tpu-inference 0.11.1.dev202511270815__py3-none-any.whl → 0.13.0rc2.post7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tpu-inference might be problematic. Click here for more details.
- tests/__init__.py +13 -0
- tests/core/__init__.py +13 -0
- tests/core/test_disagg_utils.py +14 -0
- tests/core/test_dp_scheduler.py +650 -768
- tests/core/test_init.py +14 -0
- tests/distributed/__init__.py +13 -0
- tests/distributed/test_distributed_utils.py +120 -0
- tests/distributed/test_tpu_connector.py +478 -0
- tests/e2e/__init__.py +13 -0
- tests/e2e/test_async_scheduler.py +211 -0
- tests/e2e/test_data_parallel.py +289 -0
- tests/e2e/test_hybrid_kvcache.py +219 -0
- tests/e2e/test_local_disagg.py +257 -0
- tests/e2e/test_model_loader.py +268 -0
- tests/e2e/test_multi_modal_inference.py +111 -0
- tests/e2e/test_pipeline_parallel.py +265 -0
- tests/e2e/test_runai_model_streamer_loader.py +104 -0
- tests/e2e/test_sampling_params.py +269 -0
- tests/e2e/test_speculative_decoding.py +311 -0
- tests/e2e/test_structured_decoding.py +46 -0
- tests/executors/__init__.py +13 -0
- tests/executors/test_ray_distributed_executor.py +199 -0
- tests/experimental/__init__.py +13 -0
- tests/experimental/test_llama3_jax_stashed.py +208 -0
- tests/kernels/__init__.py +13 -0
- tests/kernels/collectives/__init__.py +13 -0
- tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
- tests/kernels/fused_moe_v1_test.py +14 -0
- tests/kernels/gmm_test.py +205 -0
- tests/kernels/mla_v1_test.py +143 -41
- tests/kernels/quantized_matmul_kernel_test.py +2 -34
- tests/kernels/ragged_kv_cache_update_v2_test.py +14 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +14 -0
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +17 -1
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +17 -1
- tests/layers/__init__.py +13 -0
- tests/layers/common/__init__.py +13 -0
- tests/layers/common/test_attention_interface.py +156 -0
- tests/layers/common/test_quantization.py +149 -0
- tests/layers/jax/__init__.py +13 -0
- tests/layers/jax/attention/__init__.py +13 -0
- tests/layers/jax/attention/test_common_attention.py +103 -0
- tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
- tests/layers/jax/attention/test_llama4_attention.py +135 -0
- tests/layers/jax/moe/__init__.py +13 -0
- tests/layers/jax/moe/test_deepseek_moe.py +235 -0
- tests/layers/jax/sample/__init__.py +13 -0
- tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
- tests/layers/jax/sample/test_sampling.py +115 -0
- tests/layers/jax/sample/test_sampling_metadata.py +254 -0
- tests/layers/jax/test_layers.py +155 -0
- tests/{test_quantization.py → layers/jax/test_qwix.py} +183 -50
- tests/layers/jax/test_rope.py +93 -0
- tests/layers/jax/test_sharding.py +159 -0
- tests/layers/jax/test_transformer_block.py +152 -0
- tests/layers/vllm/__init__.py +13 -0
- tests/layers/vllm/test_attention.py +363 -0
- tests/layers/vllm/test_awq.py +405 -0
- tests/layers/vllm/test_compressed_tensors_moe.py +202 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +418 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +441 -0
- tests/layers/vllm/test_fp8.py +17 -0
- tests/layers/vllm/test_mxfp4.py +312 -0
- tests/layers/vllm/test_unquantized.py +651 -0
- tests/layers/vllm/utils.py +87 -0
- tests/lora/__init__.py +13 -0
- tests/lora/conftest.py +14 -0
- tests/lora/test_bgmv.py +14 -0
- tests/lora/test_layers.py +21 -3
- tests/lora/test_lora.py +15 -1
- tests/lora/test_lora_perf.py +67 -0
- tests/models/__init__.py +13 -0
- tests/models/common/__init__.py +13 -0
- tests/models/common/test_model_loader.py +455 -0
- tests/models/jax/__init__.py +13 -0
- tests/models/jax/test_deepseek_v3.py +401 -0
- tests/models/jax/test_llama3.py +184 -0
- tests/models/jax/test_llama4.py +298 -0
- tests/models/jax/test_llama_eagle3.py +197 -0
- tests/models/jax/test_llama_guard_4.py +242 -0
- tests/models/jax/test_qwen2.py +172 -0
- tests/models/jax/test_qwen2_5_vl.py +605 -0
- tests/models/jax/test_qwen3.py +169 -0
- tests/models/jax/test_weight_loading.py +180 -0
- tests/models/jax/utils/__init__.py +13 -0
- tests/models/jax/utils/test_multi_modal_utils.py +212 -0
- tests/platforms/__init__.py +13 -0
- tests/platforms/test_tpu_platform.py +54 -0
- tests/runner/__init__.py +13 -0
- tests/runner/test_block_table.py +395 -0
- tests/runner/test_input_batch.py +226 -0
- tests/runner/test_kv_cache.py +220 -0
- tests/runner/test_kv_cache_manager.py +498 -0
- tests/runner/test_multimodal_manager.py +429 -0
- tests/runner/test_persistent_batch_manager.py +84 -0
- tests/runner/test_speculative_decoding_manager.py +368 -0
- tests/runner/test_structured_decoding_manager.py +220 -0
- tests/runner/test_tpu_runner.py +261 -0
- tests/runner/test_tpu_runner_dp.py +1099 -0
- tests/runner/test_tpu_runner_mesh.py +200 -0
- tests/runner/test_utils.py +411 -0
