.py +12 -2
- transformers/models/resnet/configuration_resnet.py +1 -0
- transformers/models/resnet/modeling_resnet.py +13 -27
- transformers/models/roberta/configuration_roberta.py +3 -11
- transformers/models/roberta/modeling_roberta.py +93 -94
- transformers/models/roberta/modular_roberta.py +58 -58
- transformers/models/roberta/tokenization_roberta.py +29 -17
- transformers/models/roberta/tokenization_roberta_old.py +4 -2
- transformers/models/roberta_prelayernorm/configuration_roberta_prelayernorm.py +3 -11
- transformers/models/roberta_prelayernorm/modeling_roberta_prelayernorm.py +93 -94
- transformers/models/roc_bert/configuration_roc_bert.py +2 -8
- transformers/models/roc_bert/modeling_roc_bert.py +121 -122
- transformers/models/roc_bert/tokenization_roc_bert.py +94 -88
- transformers/models/roformer/configuration_roformer.py +3 -13
- transformers/models/roformer/modeling_roformer.py +81 -85
- transformers/models/roformer/tokenization_roformer.py +412 -74
- transformers/models/roformer/tokenization_roformer_fast.py +160 -0
- transformers/models/roformer/tokenization_utils.py +1 -0
- transformers/models/rt_detr/configuration_rt_detr.py +2 -1
- transformers/models/rt_detr/configuration_rt_detr_resnet.py +1 -0
- transformers/models/rt_detr/image_processing_rt_detr.py +55 -54
- transformers/models/rt_detr/image_processing_rt_detr_fast.py +26 -26
- transformers/models/rt_detr/modeling_rt_detr.py +90 -99
- transformers/models/rt_detr/modeling_rt_detr_resnet.py +6 -13
- transformers/models/rt_detr/modular_rt_detr.py +16 -16
- transformers/models/rt_detr_v2/configuration_rt_detr_v2.py +4 -6
- transformers/models/rt_detr_v2/modeling_rt_detr_v2.py +90 -101
- transformers/models/rt_detr_v2/modular_rt_detr_v2.py +12 -19
- transformers/models/rwkv/configuration_rwkv.py +4 -2
- transformers/models/rwkv/modeling_rwkv.py +32 -31
- transformers/models/sam/configuration_sam.py +1 -3
- transformers/models/sam/image_processing_sam.py +60 -59
- transformers/models/sam/image_processing_sam_fast.py +27 -25
- transformers/models/sam/modeling_sam.py +41 -47
- transformers/models/sam/processing_sam.py +27 -39
- transformers/models/sam2/configuration_sam2.py +3 -2
- transformers/models/sam2/image_processing_sam2_fast.py +15 -14
- transformers/models/sam2/modeling_sam2.py +90 -96
- transformers/models/sam2/modular_sam2.py +91 -86
- transformers/models/sam2/processing_sam2.py +47 -31
- transformers/models/sam2_video/configuration_sam2_video.py +1 -0
- transformers/models/sam2_video/modeling_sam2_video.py +144 -151
- transformers/models/sam2_video/modular_sam2_video.py +104 -101
- transformers/models/sam2_video/processing_sam2_video.py +66 -49
- transformers/models/sam2_video/video_processing_sam2_video.py +4 -1
- transformers/models/sam3/configuration_sam3.py +2 -21
- transformers/models/sam3/image_processing_sam3_fast.py +20 -17
- transformers/models/sam3/modeling_sam3.py +170 -184
- transformers/models/sam3/modular_sam3.py +8 -3
- transformers/models/sam3/processing_sam3.py +52 -37
- transformers/models/sam3_tracker/__init__.py +1 -0
- transformers/models/sam3_tracker/configuration_sam3_tracker.py +3 -1
- transformers/models/sam3_tracker/modeling_sam3_tracker.py +77 -82
- transformers/models/sam3_tracker/modular_sam3_tracker.py +3 -8
- transformers/models/sam3_tracker/processing_sam3_tracker.py +48 -31
- transformers/models/sam3_tracker_video/__init__.py +1 -0
- transformers/models/sam3_tracker_video/configuration_sam3_tracker_video.py +1 -25
- transformers/models/sam3_tracker_video/modeling_sam3_tracker_video.py +122 -135
- transformers/models/sam3_tracker_video/modular_sam3_tracker_video.py +26 -35
- transformers/models/sam3_tracker_video/processing_sam3_tracker_video.py +66 -50
- transformers/models/sam3_video/configuration_sam3_video.py +1 -14
- transformers/models/sam3_video/modeling_sam3_video.py +34 -33
- transformers/models/sam3_video/processing_sam3_video.py +46 -26
- transformers/models/sam_hq/__init__.py +1 -1
- transformers/models/sam_hq/configuration_sam_hq.py +1 -3
- transformers/models/sam_hq/modeling_sam_hq.py +69 -74
- transformers/models/sam_hq/modular_sam_hq.py +25 -23
- transformers/models/sam_hq/{processing_sam_hq.py → processing_samhq.py} +29 -41
- transformers/models/seamless_m4t/configuration_seamless_m4t.py +10 -8
- transformers/models/seamless_m4t/feature_extraction_seamless_m4t.py +11 -8
- transformers/models/seamless_m4t/modeling_seamless_m4t.py +194 -212
- transformers/models/seamless_m4t/processing_seamless_m4t.py +39 -18
- transformers/models/seamless_m4t/tokenization_seamless_m4t.py +77 -40
- transformers/models/seamless_m4t_v2/configuration_seamless_m4t_v2.py +10 -8
- transformers/models/seamless_m4t_v2/modeling_seamless_m4t_v2.py +196 -204
- transformers/models/seed_oss/configuration_seed_oss.py +32 -28
- transformers/models/seed_oss/modeling_seed_oss.py +35 -33
- transformers/models/seed_oss/modular_seed_oss.py +4 -3
- transformers/models/segformer/configuration_segformer.py +10 -0
- transformers/models/segformer/image_processing_segformer.py +42 -39
- transformers/models/segformer/image_processing_segformer_fast.py +12 -10
- transformers/models/segformer/modeling_segformer.py +31 -34
- transformers/models/segformer/modular_segformer.py +10 -8
- transformers/models/seggpt/configuration_seggpt.py +1 -0
- transformers/models/seggpt/image_processing_seggpt.py +41 -38
- transformers/models/seggpt/modeling_seggpt.py +38 -50
- transformers/models/sew/configuration_sew.py +2 -4
- transformers/models/sew/modeling_sew.py +36 -38
- transformers/models/sew/modular_sew.py +13 -13
- transformers/models/sew_d/configuration_sew_d.py +2 -4
- transformers/models/sew_d/modeling_sew_d.py +30 -31
- transformers/models/shieldgemma2/configuration_shieldgemma2.py +1 -0
- transformers/models/shieldgemma2/modeling_shieldgemma2.py +17 -16
- transformers/models/shieldgemma2/processing_shieldgemma2.py +5 -3
- transformers/models/siglip/configuration_siglip.py +2 -4
- transformers/models/siglip/image_processing_siglip.py +20 -17
- transformers/models/siglip/image_processing_siglip_fast.py +1 -0
- transformers/models/siglip/modeling_siglip.py +75 -84
- transformers/models/siglip/processing_siglip.py +14 -2
- transformers/models/siglip/tokenization_siglip.py +7 -6
- transformers/models/siglip2/configuration_siglip2.py +2 -5
- transformers/models/siglip2/image_processing_siglip2.py +16 -15
- transformers/models/siglip2/image_processing_siglip2_fast.py +7 -6
- transformers/models/siglip2/modeling_siglip2.py +129 -143
- transformers/models/siglip2/modular_siglip2.py +46 -47
- transformers/models/siglip2/processing_siglip2.py +14 -2
- transformers/models/smollm3/configuration_smollm3.py +32 -29
- transformers/models/smollm3/modeling_smollm3.py +39 -36
- transformers/models/smollm3/modular_smollm3.py +35 -33
- transformers/models/smolvlm/configuration_smolvlm.py +4 -2
- transformers/models/smolvlm/image_processing_smolvlm.py +43 -42
- transformers/models/smolvlm/image_processing_smolvlm_fast.py +15 -41
- transformers/models/smolvlm/modeling_smolvlm.py +94 -126
- transformers/models/smolvlm/modular_smolvlm.py +39 -50
- transformers/models/smolvlm/processing_smolvlm.py +83 -15
- transformers/models/smolvlm/video_processing_smolvlm.py +18 -16
- transformers/models/speech_encoder_decoder/configuration_speech_encoder_decoder.py +1 -0
- transformers/models/speech_encoder_decoder/modeling_speech_encoder_decoder.py +27 -26
- transformers/models/speech_to_text/configuration_speech_to_text.py +9 -9
- transformers/models/speech_to_text/feature_extraction_speech_to_text.py +13 -10
- transformers/models/speech_to_text/modeling_speech_to_text.py +54 -66
- transformers/models/speech_to_text/processing_speech_to_text.py +30 -4
- transformers/models/speech_to_text/tokenization_speech_to_text.py +6 -5
- transformers/models/speecht5/configuration_speecht5.py +9 -7
- transformers/models/speecht5/feature_extraction_speecht5.py +37 -16
- transformers/models/speecht5/modeling_speecht5.py +175 -213
- transformers/models/speecht5/number_normalizer.py +1 -0
- transformers/models/speecht5/processing_speecht5.py +37 -3
- transformers/models/speecht5/tokenization_speecht5.py +5 -4
- transformers/models/splinter/configuration_splinter.py +7 -6
- transformers/models/splinter/modeling_splinter.py +59 -71
- transformers/models/splinter/tokenization_splinter.py +30 -9
- transformers/models/squeezebert/configuration_squeezebert.py +2 -14
- transformers/models/squeezebert/modeling_squeezebert.py +62 -68
- transformers/models/squeezebert/tokenization_squeezebert.py +1 -0
- transformers/models/stablelm/configuration_stablelm.py +29 -24
- transformers/models/stablelm/modeling_stablelm.py +45 -44
- transformers/models/starcoder2/configuration_starcoder2.py +27 -30
- transformers/models/starcoder2/modeling_starcoder2.py +41 -39
- transformers/models/starcoder2/modular_starcoder2.py +16 -14
- transformers/models/superglue/configuration_superglue.py +3 -7
- transformers/models/superglue/image_processing_superglue.py +15 -15
- transformers/models/superglue/image_processing_superglue_fast.py +10 -9
- transformers/models/superglue/modeling_superglue.py +37 -42
- transformers/models/superpoint/image_processing_superpoint.py +15 -15
- transformers/models/superpoint/image_processing_superpoint_fast.py +11 -8
- transformers/models/superpoint/modeling_superpoint.py +16 -18
- transformers/models/swiftformer/configuration_swiftformer.py +1 -0
- transformers/models/swiftformer/modeling_swiftformer.py +14 -18
- transformers/models/swin/configuration_swin.py +1 -0
- transformers/models/swin/modeling_swin.py +86 -86
- transformers/models/swin2sr/configuration_swin2sr.py +1 -0
- transformers/models/swin2sr/image_processing_swin2sr.py +13 -10
- transformers/models/swin2sr/image_processing_swin2sr_fast.py +8 -4
- transformers/models/swin2sr/modeling_swin2sr.py +63 -81
- transformers/models/swinv2/configuration_swinv2.py +1 -0
- transformers/models/swinv2/modeling_swinv2.py +104 -108
- transformers/models/switch_transformers/configuration_switch_transformers.py +7 -11
- transformers/models/switch_transformers/modeling_switch_transformers.py +44 -37
- transformers/models/switch_transformers/modular_switch_transformers.py +41 -34
- transformers/models/t5/configuration_t5.py +8 -14
- transformers/models/t5/modeling_t5.py +92 -88
- transformers/models/t5/tokenization_t5.py +9 -3
- transformers/models/t5gemma/configuration_t5gemma.py +41 -43
- transformers/models/t5gemma/modeling_t5gemma.py +107 -104
- transformers/models/t5gemma/modular_t5gemma.py +120 -124
- transformers/models/t5gemma2/configuration_t5gemma2.py +120 -80
- transformers/models/t5gemma2/modeling_t5gemma2.py +125 -141
- transformers/models/t5gemma2/modular_t5gemma2.py +104 -393
- transformers/models/table_transformer/configuration_table_transformer.py +2 -1
- transformers/models/table_transformer/modeling_table_transformer.py +49 -51
- transformers/models/tapas/configuration_tapas.py +2 -12
- transformers/models/tapas/modeling_tapas.py +67 -68
- transformers/models/tapas/tokenization_tapas.py +153 -115
- transformers/models/textnet/configuration_textnet.py +1 -0
- transformers/models/textnet/image_processing_textnet.py +25 -22
- transformers/models/textnet/image_processing_textnet_fast.py +10 -8
- transformers/models/textnet/modeling_textnet.py +16 -28
- transformers/models/time_series_transformer/configuration_time_series_transformer.py +8 -5
- transformers/models/time_series_transformer/modeling_time_series_transformer.py +81 -83
- transformers/models/timesfm/configuration_timesfm.py +1 -0
- transformers/models/timesfm/modeling_timesfm.py +22 -33
- transformers/models/timesfm/modular_timesfm.py +21 -32
- transformers/models/timesformer/configuration_timesformer.py +1 -0
- transformers/models/timesformer/modeling_timesformer.py +16 -15
- transformers/models/timm_backbone/configuration_timm_backbone.py +1 -0
- transformers/models/timm_backbone/modeling_timm_backbone.py +15 -17
- transformers/models/timm_wrapper/configuration_timm_wrapper.py +3 -5
- transformers/models/timm_wrapper/image_processing_timm_wrapper.py +5 -4
- transformers/models/timm_wrapper/modeling_timm_wrapper.py +29 -34
- transformers/models/trocr/configuration_trocr.py +8 -11
- transformers/models/trocr/modeling_trocr.py +44 -45
- transformers/models/trocr/processing_trocr.py +25 -5
- transformers/models/tvp/configuration_tvp.py +2 -5
