tpu-inference 0.11.1.dev202511270815__py3-none-any.whl → 0.13.0rc2.post7__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tpu-inference might be problematic. Click here for more details.

Files changed (251) hide show
  1. tests/__init__.py +13 -0
  2. tests/core/__init__.py +13 -0
  3. tests/core/test_disagg_utils.py +14 -0
  4. tests/core/test_dp_scheduler.py +650 -768
  5. tests/core/test_init.py +14 -0
  6. tests/distributed/__init__.py +13 -0
  7. tests/distributed/test_distributed_utils.py +120 -0
  8. tests/distributed/test_tpu_connector.py +478 -0
  9. tests/e2e/__init__.py +13 -0
  10. tests/e2e/test_async_scheduler.py +211 -0
  11. tests/e2e/test_data_parallel.py +289 -0
  12. tests/e2e/test_hybrid_kvcache.py +219 -0
  13. tests/e2e/test_local_disagg.py +257 -0
  14. tests/e2e/test_model_loader.py +268 -0
  15. tests/e2e/test_multi_modal_inference.py +111 -0
  16. tests/e2e/test_pipeline_parallel.py +265 -0
  17. tests/e2e/test_runai_model_streamer_loader.py +104 -0
  18. tests/e2e/test_sampling_params.py +269 -0
  19. tests/e2e/test_speculative_decoding.py +311 -0
  20. tests/e2e/test_structured_decoding.py +46 -0
  21. tests/executors/__init__.py +13 -0
  22. tests/executors/test_ray_distributed_executor.py +199 -0
  23. tests/experimental/__init__.py +13 -0
  24. tests/experimental/test_llama3_jax_stashed.py +208 -0
  25. tests/kernels/__init__.py +13 -0
  26. tests/kernels/collectives/__init__.py +13 -0
  27. tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
  28. tests/kernels/fused_moe_v1_test.py +14 -0
  29. tests/kernels/gmm_test.py +205 -0
  30. tests/kernels/mla_v1_test.py +143 -41
  31. tests/kernels/quantized_matmul_kernel_test.py +2 -34
  32. tests/kernels/ragged_kv_cache_update_v2_test.py +14 -0
  33. tests/kernels/ragged_paged_attention_kernel_v2_test.py +14 -0
  34. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +17 -1
  35. tests/kernels/ragged_paged_attention_kernel_v3_test.py +17 -1
  36. tests/layers/__init__.py +13 -0
  37. tests/layers/common/__init__.py +13 -0
  38. tests/layers/common/test_attention_interface.py +156 -0
  39. tests/layers/common/test_quantization.py +149 -0
  40. tests/layers/jax/__init__.py +13 -0
  41. tests/layers/jax/attention/__init__.py +13 -0
  42. tests/layers/jax/attention/test_common_attention.py +103 -0
  43. tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
  44. tests/layers/jax/attention/test_llama4_attention.py +135 -0
  45. tests/layers/jax/moe/__init__.py +13 -0
  46. tests/layers/jax/moe/test_deepseek_moe.py +235 -0
  47. tests/layers/jax/sample/__init__.py +13 -0
  48. tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
  49. tests/layers/jax/sample/test_sampling.py +115 -0
  50. tests/layers/jax/sample/test_sampling_metadata.py +254 -0
  51. tests/layers/jax/test_layers.py +155 -0
  52. tests/{test_quantization.py → layers/jax/test_qwix.py} +183 -50
  53. tests/layers/jax/test_rope.py +93 -0
  54. tests/layers/jax/test_sharding.py +159 -0
  55. tests/layers/jax/test_transformer_block.py +152 -0
  56. tests/layers/vllm/__init__.py +13 -0
  57. tests/layers/vllm/test_attention.py +363 -0
  58. tests/layers/vllm/test_awq.py +405 -0
  59. tests/layers/vllm/test_compressed_tensors_moe.py +202 -0
  60. tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +418 -0
  61. tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +441 -0
  62. tests/layers/vllm/test_fp8.py +17 -0
  63. tests/layers/vllm/test_mxfp4.py +312 -0
  64. tests/layers/vllm/test_unquantized.py +651 -0
  65. tests/layers/vllm/utils.py +87 -0
  66. tests/lora/__init__.py +13 -0
  67. tests/lora/conftest.py +14 -0
  68. tests/lora/test_bgmv.py +14 -0
  69. tests/lora/test_layers.py +21 -3
  70. tests/lora/test_lora.py +15 -1
  71. tests/lora/test_lora_perf.py +67 -0
  72. tests/models/__init__.py +13 -0
  73. tests/models/common/__init__.py +13 -0
  74. tests/models/common/test_model_loader.py +455 -0