- tests/spec_decode/__init__.py +13 -0
- tests/spec_decode/test_eagle3.py +311 -0
- tests/test_base.py +14 -0
- tests/test_envs.py +110 -12
- tests/test_tpu_info.py +14 -0
- tests/test_utils.py +2 -45
- tests/worker/__init__.py +13 -0
- tests/worker/tpu_worker_test.py +414 -0
- tpu_inference/__init__.py +14 -0
- tpu_inference/core/__init__.py +13 -0
- tpu_inference/core/sched/__init__.py +13 -0
- tpu_inference/core/sched/dp_scheduler.py +372 -56
- tpu_inference/distributed/__init__.py +13 -0
- tpu_inference/distributed/jax_parallel_state.py +14 -0
- tpu_inference/distributed/tpu_connector.py +15 -10
- tpu_inference/distributed/utils.py +56 -4
- tpu_inference/envs.py +92 -8
- tpu_inference/executors/__init__.py +13 -0
- tpu_inference/executors/ray_distributed_executor.py +22 -1
- tpu_inference/experimental/__init__.py +13 -0
- tpu_inference/experimental/llama3_jax_stashed.py +14 -0
- tpu_inference/kernels/__init__.py +13 -0
- tpu_inference/kernels/collectives/__init__.py +13 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +12 -6
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +7 -2
- tpu_inference/kernels/flash_attention/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/kernel.py +370 -324
- tpu_inference/kernels/megablox/__init__.py +13 -0
- tpu_inference/kernels/megablox/common.py +54 -0
- tpu_inference/kernels/megablox/gmm.py +646 -0
- tpu_inference/kernels/mla/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/kernel.py +117 -145
- tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +69 -8
- tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +2 -1
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +2 -1
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +194 -101
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +167 -97
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +3817 -3504
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +376 -195
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +15 -1
- tpu_inference/layers/__init__.py +13 -0
- tpu_inference/layers/common/__init__.py +13 -0
- tpu_inference/layers/common/attention_interface.py +26 -19
- tpu_inference/layers/common/attention_metadata.py +14 -0
- tpu_inference/layers/common/quant_methods.py +15 -0
- tpu_inference/layers/common/quantization.py +270 -0
- tpu_inference/layers/common/sharding.py +31 -9
- tpu_inference/layers/jax/__init__.py +13 -0
- tpu_inference/layers/jax/attention/__init__.py +13 -0
- tpu_inference/layers/jax/attention/attention.py +19 -6
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +270 -77
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +24 -11
- tpu_inference/layers/jax/attention/llama4_attention.py +17 -4
- tpu_inference/layers/jax/base.py +14 -0
- tpu_inference/layers/jax/constants.py +13 -0
- tpu_inference/layers/jax/layers.py +14 -0
- tpu_inference/layers/jax/misc.py +14 -0
- tpu_inference/layers/jax/moe/__init__.py +13 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +20 -13
- tpu_inference/layers/jax/moe/gpt_oss_moe.py +14 -0
- tpu_inference/layers/jax/moe/moe.py +43 -3
- tpu_inference/layers/jax/pp_utils.py +53 -0
- tpu_inference/layers/jax/rope.py +14 -0
- tpu_inference/layers/jax/rope_interface.py +14 -0
- tpu_inference/layers/jax/sample/__init__.py +13 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +13 -0
- tpu_inference/layers/jax/sample/sampling.py +15 -1
- tpu_inference/layers/jax/sample/sampling_metadata.py +14 -0
- tpu_inference/layers/jax/transformer_block.py +14 -0
- tpu_inference/layers/vllm/__init__.py +13 -0
- tpu_inference/layers/vllm/attention.py +4 -4
- tpu_inference/layers/vllm/fused_moe.py +210 -260
- tpu_inference/layers/vllm/linear_common.py +57 -22
- tpu_inference/layers/vllm/quantization/__init__.py +16 -0
- tpu_inference/layers/vllm/quantization/awq.py +15 -1
- tpu_inference/layers/vllm/quantization/common.py +33 -18
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +18 -3
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +211 -148
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +14 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +14 -0
- tpu_inference/layers/vllm/quantization/fp8.py +118 -0
- tpu_inference/layers/vllm/quantization/mxfp4.py +280 -210
- tpu_inference/layers/vllm/quantization/unquantized.py +134 -86
- tpu_inference/layers/vllm/sharding.py +21 -4
- tpu_inference/lora/__init__.py +13 -0
- tpu_inference/lora/torch_lora_ops.py +8 -13
- tpu_inference/models/__init__.py +13 -0
- tpu_inference/models/common/__init__.py +13 -0
- tpu_inference/models/common/model_loader.py +77 -36
- tpu_inference/models/jax/__init__.py +13 -0
- tpu_inference/models/jax/deepseek_v3.py +267 -157
- tpu_inference/models/jax/gpt_oss.py +26 -10
- tpu_inference/models/jax/jax_intermediate_tensor.py +14 -0
- tpu_inference/models/jax/llama3.py +99 -36
- tpu_inference/models/jax/llama4.py +14 -0