- transformers/models/tvp/image_processing_tvp.py +52 -50
- transformers/models/tvp/image_processing_tvp_fast.py +15 -15
- transformers/models/tvp/modeling_tvp.py +27 -27
- transformers/models/tvp/processing_tvp.py +14 -2
- transformers/models/udop/configuration_udop.py +7 -16
- transformers/models/udop/modeling_udop.py +73 -71
- transformers/models/udop/processing_udop.py +26 -7
- transformers/models/udop/tokenization_udop.py +105 -84
- transformers/models/umt5/configuration_umt5.py +7 -8
- transformers/models/umt5/modeling_umt5.py +90 -94
- transformers/models/unispeech/configuration_unispeech.py +2 -4
- transformers/models/unispeech/modeling_unispeech.py +49 -51
- transformers/models/unispeech/modular_unispeech.py +22 -22
- transformers/models/unispeech_sat/configuration_unispeech_sat.py +2 -4
- transformers/models/unispeech_sat/modeling_unispeech_sat.py +65 -69
- transformers/models/unispeech_sat/modular_unispeech_sat.py +23 -23
- transformers/models/univnet/feature_extraction_univnet.py +14 -14
- transformers/models/univnet/modeling_univnet.py +8 -8
- transformers/models/upernet/configuration_upernet.py +1 -0
- transformers/models/upernet/modeling_upernet.py +13 -11
- transformers/models/vaultgemma/__init__.py +1 -0
- transformers/models/vaultgemma/configuration_vaultgemma.py +33 -29
- transformers/models/vaultgemma/modeling_vaultgemma.py +41 -39
- transformers/models/vaultgemma/modular_vaultgemma.py +31 -29
- transformers/models/video_llama_3/configuration_video_llama_3.py +0 -4
- transformers/models/video_llama_3/image_processing_video_llama_3.py +42 -43
- transformers/models/video_llama_3/image_processing_video_llama_3_fast.py +14 -12
- transformers/models/video_llama_3/modeling_video_llama_3.py +109 -157
- transformers/models/video_llama_3/modular_video_llama_3.py +146 -155
- transformers/models/video_llama_3/processing_video_llama_3.py +39 -5
- transformers/models/video_llama_3/video_processing_video_llama_3.py +23 -42
- transformers/models/video_llava/configuration_video_llava.py +1 -4
- transformers/models/video_llava/image_processing_video_llava.py +38 -35
- transformers/models/video_llava/modeling_video_llava.py +146 -146
- transformers/models/video_llava/processing_video_llava.py +78 -38
- transformers/models/video_llava/video_processing_video_llava.py +1 -0
- transformers/models/videomae/configuration_videomae.py +1 -0
- transformers/models/videomae/image_processing_videomae.py +34 -31
- transformers/models/videomae/modeling_videomae.py +17 -14
- transformers/models/videomae/video_processing_videomae.py +1 -0
- transformers/models/vilt/configuration_vilt.py +4 -6
- transformers/models/vilt/image_processing_vilt.py +30 -29
- transformers/models/vilt/image_processing_vilt_fast.py +16 -15
- transformers/models/vilt/modeling_vilt.py +90 -116
- transformers/models/vilt/processing_vilt.py +14 -2
- transformers/models/vipllava/configuration_vipllava.py +1 -4
- transformers/models/vipllava/modeling_vipllava.py +70 -99
- transformers/models/vipllava/modular_vipllava.py +54 -78
- transformers/models/vision_encoder_decoder/configuration_vision_encoder_decoder.py +1 -0
- transformers/models/vision_encoder_decoder/modeling_vision_encoder_decoder.py +27 -28
- transformers/models/vision_text_dual_encoder/configuration_vision_text_dual_encoder.py +1 -0
- transformers/models/vision_text_dual_encoder/modeling_vision_text_dual_encoder.py +41 -46
- transformers/models/vision_text_dual_encoder/processing_vision_text_dual_encoder.py +16 -2
- transformers/models/visual_bert/configuration_visual_bert.py +2 -6
- transformers/models/visual_bert/modeling_visual_bert.py +92 -98
- transformers/models/vit/configuration_vit.py +1 -0
- transformers/models/vit/image_processing_vit.py +22 -19
- transformers/models/vit/image_processing_vit_fast.py +1 -0
- transformers/models/vit/modeling_vit.py +17 -17
- transformers/models/vit_mae/configuration_vit_mae.py +1 -0
- transformers/models/vit_mae/modeling_vit_mae.py +27 -29
- transformers/models/vit_msn/configuration_vit_msn.py +1 -0
- transformers/models/vit_msn/modeling_vit_msn.py +16 -18
- transformers/models/vitdet/configuration_vitdet.py +1 -0
- transformers/models/vitdet/modeling_vitdet.py +14 -14
- transformers/models/vitmatte/configuration_vitmatte.py +5 -2
- transformers/models/vitmatte/image_processing_vitmatte.py +18 -15
- transformers/models/vitmatte/image_processing_vitmatte_fast.py +18 -16
- transformers/models/vitmatte/modeling_vitmatte.py +11 -14
- transformers/models/vitpose/configuration_vitpose.py +7 -4
- transformers/models/vitpose/image_processing_vitpose.py +25 -24
- transformers/models/vitpose/image_processing_vitpose_fast.py +11 -9
- transformers/models/vitpose/modeling_vitpose.py +14 -14
- transformers/models/vitpose_backbone/configuration_vitpose_backbone.py +1 -0
- transformers/models/vitpose_backbone/modeling_vitpose_backbone.py +10 -8
- transformers/models/vits/configuration_vits.py +1 -4
- transformers/models/vits/modeling_vits.py +42 -44
- transformers/models/vits/tokenization_vits.py +4 -3
- transformers/models/vivit/configuration_vivit.py +1 -0
- transformers/models/vivit/image_processing_vivit.py +39 -36
- transformers/models/vivit/modeling_vivit.py +8 -6
- transformers/models/vjepa2/__init__.py +1 -0
- transformers/models/vjepa2/configuration_vjepa2.py +1 -0
- transformers/models/vjepa2/modeling_vjepa2.py +32 -31
- transformers/models/vjepa2/video_processing_vjepa2.py +1 -0
- transformers/models/voxtral/__init__.py +1 -0
- transformers/models/voxtral/configuration_voxtral.py +2 -0
- transformers/models/voxtral/modeling_voxtral.py +47 -40
- transformers/models/voxtral/modular_voxtral.py +40 -37
- transformers/models/voxtral/processing_voxtral.py +48 -25
- transformers/models/wav2vec2/configuration_wav2vec2.py +2 -4
- transformers/models/wav2vec2/feature_extraction_wav2vec2.py +10 -7
- transformers/models/wav2vec2/modeling_wav2vec2.py +121 -73
- transformers/models/wav2vec2/processing_wav2vec2.py +35 -6
- transformers/models/wav2vec2/tokenization_wav2vec2.py +332 -20
- transformers/models/wav2vec2_bert/configuration_wav2vec2_bert.py +2 -4
- transformers/models/wav2vec2_bert/modeling_wav2vec2_bert.py +62 -70
- transformers/models/wav2vec2_bert/modular_wav2vec2_bert.py +48 -57
- transformers/models/wav2vec2_bert/processing_wav2vec2_bert.py +35 -6
- transformers/models/wav2vec2_conformer/configuration_wav2vec2_conformer.py +2 -4
- transformers/models/wav2vec2_conformer/modeling_wav2vec2_conformer.py +77 -90
- transformers/models/wav2vec2_conformer/modular_wav2vec2_conformer.py +30 -37
- transformers/models/wav2vec2_phoneme/tokenization_wav2vec2_phoneme.py +17 -16
- transformers/models/wav2vec2_with_lm/processing_wav2vec2_with_lm.py +55 -36
- transformers/models/wavlm/configuration_wavlm.py +2 -4
- transformers/models/wavlm/modeling_wavlm.py +48 -50
- transformers/models/wavlm/modular_wavlm.py +5 -4
- transformers/models/whisper/configuration_whisper.py +5 -6
- transformers/models/whisper/english_normalizer.py +4 -3
- transformers/models/whisper/feature_extraction_whisper.py +24 -9
- transformers/models/whisper/generation_whisper.py +48 -26
- transformers/models/whisper/modeling_whisper.py +73 -79
- transformers/models/whisper/processing_whisper.py +20 -3
- transformers/models/whisper/tokenization_whisper.py +43 -11
- transformers/models/x_clip/configuration_x_clip.py +2 -4
- transformers/models/x_clip/modeling_x_clip.py +93 -96
- transformers/models/x_clip/processing_x_clip.py +14 -2
- transformers/models/xcodec/configuration_xcodec.py +6 -4
- transformers/models/xcodec/modeling_xcodec.py +17 -20
- transformers/models/xglm/configuration_xglm.py +8 -9
- transformers/models/xglm/modeling_xglm.py +55 -60
- transformers/models/xglm/tokenization_xglm.py +11 -3
- transformers/models/xlm/configuration_xlm.py +8 -10
- transformers/models/xlm/modeling_xlm.py +144 -144
- transformers/models/xlm/tokenization_xlm.py +5 -3
- transformers/models/xlm_roberta/configuration_xlm_roberta.py +3 -11
- transformers/models/xlm_roberta/modeling_xlm_roberta.py +194 -195
- transformers/models/xlm_roberta/modular_xlm_roberta.py +53 -50
- transformers/models/xlm_roberta/tokenization_xlm_roberta.py +18 -8
- transformers/models/xlm_roberta_xl/configuration_xlm_roberta_xl.py +2 -10
- transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py +93 -94
- transformers/models/xlm_roberta_xl/modular_xlm_roberta_xl.py +70 -67
- transformers/models/xlnet/configuration_xlnet.py +12 -3
- transformers/models/xlnet/modeling_xlnet.py +163 -152
- transformers/models/xlnet/tokenization_xlnet.py +9 -2
- transformers/models/xlstm/configuration_xlstm.py +12 -8
- transformers/models/xlstm/modeling_xlstm.py +65 -62
- transformers/models/xmod/configuration_xmod.py +3 -11
- transformers/models/xmod/modeling_xmod.py +110 -108
- transformers/models/yolos/configuration_yolos.py +1 -0
- transformers/models/yolos/image_processing_yolos.py +62 -60
- transformers/models/yolos/image_processing_yolos_fast.py +45 -42
- transformers/models/yolos/modeling_yolos.py +16 -16
- transformers/models/yolos/modular_yolos.py +19 -17
- transformers/models/yoso/configuration_yoso.py +2 -8
- transformers/models/yoso/modeling_yoso.py +63 -70
- transformers/models/zamba/configuration_zamba.py +8 -5
- transformers/models/zamba/modeling_zamba.py +78 -81
- transformers/models/zamba2/configuration_zamba2.py +50 -44
- transformers/models/zamba2/modeling_zamba2.py +97 -97
- transformers/models/zamba2/modular_zamba2.py +48 -46
- transformers/models/zoedepth/configuration_zoedepth.py +2 -1
- transformers/models/zoedepth/image_processing_zoedepth.py +29 -28
- transformers/models/zoedepth/image_processing_zoedepth_fast.py +24 -21
- transformers/models/zoedepth/modeling_zoedepth.py +18 -26
- transformers/pipelines/__init__.py +114 -57
- transformers/pipelines/any_to_any.py +22 -14
- transformers/pipelines/audio_utils.py +2 -1
- transformers/pipelines/automatic_speech_recognition.py +12 -20
- transformers/pipelines/base.py +27 -15
- transformers/{models/pe_audio/processing_pe_audio.py → pipelines/deprecated/__init__.py} +3 -10
- transformers/pipelines/deprecated/text2text_generation.py +408 -0
- transformers/pipelines/document_question_answering.py +2 -4
- transformers/pipelines/image_text_to_text.py +1 -0
- transformers/pipelines/image_to_text.py +229 -0
- transformers/pipelines/question_answering.py +44 -5
- transformers/pipelines/text_classification.py +14 -1
- transformers/pipelines/text_generation.py +1 -1
- transformers/pipelines/text_to_audio.py +2 -2
- transformers/pipelines/token_classification.py +22 -1
- transformers/pipelines/video_classification.py +9 -1
- transformers/pipelines/zero_shot_audio_classification.py +1 -0
- transformers/pipelines/zero_shot_classification.py +6 -0
- transformers/pipelines/zero_shot_image_classification.py +7 -0
- transformers/processing_utils.py +145 -230
- transformers/quantizers/auto.py +4 -2
- transformers/quantizers/base.py +173 -53
- transformers/quantizers/quantizer_aqlm.py +23 -2
- transformers/quantizers/quantizer_auto_round.py +12 -2
- transformers/quantizers/quantizer_awq.py +89 -20
- transformers/quantizers/quantizer_bitnet.py +14 -4
- transformers/quantizers/quantizer_bnb_4bit.py +155 -18
- transformers/quantizers/quantizer_bnb_8bit.py +110 -24
- transformers/quantizers/quantizer_compressed_tensors.py +9 -2
- transformers/quantizers/quantizer_eetq.py +74 -16
- transformers/quantizers/quantizer_fbgemm_fp8.py +138 -38
- transformers/quantizers/quantizer_finegrained_fp8.py +113 -26
- transformers/quantizers/quantizer_fp_quant.py +82 -52
- transformers/quantizers/quantizer_gptq.py +28 -8
- transformers/quantizers/quantizer_higgs.py +60 -42
- transformers/quantizers/quantizer_hqq.py +153 -144
- transformers/quantizers/quantizer_mxfp4.py +194 -14
- transformers/quantizers/quantizer_quanto.py +79 -35
- transformers/quantizers/quantizer_quark.py +18 -36
- transformers/quantizers/quantizer_spqr.py +12 -4
- transformers/quantizers/quantizer_torchao.py +325 -50
- transformers/quantizers/quantizer_vptq.py +27 -4
- transformers/quantizers/quantizers_utils.py +0 -20
- transformers/safetensors_conversion.py +3 -9
- transformers/testing_utils.py +82 -326
- transformers/tokenization_mistral_common.py +903 -568
- transformers/tokenization_utils_base.py +340 -220
- transformers/tokenization_utils_sentencepiece.py +6 -5