  75. tests/models/jax/__init__.py +13 -0
  76. tests/models/jax/test_deepseek_v3.py +401 -0
  77. tests/models/jax/test_llama3.py +184 -0
  78. tests/models/jax/test_llama4.py +298 -0
  79. tests/models/jax/test_llama_eagle3.py +197 -0
  80. tests/models/jax/test_llama_guard_4.py +242 -0
  81. tests/models/jax/test_qwen2.py +172 -0
  82. tests/models/jax/test_qwen2_5_vl.py +605 -0
  83. tests/models/jax/test_qwen3.py +169 -0
  84. tests/models/jax/test_weight_loading.py +180 -0
  85. tests/models/jax/utils/__init__.py +13 -0
  86. tests/models/jax/utils/test_multi_modal_utils.py +212 -0
  87. tests/platforms/__init__.py +13 -0
  88. tests/platforms/test_tpu_platform.py +54 -0
  89. tests/runner/__init__.py +13 -0
  90. tests/runner/test_block_table.py +395 -0
  91. tests/runner/test_input_batch.py +226 -0
  92. tests/runner/test_kv_cache.py +220 -0
  93. tests/runner/test_kv_cache_manager.py +498 -0
  94. tests/runner/test_multimodal_manager.py +429 -0
  95. tests/runner/test_persistent_batch_manager.py +84 -0
  96. tests/runner/test_speculative_decoding_manager.py +368 -0
  97. tests/runner/test_structured_decoding_manager.py +220 -0
  98. tests/runner/test_tpu_runner.py +261 -0
  99. tests/runner/test_tpu_runner_dp.py +1099 -0
  100. tests/runner/test_tpu_runner_mesh.py +200 -0
  101. tests/runner/test_utils.py +411 -0
  102. tests/spec_decode/__init__.py +13 -0
  103. tests/spec_decode/test_eagle3.py +311 -0
  104. tests/test_base.py +14 -0
  105. tests/test_envs.py +110 -12
  106. tests/test_tpu_info.py +14 -0
  107. tests/test_utils.py +2 -45
  108. tests/worker/__init__.py +13 -0
  109. tests/worker/tpu_worker_test.py +414 -0
  110. tpu_inference/__init__.py +14 -0
  111. tpu_inference/core/__init__.py +13 -0
  112. tpu_inference/core/sched/__init__.py +13 -0
  113. tpu_inference/core/sched/dp_scheduler.py +372 -56
  114. tpu_inference/distributed/__init__.py +13 -0
  115. tpu_inference/distributed/jax_parallel_state.py +14 -0
  116. tpu_inference/distributed/tpu_connector.py +15 -10
  117. tpu_inference/distributed/utils.py +56 -4
  118. tpu_inference/envs.py +92 -8
  119. tpu_inference/executors/__init__.py +13 -0
  120. tpu_inference/executors/ray_distributed_executor.py +22 -1
  121. tpu_inference/experimental/__init__.py +13 -0
  122. tpu_inference/experimental/llama3_jax_stashed.py +14 -0
  123. tpu_inference/kernels/__init__.py +13 -0
  124. tpu_inference/kernels/collectives/__init__.py +13 -0
  125. tpu_inference/kernels/collectives/all_gather_matmul.py +12 -6
  126. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +7 -2
  127. tpu_inference/kernels/flash_attention/__init__.py +13 -0
  128. tpu_inference/kernels/fused_moe/__init__.py +13 -0
  129. tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
  130. tpu_inference/kernels/fused_moe/v1/kernel.py +370 -324
  131. tpu_inference/kernels/megablox/__init__.py +13 -0
  132. tpu_inference/kernels/megablox/common.py +54 -0
  133. tpu_inference/kernels/megablox/gmm.py +646 -0
  134. tpu_inference/kernels/mla/__init__.py +13 -0
  135. tpu_inference/kernels/mla/v1/__init__.py +13 -0
  136. tpu_inference/kernels/mla/v1/kernel.py +117 -145
  137. tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
  138. tpu_inference/kernels/quantized_matmul/kernel.py +69 -8
  139. tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
  140. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
  141. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +2 -1
  142. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +2 -1
  143. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
  144. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +194 -101
  145. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +167 -97
  146. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +3817 -3504
  147. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +376 -195