- tpu_inference/models/jax/llama_eagle3.py +14 -0
- tpu_inference/models/jax/llama_guard_4.py +15 -1
- tpu_inference/models/jax/qwen2.py +17 -2
- tpu_inference/models/jax/qwen2_5_vl.py +18 -4
- tpu_inference/models/jax/qwen3.py +17 -2
- tpu_inference/models/jax/utils/__init__.py +13 -0
- tpu_inference/models/jax/utils/file_utils.py +14 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +18 -4
- tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
- tpu_inference/models/jax/utils/{quantization/quantization_utils.py → qwix/qwix_utils.py} +91 -31
- tpu_inference/models/jax/utils/weight_utils.py +39 -2
- tpu_inference/models/vllm/__init__.py +13 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +20 -4
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +14 -0
- tpu_inference/platforms/__init__.py +14 -0
- tpu_inference/platforms/tpu_platform.py +47 -71
- tpu_inference/runner/__init__.py +13 -0
- tpu_inference/runner/compilation_manager.py +158 -63
- tpu_inference/runner/kv_cache.py +54 -20
- tpu_inference/runner/kv_cache_manager.py +53 -30
- tpu_inference/runner/lora_utils.py +14 -0
- tpu_inference/runner/multimodal_manager.py +15 -1
- tpu_inference/runner/persistent_batch_manager.py +54 -2
- tpu_inference/runner/speculative_decoding_manager.py +14 -0
- tpu_inference/runner/structured_decoding_manager.py +14 -0
- tpu_inference/runner/tpu_runner.py +105 -57
- tpu_inference/runner/utils.py +2 -2
- tpu_inference/spec_decode/__init__.py +13 -0
- tpu_inference/spec_decode/jax/__init__.py +13 -0
- tpu_inference/spec_decode/jax/eagle3.py +65 -19
- tpu_inference/tpu_info.py +14 -0
- tpu_inference/utils.py +72 -44
- tpu_inference/worker/__init__.py +13 -0
- tpu_inference/worker/tpu_worker.py +65 -52
- {tpu_inference-0.11.1.dev202511270815.dist-info → tpu_inference-0.13.0rc2.post7.dist-info}/METADATA +11 -9
- tpu_inference-0.13.0rc2.post7.dist-info/RECORD +261 -0
- tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
- tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +0 -5
- tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +0 -6
- tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +0 -5
- tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +0 -6
- tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +0 -105
- tpu_inference-0.11.1.dev202511270815.dist-info/RECORD +0 -174
- {tpu_inference-0.11.1.dev202511270815.dist-info → tpu_inference-0.13.0rc2.post7.dist-info}/WHEEL +0 -0
- {tpu_inference-0.11.1.dev202511270815.dist-info → tpu_inference-0.13.0rc2.post7.dist-info}/licenses/LICENSE +0 -0
- {tpu_inference-0.11.1.dev202511270815.dist-info → tpu_inference-0.13.0rc2.post7.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,156 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from unittest.mock import MagicMock
|
|
16
|
+
|
|
17
|
+
import jax
|
|
18
|
+
import jax.numpy as jnp
|
|
19
|
+
import numpy as np
|
|
20
|
+
import pytest
|
|
21
|
+
from jax.sharding import Mesh
|
|
22
|
+
|
|
23
|
+
from tpu_inference.layers.common.attention_interface import attention
|
|
24
|
+
from tpu_inference.layers.common.attention_metadata import AttentionMetadata
|
|
25
|
+
from tpu_inference.runner.kv_cache import get_kv_cache_shape_with_mesh
|
|
26
|
+
|
|
27
|
+
# ---- Test Configuration & Constants ----
|
|
28
|
+
|
|
29
|
+
# Total number of tokens across all sequences in the batch
|
|
30
|
+
TOTAL_TOKENS = 10
|
|
31
|
+
# Number of sequences in the batch
|
|
32
|
+
NUM_SEQS = 2
|
|
33
|
+
# Padded maximum number of sequences
|
|
34
|
+
MAX_NUM_SEQS = 4
|
|
35
|
+
# Number of attention heads (Query)
|
|
36
|
+
NUM_HEADS = 8
|
|
37
|
+
# Number of attention heads (Key/Value) - for Grouped-Query Attention
|
|
38
|
+
NUM_KV_HEADS = 4
|
|
39
|
+
# Total number of blocks in the KV cache
|
|
40
|
+
NUM_BLOCKS = 32
|
|
41
|
+
# Number of tokens per block
|
|
42
|
+
BLOCK_SIZE = 16
|
|
43
|
+
# Maximum number of blocks a single sequence can occupy
|
|
44
|
+
MAX_BLOCKS_PER_SEQ = 8
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
@pytest.fixture
|
|
48
|
+
def mesh():
|
|
49
|
+
"""Provides a mock 1D JAX mesh for testing."""
|
|
50
|
+
# Create a mesh with available devices, useful for running on CPU/GPU/TPU
|
|
51
|
+
# For this test, it will likely be a single CPU device.
|
|
52
|
+
devices = np.array(jax.local_devices()[:1])
|
|
53
|
+
if not devices.any():
|
|
54
|
+
# Add a mock device if no devices are present (e.g., in a CI environment)
|
|
55
|
+
devices = np.array([jax.devices("cpu")[0]])
|
|
56
|
+
return Mesh(devices.reshape((-1, 1, 1)), ("data", "attn_dp", "model"))
|
|
57
|
+
|
|
58
|
+
|
|
59
|
+
# ---- Test for `attention` ----
|
|
60
|
+
|
|
61
|
+
|
|
62
|
+
def _test_attention(monkeypatch, mesh, head_dim, use_sinks=False):
|
|
63
|
+
"""
|
|
64
|
+
Tests the main `attention` function.
|
|
65
|
+
|
|
66
|
+
Verifies that:
