tpu-inference 0.12.0.dev20251213__py3-none-any.whl → 0.13.2.dev20251230__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tpu-inference might be problematic. Click here for more details.
- tests/__init__.py +13 -0
- tests/core/__init__.py +13 -0
- tests/core/test_disagg_utils.py +14 -0
- tests/core/test_dp_scheduler.py +650 -768
- tests/core/test_init.py +14 -0
- tests/distributed/__init__.py +13 -0
- tests/distributed/test_distributed_utils.py +120 -0
- tests/distributed/test_tpu_connector.py +478 -0
- tests/e2e/__init__.py +13 -0
- tests/e2e/test_async_scheduler.py +211 -0
- tests/e2e/test_data_parallel.py +289 -0
- tests/e2e/test_hybrid_kvcache.py +219 -0
- tests/e2e/test_local_disagg.py +257 -0
- tests/e2e/test_model_loader.py +268 -0
- tests/e2e/test_multi_modal_inference.py +111 -0
- tests/e2e/test_pipeline_parallel.py +265 -0
- tests/e2e/test_runai_model_streamer_loader.py +104 -0
- tests/e2e/test_sampling_params.py +269 -0
- tests/e2e/test_speculative_decoding.py +311 -0
- tests/e2e/test_structured_decoding.py +46 -0
- tests/executors/__init__.py +13 -0
- tests/executors/test_ray_distributed_executor.py +199 -0
- tests/experimental/__init__.py +13 -0
- tests/experimental/test_llama3_jax_stashed.py +208 -0
- tests/kernels/__init__.py +13 -0
- tests/kernels/collectives/__init__.py +13 -0
- tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
- tests/kernels/fused_moe_v1_test.py +14 -0
- tests/kernels/gmm_test.py +205 -0
- tests/kernels/mla_v1_test.py +14 -0
- tests/kernels/ragged_kv_cache_update_v2_test.py +14 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +14 -0
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +14 -0
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +14 -0
- tests/layers/__init__.py +13 -0
- tests/layers/common/__init__.py +13 -0
- tests/layers/common/test_attention_interface.py +156 -0
- tests/layers/common/test_quantization.py +149 -0
- tests/layers/jax/__init__.py +13 -0
- tests/layers/jax/attention/__init__.py +13 -0
- tests/layers/jax/attention/test_common_attention.py +103 -0
- tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
- tests/layers/jax/attention/test_llama4_attention.py +135 -0
- tests/layers/jax/moe/__init__.py +13 -0
- tests/layers/jax/moe/test_deepseek_moe.py +235 -0
- tests/layers/jax/sample/__init__.py +13 -0
- tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
- tests/layers/jax/sample/test_sampling.py +115 -0
- tests/layers/jax/sample/test_sampling_metadata.py +254 -0
- tests/layers/jax/test_layers.py +155 -0
- tests/{test_quantization.py → layers/jax/test_qwix.py} +180 -50
- tests/layers/jax/test_rope.py +93 -0
- tests/layers/jax/test_sharding.py +159 -0
- tests/layers/jax/test_transformer_block.py +152 -0
- tests/layers/vllm/__init__.py +13 -0
- tests/layers/vllm/test_attention.py +363 -0
- tests/layers/vllm/test_awq.py +406 -0
- tests/layers/vllm/test_compressed_tensors_moe.py +199 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +441 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +443 -0
- tests/layers/vllm/test_fp8.py +17 -0
- tests/layers/vllm/test_mxfp4.py +320 -0
- tests/layers/vllm/test_unquantized.py +662 -0
- tests/layers/vllm/utils.py +87 -0
- tests/lora/__init__.py +13 -0
- tests/lora/conftest.py +14 -0
- tests/lora/test_bgmv.py +14 -0
- tests/lora/test_layers.py +25 -8
- tests/lora/test_lora.py +15 -1
- tests/lora/test_lora_perf.py +14 -0
- tests/models/__init__.py +13 -0
- tests/models/common/__init__.py +13 -0
- tests/models/common/test_model_loader.py +455 -0
- tests/models/jax/__init__.py +13 -0
- tests/models/jax/test_deepseek_v3.py +401 -0
- tests/models/jax/test_llama3.py +184 -0
- tests/models/jax/test_llama4.py +298 -0
- tests/models/jax/test_llama_eagle3.py +197 -0