  148. tpu_inference/kernels/ragged_paged_attention/v3/util.py +15 -1
  149. tpu_inference/layers/__init__.py +13 -0
  150. tpu_inference/layers/common/__init__.py +13 -0
  151. tpu_inference/layers/common/attention_interface.py +26 -19
  152. tpu_inference/layers/common/attention_metadata.py +14 -0
  153. tpu_inference/layers/common/quant_methods.py +15 -0
  154. tpu_inference/layers/common/quantization.py +270 -0
  155. tpu_inference/layers/common/sharding.py +31 -9
  156. tpu_inference/layers/jax/__init__.py +13 -0
  157. tpu_inference/layers/jax/attention/__init__.py +13 -0
  158. tpu_inference/layers/jax/attention/attention.py +19 -6
  159. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +270 -77
  160. tpu_inference/layers/jax/attention/gpt_oss_attention.py +24 -11
  161. tpu_inference/layers/jax/attention/llama4_attention.py +17 -4
  162. tpu_inference/layers/jax/base.py +14 -0
  163. tpu_inference/layers/jax/constants.py +13 -0
  164. tpu_inference/layers/jax/layers.py +14 -0
  165. tpu_inference/layers/jax/misc.py +14 -0
  166. tpu_inference/layers/jax/moe/__init__.py +13 -0
  167. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +20 -13
  168. tpu_inference/layers/jax/moe/gpt_oss_moe.py +14 -0
  169. tpu_inference/layers/jax/moe/moe.py +43 -3
  170. tpu_inference/layers/jax/pp_utils.py +53 -0
  171. tpu_inference/layers/jax/rope.py +14 -0
  172. tpu_inference/layers/jax/rope_interface.py +14 -0
  173. tpu_inference/layers/jax/sample/__init__.py +13 -0
  174. tpu_inference/layers/jax/sample/rejection_sampler.py +13 -0
  175. tpu_inference/layers/jax/sample/sampling.py +15 -1
  176. tpu_inference/layers/jax/sample/sampling_metadata.py +14 -0
  177. tpu_inference/layers/jax/transformer_block.py +14 -0
  178. tpu_inference/layers/vllm/__init__.py +13 -0
  179. tpu_inference/layers/vllm/attention.py +4 -4
  180. tpu_inference/layers/vllm/fused_moe.py +210 -260
  181. tpu_inference/layers/vllm/linear_common.py +57 -22
  182. tpu_inference/layers/vllm/quantization/__init__.py +16 -0
  183. tpu_inference/layers/vllm/quantization/awq.py +15 -1
  184. tpu_inference/layers/vllm/quantization/common.py +33 -18
  185. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
  186. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +18 -3
  187. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +211 -148
  188. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
  189. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +14 -0
  190. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +14 -0
  191. tpu_inference/layers/vllm/quantization/fp8.py +118 -0
  192. tpu_inference/layers/vllm/quantization/mxfp4.py +280 -210
  193. tpu_inference/layers/vllm/quantization/unquantized.py +134 -86
  194. tpu_inference/layers/vllm/sharding.py +21 -4
  195. tpu_inference/lora/__init__.py +13 -0
  196. tpu_inference/lora/torch_lora_ops.py +8 -13
  197. tpu_inference/models/__init__.py +13 -0
  198. tpu_inference/models/common/__init__.py +13 -0
  199. tpu_inference/models/common/model_loader.py +77 -36
  200. tpu_inference/models/jax/__init__.py +13 -0
  201. tpu_inference/models/jax/deepseek_v3.py +267 -157
  202. tpu_inference/models/jax/gpt_oss.py +26 -10
  203. tpu_inference/models/jax/jax_intermediate_tensor.py +14 -0
  204. tpu_inference/models/jax/llama3.py +99 -36
  205. tpu_inference/models/jax/llama4.py +14 -0
  206. tpu_inference/models/jax/llama_eagle3.py +14 -0
  207. tpu_inference/models/jax/llama_guard_4.py +15 -1
  208. tpu_inference/models/jax/qwen2.py +17 -2
  209. tpu_inference/models/jax/qwen2_5_vl.py +18 -4
  210. tpu_inference/models/jax/qwen3.py +17 -2
  211. tpu_inference/models/jax/utils/__init__.py +13 -0
  212. tpu_inference/models/jax/utils/file_utils.py +14 -0
  213. tpu_inference/models/jax/utils/multi_modal_utils.py +18 -4
  214. tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
  215. tpu_inference/models/jax/utils/{quantization/quantization_utils.py → qwix/qwix_utils.py} +91 -31