|
|
67
|
+
1. It calls the `sharded_ragged_paged_attention` kernel with correct metadata.
|
|
68
|
+
2. The final outputs (kv_cache and attention output) have the correct shapes.
|
|
69
|
+
"""
|
|
70
|
+
# 1. Arrange
|
|
71
|
+
|
|
72
|
+
# Create input tensors
|
|
73
|
+
q_dtype = jnp.float32
|
|
74
|
+
kv_dtype = jnp.float32
|
|
75
|
+
q = jnp.ones((TOTAL_TOKENS, NUM_HEADS, head_dim), dtype=q_dtype)
|
|
76
|
+
k = jnp.ones((TOTAL_TOKENS, NUM_KV_HEADS, head_dim), dtype=kv_dtype)
|
|
77
|
+
v = jnp.ones((TOTAL_TOKENS, NUM_KV_HEADS, head_dim), dtype=kv_dtype)
|
|
78
|
+
sinks = jnp.ones((NUM_HEADS, ), dtype=jnp.float32) if use_sinks else None
|
|
79
|
+
|
|
80
|
+
kv_cache_shape = get_kv_cache_shape_with_mesh(
|
|
81
|
+
mesh,
|
|
82
|
+
NUM_BLOCKS,
|
|
83
|
+
BLOCK_SIZE,
|
|
84
|
+
NUM_KV_HEADS,
|
|
85
|
+
head_dim,
|
|
86
|
+
kv_dtype,
|
|
87
|
+
)
|
|
88
|
+
kv_cache = jnp.zeros(kv_cache_shape, dtype=kv_dtype)
|
|
89
|
+
|
|
90
|
+
# Mock ragged_paged_attention to return a tensor of the correct shape
|
|
91
|
+
mock_paged_attn_kernel = MagicMock(return_value=(jnp.ones(
|
|
92
|
+
(TOTAL_TOKENS, NUM_HEADS, head_dim)), kv_cache), )
|
|
93
|
+
|
|
94
|
+
if head_dim == 64:
|
|
95
|
+
monkeypatch.setattr(
|
|
96
|
+
"tpu_inference.layers.common.attention_interface.ragged_paged_attention_hd64",
|
|
97
|
+
mock_paged_attn_kernel,
|
|
98
|
+
)
|
|
99
|
+
else:
|
|
100
|
+
monkeypatch.setattr(
|
|
101
|
+
"tpu_inference.layers.common.attention_interface.ragged_paged_attention",
|
|
102
|
+
mock_paged_attn_kernel,
|
|
103
|
+
)
|
|
104
|
+
|
|
105
|
+
# Create AttentionMetadata
|
|
106
|
+
attention_metadata = AttentionMetadata(
|
|
107
|
+
input_positions=jnp.arange(TOTAL_TOKENS, dtype=jnp.int32),
|
|
108
|
+
block_tables=jnp.zeros((MAX_NUM_SEQS * MAX_BLOCKS_PER_SEQ, ),
|
|
109
|
+
dtype=jnp.int32),
|
|
110
|
+
seq_lens=jnp.array([5, 5, 0, 0], dtype=jnp.int32),
|
|
111
|
+
query_start_loc=jnp.array([0, 5, 10, 10, 10], dtype=jnp.int32),
|
|
112
|
+
request_distribution=jnp.array([0, 0, NUM_SEQS], dtype=jnp.int32),
|
|
113
|
+
)
|
|
114
|
+
|
|
115
|
+
# 2. Act
|
|
116
|
+
final_kv_cache, output = attention(
|
|
117
|
+
kv_cache=kv_cache,
|
|
118
|
+
q=q,
|
|
119
|
+
k=k,
|
|
120
|
+
v=v,
|
|
121
|
+
attention_metadata=attention_metadata,
|
|
122
|
+
mesh=mesh,
|
|
123
|
+
head_dim_original=head_dim,
|
|
124
|
+
sinks=sinks,
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
# 3. Assert
|
|
128
|
+
# Check that both mocked kernels were called
|
|
129
|
+
mock_paged_attn_kernel.assert_called_once()
|
|
130
|
+
|
|
131
|
+
# Check output shapes
|
|
132
|
+
assert final_kv_cache.shape == kv_cache.shape
|
|
133
|
+
assert output.shape == q.shape
|
|
134
|
+
|
|
135
|
+
# Check that the output is the one from our mock
|
|
136
|
+
assert jnp.all(output == 1.0)
|
|
137
|
+
|
|
138
|
+
|
|
139
|
+
def test_attention(monkeypatch, mesh):
|
|
140
|
+
_test_attention(monkeypatch, mesh, 128)
|
|
141
|
+
|
|
142
|
+
|
|
143
|
+
def test_attention_hd64(monkeypatch, mesh):
|
|
144
|
+
_test_attention(monkeypatch, mesh, 64)
|
|
145
|
+
|
|
146
|
+
|
|
147
|
+
def test_attention_sink(monkeypatch, mesh):
|
|
148
|
+
_test_attention(monkeypatch, mesh, 64, True)
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
def test_attention_sink_no_64_raises_error(monkeypatch, mesh):
|
|
152
|
+
with pytest.raises(
|
|
153
|
+
NotImplementedError,
|
|
154
|
+
match="Attention sink support is only available when head_dim==64"
|
|
155
|
+
):
|
|
156
|
+
_test_attention(monkeypatch, mesh, 128, True)
|
|
@@ -0,0 +1,149 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import functools
|
|
16
|
+
|
|
17
|
+
import jax
|
|
18
|
+
import jax.numpy as jnp
|
|
19
|
+
from absl.testing import absltest, parameterized
|
|
20
|
+
from jax._src import test_util as jtu
|
|
21
|
+
|
|
22
|
+
from tpu_inference.layers.common.quantization import (
|
|
23
|
+
dequantize_tensor, dequantize_tensor_from_mxfp4_packed, quantize_kv,
|
|
24
|
+
quantize_tensor, quantize_tensor_to_mxfp4_packed)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
@jtu.with_config(jax_numpy_dtype_promotion="standard")
|
|
28
|
+
class QuantizationTest(jtu.JaxTestCase):
|
|
29
|
+
|
|
30
|
+
@parameterized.product(axis=[-1, 0, (0, 1)])
|
|
31
|
+
def test_mxfp4_quantization(self, axis):
|
|
32
|
+
if not jtu.is_device_tpu_at_least(version=7):
|
|
33
|
+
self.skipTest("mxfp4 is only supported in TPUv7+")
|
|
34
|
+
|
|
35
|
+
key = jax.random.key(0)
|
|
36
|
+
|
|
37
|
+
shape = (128, 128, 128)
|
|
38
|
+
original = jax.random.normal(key, shape, jnp.bfloat16)
|
|
39
|
+
|
|
40
|
+
tensor_q, scale = quantize_tensor_to_mxfp4_packed(original, axis)
|
|
41
|
+
dequantized = dequantize_tensor_from_mxfp4_packed(
|
|
42
|
+
tensor_q, scale, axis)
|
|
43
|
+
|
|
44
|
+
self.assertAllClose(dequantized, original, rtol=0.5, atol=0.5)
|
|
45
|
+
|
|
46
|
+
@parameterized.product(dtype=[jnp.float8_e4m3fn, jnp.int8],
|
|
47
|
+
axis=[None, -1, 1, (0, 1)])
|