- tests/models/jax/test_llama_guard_4.py +242 -0
- tests/models/jax/test_qwen2.py +172 -0
- tests/models/jax/test_qwen2_5_vl.py +605 -0
- tests/models/jax/test_qwen3.py +169 -0
- tests/models/jax/test_weight_loading.py +180 -0
- tests/models/jax/utils/__init__.py +13 -0
- tests/models/jax/utils/test_multi_modal_utils.py +212 -0
- tests/platforms/__init__.py +13 -0
- tests/platforms/test_tpu_platform.py +54 -0
- tests/runner/__init__.py +13 -0
- tests/runner/test_block_table.py +395 -0
- tests/runner/test_input_batch.py +226 -0
- tests/runner/test_kv_cache.py +220 -0
- tests/runner/test_kv_cache_manager.py +498 -0
- tests/runner/test_multimodal_manager.py +429 -0
- tests/runner/test_persistent_batch_manager.py +84 -0
- tests/runner/test_speculative_decoding_manager.py +368 -0
- tests/runner/test_structured_decoding_manager.py +220 -0
- tests/runner/test_tpu_runner.py +261 -0
- tests/runner/test_tpu_runner_dp.py +1099 -0
- tests/runner/test_tpu_runner_mesh.py +200 -0
- tests/runner/test_utils.py +411 -0
- tests/spec_decode/__init__.py +13 -0
- tests/spec_decode/test_eagle3.py +311 -0
- tests/test_base.py +14 -0
- tests/test_tpu_info.py +14 -0
- tests/test_utils.py +1 -43
- tests/worker/__init__.py +13 -0
- tests/worker/tpu_worker_test.py +414 -0
- tpu_inference/__init__.py +14 -0
- tpu_inference/core/__init__.py +13 -0
- tpu_inference/core/sched/__init__.py +13 -0
- tpu_inference/core/sched/dp_scheduler.py +372 -56
- tpu_inference/distributed/__init__.py +13 -0
- tpu_inference/distributed/jax_parallel_state.py +14 -0
- tpu_inference/distributed/tpu_connector.py +14 -9
- tpu_inference/distributed/utils.py +56 -4
- tpu_inference/executors/__init__.py +13 -0
- tpu_inference/executors/ray_distributed_executor.py +20 -3
- tpu_inference/experimental/__init__.py +13 -0
- tpu_inference/experimental/llama3_jax_stashed.py +14 -0
- tpu_inference/kernels/__init__.py +13 -0
- tpu_inference/kernels/collectives/__init__.py +13 -0
- tpu_inference/kernels/flash_attention/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/kernel.py +171 -163
- tpu_inference/kernels/megablox/__init__.py +13 -0
- tpu_inference/kernels/megablox/common.py +54 -0
- tpu_inference/kernels/megablox/gmm.py +646 -0
- tpu_inference/kernels/mla/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/kernel.py +20 -26
- tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +112 -69
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +85 -65
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +3817 -3504
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +374 -194
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +13 -0
- tpu_inference/layers/__init__.py +13 -0
- tpu_inference/layers/common/__init__.py +13 -0
- tpu_inference/layers/common/attention_interface.py +26 -19
- tpu_inference/layers/common/attention_metadata.py +14 -0
- tpu_inference/layers/common/fused_moe_gmm.py +506 -0
- tpu_inference/layers/common/quant_methods.py +15 -0
- tpu_inference/layers/common/quantization.py +282 -0
- tpu_inference/layers/common/sharding.py +22 -3
- tpu_inference/layers/common/utils.py +94 -0
- tpu_inference/layers/jax/__init__.py +13 -0
- tpu_inference/layers/jax/attention/__init__.py +13 -0
- tpu_inference/layers/jax/attention/attention.py +19 -6
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +52 -27
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +19 -6
- tpu_inference/layers/jax/attention/llama4_attention.py +17 -4
- tpu_inference/layers/jax/base.py +14 -0
- tpu_inference/layers/jax/constants.py +13 -0
- tpu_inference/layers/jax/layers.py +14 -0
- tpu_inference/layers/jax/misc.py +14 -0
- tpu_inference/layers/jax/moe/__init__.py +13 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +20 -13