  216. tpu_inference/models/jax/utils/weight_utils.py +39 -2
  217. tpu_inference/models/vllm/__init__.py +13 -0
  218. tpu_inference/models/vllm/vllm_model_wrapper.py +20 -4
  219. tpu_inference/models/vllm/vllm_model_wrapper_context.py +14 -0
  220. tpu_inference/platforms/__init__.py +14 -0
  221. tpu_inference/platforms/tpu_platform.py +47 -71
  222. tpu_inference/runner/__init__.py +13 -0
  223. tpu_inference/runner/compilation_manager.py +158 -63
  224. tpu_inference/runner/kv_cache.py +54 -20
  225. tpu_inference/runner/kv_cache_manager.py +53 -30
  226. tpu_inference/runner/lora_utils.py +14 -0
  227. tpu_inference/runner/multimodal_manager.py +15 -1
  228. tpu_inference/runner/persistent_batch_manager.py +54 -2
  229. tpu_inference/runner/speculative_decoding_manager.py +14 -0
  230. tpu_inference/runner/structured_decoding_manager.py +14 -0
  231. tpu_inference/runner/tpu_runner.py +105 -57
  232. tpu_inference/runner/utils.py +2 -2
  233. tpu_inference/spec_decode/__init__.py +13 -0
  234. tpu_inference/spec_decode/jax/__init__.py +13 -0
  235. tpu_inference/spec_decode/jax/eagle3.py +65 -19
  236. tpu_inference/tpu_info.py +14 -0
  237. tpu_inference/utils.py +72 -44
  238. tpu_inference/worker/__init__.py +13 -0
  239. tpu_inference/worker/tpu_worker.py +65 -52
  240. {tpu_inference-0.11.1.dev202511270815.dist-info → tpu_inference-0.13.0rc2.post7.dist-info}/METADATA +11 -9
  241. tpu_inference-0.13.0rc2.post7.dist-info/RECORD +261 -0
  242. tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
  243. tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +0 -5
  244. tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +0 -6
  245. tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +0 -5
  246. tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +0 -6
  247. tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +0 -105
  248. tpu_inference-0.11.1.dev202511270815.dist-info/RECORD +0 -174
  249. {tpu_inference-0.11.1.dev202511270815.dist-info → tpu_inference-0.13.0rc2.post7.dist-info}/WHEEL +0 -0
  250. {tpu_inference-0.11.1.dev202511270815.dist-info → tpu_inference-0.13.0rc2.post7.dist-info}/licenses/LICENSE +0 -0
  251. {tpu_inference-0.11.1.dev202511270815.dist-info → tpu_inference-0.13.0rc2.post7.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,219 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+ import os
4
+ import time
5
+ from dataclasses import asdict
6
+
7
+ import pytest
8
+ from vllm import LLM, EngineArgs, SamplingParams
9
+
10
+
11
+ @pytest.fixture
12
+ def model_name():
13
+ """Choose gemma-27b as the test model as it has both full attention and
14
+ sliding window attention."""
15
+ return "google/gemma-3-27b-it"
16
+
17
+
18
+ @pytest.fixture
19
+ def test_prompts():
20
+ """Simple test prompts for hybrid kv cache testing."""
21
+ return [
22
+ "Hello, my name is",
23
+ "The capital of France is",
24
+ "The colors of the rainbow are",
25
+ "The future of AI is",
26
+ "The president of the United States is",
27
+ "How many players are on a standard soccer team?",
28
+ "In Greek mythology, who is the god of the sea?",
29
+ "What is the capital of Australia?",
30
+ "What is the largest planet in our solar system?",
31
+ "Who developed the theory of general relativity?",
32
+ ]
33
+
34
+
35
+ @pytest.fixture
36
+ def sampling_params():
37
+ """Standard sampling parameters for testing."""
38
+ return SamplingParams(
39
+ temperature=0.0,
40
+ max_tokens=32,
41
+ ignore_eos=True,
42
+ logprobs=1,
43
+ )
44
+
45
+
46
+ def _run_inference_with_config(
47
+ model_name: str,
48
+ test_prompts: list,
49
+ sampling_params: SamplingParams,
50
+ tensor_parallel_size: int = 4,
51
+ kv_cache_dtype: str = "auto",
52
+ enable_prefix_caching: bool = False,
53
+ disable_hybrid_kv_cache_manager: bool = False) -> list:
54
+ """Helper function to run inference with specified configuration."""