|
48
|
+
def test_quantization(self, dtype, axis):
|
|
49
|
+
key = jax.random.key(0)
|
|
50
|
+
|
|
51
|
+
shape = (128, 128, 128)
|
|
52
|
+
original = jax.random.normal(key, shape, jnp.bfloat16)
|
|
53
|
+
|
|
54
|
+
tensor_q, scale = quantize_tensor(dtype, original, axis)
|
|
55
|
+
dequantized = dequantize_tensor(tensor_q, scale, axis)
|
|
56
|
+
|
|
57
|
+
self.assertAllClose(dequantized, original, rtol=0.1, atol=0.1)
|
|
58
|
+
|
|
59
|
+
@parameterized.product(dtype=[jnp.float8_e4m3fn, jnp.int8],
|
|
60
|
+
axis=[-1, 1],
|
|
61
|
+
block_size=[32, 64])
|
|
62
|
+
def test_block_quantization(self, dtype, axis, block_size):
|
|
63
|
+
key = jax.random.key(0)
|
|
64
|
+
|
|
65
|
+
shape = (128, 128, 128)
|
|
66
|
+
original = jax.random.normal(key, shape, jnp.bfloat16)
|
|
67
|
+
|
|
68
|
+
tensor_q, scale = quantize_tensor(dtype, original, axis, block_size)
|
|
69
|
+
dequantized = dequantize_tensor(tensor_q, scale, axis)
|
|
70
|
+
|
|
71
|
+
self.assertAllClose(dequantized, original, rtol=0.1, atol=0.1)
|
|
72
|
+
|
|
73
|
+
@parameterized.product(dtype=[jnp.float8_e4m3fn, jnp.int8],
|
|
74
|
+
axis=[(0, 1), (-1, 0)],
|
|
75
|
+
block_size=[32, (64, 32)])
|
|
76
|
+
def test_multi_block_quantization(self, dtype, axis, block_size):
|
|
77
|
+
key = jax.random.key(0)
|
|
78
|
+
|
|
79
|
+
shape = (128, 128, 128)
|
|
80
|
+
original = jax.random.normal(key, shape, jnp.bfloat16)
|
|
81
|
+
|
|
82
|
+
tensor_q, scale = quantize_tensor(dtype, original, axis, block_size)
|
|
83
|
+
dequantized = dequantize_tensor(tensor_q, scale, axis)
|
|
84
|
+
|
|
85
|
+
self.assertAllClose(dequantized, original, rtol=0.1, atol=0.1)
|
|
86
|
+
|
|
87
|
+
def test_unaligned_block_quantization_raises_error(self):
|
|
88
|
+
key = jax.random.key(0)
|
|
89
|
+
|
|
90
|
+
shape = (128, 128)
|
|
91
|
+
tensor = jax.random.normal(key, shape, jnp.bfloat16)
|
|
92
|
+
block_size = 100
|
|
93
|
+
axis = 0
|
|
94
|
+
|
|
95
|
+
self.assertRaises(
|
|
96
|
+
ValueError,
|
|
97
|
+
functools.partial(quantize_tensor, jnp.int8, tensor, axis,
|
|
98
|
+
block_size))
|
|
99
|
+
|
|
100
|
+
def test_block_quantization_padding(self):
|
|
101
|
+
key = jax.random.key(0)
|
|
102
|
+
|
|
103
|
+
shape = (128, 128)
|
|
104
|
+
|
|
105
|
+
original = jax.random.normal(key, shape, jnp.bfloat16)
|
|
106
|
+
block_size = 100
|
|
107
|
+
axis = 0
|
|
108
|
+
|
|
109
|
+
tensor_q, scale = quantize_tensor(jnp.int8, original, axis, block_size,
|
|
110
|
+
True)
|
|
111
|
+
|
|
112
|
+
dequantized = dequantize_tensor(tensor_q, scale, axis)
|
|
113
|
+
|
|
114
|
+
padded_size = ((shape[axis] + block_size) // block_size) * block_size
|
|
115
|
+
self.assertEqual(tensor_q.shape[axis], padded_size)
|
|
116
|
+
self.assertTrue((tensor_q[shape[0]:] == 0).all())
|
|
117
|
+
self.assertAllClose(dequantized[:shape[0]],
|
|
118
|
+
original,
|
|
119
|
+
rtol=0.1,
|
|
120
|
+
atol=0.1)
|
|
121
|
+
|
|
122
|
+
@parameterized.product(kv_quant_dtype=[jnp.float8_e4m3fn, jnp.int8])
|
|
123
|
+
def test_quantize_kv(self, kv_quant_dtype):
|
|
124
|
+
"""Tests the quantize_kv function with float8_e4m3fn dtype."""
|
|
125
|
+
key = jax.random.key(0)
|
|
126
|
+
|
|
127
|
+
shape = (128, 128)
|
|
128
|
+
k_original = jax.random.normal(key, shape, jnp.bfloat16)
|
|
129
|
+
v_original = jax.random.normal(key, shape, jnp.bfloat16)
|
|
130
|
+
k_scale = 0.1
|
|
131
|
+
v_scale = 0.2
|
|
132
|
+
|
|
133
|
+
k_quantized, v_quantized = quantize_kv(
|
|
134
|
+
kv_quant_dtype,
|
|
135
|
+
k_original,
|
|
136
|
+
v_original,
|
|
137
|
+
k_scale,
|
|
138
|
+
v_scale,
|
|
139
|
+
)
|
|
140
|
+
|
|
141
|
+
k_dequantized = k_quantized.astype(jnp.bfloat16) * k_scale
|
|
142
|
+
v_dequantized = v_quantized.astype(jnp.bfloat16) * v_scale
|
|
143
|
+
|
|
144
|
+
self.assertAllClose(k_dequantized, k_original, rtol=0.2, atol=0.2)
|
|
145
|
+
self.assertAllClose(v_dequantized, v_original, rtol=0.2, atol=0.2)
|
|
146
|
+
|
|
147
|
+
|
|
148
|
+
if __name__ == "__main__":
|
|
149
|
+
absltest.main(testLoader=jtu.JaxTestLoader())
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
@@ -0,0 +1,13 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
@@ -0,0 +1,103 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import unittest
|
|
16
|
+
from typing import Tuple
|
|
17
|
+
|
|
18
|
+
import jax
|
|
19
|
+
import jax.numpy as jnp
|
|
20
|
+
import numpy as np
|
|
21
|
+
from flax import nnx
|
|
22
|
+
from jax.sharding import Mesh
|
|
23
|
+
from parameterized import parameterized
|
|
24
|
+
|
|
25
|
+
from tpu_inference.layers.common.attention_interface import get_kv_cache_shape
|
|
26
|
+
from tpu_inference.layers.common.attention_metadata import AttentionMetadata
|
|
27
|
+
from tpu_inference.layers.jax.attention.attention import Attention
|
|
28
|
+
|
|
29
|
+
KVCache = Tuple[jax.Array, jax.Array]
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class TestAttention(unittest.TestCase):
|
|
33
|
+
"""Unit test suite for the JAX Attention module."""