- transformers/tokenization_utils_tokenizers.py +113 -226
- transformers/trainer.py +53 -60
- transformers/trainer_callback.py +0 -8
- transformers/trainer_seq2seq.py +1 -5
- transformers/trainer_utils.py +1 -1
- transformers/training_args.py +41 -77
- transformers/utils/__init__.py +4 -8
- transformers/utils/attention_visualizer.py +5 -5
- transformers/utils/auto_docstring.py +37 -599
- transformers/utils/doc.py +36 -4
- transformers/utils/dummy_pt_objects.py +42 -0
- transformers/utils/generic.py +28 -111
- transformers/utils/hub.py +15 -5
- transformers/utils/import_utils.py +32 -165
- transformers/utils/kernel_config.py +19 -74
- transformers/utils/loading_report.py +15 -25
- transformers/utils/quantization_config.py +241 -72
- transformers/video_processing_utils.py +39 -41
- transformers/video_utils.py +22 -18
- {transformers-5.0.0.dist-info → transformers-5.0.0rc0.dist-info}/METADATA +236 -284
- transformers-5.0.0rc0.dist-info/RECORD +1987 -0
- {transformers-5.0.0.dist-info → transformers-5.0.0rc0.dist-info}/WHEEL +1 -1
- transformers/integrations/moe.py +0 -360
- transformers/integrations/quark.py +0 -53
- transformers/loss/loss_lw_detr.py +0 -356
- transformers/models/ernie4_5_vl_moe/__init__.py +0 -31
- transformers/models/ernie4_5_vl_moe/configuration_ernie4_5_vl_moe.py +0 -340
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe.py +0 -455
- transformers/models/ernie4_5_vl_moe/image_processing_ernie4_5_vl_moe_fast.py +0 -231
- transformers/models/ernie4_5_vl_moe/modeling_ernie4_5_vl_moe.py +0 -1936
- transformers/models/ernie4_5_vl_moe/modular_ernie4_5_vl_moe.py +0 -1925
- transformers/models/ernie4_5_vl_moe/processing_ernie4_5_vl_moe.py +0 -249
- transformers/models/ernie4_5_vl_moe/video_processing_ernie4_5_vl_moe.py +0 -593
- transformers/models/fast_vlm/__init__.py +0 -27
- transformers/models/fast_vlm/configuration_fast_vlm.py +0 -137
- transformers/models/fast_vlm/modeling_fast_vlm.py +0 -432
- transformers/models/fast_vlm/modular_fast_vlm.py +0 -373
- transformers/models/glm4_moe_lite/__init__.py +0 -28
- transformers/models/glm4_moe_lite/configuration_glm4_moe_lite.py +0 -233
- transformers/models/glm4_moe_lite/modeling_glm4_moe_lite.py +0 -740
- transformers/models/glm4_moe_lite/modular_glm4_moe_lite.py +0 -302
- transformers/models/glm_image/__init__.py +0 -31
- transformers/models/glm_image/configuration_glm_image.py +0 -351
- transformers/models/glm_image/image_processing_glm_image.py +0 -503
- transformers/models/glm_image/image_processing_glm_image_fast.py +0 -294
- transformers/models/glm_image/modeling_glm_image.py +0 -1642
- transformers/models/glm_image/modular_glm_image.py +0 -1531
- transformers/models/glm_image/processing_glm_image.py +0 -217
- transformers/models/glmasr/__init__.py +0 -29
- transformers/models/glmasr/configuration_glmasr.py +0 -196
- transformers/models/glmasr/modeling_glmasr.py +0 -517
- transformers/models/glmasr/modular_glmasr.py +0 -443
- transformers/models/glmasr/processing_glmasr.py +0 -331
- transformers/models/jais2/__init__.py +0 -27
- transformers/models/jais2/configuration_jais2.py +0 -148
- transformers/models/jais2/modeling_jais2.py +0 -484
- transformers/models/jais2/modular_jais2.py +0 -194
- transformers/models/lasr/__init__.py +0 -29
- transformers/models/lasr/configuration_lasr.py +0 -244
- transformers/models/lasr/feature_extraction_lasr.py +0 -275
- transformers/models/lasr/modeling_lasr.py +0 -727
- transformers/models/lasr/modular_lasr.py +0 -574
- transformers/models/lasr/processing_lasr.py +0 -100
- transformers/models/lasr/tokenization_lasr.py +0 -184
- transformers/models/lighton_ocr/__init__.py +0 -28
- transformers/models/lighton_ocr/configuration_lighton_ocr.py +0 -128
- transformers/models/lighton_ocr/modeling_lighton_ocr.py +0 -463
- transformers/models/lighton_ocr/modular_lighton_ocr.py +0 -404
- transformers/models/lighton_ocr/processing_lighton_ocr.py +0 -229
- transformers/models/lw_detr/__init__.py +0 -27
- transformers/models/lw_detr/configuration_lw_detr.py +0 -374
- transformers/models/lw_detr/modeling_lw_detr.py +0 -1702
- transformers/models/lw_detr/modular_lw_detr.py +0 -1615
- transformers/models/minimax_m2/__init__.py +0 -28
- transformers/models/minimax_m2/configuration_minimax_m2.py +0 -188
- transformers/models/minimax_m2/modeling_minimax_m2.py +0 -704
- transformers/models/minimax_m2/modular_minimax_m2.py +0 -346
- transformers/models/paddleocr_vl/__init__.py +0 -31
- transformers/models/paddleocr_vl/configuration_paddleocr_vl.py +0 -335
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl.py +0 -503
- transformers/models/paddleocr_vl/image_processing_paddleocr_vl_fast.py +0 -209
- transformers/models/paddleocr_vl/modeling_paddleocr_vl.py +0 -1683
- transformers/models/paddleocr_vl/modular_paddleocr_vl.py +0 -1380
- transformers/models/paddleocr_vl/processing_paddleocr_vl.py +0 -133
- transformers/models/pe_audio/__init__.py +0 -29
- transformers/models/pe_audio/configuration_pe_audio.py +0 -204
- transformers/models/pe_audio/feature_extraction_pe_audio.py +0 -160
- transformers/models/pe_audio/modeling_pe_audio.py +0 -819
- transformers/models/pe_audio/modular_pe_audio.py +0 -298
- transformers/models/pe_audio_video/__init__.py +0 -28
- transformers/models/pe_audio_video/configuration_pe_audio_video.py +0 -223
- transformers/models/pe_audio_video/modeling_pe_audio_video.py +0 -971
- transformers/models/pe_audio_video/modular_pe_audio_video.py +0 -763
- transformers/models/pe_video/__init__.py +0 -29
- transformers/models/pe_video/configuration_pe_video.py +0 -209
- transformers/models/pe_video/modeling_pe_video.py +0 -647
- transformers/models/pe_video/modular_pe_video.py +0 -231
- transformers/models/pe_video/processing_pe_video.py +0 -10
- transformers/models/pe_video/video_processing_pe_video.py +0 -64
- transformers/models/pixio/__init__.py +0 -29
- transformers/models/pixio/configuration_pixio.py +0 -150
- transformers/models/pixio/modeling_pixio.py +0 -507
- transformers/models/pixio/modular_pixio.py +0 -403
- transformers/models/solar_open/__init__.py +0 -27
- transformers/models/solar_open/configuration_solar_open.py +0 -184
- transformers/models/solar_open/modeling_solar_open.py +0 -642
- transformers/models/solar_open/modular_solar_open.py +0 -224
- transformers/trainer_jit_checkpoint.py +0 -125
- transformers-5.0.0.dist-info/RECORD +0 -2068
- {transformers-5.0.0.dist-info/licenses → transformers-5.0.0rc0.dist-info}/LICENSE +0 -0
- {transformers-5.0.0.dist-info → transformers-5.0.0rc0.dist-info}/entry_points.txt +0 -0
- {transformers-5.0.0.dist-info → transformers-5.0.0rc0.dist-info}/top_level.txt +0 -0
|
@@ -1,1380 +0,0 @@
|
|
|
1
|
-
# Copyright 2025 The PaddlePaddle Team and The HuggingFace Inc. team. All rights reserved.
|
|
2
|
-
#
|
|
3
|
-
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
|
|
4
|
-
# and OPT implementations in this library. It has been modified from its
|
|
5
|
-
# original forms to accommodate minor architectural differences compared
|
|
6
|
-
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
|
|
7
|
-
#
|
|
8
|
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
9
|
-
# you may not use this file except in compliance with the License.
|
|
10
|
-
# You may obtain a copy of the License at
|
|
11
|
-
#
|
|
12
|
-
# http://www.apache.org/licenses/LICENSE-2.0
|
|
13
|
-
#
|
|
14
|
-
# Unless required by applicable law or agreed to in writing, software
|
|
15
|
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
16
|
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
17
|
-
# See the License for the specific language governing permissions and
|
|
18
|
-
# limitations under the License.
|
|
19
|
-
|
|
20
|
-
import math
|
|
21
|
-
from typing import Optional
|
|
22
|
-
|
|
23
|
-
import numpy as np
|
|
24
|
-
import torch
|
|
25
|
-
import torch.nn.functional as F
|
|
26
|
-
from torch import nn
|
|
27
|
-
|
|
28
|
-
from ... import initialization as init
|
|
29
|
-
from ...activations import GELUActivation
|
|
30
|
-
from ...cache_utils import Cache, DynamicCache
|
|
31
|
-
from ...image_processing_utils import BatchFeature
|
|
32
|
-
from ...image_processing_utils_fast import BaseImageProcessorFast, group_images_by_shape, reorder_images
|
|
33
|
-
from ...image_transforms import convert_to_rgb, resize, to_channel_dimension_format
|
|
34
|
-
from ...image_utils import (
|
|
35
|
-
OPENAI_CLIP_MEAN,
|
|
36
|
-
OPENAI_CLIP_STD,
|
|
37
|
-
ChannelDimension,
|
|
38
|
-
ImageInput,
|
|
39
|
-
PILImageResampling,
|
|
40
|
-
SizeDict,
|
|
41
|
-
get_image_size,
|
|
42
|
-
infer_channel_dimension_format,
|
|
43
|
-
is_scaled_image,
|
|
44
|
-
make_list_of_images,
|
|
45
|
-
to_numpy_array,
|
|
46
|
-
)
|
|
47
|
-
from ...masking_utils import create_bidirectional_mask, create_causal_mask
|
|
48
|
-
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPast, BaseModelOutputWithPooling
|
|
49
|
-
from ...modeling_utils import PreTrainedModel
|
|
50
|
-
from ...models.qwen2_vl.image_processing_qwen2_vl import Qwen2VLImageProcessor
|
|
51
|
-
from ...processing_utils import (
|
|
52
|
-
ProcessingKwargs,
|
|
53
|
-
ProcessorMixin,
|
|
54
|
-
Unpack,
|
|
55
|
-
)
|
|
56
|
-
from ...tokenization_utils_base import PreTokenizedInput, TextInput
|
|
57
|
-
from ...utils import TensorType, TransformersKwargs, auto_docstring, can_return_tuple, logging, torch_int
|
|
58
|
-
from ...utils.generic import check_model_inputs
|
|
59
|
-
from ..ernie4_5.configuration_ernie4_5 import Ernie4_5Config
|
|
60
|
-
from ..ernie4_5.modeling_ernie4_5 import (
|
|
61
|
-
Ernie4_5DecoderLayer,
|
|
62
|
-
Ernie4_5MLP,
|
|
63
|
-
Ernie4_5Model,
|
|
64
|
-
Ernie4_5RMSNorm,
|
|
65
|
-
)
|
|
66
|
-
from ..qwen2_5_omni.modeling_qwen2_5_omni import (
|
|
67
|
-
Qwen2_5OmniAttention,
|
|
68
|
-
)
|
|
69
|
-
from ..qwen2_vl.configuration_qwen2_vl import Qwen2VLConfig
|
|
70
|
-
from ..qwen2_vl.modeling_qwen2_vl import (
|
|
71
|
-
Qwen2VLCausalLMOutputWithPast,
|
|
72
|
-
Qwen2VLForConditionalGeneration,
|
|
73
|
-
Qwen2VLModel,
|
|
74
|
-
Qwen2VLModelOutputWithPast,
|
|
75
|
-
Qwen2VLRotaryEmbedding,
|
|
76
|
-
VisionRotaryEmbedding,
|
|
77
|
-
)
|
|
78
|
-
from ..siglip.configuration_siglip import SiglipVisionConfig
|
|
79
|
-
from ..siglip.modeling_siglip import (
|
|
80
|
-
SiglipMLP,
|
|
81
|
-
SiglipVisionEmbeddings,
|
|
82
|
-
)
|
|
83
|
-
from ..video_llama_3.modeling_video_llama_3 import (
|
|
84
|
-
VideoLlama3VisionAttention,
|
|
85
|
-
VideoLlama3VisionEncoder,
|
|
86
|
-
VideoLlama3VisionEncoderLayer,
|
|
87
|
-
)
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
logger = logging.get_logger(__name__)
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
def smart_resize(
|
|
94
|
-
height: int,
|
|
95
|
-
width: int,
|
|
96
|
-
factor: int = 28,
|
|
97
|
-
min_pixels: int = 384 * 384,
|
|
98
|
-
max_pixels: int = 1536 * 1536,
|
|
99
|
-
):
|
|
100
|
-
if height < factor:
|
|
101
|
-
width = round((width * factor) / height)
|
|
102
|
-
height = factor
|
|
103
|
-
|
|
104
|
-
if width < factor:
|
|
105
|
-
height = round((height * factor) / width)
|
|
106
|
-
width = factor
|
|
107
|
-
|
|
108
|
-
if max(height, width) / min(height, width) > 200:
|
|
109
|
-
raise ValueError(
|
|
110
|
-
f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}"
|
|
111
|
-
)
|
|
112
|
-
h_bar = round(height / factor) * factor
|
|
113
|
-
w_bar = round(width / factor) * factor
|
|
114
|
-
if h_bar * w_bar > max_pixels:
|
|
115
|
-
beta = math.sqrt((height * width) / max_pixels)
|
|
116
|
-
h_bar = math.floor(height / beta / factor) * factor
|
|
117
|
-
w_bar = math.floor(width / beta / factor) * factor
|
|
118
|
-
elif h_bar * w_bar < min_pixels:
|
|
119
|
-
beta = math.sqrt(min_pixels / (height * width))
|
|
120
|
-
h_bar = math.ceil(height * beta / factor) * factor
|
|
121
|
-
w_bar = math.ceil(width * beta / factor) * factor
|
|
122
|
-
return h_bar, w_bar
|
|
123
|
-
|
|
124
|
-
|
|
125
|
-
class PaddleOCRVLImageProcessor(Qwen2VLImageProcessor):
|
|
126
|
-
r"""
|
|
127
|
-
Constructs a PaddleOCRVL image processor that dynamically resizes images based on the original images.
|
|
128
|
-
|
|
129
|
-
Args:
|
|
130
|
-
do_resize (`bool`, *optional*, defaults to `True`):
|
|
131
|
-
Whether to resize the image's (height, width) dimensions.
|
|
132
|
-
size (`dict[str, int]`, *optional*):
|
|
133
|
-
Size of the image after resizing. `shortest_edge` and `longest_edge` keys must be present.