55
+
56
+ # Create LLM args using parser-based approach similar to offline_inference.py
57
+ engine_args = EngineArgs(
58
+ model=model_name,
59
+ max_model_len=64,
60
+ tensor_parallel_size=tensor_parallel_size,
61
+ gpu_memory_utilization=0.95,
62
+ max_num_batched_tokens=256,
63
+ max_num_seqs=16,
64
+ enable_prefix_caching=enable_prefix_caching,
65
+ kv_cache_dtype=kv_cache_dtype,
66
+ disable_hybrid_kv_cache_manager=disable_hybrid_kv_cache_manager,
67
+ )
68
+
69
+ engine_args_dict = asdict(engine_args)
70
+ llm = LLM(**engine_args_dict)
71
+
72
+ try:
73
+ outputs = llm.generate(test_prompts, sampling_params)
74
+ return outputs
75
+ finally:
76
+ del llm
77
+ # Wait for TPUs to be released
78
+ time.sleep(10)
79
+
80
+
81
+ def test_hybrid_kv_cache(
82
+ model_name: str,
83
+ test_prompts: list,
84
+ sampling_params: SamplingParams,
85
+ ):
86
+ """
87
+ Test hybrid kv cache works on gemma vLLM models.
88
+ """
89
+
90
+ os.environ['MODEL_IMPL_TYPE'] = 'vllm'
91
+ # Test with hybrid kv cache alloctaion enabled.
92
+ outputs = _run_inference_with_config(
93
+ model_name=model_name,
94
+ test_prompts=test_prompts,
95
+ sampling_params=sampling_params,
96
+ disable_hybrid_kv_cache_manager=False,
97
+ )
98
+
99
+ # Verify we got outputs for all prompts
100
+ assert len(outputs) == len(test_prompts)
101
+
102
+ # Verify each output has generated text
103
+ for output in outputs:
104
+ assert len(output.outputs) > 0
105
+ assert len(output.outputs[0].text.strip()) > 0
106
+
107
+ print(f"✓ Hybrid KV cache test passed with {len(outputs)} outputs")
108
+
109
+
110
+ def test_hybrid_kv_cache_correctness(
111
+ model_name: str,
112
+ test_prompts: list,
113
+ sampling_params: SamplingParams,
114
+ ):
115
+ """
116
+ Test that hybrid kv cache allocation produces consistent results compared
117
+ to standard kv cache allocation.
118
+ """
119
+ os.environ['SKIP_JAX_PRECOMPILE'] = '1'
120
+ os.environ['VLLM_XLA_CHECK_RECOMPILATION'] = '0'
121
+
122
+ small_prompts = test_prompts
123
+
124
+ # Run baseline (no hybrid kv cache)
125
+ baseline_outputs = _run_inference_with_config(
126
+ model_name=model_name,
127
+ test_prompts=small_prompts,
128
+ sampling_params=sampling_params,
129
+ disable_hybrid_kv_cache_manager=True,
130
+ )
131
+
132
+ # Run with hybrid kv cache enabled.
133
+ hybrid_kvcache_outputs = _run_inference_with_config(
134
+ model_name=model_name,
135
+ test_prompts=small_prompts,
136
+ sampling_params=sampling_params,
137
+ disable_hybrid_kv_cache_manager=False,
138
+ )
139
+
140
+ # Compare outputs - in theory they should be identical for greedy sampling
141
+ # in reality there may be some differences, but overall the outputs should
142
+ # be very similar.
143
+
144
+ # an example:
145
+ # prompt: What is the capital of Australia?
146
+ # both answers should be acceptable.
147
+ # The capital of Australia is Canberra. It is located in the Australian Capital Territory (ACT) and is home to many
148
+ # Canberra is the capital of Australia. It is located in the Australian Capital Territory (ACT) and is home to
149
+ assert len(baseline_outputs) == len(hybrid_kvcache_outputs)
150
+
151
+ text_matches = 0
152
+ text_mismatches = 0
153
+ logprob_mismatches = 0
154
+ max_logprob_diff = 0.0
155
+
156
+ for i, (baseline, hybrid_kvcache_result) in enumerate(
157
+ zip(baseline_outputs, hybrid_kvcache_outputs)):
158
+ baseline_text = baseline.outputs[0].text.strip()
159
+ hybrid_kvcache_text = hybrid_kvcache_result.outputs[0].text.strip()
160
+
161
+ # Check text output
162
+ if baseline_text == hybrid_kvcache_text:
163
+ text_matches += 1
164
+ else:
165
+ text_mismatches += 1
166
+ print(f"Text mismatch found in prompt {i}:")
167
+ print(f" Baseline: {baseline_text}")
168
+ print(f" Hybrid KV Cache: {hybrid_kvcache_text}")
169
+
170
+ # Check log probabilities
171
+ baseline_logprobs = baseline.outputs[0].logprobs
172
+ hybrid_kvcache_logprobs = hybrid_kvcache_result.outputs[0].logprobs
173
+ if baseline_logprobs is not None and hybrid_kvcache_logprobs is not None:
174
+ # Compare log probabilities for each token
175
+ assert len(baseline_logprobs) == len(hybrid_kvcache_logprobs), \
176
+ f"Logprobs length mismatch: {len(baseline_logprobs)} vs {len(hybrid_kvcache_logprobs)}"
177
+ for token_idx, (base_lp, hybrid_kvcache_lp) in enumerate(
178