- tpu_inference/layers/jax/moe/gpt_oss_moe.py +14 -0
- tpu_inference/layers/jax/moe/moe.py +43 -3
- tpu_inference/layers/jax/pp_utils.py +53 -0
- tpu_inference/layers/jax/rope.py +14 -0
- tpu_inference/layers/jax/rope_interface.py +14 -0
- tpu_inference/layers/jax/sample/__init__.py +13 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +13 -0
- tpu_inference/layers/jax/sample/sampling.py +15 -1
- tpu_inference/layers/jax/sample/sampling_metadata.py +14 -0
- tpu_inference/layers/jax/transformer_block.py +14 -0
- tpu_inference/layers/vllm/__init__.py +13 -0
- tpu_inference/layers/vllm/attention.py +4 -4
- tpu_inference/layers/vllm/fused_moe.py +100 -455
- tpu_inference/layers/vllm/linear.py +64 -0
- tpu_inference/layers/vllm/process_weights/__init__.py +13 -0
- tpu_inference/layers/vllm/{sharding.py → process_weights/cleanup_sharding.py} +24 -15
- tpu_inference/layers/vllm/process_weights/fused_moe_weights.py +369 -0
- tpu_inference/layers/vllm/process_weights/linear_weights.py +174 -0
- tpu_inference/layers/vllm/quantization/__init__.py +19 -3
- tpu_inference/layers/vllm/quantization/awq.py +96 -82
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +19 -5
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +119 -132
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +111 -91
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +79 -43
- tpu_inference/layers/vllm/quantization/{common.py → configs.py} +38 -26
- tpu_inference/layers/vllm/quantization/fp8.py +119 -0
- tpu_inference/layers/vllm/quantization/mxfp4.py +133 -220
- tpu_inference/layers/vllm/quantization/unquantized.py +154 -253
- tpu_inference/lora/__init__.py +13 -0
- tpu_inference/lora/torch_lora_ops.py +8 -13
- tpu_inference/models/__init__.py +13 -0
- tpu_inference/models/common/__init__.py +13 -0
- tpu_inference/models/common/model_loader.py +37 -16
- tpu_inference/models/jax/__init__.py +13 -0
- tpu_inference/models/jax/deepseek_v3.py +113 -124
- tpu_inference/models/jax/gpt_oss.py +23 -7
- tpu_inference/models/jax/jax_intermediate_tensor.py +14 -0
- tpu_inference/models/jax/llama3.py +99 -36
- tpu_inference/models/jax/llama4.py +14 -0
- tpu_inference/models/jax/llama_eagle3.py +14 -0
- tpu_inference/models/jax/llama_guard_4.py +15 -1
- tpu_inference/models/jax/qwen2.py +17 -2
- tpu_inference/models/jax/qwen2_5_vl.py +18 -4
- tpu_inference/models/jax/qwen3.py +17 -2
- tpu_inference/models/jax/utils/__init__.py +13 -0
- tpu_inference/models/jax/utils/file_utils.py +14 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +18 -4
- tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
- tpu_inference/models/jax/utils/{quantization/quantization_utils.py → qwix/qwix_utils.py} +85 -24
- tpu_inference/models/jax/utils/weight_utils.py +32 -1
- tpu_inference/models/vllm/__init__.py +13 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +22 -4
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +14 -0
- tpu_inference/platforms/__init__.py +14 -0
- tpu_inference/platforms/tpu_platform.py +27 -29
- tpu_inference/runner/__init__.py +13 -0
- tpu_inference/runner/compilation_manager.py +69 -35
- tpu_inference/runner/kv_cache.py +14 -0
- tpu_inference/runner/kv_cache_manager.py +15 -2
- tpu_inference/runner/lora_utils.py +16 -1
- tpu_inference/runner/multimodal_manager.py +16 -2
- tpu_inference/runner/persistent_batch_manager.py +14 -0
- tpu_inference/runner/speculative_decoding_manager.py +14 -0
- tpu_inference/runner/structured_decoding_manager.py +14 -0
- tpu_inference/runner/tpu_runner.py +30 -10
- tpu_inference/spec_decode/__init__.py +13 -0
- tpu_inference/spec_decode/jax/__init__.py +13 -0
- tpu_inference/spec_decode/jax/eagle3.py +13 -0
- tpu_inference/tpu_info.py +14 -0
- tpu_inference/utils.py +31 -30