|
|
134
|
-
resample (`PILImageResampling`, *optional*, defaults to `Resampling.BICUBIC`):
|
|
135
|
-
Resampling filter to use when resizing the image.
|
|
136
|
-
do_rescale (`bool`, *optional*, defaults to `True`):
|
|
137
|
-
Whether to rescale the image by the specified scale `rescale_factor`.
|
|
138
|
-
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
|
139
|
-
Scale factor to use if rescaling the image.
|
|
140
|
-
do_normalize (`bool`, *optional*, defaults to `True`):
|
|
141
|
-
Whether to normalize the image.
|
|
142
|
-
image_mean (`float` or `list[float]`, *optional*):
|
|
143
|
-
Mean to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
|
144
|
-
image_std (`float` or `list[float]`, *optional*):
|
|
145
|
-
Standard deviation to use if normalizing the image. This is a float or list of floats for each channel in the image.
|
|
146
|
-
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
|
147
|
-
Whether to convert the image to RGB.
|
|
148
|
-
min_pixels (`int`, *optional*, defaults to `384 * 384`):
|
|
149
|
-
The min pixels of the image to resize the image.
|
|
150
|
-
max_pixels (`int`, *optional*, defaults to `1536 * 1536`):
|
|
151
|
-
The max pixels of the image to resize the image.
|
|
152
|
-
patch_size (`int`, *optional*, defaults to 14):
|
|
153
|
-
The spatial patch size of the vision encoder.
|
|
154
|
-
temporal_patch_size (`int`, *optional*, defaults to 1):
|
|
155
|
-
The temporal patch size of the vision encoder.
|
|
156
|
-
merge_size (`int`, *optional*, defaults to 2):
|
|
157
|
-
The merge size of the vision encoder to llm encoder.
|
|
158
|
-
"""
|
|
159
|
-
|
|
160
|
-
model_input_names = [
|
|
161
|
-
"pixel_values",
|
|
162
|
-
"image_grid_thw",
|
|
163
|
-
]
|
|
164
|
-
|
|
165
|
-
def __init__(
|
|
166
|
-
self,
|
|
167
|
-
do_resize: bool = True,
|
|
168
|
-
size: dict[str, int] | None = None,
|
|
169
|
-
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
|
170
|
-
do_rescale: bool = True,
|
|
171
|
-
rescale_factor: int | float = 1 / 255,
|
|
172
|
-
do_normalize: bool = True,
|
|
173
|
-
image_mean: float | list[float] | None = None,
|
|
174
|
-
image_std: float | list[float] | None = None,
|
|
175
|
-
do_convert_rgb: bool = True,
|
|
176
|
-
min_pixels: int = 384 * 384,
|
|
177
|
-
max_pixels: int = 1536 * 1536,
|
|
178
|
-
patch_size: int = 14,
|
|
179
|
-
temporal_patch_size: int = 1,
|
|
180
|
-
merge_size: int = 2,
|
|
181
|
-
**kwargs,
|
|
182
|
-
) -> None:
|
|
183
|
-
super().__init__()
|
|
184
|
-
|
|
185
|
-
def _preprocess(
|
|
186
|
-
self,
|
|
187
|
-
images: ImageInput,
|
|
188
|
-
do_resize: bool | None = None,
|
|
189
|
-
size: dict[str, int] | None = None,
|
|
190
|
-
resample: PILImageResampling = None,
|
|
191
|
-
do_rescale: bool | None = None,
|
|
192
|
-
rescale_factor: float | None = None,
|
|
193
|
-
do_normalize: bool | None = None,
|
|
194
|
-
image_mean: float | list[float] | None = None,
|
|
195
|
-
image_std: float | list[float] | None = None,
|
|
196
|
-
patch_size: int | None = None,
|
|
197
|
-
temporal_patch_size: int | None = None,
|
|
198
|
-
merge_size: int | None = None,
|
|
199
|
-
do_convert_rgb: bool | None = None,
|
|
200
|
-
data_format: ChannelDimension | None = ChannelDimension.FIRST,
|
|
201
|
-
input_data_format: str | ChannelDimension | None = None,
|
|
202
|
-
):
|
|
203
|
-
"""
|
|
204
|
-
Preprocess an image or batch of images. Copy of the `preprocess` method from `CLIPImageProcessor`.
|
|
205
|
-
Args:
|
|
206
|
-
images (`ImageInput`):
|
|
207
|
-
Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set `do_rescale=False`.
|
|
208
|
-
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
|
209
|
-
Whether to resize the image.
|
|
210
|
-
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
|
211
|
-
Size of the image after resizing. `shortest_edge` and `longest_edge` keys must be present.
|
|
212
|
-
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
|
213
|
-
Resampling filter to use if resizing the image. This can be one of the `PILImageResampling` enums.
|
|
214
|
-
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
|
215
|
-
Whether to rescale the image.
|
|
216
|
-
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
|
217
|
-
Scale factor to use if rescaling the image.
|
|
218
|
-
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
|
219
|
-
Whether to normalize the image.
|
|
220
|
-
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
|
221
|
-
Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
|
222
|
-
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
|
223
|
-
Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image.
|
|
224
|
-
patch_size (`int`, *optional*, defaults to `self.patch_size`):
|
|
225
|
-
The spatial patch size of the vision encoder.
|
|
226
|
-
temporal_patch_size (`int`, *optional*, defaults to `self.temporal_patch_size`):
|
|
227
|
-
The temporal patch size of the vision encoder.
|
|
228
|
-
merge_size (`int`, *optional*, defaults to `self.merge_size`):
|
|
229
|
-
The merge size of the vision encoder to llm encoder.
|
|
230
|
-
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
|
231
|
-
Whether to convert the image to RGB.
|
|
232
|
-
data_format (`ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST`):
|
|
233
|
-
The channel dimension format for the output image. Can be one of:
|
|
234
|
-
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
235
|
-
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
236
|
-
- Unset: Use the channel dimension format of the input image.
|
|
237
|
-
input_data_format (`ChannelDimension` or `str`, *optional*):
|
|
238
|
-
The channel dimension format for the input image. Can be one of:
|
|
239
|
-
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
|
240
|
-
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
|
241
|
-
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format. - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
|
242
|
-
"""
|
|
243
|
-
images = make_list_of_images(images)
|
|
244
|
-
images = self.fetch_images(images)
|
|
245
|
-
|
|
246
|
-
if do_convert_rgb:
|
|
247
|
-
images = [convert_to_rgb(image) for image in images]
|
|
248
|
-
|
|
249
|
-
# All transformations expect numpy arrays.
|
|
250
|
-
images = [to_numpy_array(image) for image in images]
|
|
251
|
-
|
|
252
|
-
if is_scaled_image(images[0]) and do_rescale:
|
|
253
|
-
logger.warning_once(
|
|
254
|
-
"It looks like you are trying to rescale already rescaled images. If the input"
|
|
255
|
-
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
|
256
|
-
)
|
|
257
|
-
if input_data_format is None:
|
|
258
|
-
# We assume that all images have the same channel dimension format.
|
|
259
|
-
input_data_format = infer_channel_dimension_format(images[0])
|
|
260
|
-
|
|
261
|
-
height, width = get_image_size(images[0], channel_dim=input_data_format)
|
|
262
|
-
resized_height, resized_width = height, width
|
|
263
|
-
processed_images = []
|
|
264
|
-
|
|
265
|
-
for image in images:
|
|
266
|
-
if do_resize:
|
|
267
|
-
resized_height, resized_width = smart_resize(
|
|
268
|
-
height,
|
|
269
|
-
width,
|
|
270
|
-
factor=patch_size * merge_size,
|
|
271
|
-
min_pixels=size["shortest_edge"],
|
|
272
|
-
max_pixels=size["longest_edge"],
|
|
273
|
-
)
|
|
274
|
-
image = resize(
|
|
275
|
-
image,
|
|
276
|
-
size=(resized_height, resized_width),
|
|
277
|
-
resample=resample,
|
|
278
|
-
input_data_format=input_data_format,
|
|
279
|
-
)
|
|
280
|
-
|
|
281
|
-
if do_rescale:
|
|
282
|
-
image = self.rescale(image, scale=rescale_factor, input_data_format=input_data_format)
|
|
283
|
-
|
|
284
|
-
if do_normalize:
|
|
285
|
-
image = self.normalize(
|
|
286
|
-
image=image,
|
|
287
|
-
mean=image_mean,
|
|
288
|
-
std=image_std,
|
|
289
|
-
input_data_format=input_data_format,
|
|
290
|
-
)
|
|
291
|
-
image = to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format)
|
|
292
|
-
processed_images.append(image)
|
|
293
|
-
|
|
294
|
-
patches = np.array(processed_images)
|
|
295
|
-
if data_format == ChannelDimension.LAST:
|
|
296
|
-
patches = patches.transpose(0, 3, 1, 2)
|
|
297
|
-
if patches.shape[0] == 1:
|
|
298
|
-
patches = np.tile(patches, (temporal_patch_size, 1, 1, 1))
|
|
299
|
-
|
|
300
|
-
channel = patches.shape[1]
|
|
301
|
-
grid_t = patches.shape[0] // temporal_patch_size
|
|
302
|
-
grid_h, grid_w = (
|
|
303
|
-
resized_height // patch_size,
|
|
304
|
-
resized_width // patch_size,
|
|
305
|
-
)
|
|
306
|
-
patches = patches.reshape(
|
|
307
|
-
grid_t,
|
|
308
|
-
temporal_patch_size,
|
|
309
|
-
channel,
|
|
310
|
-
grid_h,
|
|
311
|
-
patch_size,
|
|
312
|
-
grid_w,
|
|
313
|
-
patch_size,
|
|
314
|
-
)
|
|
315
|
-
patches = patches.transpose(0, 3, 5, 2, 1, 4, 6)
|
|
316
|
-
if temporal_patch_size != 1:
|
|
317
|
-
raise ValueError(f"temporal_patch_size must be 1!, but got {temporal_patch_size}!")
|
|
318
|
-
flatten_patches = patches.reshape(grid_t * grid_h * grid_w, channel, patch_size, patch_size)
|
|
319
|
-
return flatten_patches, (grid_t, grid_h, grid_w)
|
|
320
|
-
|
|
321
|
-
|
|
322
|
-
class PaddleOCRVLImageProcessorFast(BaseImageProcessorFast):
|
|
323
|
-
def __init__(
|
|
324
|
-
self,
|
|
325
|
-
do_resize: bool = True,
|
|
326
|
-
size: dict[str, int] | None = None,
|
|
327
|
-
resample: PILImageResampling = PILImageResampling.BICUBIC,
|
|
328
|
-
do_rescale: bool = True,
|
|
329
|
-
rescale_factor: int | float = 1 / 255,
|
|
330
|
-
do_normalize: bool = True,
|
|
331
|
-
image_mean: float | list[float] | None = None,
|
|
332
|
-
image_std: float | list[float] | None = None,
|
|
333
|
-
do_convert_rgb: bool = True,
|
|
334
|
-
min_pixels: int = 384 * 384,
|
|
335
|
-
max_pixels: int = 1536 * 1536,
|
|
336
|
-
patch_size: int = 14,
|
|
337
|
-
temporal_patch_size: int = 1,
|
|
338
|
-
merge_size: int = 2,
|
|
339
|
-
**kwargs,
|
|
340
|
-
) -> None:
|
|
341
|
-
super().__init__(**kwargs)
|
|
342
|
-
if size is not None and ("shortest_edge" not in size or "longest_edge" not in size):
|
|
343
|
-
raise ValueError("size must contain 'shortest_edge' and 'longest_edge' keys.")