|
|
34
|
+
|
|
35
|
+
def setUp(self):
|
|
36
|
+
"""Sets up the testing environment before each test."""
|
|
37
|
+
self.mesh = Mesh(
|
|
38
|
+
np.array(jax.devices()[:1]).reshape(1, 1, 1, -1),
|
|
39
|
+
axis_names=(
|
|
40
|
+
"data",
|
|
41
|
+
"attn_dp",
|
|
42
|
+
"expert",
|
|
43
|
+
"model",
|
|
44
|
+
),
|
|
45
|
+
)
|
|
46
|
+
|
|
47
|
+
@parameterized.expand([["auto"], ["fp8"]])
|
|
48
|
+
def test_attention_forward_pass(self, kv_cache_str):
|
|
49
|
+
"""Tests the forward pass of the Attention module in prefill mode."""
|
|
50
|
+
hidden_size = 1024
|
|
51
|
+
num_attention_heads = 8
|
|
52
|
+
head_dim = hidden_size // num_attention_heads
|
|
53
|
+
|
|
54
|
+
with jax.set_mesh(self.mesh):
|
|
55
|
+
attention = Attention(hidden_size=hidden_size,
|
|
56
|
+
num_attention_heads=num_attention_heads,
|
|
57
|
+
num_key_value_heads=num_attention_heads,
|
|
58
|
+
head_dim=head_dim,
|
|
59
|
+
rope_theta=10000.0,
|
|
60
|
+
rope_scaling={},
|
|
61
|
+
dtype=jnp.bfloat16,
|
|
62
|
+
mesh=self.mesh,
|
|
63
|
+
random_init=True,
|
|
64
|
+
rngs=nnx.Rngs(42),
|
|
65
|
+
kv_cache_dtype=kv_cache_str)
|
|
66
|
+
|
|
67
|
+
seq_len = 64
|
|
68
|
+
x = jnp.ones((seq_len, hidden_size), dtype=jnp.bfloat16)
|
|
69
|
+
|
|
70
|
+
block_size = 16
|
|
71
|
+
num_blocks = 8
|
|
72
|
+
kv_dtype = jnp.float8_e4m3fn if kv_cache_str == "fp8" else jnp.bfloat16
|
|
73
|
+
cache_shape = get_kv_cache_shape(num_blocks, block_size,
|
|
74
|
+
num_attention_heads, head_dim,
|
|
75
|
+
kv_dtype)
|
|
76
|
+
|
|
77
|
+
kv_cache = jnp.zeros(cache_shape, dtype=kv_dtype)
|
|
78
|
+
|
|
79
|
+
num_required_blocks = seq_len // block_size
|
|
80
|
+
|
|
81
|
+
attention_metadata = AttentionMetadata(
|
|
82
|
+
input_positions=jnp.arange(seq_len, dtype=jnp.int32),
|
|
83
|
+
block_tables=jnp.array(list(range(num_required_blocks)),
|
|
84
|
+
dtype=jnp.int32),
|
|
85
|
+
seq_lens=jnp.array([seq_len], dtype=jnp.int32),
|
|
86
|
+
query_start_loc=jnp.array([0, seq_len], dtype=jnp.int32),
|
|
87
|
+
request_distribution=jnp.array([0, 0, 1], dtype=jnp.int32),
|
|
88
|
+
)
|
|
89
|
+
|
|
90
|
+
new_kv_cache, output = attention(
|
|
91
|
+
x,
|
|
92
|
+
is_prefill=True,
|
|
93
|
+
kv_cache=kv_cache,
|
|
94
|
+
attention_metadata=attention_metadata,
|
|
95
|
+
)
|
|
96
|
+
|
|
97
|
+
self.assertEqual(output.shape, (seq_len, hidden_size))
|
|
98
|
+
|
|
99
|
+
self.assertEqual(new_kv_cache.shape, kv_cache.shape)
|
|
100
|
+
|
|
101
|
+
|
|
102
|
+
if __name__ == "__main__":
|
|
103
|
+
unittest.main()
|
|
@@ -0,0 +1,233 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import os
|
|
16
|
+
import unittest
|
|
17
|
+
|
|
18
|
+
import jax
|
|
19
|
+
import jax.numpy as jnp
|
|
20
|
+
import numpy as np
|
|
21
|
+
from flax import nnx
|
|
22
|
+
from jax.sharding import Mesh, PartitionSpec
|
|
23
|
+
from parameterized import parameterized
|
|
24
|
+
|
|
25
|
+
import tpu_inference.kernels.mla.v1.kernel as mla
|
|
26
|
+
from tpu_inference.layers.common.attention_interface import get_kv_cache_shape
|
|
27
|
+
from tpu_inference.layers.common.attention_metadata import AttentionMetadata
|
|
28
|
+
from tpu_inference.layers.common.sharding import ShardingAxisName
|
|
29
|
+
from tpu_inference.layers.jax.attention.deepseek_v3_attention import MLA
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class TestMLA(unittest.TestCase):
|
|
33
|
+
|
|
34
|
+
def setUp(self):
|
|
35
|
+
os.environ["NEW_MODEL_DESIGN"] = "1"
|
|
36
|
+
self.mesh = Mesh(
|
|
37
|
+
np.array(jax.devices("tpu")[:1]).reshape(1, 1, 1, 1),
|
|
38
|
+
axis_names=("data", "attn_dp", "expert", "model"),
|
|
39
|
+
)
|
|
40
|
+
|
|
41
|
+
@parameterized.expand([["auto"], ["fp8"]])
|
|
42
|
+
def test_mla_forward_pass(self, kv_cache_str):