- tpu_inference/worker/__init__.py +13 -0
- tpu_inference/worker/tpu_worker.py +23 -7
- {tpu_inference-0.12.0.dev20251213.dist-info → tpu_inference-0.13.2.dev20251230.dist-info}/METADATA +1 -1
- tpu_inference-0.13.2.dev20251230.dist-info/RECORD +266 -0
- tpu_inference/layers/vllm/linear_common.py +0 -208
- tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
- tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +0 -5
- tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +0 -6
- tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +0 -5
- tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +0 -6
- tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +0 -105
- tpu_inference-0.12.0.dev20251213.dist-info/RECORD +0 -175
- {tpu_inference-0.12.0.dev20251213.dist-info → tpu_inference-0.13.2.dev20251230.dist-info}/WHEEL +0 -0
- {tpu_inference-0.12.0.dev20251213.dist-info → tpu_inference-0.13.2.dev20251230.dist-info}/licenses/LICENSE +0 -0
- {tpu_inference-0.12.0.dev20251213.dist-info → tpu_inference-0.13.2.dev20251230.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,261 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from unittest.mock import MagicMock, patch
|
|
16
|
+
|
|
17
|
+
import jax
|
|
18
|
+
import jax.numpy as jnp
|
|
19
|
+
import numpy as np
|
|
20
|
+
from vllm.config import (CacheConfig, ModelConfig, ParallelConfig,
|
|
21
|
+
SchedulerConfig, SpeculativeConfig, VllmConfig)
|
|
22
|
+
|
|
23
|
+
from tpu_inference.runner.tpu_runner import TPUModelRunner
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
class TestTPUJaxRunner:
|
|
27
|
+
|
|
28
|
+
def setup_method(self):
|
|
29
|
+
# Mock JAX dependencies
|
|
30
|
+
self.mock_devices = [MagicMock(coords=i) for i in range(1)]
|
|
31
|
+
self.mock_rng_key = MagicMock()
|
|
32
|
+
device_array = np.array(jax.devices()[:1]).reshape(1, 1, 1, -1)
|
|
33
|
+
self.mock_mesh = jax.make_mesh(device_array.shape,
|
|
34
|
+
('data', 'attn_dp', 'expert', 'model'))
|
|
35
|
+
with patch('jax.devices', return_value=self.mock_devices), \
|
|
36
|
+
patch('jax.make_mesh', return_value=self.mock_mesh), \
|
|
37
|
+
patch('jax.random.key', return_value=self.mock_rng_key), \
|
|
38
|
+
patch('tpu_inference.runner.tpu_runner.get_model', return_value=MagicMock()), \
|
|
39
|
+
patch('tpu_inference.runner.tpu_runner.make_optimized_mesh', return_value=self.mock_mesh):
|
|
40
|
+
|
|
41
|
+
model_config = ModelConfig(tokenizer_mode="auto",
|
|
42
|
+
trust_remote_code=False,
|
|
43
|
+
seed=0,
|
|
44
|
+
dtype='bfloat16')
|
|
45
|
+
cache_config = CacheConfig(
|
|
46
|
+
block_size=16,
|
|
47
|
+
gpu_memory_utilization=0.9,
|
|
48
|
+
swap_space=4,
|
|
49
|
+
cache_dtype="auto",
|
|
50
|
+
)
|
|
51
|
+
scheduler_config = SchedulerConfig(max_num_seqs=16,
|
|
52
|
+
max_model_len=1024,
|
|
53
|
+
is_encoder_decoder=False)
|
|
54
|
+
parallel_config = ParallelConfig(
|
|
55
|
+
pipeline_parallel_size=1,
|
|
56
|
+
tensor_parallel_size=1,
|
|
57
|
+
worker_use_ray=False,
|
|
58
|
+
)
|
|
59
|
+
speculative_config = SpeculativeConfig(
|
|
60
|
+
model='ngram',
|
|
61
|
+
num_speculative_tokens=5,
|
|
62
|
+
prompt_lookup_max=4,
|
|
63
|
+
)
|
|
64
|
+
vllm_config = VllmConfig(
|
|
65
|
+
model_config=model_config,
|
|
66
|
+
cache_config=cache_config,
|
|
67
|
+
scheduler_config=scheduler_config,
|
|
68
|
+
parallel_config=parallel_config,
|
|
69
|
+
speculative_config=speculative_config,
|
|
70
|
+
observability_config={},
|
|
71
|
+
additional_config={},
|
|
72
|
+
)
|
|
73
|
+
|
|
74
|
+
self.runner = TPUModelRunner(vllm_config,
|
|
75
|
+
devices=self.mock_devices)
|
|
76
|
+
|
|
77
|
+
def test_get_supported_tasks_runner(self):
|
|
78
|
+
"""Test get_supported_tasks for generate runner type."""