|
|
344
|
-
else:
|
|
345
|
-
size = {"shortest_edge": 384 * 384, "longest_edge": 1536 * 1536}
|
|
346
|
-
# backward compatibility: override size with min_pixels and max_pixels if they are provided
|
|
347
|
-
if min_pixels is not None:
|
|
348
|
-
size["shortest_edge"] = min_pixels
|
|
349
|
-
if max_pixels is not None:
|
|
350
|
-
size["longest_edge"] = max_pixels
|
|
351
|
-
self.min_pixels = size["shortest_edge"]
|
|
352
|
-
self.max_pixels = size["longest_edge"]
|
|
353
|
-
self.size = size
|
|
354
|
-
|
|
355
|
-
self.do_resize = do_resize
|
|
356
|
-
self.resample = resample
|
|
357
|
-
self.do_rescale = do_rescale
|
|
358
|
-
self.rescale_factor = rescale_factor
|
|
359
|
-
self.do_normalize = do_normalize
|
|
360
|
-
self.image_mean = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
|
|
361
|
-
self.image_std = image_std if image_std is not None else OPENAI_CLIP_STD
|
|
362
|
-
|
|
363
|
-
self.patch_size = patch_size
|
|
364
|
-
self.temporal_patch_size = temporal_patch_size
|
|
365
|
-
self.merge_size = merge_size
|
|
366
|
-
self.do_convert_rgb = do_convert_rgb
|
|
367
|
-
|
|
368
|
-
def _preprocess(
|
|
369
|
-
self,
|
|
370
|
-
images: list["torch.Tensor"],
|
|
371
|
-
do_resize: bool,
|
|
372
|
-
size: SizeDict,
|
|
373
|
-
interpolation: Optional["F.InterpolationMode"],
|
|
374
|
-
do_rescale: bool,
|
|
375
|
-
rescale_factor: float,
|
|
376
|
-
do_normalize: bool,
|
|
377
|
-
image_mean: float | list[float] | None,
|
|
378
|
-
image_std: float | list[float] | None,
|
|
379
|
-
disable_grouping: bool | None,
|
|
380
|
-
return_tensors: str | TensorType | None,
|
|
381
|
-
patch_size: int | None = None,
|
|
382
|
-
temporal_patch_size: int | None = None,
|
|
383
|
-
merge_size: int | None = None,
|
|
384
|
-
**kwargs,
|
|
385
|
-
):
|
|
386
|
-
patch_size = patch_size if patch_size is not None else self.patch_size
|
|
387
|
-
temporal_patch_size = temporal_patch_size if temporal_patch_size is not None else self.temporal_patch_size
|
|
388
|
-
merge_size = merge_size if merge_size is not None else self.merge_size
|
|
389
|
-
|
|
390
|
-
grouped_images, grouped_images_index = group_images_by_shape(images, disable_grouping=disable_grouping)
|
|
391
|
-
resized_images_grouped = {}
|
|
392
|
-
for shape, stacked_images in grouped_images.items():
|
|
393
|
-
height, width = stacked_images.shape[-2:]
|
|
394
|
-
if do_resize:
|
|
395
|
-
resized_height, resized_width = smart_resize(
|
|
396
|
-
height,
|
|
397
|
-
width,
|
|
398
|
-
factor=patch_size * merge_size,
|
|
399
|
-
min_pixels=size["shortest_edge"],
|
|
400
|
-
max_pixels=size["longest_edge"],
|
|
401
|
-
)
|
|
402
|
-
stacked_images = self.resize(
|
|
403
|
-
image=stacked_images,
|
|
404
|
-
size=SizeDict(height=resized_height, width=resized_width),
|
|
405
|
-
interpolation=interpolation,
|
|
406
|
-
)
|
|
407
|
-
resized_images_grouped[shape] = stacked_images
|
|
408
|
-
resized_images = reorder_images(resized_images_grouped, grouped_images_index)
|
|
409
|
-
|
|
410
|
-
# Group images by size for further processing
|
|
411
|
-
# Needed in case do_resize is False, or resize returns images with different sizes
|
|
412
|
-
grouped_images, grouped_images_index = group_images_by_shape(resized_images, disable_grouping=disable_grouping)
|
|
413
|
-
processed_images_grouped = {}
|
|
414
|
-
processed_grids = {}
|
|
415
|
-
for shape, stacked_images in grouped_images.items():
|
|
416
|
-
resized_height, resized_width = stacked_images.shape[-2:]
|
|
417
|
-
# Fused rescale and normalize
|
|
418
|
-
patches = self.rescale_and_normalize(
|
|
419
|
-
stacked_images, do_rescale, rescale_factor, do_normalize, image_mean, image_std
|
|
420
|
-
)
|
|
421
|
-
|
|
422
|
-
if patches.ndim == 4:
|
|
423
|
-
# add a temporal dimension if we have images
|
|
424
|
-
patches = patches.unsqueeze(1)
|
|
425
|
-
if patches.shape[1] % temporal_patch_size != 0:
|
|
426
|
-
repeats = patches[:, -1:].repeat(1, temporal_patch_size - 1, 1, 1, 1)
|
|
427
|
-
patches = torch.cat([patches, repeats], dim=1)
|
|
428
|
-
|
|
429
|
-
batch_size, grid_t, channel = patches.shape[:3]
|
|
430
|
-
grid_t = grid_t // temporal_patch_size
|
|
431
|
-
grid_h, grid_w = (
|
|
432
|
-
resized_height // patch_size,
|
|
433
|
-
resized_width // patch_size,
|
|
434
|
-
)
|
|
435
|
-
patches = patches.view(
|
|
436
|
-
batch_size,
|
|
437
|
-
grid_t,
|
|
438
|
-
temporal_patch_size,
|
|
439
|
-
channel,
|
|
440
|
-
grid_h,
|
|
441
|
-
patch_size,
|
|
442
|
-
grid_w,
|
|
443
|
-
patch_size,
|
|
444
|
-
)
|
|
445
|
-
patches = patches.permute(0, 1, 4, 6, 3, 2, 5, 7)
|
|
446
|
-
flatten_patches = patches.reshape(batch_size, grid_t * grid_h * grid_w, channel, patch_size, patch_size)
|
|
447
|
-
|
|
448
|
-
processed_images_grouped[shape] = flatten_patches
|
|
449
|
-
processed_grids[shape] = [[grid_t, grid_h, grid_w]] * batch_size
|
|
450
|
-
|
|
451
|
-
processed_images = reorder_images(processed_images_grouped, grouped_images_index)
|
|
452
|
-
processed_grids = reorder_images(processed_grids, grouped_images_index)
|
|
453
|
-
pixel_values = torch.cat(processed_images, dim=0)
|
|
454
|
-
image_grid_thw = torch.tensor(processed_grids)
|
|
455
|
-
|
|
456
|
-
return BatchFeature(
|
|
457
|
-
data={"pixel_values": pixel_values, "image_grid_thw": image_grid_thw}, tensor_type=return_tensors
|
|
458
|
-
)
|
|
459
|
-
|
|
460
|
-
|
|
461
|
-
class PaddleOCRVLProcessorKwargs(ProcessingKwargs, total=False):
|
|
462
|
-
_defaults = {
|
|
463
|
-
"text_kwargs": {
|
|
464
|
-
"padding": False,
|
|
465
|
-
},
|
|
466
|
-
}
|
|
467
|
-
|
|
468
|
-
|
|
469
|
-
class PaddleOCRVLProcessor(ProcessorMixin):
|
|
470
|
-
r"""
|
|
471
|
-
[`PaddleOCRVLProcessor`] offers all the functionalities of [`PaddleOCRVLImageProcessor`] and [`LLamaTokenizerFast`]. See the
|
|
472
|
-
[`~PaddleOCRVLProcessor.__call__`] and [`~PaddleOCRVLProcessor.decode`] for more information.
|
|
473
|
-
Args:
|
|
474
|
-
image_processor ([`PaddleOCRVLImageProcessor`], *optional*):
|
|
475
|
-
The image processor is a required input.
|
|
476
|
-
tokenizer ([`LLamaTokenizerFast`], *optional*):
|
|
477
|
-
The tokenizer is a required input.
|
|
478
|
-
chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages
|
|
479
|
-
in a chat into a tokenizable string.
|
|
480
|
-
"""
|
|
481
|
-
|
|
482
|
-
image_processor_class = "AutoImageProcessor"
|
|
483
|
-
tokenizer_class = "AutoTokenizer"
|
|
484
|
-
|
|
485
|
-
def __init__(self, image_processor=None, tokenizer=None, chat_template=None, **kwargs):
|
|
486
|
-
self.image_token = tokenizer.image_token
|
|
487
|
-
super().__init__(image_processor, tokenizer, chat_template=chat_template)
|
|
488
|
-
|
|
489
|
-
def __call__(
|
|
490
|
-
self,
|
|
491
|
-
images: ImageInput = None,
|
|
492
|
-
text: TextInput | PreTokenizedInput | list[TextInput] | list[PreTokenizedInput] = None,
|
|
493
|
-
**kwargs: Unpack[PaddleOCRVLProcessorKwargs],
|
|
494
|
-
) -> BatchFeature:
|
|
495
|
-
"""
|
|
496
|
-
Args:
|
|
497
|
-
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
|
498
|
-
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
|
499
|
-
tensor. Both channels-first and channels-last formats are supported.
|
|
500
|
-
text (`str`, `List[str]`, `List[List[str]]`):
|
|
501
|
-
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
|
502
|
-
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
|
503
|
-
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
|
504
|
-
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
|
505
|
-
If set, will return tensors of a particular framework. Acceptable values are:
|
|
506
|
-
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
|
507
|
-
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
|
508
|
-
- `'np'`: Return NumPy `np.ndarray` objects.
|
|
509
|
-
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
|
510
|
-
|
|
511
|
-
Returns:
|
|
512
|
-
[`BatchFeature`]: A [`BatchFeature`] with the following fields:
|
|
513
|
-
|
|
514
|
-
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
|
515
|
-
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
|
516
|
-
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
|
517
|
-
`None`).
|
|
518
|
-
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
|
519
|
-
- **image_grid_thw** -- List of image 3D grid in LLM. Returned when `images` is not `None`.
|
|
520
|
-
"""
|
|
521
|
-
output_kwargs = self._merge_kwargs(
|
|
522
|
-
PaddleOCRVLProcessorKwargs,
|
|
523
|
-
tokenizer_init_kwargs=self.tokenizer.init_kwargs,
|
|
524
|
-
**kwargs,
|
|
525
|
-
)
|
|
526
|
-
|
|
527
|
-
if images is not None:
|
|
528
|
-
image_inputs = self.image_processor(images=images, **output_kwargs["images_kwargs"])
|
|
529
|
-
image_grid_thw = image_inputs["image_grid_thw"]
|
|
530
|
-
|
|
531
|
-
else:
|
|
532
|
-
image_inputs = {}
|
|
533
|
-
image_grid_thw = None
|
|
534
|
-
|
|
535
|
-
if not isinstance(text, list):
|
|
536
|
-
text = [text]
|
|
537
|
-
|
|
538
|
-
text = text.copy()
|
|
539
|
-
|
|
540
|
-
if image_grid_thw is not None:
|
|
541
|
-
index = 0
|
|
542
|
-
for i in range(len(text)):
|
|
543
|
-
while self.image_token in text[i]:
|
|
544
|
-
text[i] = text[i].replace(
|
|
545
|
-
self.image_token,
|
|
546
|
-
"<|placeholder|>"
|
|
547
|
-
* (
|
|
548
|
-
image_grid_thw[index].prod()
|
|
549
|
-
// self.image_processor.merge_size
|
|
550
|
-
// self.image_processor.merge_size
|
|
551
|
-
),
|
|
552
|
-
1,
|
|
553
|
-
)
|
|
554
|
-
index += 1
|
|
555
|
-
text[i] = text[i].replace("<|placeholder|>", self.image_token)
|
|
556
|
-
|
|
557
|
-
text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"])
|
|
558
|
-
|
|
559
|
-
return BatchFeature(data={**text_inputs, **image_inputs})
|
|
560
|
-
|
|
561
|
-
|
|
562
|
-
class PaddleOCRVisionConfig(SiglipVisionConfig):
|
|
563
|
-
r"""
|
|
564
|
-
This is the configuration class to store the configuration of a [`PaddleOCRVisionModel`]. It is used to instantiate a
|
|
565
|
-
PaddleOCRVL vision encoder according to the specified arguments, defining the model architecture. Instantiating a
|
|
566
|
-
configuration with the defaults will yield a similar configuration to that of the vision encoder of the PaddleOCRVL
|
|
567
|
-
[PaddlePaddle/PaddleOCRVL](https://huggingface.co/PaddlePaddle/PaddleOCR-VL) architecture.
|
|
568
|
-
|
|
569
|
-
Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the
|
|
570
|
-
documentation from [`PreTrainedConfig`] for more information.
|
|
571
|
-
|
|
572
|
-
Args:
|
|
573
|
-
hidden_size (`int`, *optional*, defaults to 1152):
|
|
574
|
-
Dimensionality of the encoder layers and the pooler layer.
|
|
575
|
-
intermediate_size (`int`, *optional*, defaults to 4304):
|
|
576
|
-
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
|
577
|
-
num_hidden_layers (`int`, *optional*, defaults to 27):
|
|
578
|
-
Number of hidden layers in the Transformer encoder.
|
|
579
|
-
num_attention_heads (`int`, *optional*, defaults to 16):
|
|
580
|
-
Number of attention heads for each attention layer in the Transformer encoder.
|
|
581
|
-
num_channels (`int`, *optional*, defaults to 3):
|
|
582
|
-
Number of channels in the input images.
|
|
583
|
-
image_size (`int`, *optional*, defaults to 384):
|
|
584
|
-
The size (resolution) of each image.
|
|
585
|
-
patch_size (`int`, *optional*, defaults to 14):
|
|
586
|
-
The size (resolution) of each patch.
|
|
587
|
-
hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
|
588
|
-
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
|
589
|
-
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
|
|
590
|
-
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
|
591
|
-
The epsilon used by the layer normalization layers.
|
|
592
|
-
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
593
|
-
The dropout ratio for the attention probabilities.
|
|
594
|
-
spatial_merge_size (`int`, *optional*, defaults to 2):
|
|
595
|
-
The size used for merging spatial dimensions.
|
|
596
|
-
|
|
597
|
-
Example:
|
|
598
|
-
|
|
599
|
-
```python
|
|
600
|
-
>>> from transformers import PaddleOCRVisionConfig, PaddleOCRVisionModel
|
|
601
|
-
|
|
602
|
-
>>> # Initializing a PaddleOCRVisionConfig with PaddlePaddle/PaddleOCR-VL style configuration
|
|
603
|
-
>>> configuration = PaddleOCRVisionConfig()
|
|
604
|
-
|
|
605
|
-
>>> # Initializing a PaddleOCRVisionModel (with random weights) from the PaddlePaddle/PaddleOCR-VL style configuration
|
|
606
|
-
>>> model = PaddleOCRVisionModel(configuration)
|
|
607
|
-
|
|
608
|
-
>>> # Accessing the model configuration
|
|
609
|
-
>>> configuration = model.config
|
|
610
|
-
```
|
|
611
|
-
"""
|
|
612
|
-
|
|
613
|
-
model_type = "paddleocr_vl_vision"
|
|
614
|
-
base_config_key = "vision_config"
|
|
615
|
-
|
|
616
|
-
def __init__(
|
|
617
|
-
self,
|
|
618
|
-
hidden_size=1152,
|
|
619
|
-
intermediate_size=4304,
|
|
620
|
-
num_hidden_layers=27,
|
|
621
|
-
num_attention_heads=16,
|
|
622
|
-
num_channels=3,
|
|
623
|
-
image_size=384,
|
|
624
|
-
patch_size=14,
|
|
625
|
-
hidden_act="gelu_pytorch_tanh",
|
|
626
|
-
layer_norm_eps=1e-6,
|
|
627
|
-
attention_dropout=0.0,
|
|
628
|
-
spatial_merge_size=2,
|
|
629
|
-
**kwargs,
|
|
630
|
-
):
|
|
631
|
-
super().__init__()
|
|
632
|
-
self.spatial_merge_size = spatial_merge_size
|
|
633
|
-
|
|
634
|
-
|
|
635
|
-
class PaddleOCRTextConfig(Ernie4_5Config):
|
|
636
|
-
model_type = "paddleocr_vl_text"
|
|
637
|
-
|
|
638
|
-
|
|
639
|
-
class PaddleOCRVLConfig(Qwen2VLConfig):
|
|
640
|
-
r"""
|
|
641
|
-
This is the configuration class to store the configuration of a [`PaddleOCRVLForConditionalGeneration`]. It is used to instantiate a
|
|
642
|
-
PaddleOCRVL model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
|
643
|
-
with the defaults will yield a similar configuration to that of
|
|
644
|
-
PaddleOCRVL [PaddlePaddle/PaddleOCR-VL](https://huggingface.co/PaddlePaddle/PaddleOCR-VL).
|
|
645
|
-
|
|
646
|
-
Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the
|
|
647
|
-
documentation from [`PreTrainedConfig`] for more information.
|
|
648
|
-
|
|
649
|
-
|
|
650
|
-
Args:
|
|
651
|
-
text_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `PaddleOCRTextConfig`):
|
|
652
|
-
The config object or dictionary of the text backbone.