+ zip(baseline_logprobs, hybrid_kvcache_logprobs)):
179
+ # Get the top logprob value for the selected token
180
+ if base_lp and hybrid_kvcache_lp:
181
+ # Get the top token's logprob from each
182
+ base_top_token = list(base_lp.keys())[0]
183
+ hybrid_kvcache_top_token = list(
184
+ hybrid_kvcache_lp.keys())[0]
185
+
186
+ base_logprob_val = base_lp[base_top_token].logprob
187
+ hybrid_kvcache_logprob_val = hybrid_kvcache_lp[
188
+ hybrid_kvcache_top_token].logprob
189
+
190
+ # Calculate absolute difference
191
+ diff = abs(base_logprob_val - hybrid_kvcache_logprob_val)
192
+ max_logprob_diff = max(max_logprob_diff, diff)
193
+
194
+ # Allow small numerical differences (e.g., 1e-3)
195
+ if diff > 1e-3:
196
+ logprob_mismatches += 1
197
+ print(
198
+ f"Logprob mismatch in prompt {i}, token {token_idx}:"
199
+ )
200
+ print(
201
+ f" Baseline token: {base_top_token}, logprob: {base_logprob_val:.6f}"
202
+ )
203
+ print(
204
+ f" Hybrid KV Cache token: {hybrid_kvcache_top_token}, logprob: {hybrid_kvcache_logprob_val:.6f}"
205
+ )
206
+ print(f" Difference: {diff:.6f}")
207
+
208
+ print("✓ Correctness test results:")
209
+ print(f" Text: {text_matches} matches, {text_mismatches} mismatches")
210
+ print(f" Max logprob difference: {max_logprob_diff:.6e}")
211
+ print(f" Significant logprob mismatches (>1e-3): {logprob_mismatches}")
212
+
213
+ # Allow for some variance due to potential numerical differences
214
+ # but most outputs should match with greedy sampling
215
+ text_match_rate = text_matches / len(baseline_outputs)
216
+ assert text_match_rate >= 0.9, f"Text match rate {text_match_rate:.2%} is too low"
217
+
218
+ # Log probabilities should be very close (allow small numerical errors)
219
+ assert max_logprob_diff < 2, f"Max logprob difference {max_logprob_diff} is too large"
@@ -0,0 +1,257 @@
1
+ # SPDX-License-Identifier: Apache-2.0
2
+ # SPDX-FileCopyrightText: Copyright contributors to the vLLM project
3
+
4
+ import os
5
+ import time
6
+ from dataclasses import asdict
7
+ from unittest.mock import patch
8
+
9
+ import pytest
10
+ import vllm.envs as vllm_envs
11
+ from vllm import LLM, EngineArgs, SamplingParams
12
+
13
+ from tpu_inference.core.core_tpu import DisaggEngineCore, DisaggEngineCoreProc
14
+
15
+
16
+ @pytest.fixture
17
+ def test_prompts():
18
+ """Simple test prompts for disaggregated serving testing."""
19
+ return [
20
+ "Hello, my name is",
21
+ "The capital of France is",
22
+ "The colors of the rainbow are",
23
+ "The future of AI is",
24
+ "The president of the United States is",
25
+ "How many players are on a standard soccer team on the field at one time?",
26
+ "In Greek mythology, who is the god of the sea?",
27
+ "In what year did the Titanic sink?",
28
+ "In which museum is the Mona Lisa displayed?",
29
+ "Mount Everest is located in which mountain range?",
30
+ "What ancient empire was ruled by Julius Caesar?",
31
+ "What are the four fundamental forces of nature?",
32
+ 'What does "CPU" stand for?',
33
+ 'What does "HTML" stand for?',
34
+ "What is the capital of Australia?",
35
+ "What is the chemical symbol for gold?",
36
+ "What is the currency of Switzerland?",
37
+ "What is the distance from the Earth to the Sun called?",
38
+ "What is the freezing point of water in Celsius?",
39
+ "What is the hardest known natural substance on Earth?",
40
+ "What is the largest planet in our solar system?",
41
+ "What is the longest river in the world?",
42
+ "What is the main function of the kidneys in the human body?",
43
+ "What is the main ingredient in guacamole?",
44
+ "What is the most spoken language in the world by number of native speakers?",
45
+ "What is the process by which plants use sunlight to create food?",
46
+ "Which country is known as the Land of the Rising Sun?",
47
+ "Who developed the theory of general relativity?",
48
+ 'Who directed the original "Star Wars" trilogy?',
49
+ "Who is credited with inventing the telephone?",
50
+ "Who painted the ceiling of the Sistine Chapel?",
51
+ "Who was the first female Prime Minister of the United Kingdom?",
52
+ "Who was the first person to walk on the moon?",
53
+ "Who wrote the American Declaration of Independence?",
54
+ 'Who wrote the novel "Pride and Prejudice"?',
55
+ ]
56
+
57
+
58
+ @pytest.fixture
59
+ def sampling_params():
60
+ """Standard sampling parameters for testing."""