|
|
79
|
+
supported_tasks = self.runner.get_supported_tasks()
|
|
80
|
+
assert supported_tasks == ("generate", )
|
|
81
|
+
|
|
82
|
+
def test_get_input_ids_embeds(self):
|
|
83
|
+
"""Tests _get_input_ids_embeds for both multimodal and text-only models."""
|
|
84
|
+
# 1. ===== Setup =====
|
|
85
|
+
dummy_input_ids = jnp.array([1, 2, 3])
|
|
86
|
+
dummy_mm_embeds = jnp.ones((10, 128))
|
|
87
|
+
dummy_final_embeds = jnp.ones((3, 128))
|
|
88
|
+
|
|
89
|
+
# Mock the embedding function
|
|
90
|
+
self.mock_get_input_embed_fn = MagicMock()
|
|
91
|
+
self.runner.embed_input_ids_fn = self.mock_get_input_embed_fn
|
|
92
|
+
self.mock_get_input_embed_fn.return_value = dummy_final_embeds
|
|
93
|
+
self.runner.state = MagicMock()
|
|
94
|
+
|
|
95
|
+
# 2. ===== Act & Assert (Multimodal) =====
|
|
96
|
+
self.runner.is_multimodal_model = True
|
|
97
|
+
|
|
98
|
+
input_ids_res, inputs_embeds_res = self.runner._get_input_ids_embeds(
|
|
99
|
+
dummy_input_ids, dummy_mm_embeds)
|
|
100
|
+
|
|
101
|
+
assert input_ids_res is None
|
|
102
|
+
np.testing.assert_array_equal(np.asarray(inputs_embeds_res),
|
|
103
|
+
np.asarray(dummy_final_embeds))
|
|
104
|
+
self.mock_get_input_embed_fn.assert_called_once_with(
|
|
105
|
+
self.runner.state, dummy_input_ids, dummy_mm_embeds)
|
|
106
|
+
|
|
107
|
+
# 3. ===== Act & Assert (Text-only) =====
|
|
108
|
+
self.mock_get_input_embed_fn.reset_mock()
|
|
109
|
+
self.runner.is_multimodal_model = False
|
|
110
|
+
|
|
111
|
+
input_ids_res, inputs_embeds_res = self.runner._get_input_ids_embeds(
|
|
112
|
+
dummy_input_ids, dummy_mm_embeds)
|
|
113
|
+
|
|
114
|
+
assert inputs_embeds_res is None
|
|
115
|
+
np.testing.assert_array_equal(np.asarray(input_ids_res),
|
|
116
|
+
np.asarray(dummy_input_ids))
|
|
117
|
+
self.mock_get_input_embed_fn.assert_not_called()
|
|
118
|
+
|
|
119
|
+
@patch('tpu_inference.runner.tpu_runner.TPUSupportedSamplingMetadata')
|
|
120
|
+
def test_prepare_inputs_hybrid_kvcache(self, mock_sampling_metadata):
|
|
121
|
+
# create hybrid kv cache config
|
|
122
|
+
# 20 layers, 10 full attn + 10 sw attn
|
|
123
|
+
self._create_mock_hybrid_kv_cache_config()