|
|
653
|
-
vision_config (`Union[PreTrainedConfig, dict]`, *optional*, defaults to `PaddleOCRVisionConfig`):
|
|
654
|
-
The config object or dictionary of the vision backbone.
|
|
655
|
-
image_token_id (`int`, *optional*, defaults to 100295):
|
|
656
|
-
The image token index to encode the image prompt.
|
|
657
|
-
video_token_id (`int`, *optional*, defaults to 100296):
|
|
658
|
-
The video token index to encode the image prompt.
|
|
659
|
-
vision_start_token_id (`int`, *optional*, defaults to 101305):
|
|
660
|
-
The token index to denote start of vision input.
|
|
661
|
-
vision_end_token_id (`int`, *optional*, defaults to 101306):
|
|
662
|
-
The token index to denote end of vision input.
|
|
663
|
-
tie_word_embeddings (`bool`, *optional*, defaults to `True`):
|
|
664
|
-
Whether the model's input and output word embeddings should be tied.
|
|
665
|
-
|
|
666
|
-
```python
|
|
667
|
-
>>> from transformers import PaddleOCRVLForConditionalGeneration, PaddleOCRVLConfig
|
|
668
|
-
|
|
669
|
-
>>> # Initializing a PaddleOCRVL style configuration
|
|
670
|
-
>>> configuration = PaddleOCRVLConfig()
|
|
671
|
-
|
|
672
|
-
>>> # Initializing a model from the PaddleOCRVL style configuration
|
|
673
|
-
>>> model = PaddleOCRVLForConditionalGeneration(configuration)
|
|
674
|
-
|
|
675
|
-
>>> # Accessing the model configuration
|
|
676
|
-
>>> configuration = model.config
|
|
677
|
-
```"""
|
|
678
|
-
|
|
679
|
-
sub_configs = {"vision_config": PaddleOCRVisionConfig, "text_config": PaddleOCRTextConfig}
|
|
680
|
-
|
|
681
|
-
def __init__(
|
|
682
|
-
self,
|
|
683
|
-
text_config=None,
|
|
684
|
-
vision_config=None,
|
|
685
|
-
image_token_id=100295,
|
|
686
|
-
video_token_id=100296,
|
|
687
|
-
vision_start_token_id=101305,
|
|
688
|
-
vision_end_token_id=101306,
|
|
689
|
-
tie_word_embeddings=True,
|
|
690
|
-
**kwargs,
|
|
691
|
-
):
|
|
692
|
-
super().__init__()
|
|
693
|
-
|
|
694
|
-
|
|
695
|
-
class PaddleOCRProjector(nn.Module):
|
|
696
|
-
def __init__(self, config: PaddleOCRVLConfig):
|
|
697
|
-
super().__init__()
|
|
698
|
-
self.merge_kernel_size = (config.vision_config.spatial_merge_size, config.vision_config.spatial_merge_size)
|
|
699
|
-
|
|
700
|
-
hidden_size = config.vision_config.hidden_size * self.merge_kernel_size[0] * self.merge_kernel_size[1]
|
|
701
|
-
|
|
702
|
-
self.pre_norm = torch.nn.LayerNorm(config.vision_config.hidden_size, eps=1e-05)
|
|
703
|
-
self.linear_1 = nn.Linear(hidden_size, hidden_size, bias=True)
|
|
704
|
-
self.act = GELUActivation()
|
|
705
|
-
self.linear_2 = nn.Linear(hidden_size, config.text_config.hidden_size, bias=True)
|
|
706
|
-
|
|
707
|
-
def forward(self, image_features: torch.Tensor, image_grid_thw: torch.Tensor) -> torch.Tensor:
|
|
708
|
-
image_features_chunks = image_features.split(image_grid_thw.prod(dim=1).tolist(), dim=0)
|
|
709
|
-
m1, m2 = self.merge_kernel_size
|
|
710
|
-
|
|
711
|
-
processed_features = []
|
|
712
|
-
for image_feature, image_grid in zip(image_features_chunks, image_grid_thw):
|
|
713
|
-
image_feature = self.pre_norm(image_feature)
|
|
714
|
-
t, h, w = image_grid
|
|
715
|
-
d = image_feature.shape[-1]
|
|
716
|
-
h_block = h // m1
|
|
717
|
-
w_block = w // m2
|
|
718
|
-
|
|
719
|
-
image_feature = image_feature.reshape(t, h_block, m1, w_block, m2, d)
|
|
720
|
-
image_feature = image_feature.transpose(2, 3)
|
|
721
|
-
image_feature = image_feature.reshape(t * h_block * w_block, m1 * m2 * d)
|
|
722
|
-
|
|
723
|
-
hidden_states = self.linear_1(image_feature)
|
|
724
|
-
hidden_states = self.act(hidden_states)
|
|
725
|
-
hidden_states = self.linear_2(hidden_states)
|
|
726
|
-
processed_features.append(hidden_states)
|
|
727
|
-
|
|
728
|
-
return torch.cat(processed_features, dim=0)
|
|
729
|
-
|
|
730
|
-
|
|
731
|
-
class PaddleOCRVisionRotaryEmbedding(VisionRotaryEmbedding):
|
|
732
|
-
pass
|
|
733
|
-
|
|
734
|
-
|
|
735
|
-
class PaddleOCRRotaryEmbedding(Qwen2VLRotaryEmbedding):
|
|
736
|
-
pass
|
|
737
|
-
|
|
738
|
-
|
|
739
|
-
class PaddleOCRMLP(Ernie4_5MLP):
|
|
740
|
-
def __init__(self, config: PaddleOCRTextConfig):
|
|
741
|
-
super().__init__()
|
|
742
|
-
|
|
743
|
-
|
|
744
|
-
class PaddleOCRAttention(Qwen2_5OmniAttention):
|
|
745
|
-
def __init__(self, config: PaddleOCRVLConfig, layer_idx: int | None = None):
|
|
746
|
-
super().__init__()
|
|
747
|
-
|
|
748
|
-
self.attention_dropout = 0.0
|
|
749
|
-
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.use_bias)
|
|
750
|
-
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_bias)
|
|
751
|
-
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.use_bias)
|
|
752
|
-
self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=config.use_bias)
|
|
753
|
-
|
|
754
|
-
|
|
755
|
-
class PaddleOCRRMSNorm(Ernie4_5RMSNorm):
|
|
756
|
-
pass
|
|
757
|
-
|
|
758
|
-
|
|
759
|
-
class PaddleOCRDecoderLayer(Ernie4_5DecoderLayer):
|
|
760
|
-
def __init__(self, config: PaddleOCRTextConfig, layer_idx: int):
|
|
761
|
-
super().__init__()
|
|
762
|
-
|
|
763
|
-
|
|
764
|
-
@auto_docstring
|
|
765
|
-
class PaddleOCRVLPreTrainedModel(PreTrainedModel):
|
|
766
|
-
config: PaddleOCRVLConfig
|
|
767
|
-
base_model_prefix = "model"
|
|
768
|
-
supports_gradient_checkpointing = True
|
|
769
|
-
_no_split_modules = ["PaddleOCRDecoderLayer"]
|
|
770
|
-
_skip_keys_device_placement = ["past_key_values"]
|
|
771
|
-
_supports_flash_attn = True
|
|
772
|
-
_supports_sdpa = True
|
|
773
|
-
_supports_flex_attn = True
|
|
774
|
-
|
|
775
|
-
_can_compile_fullgraph = True
|
|
776
|
-
_supports_attention_backend = True
|
|
777
|
-
|
|
778
|
-
_can_record_outputs = {
|
|
779
|
-
"hidden_states": PaddleOCRDecoderLayer,
|
|
780
|
-
"attentions": PaddleOCRAttention,
|
|
781
|
-
}
|
|
782
|
-
|
|
783
|
-
def _init_weights(self, module):
|
|
784
|
-
super()._init_weights(module)
|
|
785
|
-
if isinstance(module, PaddleOCRVisionEmbeddings):
|
|
786
|
-
init.copy_(module.position_ids, torch.arange(module.position_ids.shape[-1]).expand((1, -1)))
|
|
787
|
-
elif isinstance(module, PaddleOCRVisionRotaryEmbedding):
|
|
788
|
-
inv_freq = 1.0 / (module.theta ** (torch.arange(0, module.dim, 2, dtype=torch.float) / module.dim))
|
|
789
|
-
init.copy_(module.inv_freq, inv_freq)
|
|
790
|
-
|
|
791
|
-
|
|
792
|
-
class PaddleOCRTextModel(PaddleOCRVLPreTrainedModel, Ernie4_5Model):
|
|
793
|
-
def __init__(self, config: PaddleOCRTextConfig):
|
|
794
|
-
super().__init__(config)
|
|
795
|
-
|
|
796
|
-
@check_model_inputs
|
|
797
|
-
@auto_docstring
|
|
798
|
-
def forward(
|
|
799
|
-
self,
|
|
800
|
-
input_ids: torch.LongTensor | None = None,
|
|
801
|
-
attention_mask: torch.Tensor | None = None,
|
|
802
|
-
position_ids: torch.LongTensor | None = None,
|
|
803
|
-
past_key_values: Cache | None = None,
|
|
804
|
-
inputs_embeds: torch.FloatTensor | None = None,
|
|
805
|
-
cache_position: torch.LongTensor | None = None,
|
|
806
|
-
use_cache: bool | None = None,
|
|
807
|
-
**kwargs: Unpack[TransformersKwargs],
|
|
808
|
-
) -> BaseModelOutputWithPast:
|
|
809
|
-
if (input_ids is None) ^ (inputs_embeds is not None):
|
|
810
|
-
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
|
811
|
-
|
|
812
|
-
if inputs_embeds is None:
|
|
813
|
-
inputs_embeds: torch.Tensor = self.embed_tokens(input_ids)
|
|
814
|
-
|
|
815
|
-
if use_cache and past_key_values is None:
|
|
816
|
-
past_key_values = DynamicCache(config=self.config)
|
|
817
|
-
|
|
818
|
-
if cache_position is None:
|
|
819
|
-
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
820
|
-
cache_position: torch.Tensor = (
|
|
821
|
-
torch.arange(inputs_embeds.shape[1], device=inputs_embeds.device) + past_seen_tokens
|
|
822
|
-
)
|
|
823
|
-
|
|
824
|
-
if position_ids is None:
|
|
825
|
-
position_ids = cache_position.view(1, 1, -1).expand(3, inputs_embeds.shape[0], -1)
|
|
826
|
-
elif position_ids.ndim == 2:
|
|
827
|
-
position_ids = position_ids[None, ...].expand(3, position_ids.shape[0], -1)
|
|
828
|
-
|
|
829
|
-
if position_ids.ndim == 3 and position_ids.shape[0] == 4:
|
|
830
|
-
text_position_ids = position_ids[0]
|
|
831
|
-
position_ids = position_ids[1:]
|
|
832
|
-
else:
|
|
833
|
-
text_position_ids = None
|
|
834
|
-
|
|
835
|
-
causal_mask = create_causal_mask(
|
|
836
|
-
config=self.config,
|
|
837
|
-
input_embeds=inputs_embeds,
|
|
838
|
-
attention_mask=attention_mask,
|
|
839
|
-
cache_position=cache_position,
|
|
840
|
-
past_key_values=past_key_values,
|
|
841
|
-
position_ids=text_position_ids,
|
|
842
|
-
)
|
|
843
|
-
|
|
844
|
-
hidden_states = inputs_embeds
|
|
845
|
-
position_embeddings = self.rotary_emb(hidden_states, position_ids=position_ids)
|
|
846
|
-
|
|
847
|
-
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
|
848
|
-
hidden_states = decoder_layer(
|
|
849
|
-
hidden_states,
|
|
850
|
-
attention_mask=causal_mask,
|
|
851
|
-
position_embeddings=position_embeddings,
|
|
852
|
-
position_ids=text_position_ids,
|
|
853
|
-
past_key_values=past_key_values,
|
|
854
|
-
use_cache=use_cache,
|
|
855
|
-
cache_position=cache_position,
|
|
856
|
-
**kwargs,
|
|
857
|
-
)
|
|
858
|
-
|
|
859
|
-
hidden_states = self.norm(hidden_states)
|
|
860
|
-
return BaseModelOutputWithPast(
|
|
861
|
-
last_hidden_state=hidden_states,
|
|
862
|
-
past_key_values=past_key_values,
|
|
863
|
-
)
|
|
864
|
-
|
|
865
|
-
|
|
866
|
-
class PaddleOCRVisionEmbeddings(SiglipVisionEmbeddings):
|
|
867
|
-
def __init__(self, config: PaddleOCRVisionConfig):
|
|
868
|
-
super().__init__()
|
|
869
|
-
|
|
870
|
-
def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor:
|
|
871
|
-
num_positions = self.position_embedding.weight.shape[0]
|
|
872
|
-
|
|
873
|
-
patch_pos_embed = self.position_embedding.weight.unsqueeze(0)
|
|
874
|
-
|
|
875
|
-
dim = embeddings.shape[-1]
|
|
876
|
-
|
|
877
|
-
sqrt_num_positions = torch_int(num_positions**0.5)
|
|
878
|
-
patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim)
|
|
879
|
-
patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2)
|
|
880
|
-
|
|
881
|
-
patch_pos_embed = nn.functional.interpolate(
|
|
882
|
-
patch_pos_embed,
|
|
883
|
-
size=(height, width),
|
|
884
|
-
mode="bilinear",
|
|
885
|
-
align_corners=False,
|
|
886
|
-
)
|
|
887
|
-
|
|
888
|
-
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
|
|
889
|
-
return patch_pos_embed
|
|
890
|
-
|
|
891
|
-
def forward(
|
|
892
|
-
self,
|
|
893
|
-
pixel_values: torch.FloatTensor,
|
|
894
|
-
image_grid_thw: list[tuple[int, int, int] | list[tuple[int, int, int]]] | None = None,
|
|
895
|
-
) -> torch.Tensor:
|
|
896
|
-
"""
|
|
897
|
-
Args:
|
|
898
|
-
pixel_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, image_channels, patch_size, patch_size)`):
|
|
899
|
-
The tensors corresponding to the input images.
|
|
900
|
-
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
901
|
-
The temporal, height and width of feature shape of each image in LLM.