|
|
43
|
+
hidden_size = 256
|
|
44
|
+
|
|
45
|
+
num_key_value_heads = 32
|
|
46
|
+
qk_nope_head_dim = 64
|
|
47
|
+
qk_rope_head_dim = 32
|
|
48
|
+
|
|
49
|
+
with jax.set_mesh(self.mesh):
|
|
50
|
+
query_tnh_spec = PartitionSpec(None, ShardingAxisName.MLP_TENSOR,
|
|
51
|
+
None)
|
|
52
|
+
keyvalue_skh_spec = PartitionSpec(None,
|
|
53
|
+
ShardingAxisName.MLP_TENSOR,
|
|
54
|
+
None)
|
|
55
|
+
attn_o_tnh_spec = PartitionSpec(None, ShardingAxisName.MLP_TENSOR,
|
|
56
|
+
None)
|
|
57
|
+
|
|
58
|
+
mla_layer = MLA(
|
|
59
|
+
hidden_size=hidden_size,
|
|
60
|
+
num_attention_heads=32,
|
|
61
|
+
num_key_value_heads=num_key_value_heads,
|
|
62
|
+
head_dim=64, # MLA uses v_head_dim as head_dim
|
|
63
|
+
rope_theta=10000,
|
|
64
|
+
dtype=jnp.bfloat16,
|
|
65
|
+
q_lora_rank=512,
|
|
66
|
+
kv_lora_rank=512,
|
|
67
|
+
qk_nope_head_dim=
|
|
68
|
+
qk_nope_head_dim, # Half of DeepSeek v3's real values
|
|
69
|
+
qk_rope_head_dim=
|
|
70
|
+
qk_rope_head_dim, # Half of DeepSeek v3's real values
|
|
71
|
+
v_head_dim=64, # Half of DeepSeek v3's real values
|
|
72
|
+
rms_norm_eps=1e-5,
|
|
73
|
+
rngs=nnx.Rngs(42),
|
|
74
|
+
rope_scaling={
|
|
75
|
+
"beta_fast": 32,
|
|
76
|
+
"beta_slow": 1,
|
|
77
|
+
"factor": 40,
|
|
78
|
+
"mscale": 1.0,
|
|
79
|
+
"mscale_all_dim": 1.0,
|
|
80
|
+
"original_max_position_embeddings": 4096,
|
|
81
|
+
"type": "yarn",
|
|
82
|
+
},
|
|
83
|
+
mesh=self.mesh,
|
|
84
|
+
random_init=True,
|
|
85
|
+
kv_cache_dtype=kv_cache_str,
|
|
86
|
+
query_tnh=query_tnh_spec,
|
|
87
|
+
keyvalue_skh=keyvalue_skh_spec,
|
|
88
|
+
attn_o_tnh=attn_o_tnh_spec,
|
|
89
|
+
q_da_sharding=(None, ShardingAxisName.VOCAB),
|
|
90
|
+
anh_sharding=(None, ShardingAxisName.MLP_TENSOR, None),
|
|
91
|
+
ap_sharding=(None, ShardingAxisName.MLP_TENSOR),
|
|
92
|
+
kv_da_sharding=(None, ShardingAxisName.VOCAB),
|
|
93
|
+
rd_sharding=(ShardingAxisName.MLP_TENSOR, None),
|
|
94
|
+
)
|
|
95
|
+
|
|
96
|
+
# Create input tensor
|
|
97
|
+
seq_len = 32
|
|
98
|
+
x = jnp.ones((seq_len, hidden_size), dtype=jnp.bfloat16)
|
|
99
|
+
|
|
100
|
+
# Create KV cache
|
|
101
|
+
qk_head_dim = qk_nope_head_dim + qk_rope_head_dim
|
|
102
|
+
block_size = 16
|
|
103
|
+
num_blocks = 8
|
|
104
|
+
kv_dtype = jnp.float8_e4m3fn if kv_cache_str == "fp8" else jnp.bfloat16
|
|
105
|
+
cache_shape = get_kv_cache_shape(num_blocks, block_size,
|
|
106
|
+
num_key_value_heads, qk_head_dim,
|
|
107
|
+
kv_dtype)
|
|
108
|
+
kv_cache = jnp.zeros(cache_shape, dtype=kv_dtype)
|
|
109
|
+
|
|
110
|
+
# Create attention metadata
|
|
111
|
+
attention_metadata = AttentionMetadata(
|
|
112
|
+
input_positions=jnp.arange(seq_len, dtype=jnp.int32),
|
|
113
|
+
block_tables=jnp.zeros((8, ), dtype=jnp.int32),
|
|
114
|
+
seq_lens=jnp.ones((1, ), dtype=jnp.int32) * seq_len,
|
|
115
|
+
query_start_loc=jnp.array(
|
|
116
|
+
[0, seq_len], dtype=jnp.int32), # This is cu_q_lens
|
|
117
|
+
request_distribution=jnp.array([0, 0, 1], dtype=jnp.int32),
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
mla_layer.rope.initialize_cache(self.mesh)
|
|
121
|
+
|
|
122
|
+
# Run forward pass
|
|
123
|
+
new_kv_cache, output = mla_layer(
|
|
124
|
+
x,
|
|
125
|
+
is_prefill=True,
|
|
126
|
+
kv_cache=kv_cache,
|
|
127
|
+
attention_metadata=attention_metadata)
|
|
128
|
+
|
|
129
|
+
# Verify output shapes
|
|
130
|
+
self.assertEqual(output.shape, (seq_len, hidden_size))
|
|
131
|
+
self.assertEqual(new_kv_cache.shape, kv_cache.shape)
|
|
132
|
+
|
|
133
|
+
@parameterized.expand([["auto"]]) # MLA kernel does not support fp8 yet
|
|
134
|
+
def test_mla_kernel_forward_pass(self, kv_cache_str):
|
|
135
|
+
hidden_size = 256
|
|
136
|
+
|
|
137
|
+
num_key_value_heads = 1
|
|
138