|
|
124
|
+
|
|
125
|
+
# Mock scheduler output.
|
|
126
|
+
scheduler_output = MagicMock()
|
|
127
|
+
scheduler_output.total_num_scheduled_tokens = 10
|
|
128
|
+
scheduler_output.num_scheduled_tokens = {'req1': 10}
|
|
129
|
+
scheduler_output.scheduled_spec_decode_tokens = {}
|
|
130
|
+
scheduler_output.grammar_bitmask = None
|
|
131
|
+
|
|
132
|
+
# Mock input_batch
|
|
133
|
+
self.runner.input_batch = MagicMock()
|
|
134
|
+
self.runner.input_batch.num_reqs = 1
|
|
135
|
+
self.runner.input_batch.req_ids = ['req1']
|
|
136
|
+
self.runner.input_batch.req_id_to_index = {'req1': 0}
|
|
137
|
+
self.runner.input_batch.num_computed_tokens_cpu = np.array([10])
|
|
138
|
+
self.runner.input_batch.token_ids_cpu = np.random.randint(
|
|
139
|
+
0, 1000, (8, 64), dtype=np.int32)
|
|
140
|
+
|
|
141
|
+
# Mock block tables
|
|
142
|
+
# there will be 2 block tables since there are 2 kv cache groups
|
|
143
|
+
mock_block_table = MagicMock()
|
|
144
|
+
mock_block_table.get_cpu_tensor.return_value = np.zeros(
|
|
145
|
+
self.runner.block_tables_cpu[0].shape)
|
|
146
|
+
self.runner.input_batch.block_table = [
|
|
147
|
+
mock_block_table, mock_block_table
|
|
148
|
+
]
|
|
149
|
+
self.runner.block_tables_cpu = [
|
|
150
|
+
np.zeros(self.runner.block_tables_cpu[0].shape, dtype=np.int32),
|
|
151
|
+
np.zeros(self.runner.block_tables_cpu[0].shape, dtype=np.int32)
|
|
152
|
+
]
|
|
153
|
+
|
|
154
|
+
mock_sampling_instance = MagicMock()
|
|
155
|
+
mock_sampling_metadata.from_input_batch.return_value = mock_sampling_instance
|
|
156
|
+
|
|
157
|
+
output = self.runner._prepare_inputs_non_dp(scheduler_output)
|
|
158
|
+
assert len(output) == 8
|
|
159
|
+
input_ids, positions, attention_metadata, sampling_metadata, logits_indices, spec_decode_metadata, logits_indices_selector, padded_num_reqs = output
|
|
160
|
+
# assert it will create attention metadata for each layer.
|
|
161
|
+
assert isinstance(attention_metadata, dict)
|
|
162
|
+
assert len(attention_metadata) == 20
|
|
163
|
+
|
|
164
|
+
def _create_mock_hybrid_kv_cache_config(self):
|
|
165
|
+
mock_kv_cache_config = MagicMock()
|
|
166
|
+
mock_kv_cache_group1 = MagicMock()
|
|
167
|
+
mock_kv_cache_group1.layer_names = [f'layer.{i}' for i in range(10)]
|
|
168
|
+
mock_kv_cache_group2 = MagicMock()
|
|
169
|
+
mock_kv_cache_group2.layer_names = [
|
|
170
|
+
f'layer.{i}' for i in range(10, 20)
|
|
171
|
+
]
|
|
172
|
+
mock_kv_cache_config.kv_cache_groups = [
|
|
173
|
+
mock_kv_cache_group1, mock_kv_cache_group2
|
|
174
|
+
]
|
|
175
|
+
self.runner.kv_cache_config = mock_kv_cache_config
|
|
176
|
+
self.runner.use_hybrid_kvcache = True
|
|
177
|
+
|
|
178
|
+
|
|
179
|
+
class TestTPUJaxRunnerMultimodalModelLoadedForTextOnly:
|
|
180
|
+
|
|
181
|
+
def setup_method(self):
|
|
182
|
+
# Mock JAX dependencies
|
|
183
|
+
self.mock_devices = [MagicMock(coords=i) for i in range(4)]
|
|
184
|
+
self.mock_rng_key = MagicMock()
|
|
185
|
+
device_array = np.array(jax.devices()[:1]).reshape(1, 1, 1, -1)
|
|
186
|
+
self.mock_mesh = jax.make_mesh(device_array.shape,
|
|
187
|
+
('data', 'attn_dp', 'expert', 'model'))
|
|
188
|
+
# Setup the runner with the model_config.is_multimodal_model set to True but get_model returning None for embed_multimodal_fn and embed_input_ids_fn.