|
|
902
|
-
"""
|
|
903
|
-
batch_size, squence_len, channel, height, width = pixel_values.shape
|
|
904
|
-
target_dtype = self.patch_embedding.weight.dtype
|
|
905
|
-
pixel_values = pixel_values.reshape(batch_size * squence_len, channel, height, width)
|
|
906
|
-
patch_embeds = self.patch_embedding(pixel_values.to(dtype=target_dtype)) # shape = [*, width, grid, grid]
|
|
907
|
-
embeddings = patch_embeds.flatten(-2).squeeze(-1)
|
|
908
|
-
embeddings = embeddings.reshape(batch_size, squence_len, -1)
|
|
909
|
-
|
|
910
|
-
start = 0
|
|
911
|
-
embeddings = embeddings.squeeze(0)
|
|
912
|
-
tmp_embeddings = []
|
|
913
|
-
for image_grid in image_grid_thw:
|
|
914
|
-
t, h, w = image_grid
|
|
915
|
-
end = start + t * h * w
|
|
916
|
-
image_embeddings = embeddings[start:end, :]
|
|
917
|
-
position_embedding = self.interpolate_pos_encoding(image_embeddings, h, w).squeeze(0).repeat(t, 1)
|
|
918
|
-
image_embeddings = image_embeddings + position_embedding
|
|
919
|
-
tmp_embeddings.append(image_embeddings)
|
|
920
|
-
start = end
|
|
921
|
-
embeddings = torch.concat(tmp_embeddings, dim=0)
|
|
922
|
-
|
|
923
|
-
return embeddings
|
|
924
|
-
|
|
925
|
-
|
|
926
|
-
class PaddleOCRVisionAttention(VideoLlama3VisionAttention):
|
|
927
|
-
def __init__(self, config: PaddleOCRVisionConfig):
|
|
928
|
-
super().__init__()
|
|
929
|
-
|
|
930
|
-
|
|
931
|
-
class PaddleOCRVisionMLP(SiglipMLP):
|
|
932
|
-
def __init__(self, config: PaddleOCRVisionConfig):
|
|
933
|
-
super().__init__()
|
|
934
|
-
|
|
935
|
-
|
|
936
|
-
class PaddleOCRVisionEncoderLayer(VideoLlama3VisionEncoderLayer):
|
|
937
|
-
def __init__(self, config: PaddleOCRVisionConfig):
|
|
938
|
-
super().__init__()
|
|
939
|
-
|
|
940
|
-
|
|
941
|
-
class PaddleOCRVisionEncoder(VideoLlama3VisionEncoder):
|
|
942
|
-
def __init__(self, config: PaddleOCRVisionConfig):
|
|
943
|
-
super().__init__()
|
|
944
|
-
embed_dim = config.hidden_size
|
|
945
|
-
num_heads = config.num_attention_heads
|
|
946
|
-
head_dim = embed_dim // num_heads
|
|
947
|
-
self.rotary_pos_emb = PaddleOCRVisionRotaryEmbedding(head_dim // 2)
|
|
948
|
-
|
|
949
|
-
def forward(
|
|
950
|
-
self,
|
|
951
|
-
inputs_embeds: torch.FloatTensor,
|
|
952
|
-
cu_seqlens: torch.Tensor,
|
|
953
|
-
attention_mask: torch.Tensor | None = None,
|
|
954
|
-
image_grid_thw: list[tuple[int, int, int] | list[tuple[int, int, int]]] | None = None,
|
|
955
|
-
) -> BaseModelOutput:
|
|
956
|
-
r"""
|
|
957
|
-
inputs_embeds (`torch.FloatTensor` of shape `(sequence_length, hidden_size)`, *optional*):
|
|
958
|
-
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
|
959
|
-
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
|
960
|
-
than the model's internal embedding lookup matrix.
|
|
961
|
-
cu_seqlens (`torch.Tensor` of shape `(num_images + 1,)`):
|
|
962
|
-
The cumulative sequence lengths of each image or video feature.
|
|
963
|
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
964
|
-
The attention_mask used in forward function shape [batch_size X sequence_length] if not None.
|
|
965
|
-
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
966
|
-
The temporal, height and width of feature shape of each image in LLM.
|
|
967
|
-
"""
|
|
968
|
-
device = inputs_embeds.device
|
|
969
|
-
hidden_states = inputs_embeds
|
|
970
|
-
attention_mask = create_bidirectional_mask(
|
|
971
|
-
config=self.config,
|
|
972
|
-
input_embeds=inputs_embeds,
|
|
973
|
-
attention_mask=attention_mask,
|
|
974
|
-
)
|
|
975
|
-
split_hids = []
|
|
976
|
-
split_wids = []
|
|
977
|
-
for t, h, w in image_grid_thw:
|
|
978
|
-
image_pids = torch.arange(t * h * w, device=device) % (h * w)
|
|
979
|
-
sample_hids = image_pids // w
|
|
980
|
-
sample_wids = image_pids % w
|
|
981
|
-
split_hids.append(sample_hids)
|
|
982
|
-
split_wids.append(sample_wids)
|
|
983
|
-
width_position_ids = torch.concat(split_wids, dim=0)
|
|
984
|
-
height_position_ids = torch.concat(split_hids, dim=0)
|
|
985
|
-
|
|
986
|
-
pids = torch.stack([height_position_ids, width_position_ids], dim=-1)
|
|
987
|
-
max_grid_size = pids.max() + 1
|
|
988
|
-
rotary_embeddings_max_grid = self.rotary_pos_emb(max_grid_size)
|
|
989
|
-
rotary_embeddings = rotary_embeddings_max_grid[pids].flatten(1)
|
|
990
|
-
rotary_embeddings = rotary_embeddings.repeat(1, 2)
|
|
991
|
-
position_embeddings = (rotary_embeddings.cos(), rotary_embeddings.sin())
|
|
992
|
-
|
|
993
|
-
for encoder_layer in self.layers:
|
|
994
|
-
hidden_states = encoder_layer(
|
|
995
|
-
hidden_states,
|
|
996
|
-
cu_seqlens=cu_seqlens,
|
|
997
|
-
position_embeddings=position_embeddings,
|
|
998
|
-
)
|
|
999
|
-
|
|
1000
|
-
return BaseModelOutput(
|
|
1001
|
-
last_hidden_state=hidden_states,
|
|
1002
|
-
)
|
|
1003
|
-
|
|
1004
|
-
|
|
1005
|
-
class PaddleOCRVisionTransformer(PaddleOCRVLPreTrainedModel):
|
|
1006
|
-
def __init__(self, config: PaddleOCRVisionConfig):
|
|
1007
|
-
super().__init__(config)
|
|
1008
|
-
self.config = config
|
|
1009
|
-
embed_dim = config.hidden_size
|
|
1010
|
-
|
|
1011
|
-
self.embeddings = PaddleOCRVisionEmbeddings(config)
|
|
1012
|
-
self.encoder = PaddleOCRVisionEncoder(config)
|
|
1013
|
-
self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
|
|
1014
|
-
|
|
1015
|
-
self.post_init()
|
|
1016
|
-
|
|
1017
|
-
def forward(
|
|
1018
|
-
self,
|
|
1019
|
-
pixel_values: torch.FloatTensor,
|
|
1020
|
-
cu_seqlens: torch.Tensor,
|
|
1021
|
-
attention_mask: torch.Tensor | None = None,
|
|
1022
|
-
image_grid_thw: list[tuple[int, int, int] | list[tuple[int, int, int]]] | None = None,
|
|
1023
|
-
**kwargs,
|
|
1024
|
-
) -> BaseModelOutputWithPooling:
|
|
1025
|
-
"""
|
|
1026
|
-
Args:
|
|
1027
|
-
pixel_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, patch_size * patch_size * image_channels)`):
|
|
1028
|
-
The tensors corresponding to the input images.
|
|
1029
|
-
cu_seqlens (`torch.Tensor` of shape `(num_images + 1,)`):
|
|
1030
|
-
The cumulative sequence lengths of each image or video feature.
|
|
1031
|
-
attention_mask (`torch.Tensor`, *optional*):
|
|
1032
|
-
The attention_mask used in forward function shape [batch_size X sequence_length] if not None.
|
|
1033
|
-
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
1034
|
-
The temporal, height and width of feature shape of each image in LLM.
|
|
1035
|
-
"""
|
|
1036
|
-
hidden_states = self.embeddings(pixel_values, image_grid_thw=image_grid_thw)
|
|
1037
|
-
|
|
1038
|
-
encoder_outputs: BaseModelOutput = self.encoder(
|
|
1039
|
-
inputs_embeds=hidden_states,
|
|
1040
|
-
cu_seqlens=cu_seqlens,
|
|
1041
|
-
attention_mask=attention_mask,
|
|
1042
|
-
image_grid_thw=image_grid_thw,
|
|
1043
|
-
)
|
|
1044
|
-
|
|
1045
|
-
last_hidden_state = encoder_outputs.last_hidden_state
|
|
1046
|
-
last_hidden_state = self.post_layernorm(last_hidden_state)
|
|
1047
|
-
|
|
1048
|
-
return BaseModelOutputWithPooling(
|
|
1049
|
-
last_hidden_state=last_hidden_state,
|
|
1050
|
-
pooler_output=None,
|
|
1051
|
-
hidden_states=encoder_outputs.hidden_states,
|
|
1052
|
-
attentions=encoder_outputs.attentions,
|
|
1053
|
-
)
|
|
1054
|
-
|
|
1055
|
-
|
|
1056
|
-
class PaddleOCRVisionModel(PaddleOCRVLPreTrainedModel):
|
|
1057
|
-
config: PaddleOCRVisionConfig
|
|
1058
|
-
main_input_name = "pixel_values"
|
|
1059
|
-
input_modalities = "image"
|
|
1060
|
-
_can_record_outputs = {
|
|
1061
|
-
"hidden_states": PaddleOCRVisionEncoderLayer,
|
|
1062
|
-
"attentions": PaddleOCRVisionAttention,
|
|
1063
|
-
}
|
|
1064
|
-
|
|
1065
|
-
def __init__(self, config: PaddleOCRVisionConfig):
|
|
1066
|
-
super().__init__(config)
|
|
1067
|
-
|
|
1068
|
-
self.vision_model = PaddleOCRVisionTransformer(config)
|
|
1069
|
-
|
|
1070
|
-
# Initialize weights and apply final processing
|
|
1071
|
-
self.post_init()
|
|
1072
|
-
|
|
1073
|
-
@check_model_inputs(tie_last_hidden_states=False)
|
|
1074
|
-
def forward(
|
|
1075
|
-
self,
|
|
1076
|
-
pixel_values: torch.FloatTensor,
|
|
1077
|
-
cu_seqlens: torch.Tensor,
|
|
1078
|
-
image_grid_thw: list[tuple[int, int, int] | list[tuple[int, int, int]]] | None = None,
|
|
1079
|
-
**kwargs,
|
|
1080
|
-
) -> tuple | BaseModelOutputWithPooling:
|
|
1081
|
-
"""
|
|
1082
|
-
Args:
|
|
1083
|
-
pixel_values (`torch.FloatTensor` of shape `(batch_size, sequence_length, image_channels, patch_size, patch_size)`):
|
|
1084
|
-
The tensors corresponding to the input images.
|
|
1085
|
-
cu_seqlens (`torch.Tensor` of shape `(num_images + 1,)`):
|
|
1086
|
-
The cumulative sequence lengths of each image or video feature.
|
|
1087
|
-
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
1088
|
-
The temporal, height and width of feature shape of each image in LLM.
|
|
1089
|
-
"""
|
|
1090
|
-
return self.vision_model(
|
|
1091
|
-
pixel_values=pixel_values,
|
|
1092
|
-
cu_seqlens=cu_seqlens,
|
|
1093
|
-
image_grid_thw=image_grid_thw,
|
|
1094
|
-
)
|
|
1095
|
-
|
|
1096
|
-
|
|
1097
|
-
class PaddleOCRVLModelOutputWithPast(Qwen2VLModelOutputWithPast):
|
|
1098
|
-
pass
|
|
1099
|
-
|
|
1100
|
-
|
|
1101
|
-
class PaddleOCRVLCausalLMOutputWithPast(Qwen2VLCausalLMOutputWithPast):
|
|
1102
|
-
pass
|
|
1103
|
-
|
|
1104
|
-
|
|
1105
|
-
class PaddleOCRVLModel(Qwen2VLModel):
|
|
1106
|
-
_checkpoint_conversion_mapping = {"^model": "language_model"}
|
|
1107
|
-
_keys_to_ignore_on_load_unexpected = ["packing_position_embedding", "vision_model.head"]
|
|
1108
|
-
|
|
1109
|
-
def __init__(self, config: PaddleOCRVLConfig):
|
|
1110
|
-
super().__init__(config)
|
|
1111
|
-
self.visual = PaddleOCRVisionModel._from_config(config.vision_config)
|
|
1112
|
-
self.projector = PaddleOCRProjector(config)
|
|
1113
|
-
self.language_model = PaddleOCRTextModel._from_config(config.text_config)
|
|
1114
|
-
self.rope_deltas = None
|
|
1115
|
-
|
|
1116
|
-
self.post_init()
|
|
1117
|
-
|
|
1118
|
-
def get_input_embeddings(self):
|
|
1119
|
-
return self.language_model.embed_tokens
|
|
1120
|
-
|
|
1121
|
-
def set_input_embeddings(self, value):
|
|
1122
|
-
self.language_model.embed_tokens = value
|
|
1123
|
-
|
|
1124
|
-
def get_video_features(self):
|
|
1125
|
-
raise AttributeError("PaddleOCRVLModel does not support video.")
|
|
1126
|
-
|
|
1127
|
-
@can_return_tuple
|
|
1128
|
-
@auto_docstring
|
|
1129
|
-
def get_image_features(
|
|
1130
|
-
self,
|
|
1131
|
-
pixel_values: torch.FloatTensor,
|
|
1132
|
-
image_grid_thw: torch.LongTensor | None = None,
|
|
1133
|
-
**kwargs: Unpack[TransformersKwargs],
|
|
1134
|
-
) -> tuple | BaseModelOutputWithPooling:
|
|
1135
|
-
r"""
|
|
1136
|
-
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`):
|
|
1137
|
-
The tensors corresponding to the input images.
|
|
1138
|
-
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
1139
|
-
The temporal, height and width of feature shape of each image in LLM.