|
+
qk_nope_head_dim = 64
|
|
139
|
+
qk_rope_head_dim = 32
|
|
140
|
+
v_head_dim = 64
|
|
141
|
+
kv_lora_rank = 512
|
|
142
|
+
|
|
143
|
+
with jax.set_mesh(self.mesh):
|
|
144
|
+
query_tnh_spec = PartitionSpec(ShardingAxisName.MLP_TENSOR, None,
|
|
145
|
+
None)
|
|
146
|
+
keyvalue_skh_spec = PartitionSpec(ShardingAxisName.MLP_TENSOR,
|
|
147
|
+
None)
|
|
148
|
+
attn_o_tnh_spec = PartitionSpec(ShardingAxisName.MLP_TENSOR, None,
|
|
149
|
+
None)
|
|
150
|
+
|
|
151
|
+
mla_layer = MLA(
|
|
152
|
+
hidden_size=hidden_size,
|
|
153
|
+
num_attention_heads=32,
|
|
154
|
+
num_key_value_heads=num_key_value_heads,
|
|
155
|
+
head_dim=v_head_dim, # MLA uses v_head_dim as head_dim
|
|
156
|
+
rope_theta=10000,
|
|
157
|
+
dtype=jnp.bfloat16,
|
|
158
|
+
q_lora_rank=512,
|
|
159
|
+
kv_lora_rank=kv_lora_rank,
|
|
160
|
+
qk_nope_head_dim=qk_nope_head_dim,
|
|
161
|
+
qk_rope_head_dim=qk_rope_head_dim,
|
|
162
|
+
v_head_dim=v_head_dim,
|
|
163
|
+
rms_norm_eps=1e-5,
|
|
164
|
+
rngs=nnx.Rngs(42),
|
|
165
|
+
rope_scaling={
|
|
166
|
+
"beta_fast": 32,
|
|
167
|
+
"beta_slow": 1,
|
|
168
|
+
"factor": 40,
|
|
169
|
+
"mscale": 1.0,
|
|
170
|
+
"mscale_all_dim": 1.0,
|
|
171
|
+
"original_max_position_embeddings": 4096,
|
|
172
|
+
"type": "yarn",
|
|
173
|
+
},
|
|
174
|
+
mesh=self.mesh,
|
|
175
|
+
random_init=True,
|
|
176
|
+
kv_cache_dtype=kv_cache_str,
|
|
177
|
+
use_mla_kernel=
|
|
178
|
+
True, # Set to true, in order to trigger MLA kernel.
|
|
179
|
+
query_tnh=query_tnh_spec,
|
|
180
|
+
keyvalue_skh=keyvalue_skh_spec,
|
|
181
|
+
attn_o_tnh=attn_o_tnh_spec,
|
|
182
|
+
q_da_sharding=(None, ShardingAxisName.VOCAB),
|
|
183
|
+
anh_sharding=(None, ShardingAxisName.MLP_TENSOR, None),
|
|
184
|
+
ap_sharding=(None, ShardingAxisName.MLP_TENSOR),
|
|
185
|
+
kv_da_sharding=(None, ShardingAxisName.VOCAB),
|
|
186
|
+
rd_sharding=(ShardingAxisName.MLP_TENSOR, None),
|
|
187
|
+
)
|
|
188
|
+
|
|
189
|
+
# Create input tensor
|
|
190
|
+
seq_len = 32
|
|
191
|
+
x = jnp.ones((seq_len, hidden_size), dtype=jnp.bfloat16)
|
|
192
|
+
|
|
193
|
+
# Create KV cache for MLA kernel
|
|
194
|
+
block_size = 16
|
|
195
|
+
num_blocks = 8
|
|
196
|
+
kv_dtype = jnp.float8_e4m3fn if kv_cache_str == "fp8" else jnp.bfloat16
|
|
197
|
+
|
|
198
|
+
# For the MLA kernel, the head dimension is the sum of qk_nope_head_dim and v_head_dim
|
|
199
|
+
# and lora rank
|
|
200
|
+
cache_shape = mla.get_kv_cache_shape(
|
|
201
|
+
num_blocks, block_size, kv_lora_rank + qk_rope_head_dim,
|
|
202
|
+
kv_dtype)
|
|
203
|
+
kv_cache = jnp.zeros(cache_shape, dtype=kv_dtype)
|
|
204
|
+
|
|
205
|
+
# Create attention metadata
|
|
206
|
+
attention_metadata = AttentionMetadata(
|
|
207
|
+
input_positions=jnp.arange(seq_len, dtype=jnp.int32),
|
|
208
|
+
block_tables=jnp.zeros((8, ), dtype=jnp.int32),
|
|
209
|
+
seq_lens=jnp.ones((1, ), dtype=jnp.int32) * seq_len,
|
|
210
|
+
query_start_loc=jnp.array([0, seq_len], dtype=jnp.int32),
|
|
211
|
+
request_distribution=jnp.array([0, 0, 1], dtype=jnp.int32),
|
|
212
|
+
)
|
|
213
|
+
|
|
214
|
+
mla_layer.rope.initialize_cache(self.mesh)
|
|
215
|
+
|
|
216
|
+
# Run forward pass
|
|
217
|
+
new_kv_cache, output = mla_layer(
|
|
218
|
+
x,
|
|
219
|
+
is_prefill=True,
|
|
220
|
+
kv_cache=kv_cache,
|
|
221
|
+
attention_metadata=attention_metadata)
|
|
222
|
+
|
|
223
|
+
# Verify output shapes
|
|
224
|
+
self.assertEqual(output.shape, (seq_len, hidden_size))
|
|
225
|
+
self.assertEqual(new_kv_cache.shape, kv_cache.shape)
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
if __name__ == "__main__":
|
|
229
|
+
unittest.main()
|
|
230
|
+
|
|
231
|
+
|
|
232
|
+
def tearDownModule():
|
|
233
|
+
del os.environ["NEW_MODEL_DESIGN"]
|