61
+ return SamplingParams(
62
+ temperature=0.0,
63
+ max_tokens=32,
64
+ ignore_eos=True,
65
+ logprobs=1,
66
+ )
67
+
68
+
69
+ def test_disaggregated_serving(test_prompts, sampling_params):
70
+ """
71
+ Test disaggregated serving end-to-end.
72
+
73
+ Equivalent to:
74
+ PREFILL_SLICES=4 DECODE_SLICES=4 python examples/offline_inference.py \
75
+ --model=meta-llama/Meta-Llama-3.1-8B-Instruct --task=generate \
76
+ --max_model_len=2048 --tensor_parallel_size 4
77
+ """
78
+ # Set environment variables for disaggregated serving
79
+ # Using 4 slices for prefill and 4 for decode as requested
80
+ # Note: The user example used PREFILL_SLICES=4 DECODE_SLICES=4
81
+ # But usually slices are specified as "2x2" or similar if they are TPU topology.
82
+ # However, disagg_utils.py _parse_slices handles "4" as well (1D).
83
+ # We will stick to the user's example values.
84
+
85
+ # We need to mock the environment variables for this test
86
+ with patch.dict(
87
+ os.environ, {
88
+ "PREFILL_SLICES": "4",
89
+ "DECODE_SLICES": "4",
90
+ "SKIP_JAX_PRECOMPILE": "1",
91
+ "VLLM_XLA_CHECK_RECOMPILATION": "0"
92
+ }):
93
+ # Patch the EngineCore classes to use Disagg versions
94
+ with patch("vllm.v1.engine.core.EngineCore", DisaggEngineCore), \
95
+ patch("vllm.v1.engine.core.EngineCoreProc", DisaggEngineCoreProc):
96
+
97
+ model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
98
+ os.system(f"rm -rf {vllm_envs.VLLM_XLA_CACHE_PATH}/*")
99
+ engine_args = EngineArgs(
100
+ model=model_name,
101
+ max_model_len=2048,
102
+ tensor_parallel_size=4,
103
+ gpu_memory_utilization=0.90,
104
+ enforce_eager=False,
105
+ )
106
+
107
+ llm = LLM(**asdict(engine_args))
108
+
109
+ try:
110
+ outputs = llm.generate(test_prompts, sampling_params)
111
+
112
+ # Verify outputs
113
+ assert len(outputs) == len(test_prompts)
114
+ for output in outputs:
115
+ assert len(output.outputs) > 0
116
+ assert len(output.outputs[0].text.strip()) > 0
117
+ print(f"Prompt: {output.prompt!r}")
118
+ print(f"Generated: {output.outputs[0].text!r}")
119
+
120
+ finally:
121
+ del llm
122
+ time.sleep(10)
123
+ pass
124
+
125
+
126
+ def _run_inference(model_name: str,
127
+ test_prompts: list,
128
+ sampling_params: SamplingParams,
129
+ tensor_parallel_size: int = 1,
130
+ is_disagg: bool = False,
131
+ prefill_slices: str = "4",
132
+ decode_slices: str = "4") -> list:
133
+ """Helper function to run inference with specified configuration."""
134
+
135
+ # Define the inner execution logic
136
+ def run_inner():
137
+ engine_args = EngineArgs(
138
+ model=model_name,
139
+ max_model_len=2048,
140
+ tensor_parallel_size=tensor_parallel_size,
141
+ gpu_memory_utilization=0.90,
142
+ enforce_eager=False,
143
+ )
144
+
145
+ llm = LLM(**asdict(engine_args))
146
+ try:
147
+ return llm.generate(test_prompts, sampling_params)
148
+ finally:
149
+ del llm
150
+ time.sleep(10)
151
+ pass
152
+
153
+ if is_disagg:
154
+ # Mock environment variables and patch classes for disagg
155
+ with patch.dict(
156
+ os.environ, {
157
+ "PREFILL_SLICES": prefill_slices,
158
+ "DECODE_SLICES": decode_slices,
159
+ "SKIP_JAX_PRECOMPILE": "1",
160
+ "VLLM_XLA_CHECK_RECOMPILATION": "0"
161
+ }):
162
+ with patch("vllm.v1.engine.core.EngineCore", DisaggEngineCore), \
163
+ patch("vllm.v1.engine.core.EngineCoreProc", DisaggEngineCoreProc):
164
+ return run_inner()
165
+ else:
166
+ # Run standard inference
167
+ # We still set some env vars to ensure consistent behavior if needed
168
+ # but for baseline we want it as standard as possible.