|
|
189
|
+
with patch('jax.devices', return_value=self.mock_devices), \
|
|
190
|
+
patch('jax.make_mesh', return_value=self.mock_mesh), \
|
|
191
|
+
patch('jax.random.key', return_value=self.mock_rng_key), \
|
|
192
|
+
patch('tpu_inference.runner.tpu_runner.nnx.Rngs', return_value=self.mock_rng_key), \
|
|
193
|
+
patch('tpu_inference.runner.tpu_runner.get_model', return_value=self._model_get_model()), \
|
|
194
|
+
patch('tpu_inference.runner.tpu_runner.make_optimized_mesh', return_value=self.mock_mesh):
|
|
195
|
+
|
|
196
|
+
model_config = ModelConfig(tokenizer_mode="auto",
|
|
197
|
+
trust_remote_code=False,
|
|
198
|
+
seed=0,
|
|
199
|
+
dtype='bfloat16')
|
|
200
|
+
# Set multimodal_config to not None, such that the is_multimodal_model property of model_config is True.
|
|
201
|
+
model_config.multimodal_config = MagicMock()
|
|
202
|
+
|
|
203
|
+
cache_config = CacheConfig(
|
|
204
|
+
block_size=16,
|
|
205
|
+
gpu_memory_utilization=0.9,
|
|
206
|
+
swap_space=4,
|
|
207
|
+
cache_dtype="auto",
|
|
208
|
+
)
|
|
209
|
+
scheduler_config = SchedulerConfig(max_num_seqs=16,
|
|
210
|
+
max_model_len=1024,
|
|
211
|
+
is_encoder_decoder=False)
|
|
212
|
+
parallel_config = ParallelConfig(
|
|
213
|
+
pipeline_parallel_size=1,
|
|
214
|
+
tensor_parallel_size=1,
|
|
215
|
+
worker_use_ray=False,
|
|
216
|
+
)
|
|
217
|
+
vllm_config = VllmConfig(
|
|
218
|
+
model_config=model_config,
|
|
219
|
+
cache_config=cache_config,
|
|
220
|
+
scheduler_config=scheduler_config,
|
|
221
|
+
parallel_config=parallel_config,
|
|
222
|
+
speculative_config=None,
|
|
223
|
+
observability_config={},
|
|
224
|
+
additional_config={},
|
|
225
|
+
)
|
|
226
|
+
|
|
227
|
+
self.runner = TPUModelRunner(vllm_config,
|
|
228
|
+
devices=self.mock_devices)
|
|
229
|
+
self.runner.load_model()
|
|
230
|
+
|
|
231
|
+
def _model_get_model(self):
|
|
232
|
+
mock_multimodal_fns = {
|
|
233
|
+
"precompile_vision_encoder_fn": None,
|
|
234
|
+
"embed_multimodal_fn": None,
|
|
235
|
+
"embed_input_ids_fn": None,
|
|
236
|
+
"get_mrope_input_positions_fn": None
|
|
237
|
+
}
|
|
238
|
+
return (
|
|
239
|
+
MagicMock(), # TPUModelRunner.model_fn
|
|
240
|
+
MagicMock(), # TPUModelRunner.compute_logits_fn
|
|
241
|
+
MagicMock(), # TPUModelRunner.combine_hidden_states_fn
|
|
242
|
+
mock_multimodal_fns, # TPUModelRunner.multimodal_fns
|
|
243
|
+
MagicMock(), # TPUModelRunner.state (model params)
|
|
244
|
+
None, # TPUModelRunner.lora_manager
|
|
245
|
+
None, # TPUModelRunner.model
|
|
246
|
+
)
|
|
247
|
+
|
|
248
|
+
def test_is_multimodal_model(self):
|
|
249
|
+
# Precondition: make sure the model_config claims the model supports MM.
|
|
250
|
+
assert self.runner.model_config.is_multimodal_model
|
|
251
|
+
|
|
252
|
+
# Precondition: load the model and returns embed_multimodal_fn as None.
|
|
253
|
+
assert self.runner.embed_multimodal_fn is None
|
|
254
|
+
|
|
255
|
+
assert not self.runner.is_multimodal_model
|
|
256
|
+
|
|
257
|
+
self.runner.embed_input_ids_fn = MagicMock()
|
|
258
|
+
dummy_input_ids = jnp.array([1, 2, 3])
|
|
259
|
+
dummy_mm_embeds = jnp.ones((10, 128))
|
|
260
|
+
_ = self.runner._get_input_ids_embeds(dummy_input_ids, dummy_mm_embeds)
|
|
261
|
+
self.runner.embed_input_ids_fn.assert_not_called()
|