|
|
1140
|
-
"""
|
|
1141
|
-
pixel_values = pixel_values.type(self.visual.dtype).unsqueeze(0)
|
|
1142
|
-
cu_seqlens = torch.repeat_interleave(image_grid_thw[:, 1] * image_grid_thw[:, 2], image_grid_thw[:, 0]).cumsum(
|
|
1143
|
-
dim=0,
|
|
1144
|
-
# Select dtype based on the following factors:
|
|
1145
|
-
# - FA2 requires that cu_seqlens_q must have dtype int32
|
|
1146
|
-
# - torch.onnx.export requires that cu_seqlens_q must have same dtype as grid_thw
|
|
1147
|
-
# See https://github.com/huggingface/transformers/pull/34852 for more information
|
|
1148
|
-
dtype=image_grid_thw.dtype if torch.jit.is_tracing() else torch.int32,
|
|
1149
|
-
)
|
|
1150
|
-
cu_seqlens = torch.nn.functional.pad(cu_seqlens, (1, 0), value=0)
|
|
1151
|
-
vision_outputs = self.visual(
|
|
1152
|
-
pixel_values=pixel_values,
|
|
1153
|
-
image_grid_thw=image_grid_thw,
|
|
1154
|
-
cu_seqlens=cu_seqlens,
|
|
1155
|
-
return_dict=True,
|
|
1156
|
-
**kwargs,
|
|
1157
|
-
)
|
|
1158
|
-
image_embeds = vision_outputs.last_hidden_state
|
|
1159
|
-
image_embeds = self.projector(image_embeds, image_grid_thw)
|
|
1160
|
-
vision_outputs.pooler_output = image_embeds
|
|
1161
|
-
|
|
1162
|
-
return vision_outputs
|
|
1163
|
-
|
|
1164
|
-
def get_placeholder_mask(
|
|
1165
|
-
self, input_ids: torch.LongTensor, inputs_embeds: torch.FloatTensor, image_features: torch.FloatTensor
|
|
1166
|
-
):
|
|
1167
|
-
"""
|
|
1168
|
-
Obtains multimodal placeholder mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
|
|
1169
|
-
equal to the length of multimodal features. If the lengths are different, an error is raised.
|
|
1170
|
-
"""
|
|
1171
|
-
if input_ids is None:
|
|
1172
|
-
special_image_mask = inputs_embeds == self.get_input_embeddings()(
|
|
1173
|
-
torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device)
|
|
1174
|
-
)
|
|
1175
|
-
special_image_mask = special_image_mask.all(-1)
|
|
1176
|
-
else:
|
|
1177
|
-
special_image_mask = input_ids == self.config.image_token_id
|
|
1178
|
-
|
|
1179
|
-
n_image_tokens = special_image_mask.sum()
|
|
1180
|
-
special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device)
|
|
1181
|
-
n_image_features = image_features.shape[0] * image_features.shape[1]
|
|
1182
|
-
if inputs_embeds[special_image_mask].numel() != image_features.numel():
|
|
1183
|
-
raise ValueError(
|
|
1184
|
-
f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}"
|
|
1185
|
-
)
|
|
1186
|
-
return special_image_mask
|
|
1187
|
-
|
|
1188
|
-
@can_return_tuple
|
|
1189
|
-
def forward(
|
|
1190
|
-
self,
|
|
1191
|
-
input_ids: torch.LongTensor = None,
|
|
1192
|
-
attention_mask: torch.Tensor | None = None,
|
|
1193
|
-
position_ids: torch.LongTensor | None = None,
|
|
1194
|
-
past_key_values: list[torch.FloatTensor] | None = None,
|
|
1195
|
-
inputs_embeds: torch.FloatTensor | None = None,
|
|
1196
|
-
use_cache: bool | None = None,
|
|
1197
|
-
pixel_values: torch.Tensor | None = None,
|
|
1198
|
-
image_grid_thw: torch.LongTensor | None = None,
|
|
1199
|
-
rope_deltas: torch.LongTensor | None = None,
|
|
1200
|
-
cache_position: torch.LongTensor | None = None,
|
|
1201
|
-
**kwargs,
|
|
1202
|
-
) -> tuple | PaddleOCRVLModelOutputWithPast:
|
|
1203
|
-
r"""
|
|
1204
|
-
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
1205
|
-
The temporal, height and width of feature shape of each image in LLM.
|
|
1206
|
-
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
|
1207
|
-
The rope index difference between sequence length and multimodal rope.
|
|
1208
|
-
"""
|
|
1209
|
-
if inputs_embeds is None:
|
|
1210
|
-
inputs_embeds = self.language_model.embed_tokens(input_ids)
|
|
1211
|
-
|
|
1212
|
-
if pixel_values is not None:
|
|
1213
|
-
image_embeds = self.get_image_features(pixel_values, image_grid_thw, return_dict=True).pooler_output
|
|
1214
|
-
image_embeds = image_embeds.to(inputs_embeds.device, inputs_embeds.dtype)
|
|
1215
|
-
image_mask = self.get_placeholder_mask(input_ids, inputs_embeds=inputs_embeds, image_features=image_embeds)
|
|
1216
|
-
inputs_embeds = inputs_embeds.masked_scatter(image_mask, image_embeds)
|
|
1217
|
-
|
|
1218
|
-
if position_ids is None:
|
|
1219
|
-
past_key_values_length = 0 if past_key_values is None else past_key_values.get_seq_length()
|
|
1220
|
-
if self.rope_deltas is None or past_key_values_length == 0:
|
|
1221
|
-
position_ids, rope_deltas = self.get_rope_index(
|
|
1222
|
-
input_ids=input_ids,
|
|
1223
|
-
image_grid_thw=image_grid_thw,
|
|
1224
|
-
attention_mask=attention_mask,
|
|
1225
|
-
)
|
|
1226
|
-
self.rope_deltas = rope_deltas
|
|
1227
|
-
# then use the prev pre-calculated rope-deltas to get the correct position ids
|
|
1228
|
-
else:
|
|
1229
|
-
batch_size, seq_length, _ = inputs_embeds.shape
|
|
1230
|
-
position_ids = torch.arange(seq_length, device=inputs_embeds.device)
|
|
1231
|
-
position_ids = position_ids.view(1, 1, -1).expand(3, batch_size, -1)
|
|
1232
|
-
delta = (past_key_values_length + self.rope_deltas).to(inputs_embeds.device)
|
|
1233
|
-
delta = delta.repeat_interleave(batch_size // delta.shape[0], dim=0)
|
|
1234
|
-
position_ids = position_ids + delta.to(position_ids.device)
|
|
1235
|
-
|
|
1236
|
-
outputs = self.language_model(
|
|
1237
|
-
input_ids=None,
|
|
1238
|
-
position_ids=position_ids,
|
|
1239
|
-
attention_mask=attention_mask,
|
|
1240
|
-
past_key_values=past_key_values,
|
|
1241
|
-
inputs_embeds=inputs_embeds,
|
|
1242
|
-
use_cache=use_cache,
|
|
1243
|
-
cache_position=cache_position,
|
|
1244
|
-
**kwargs,
|
|
1245
|
-
)
|
|
1246
|
-
|
|
1247
|
-
output = PaddleOCRVLModelOutputWithPast(
|
|
1248
|
-
last_hidden_state=outputs.last_hidden_state,
|
|
1249
|
-
past_key_values=outputs.past_key_values,
|
|
1250
|
-
hidden_states=outputs.hidden_states,
|
|
1251
|
-
attentions=outputs.attentions,
|
|
1252
|
-
rope_deltas=self.rope_deltas,
|
|
1253
|
-
)
|
|
1254
|
-
|
|
1255
|
-
return output
|
|
1256
|
-
|
|
1257
|
-
|
|
1258
|
-
class PaddleOCRVLForConditionalGeneration(Qwen2VLForConditionalGeneration):
|
|
1259
|
-
_checkpoint_conversion_mapping = {
|
|
1260
|
-
"^visual": "model.visual",
|
|
1261
|
-
"^mlp_AR": "model.projector",
|
|
1262
|
-
r"^model(?!(\.visual|\.projector|\.language_model))": "model.language_model",
|
|
1263
|
-
}
|
|
1264
|
-
_keys_to_ignore_on_load_unexpected = ["packing_position_embedding", "vision_model.head"]
|
|
1265
|
-
|
|
1266
|
-
def get_video_features(self):
|
|
1267
|
-
raise AttributeError("PaddleOCRVLForConditionalGeneration does not support video.")
|
|
1268
|
-
|
|
1269
|
-
@can_return_tuple
|
|
1270
|
-
@auto_docstring
|
|
1271
|
-
def forward(
|
|
1272
|
-
self,
|
|
1273
|
-
input_ids: torch.LongTensor | None = None,
|
|
1274
|
-
attention_mask: torch.Tensor | None = None,
|
|
1275
|
-
position_ids: torch.LongTensor | None = None,
|
|
1276
|
-
past_key_values: Cache | None = None,
|
|
1277
|
-
inputs_embeds: torch.FloatTensor | None = None,
|
|
1278
|
-
labels: torch.LongTensor | None = None,
|
|
1279
|
-
use_cache: bool | None = None,
|
|
1280
|
-
pixel_values: torch.Tensor | None = None,
|
|
1281
|
-
image_grid_thw: torch.LongTensor | None = None,
|
|
1282
|
-
rope_deltas: torch.LongTensor | None = None,
|
|
1283
|
-
cache_position: torch.LongTensor | None = None,
|
|
1284
|
-
logits_to_keep: int | torch.Tensor = 0,
|
|
1285
|
-
**kwargs: Unpack[TransformersKwargs],
|
|
1286
|
-
) -> tuple | PaddleOCRVLCausalLMOutputWithPast:
|
|
1287
|
-
r"""
|
|
1288
|
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
1289
|
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
1290
|
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
1291
|
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
1292
|
-
image_grid_thw (`torch.LongTensor` of shape `(num_images, 3)`, *optional*):
|
|
1293
|
-
The temporal, height and width of feature shape of each image in LLM.
|
|
1294
|
-
rope_deltas (`torch.LongTensor` of shape `(batch_size, )`, *optional*):
|
|
1295
|
-
The rope index difference between sequence length and multimodal rope.
|
|
1296
|
-
|
|
1297
|
-
Example:
|
|
1298
|
-
|
|
1299
|
-
```python
|
|
1300
|
-
>>> from transformers import AutoProcessor, PaddleOCRVLForConditionalGeneration
|
|
1301
|
-
|
|
1302
|
-
>>> model = PaddleOCRVLForConditionalGeneration.from_pretrained("PaddlePaddle/PaddleOCR-VL", dtype="bfloat16")
|
|
1303
|
-
>>> processor = AutoProcessor.from_pretrained("PaddlePaddle/PaddleOCR-VL")
|
|
1304
|
-
|
|
1305
|
-
>>> messages = [
|
|
1306
|
-
{
|
|
1307
|
-
"role": "user",
|
|
1308
|
-
"content": [
|
|
1309
|
-
{
|
|
1310
|
-
"type": "image",
|
|
1311
|
-
"image": "https://paddle-model-ecology.bj.bcebos.com/paddlex/imgs/demo_image/ocr_demo.jpg",
|
|
1312
|
-
},
|
|
1313
|
-
{"type": "text", "text": "OCR:"},
|
|
1314
|
-
],
|
|
1315
|
-
}
|
|
1316
|
-
]
|
|
1317
|
-
|
|
1318
|
-
>>> inputs = processor.apply_chat_template(
|
|
1319
|
-
messages,
|
|
1320
|
-
tokenize=True,
|
|
1321
|
-
add_generation_prompt=True,
|
|
1322
|
-
return_dict=True,
|
|
1323
|
-
return_tensors="pt"
|
|
1324
|
-
).to(model.device)
|
|
1325
|
-
|
|
1326
|
-
>>> # Generate
|
|
1327
|
-
>>> generated_ids = model.generate(**inputs, max_new_tokens=1024)
|
|
1328
|
-
>>> generated_ids_trimmed = [out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]
|
|
1329
|
-
>>> output_text = processor.batch_decode(generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
1330
|
-
>>> print(output_text)
|
|
1331
|
-
```
|
|
1332
|
-
"""
|
|
1333
|
-
outputs: PaddleOCRVLModelOutputWithPast = self.model(
|
|
1334
|
-
input_ids=input_ids,
|
|
1335
|
-
attention_mask=attention_mask,
|
|
1336
|
-
position_ids=position_ids,
|
|
1337
|
-
image_grid_thw=image_grid_thw,
|
|
1338
|
-
past_key_values=past_key_values,
|
|
1339
|
-
inputs_embeds=inputs_embeds,
|
|
1340
|
-
use_cache=use_cache,
|
|
1341
|
-
pixel_values=pixel_values,
|
|
1342
|
-
rope_deltas=rope_deltas,
|
|
1343
|
-
cache_position=cache_position,
|
|
1344
|
-
**kwargs,
|
|
1345
|
-
)
|
|
1346
|
-
hidden_states = outputs.last_hidden_state
|
|
1347
|
-
|
|
1348
|
-
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
|
1349
|
-
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
|
1350
|
-
|
|
1351
|
-
loss = None
|
|
1352
|
-
if labels is not None:
|
|
1353
|
-
loss = self.loss_function(
|
|
1354
|
-
logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size, **kwargs
|
|
1355
|
-
)
|
|
1356
|
-
|
|
1357
|
-
return PaddleOCRVLCausalLMOutputWithPast(
|
|
1358
|
-
loss=loss,
|
|
1359
|
-
logits=logits,
|
|
1360
|
-
past_key_values=outputs.past_key_values,
|
|
1361
|
-
hidden_states=outputs.hidden_states,
|
|
1362
|
-
attentions=outputs.attentions,
|
|
1363
|
-
rope_deltas=outputs.rope_deltas,
|
|
1364
|
-
)
|
|
1365
|
-
|
|
1366
|
-
|
|
1367
|
-
__all__ = [
|
|
1368
|
-
"PaddleOCRVLForConditionalGeneration",
|
|
1369
|
-
"PaddleOCRVLModel",
|
|
1370
|
-
"PaddleOCRVLPreTrainedModel",
|
|
1371
|
-
"PaddleOCRVisionTransformer",
|
|
1372
|
-
"PaddleOCRVLConfig",
|
|
1373
|
-
"PaddleOCRTextModel",
|
|
1374
|
-
"PaddleOCRVisionModel",
|
|
1375
|
-
"PaddleOCRVisionConfig",
|
|
1376
|
-
"PaddleOCRTextConfig",
|
|
1377
|
-
"PaddleOCRVLImageProcessor",
|
|
1378
|
-
"PaddleOCRVLImageProcessorFast",
|
|
1379
|
-
"PaddleOCRVLProcessor",
|
|
1380
|
-
]
|