169
+ # However, to match the disagg run's potential jax settings:
170
+ with patch.dict(os.environ, {
171
+ "SKIP_JAX_PRECOMPILE": "1",
172
+ "VLLM_XLA_CHECK_RECOMPILATION": "0"
173
+ }):
174
+ return run_inner()
175
+
176
+
177
+ def test_disaggregated_serving_correctness(test_prompts, sampling_params):
178
+ """
179
+ Test that disaggregated serving produces consistent results compared to a baseline.
180
+ """
181
+ model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
182
+ # Use a smaller subset of prompts for correctness testing
183
+ small_prompts = test_prompts[:20]
184
+ sampling_params.max_tokens = 16
185
+
186
+ # Run baseline (standard execution)
187
+ # We use tensor_parallel_size=4 to match the disagg resources if we assume
188
+ # the user has enough chips, or if we are just mocking.
189
+ # Since the original test used tp=4, we stick to it.
190
+ print("Running Baseline Inference...")
191
+ baseline_outputs = _run_inference(model_name=model_name,
192
+ test_prompts=small_prompts,
193
+ sampling_params=sampling_params,
194
+ tensor_parallel_size=4,
195
+ is_disagg=False)
196
+
197
+ # Run disaggregated inference
198
+ os.system(f"rm -rf {vllm_envs.VLLM_XLA_CACHE_PATH}/*")
199
+ print("Running Disaggregated Inference...")
200
+
201
+ disagg_outputs = _run_inference(model_name=model_name,
202
+ test_prompts=small_prompts,
203
+ sampling_params=sampling_params,
204
+ tensor_parallel_size=4,
205
+ is_disagg=True,
206
+ prefill_slices="4",
207
+ decode_slices="4")
208
+
209
+ # Compare outputs
210
+ assert len(baseline_outputs) == len(disagg_outputs)
211
+
212
+ text_matches = 0
213
+ text_mismatches = 0
214
+ token_mismatches = 0
215
+
216
+ for i, (baseline,
217
+ disagg) in enumerate(zip(baseline_outputs, disagg_outputs)):
218
+ baseline_text = baseline.outputs[0].text.strip()
219
+ disagg_text = disagg.outputs[0].text.strip()
220
+
221
+ # Check text output
222
+ if baseline_text == disagg_text:
223
+ text_matches += 1
224
+ else:
225
+ text_mismatches += 1
226
+ print(f"Text mismatch found in prompt {i}:")
227
+ print(f" Baseline: {baseline_text}")
228
+ print(f" Disagg: {disagg_text}")
229
+
230
+ # Check log probabilities (tokens) if available
231
+ baseline_logprobs = baseline.outputs[0].logprobs
232
+ disagg_logprobs = disagg.outputs[0].logprobs
233
+
234
+ if baseline_logprobs is not None and disagg_logprobs is not None:
235
+ assert len(baseline_logprobs) == len(disagg_logprobs), \
236
+ f"Logprobs length mismatch: {len(baseline_logprobs)} vs {len(disagg_logprobs)}"
237
+
238
+ for token_idx, (base_lp, disagg_lp) in enumerate(
239
+ zip(baseline_logprobs, disagg_logprobs)):
240
+ if base_lp and disagg_lp:
241
+ # Compare the top token IDs
242
+ base_top_token = list(base_lp.keys())[0]
243
+ disagg_top_token = list(disagg_lp.keys())[0]
244
+
245
+ if base_top_token != disagg_top_token:
246
+ token_mismatches += 1
247
+ print(
248
+ f"Token mismatch in prompt {i}, token {token_idx}:"
249
+ )
250
+ print(f" Baseline: {base_top_token}")
251
+ print(f" Disagg: {disagg_top_token}")
252
+
253
+ print("✓ Correctness test results:")
254
+ print(f" Text: {text_matches} matches, {text_mismatches} mismatches")
255
+ print(f" Token mismatches in logprobs: {token_mismatches}")
256
+ assert text_mismatches <= 5, f"Found {text_mismatches} text mismatches"
257
+ assert token_mismatches <= 40, f"Found {token_mismatches} token mismatches"