tpu-inference 0.11.1.dev202511220812__py3-none-any.whl → 0.13.2.dev20251230__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tpu-inference might be problematic. Click here for more details.
- tests/__init__.py +13 -0
- tests/core/__init__.py +13 -0
- tests/core/test_disagg_utils.py +14 -0
- tests/core/test_dp_scheduler.py +650 -768
- tests/core/test_init.py +14 -0
- tests/distributed/__init__.py +13 -0
- tests/distributed/test_distributed_utils.py +120 -0
- tests/distributed/test_tpu_connector.py +478 -0
- tests/e2e/__init__.py +13 -0
- tests/e2e/test_async_scheduler.py +211 -0
- tests/e2e/test_data_parallel.py +289 -0
- tests/e2e/test_hybrid_kvcache.py +219 -0
- tests/e2e/test_local_disagg.py +257 -0
- tests/e2e/test_model_loader.py +268 -0
- tests/e2e/test_multi_modal_inference.py +111 -0
- tests/e2e/test_pipeline_parallel.py +265 -0
- tests/e2e/test_runai_model_streamer_loader.py +104 -0
- tests/e2e/test_sampling_params.py +269 -0
- tests/e2e/test_speculative_decoding.py +311 -0
- tests/e2e/test_structured_decoding.py +46 -0
- tests/executors/__init__.py +13 -0
- tests/executors/test_ray_distributed_executor.py +199 -0
- tests/experimental/__init__.py +13 -0
- tests/experimental/test_llama3_jax_stashed.py +208 -0
- tests/kernels/__init__.py +13 -0
- tests/kernels/collectives/__init__.py +13 -0
- tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
- tests/kernels/fused_moe_v1_test.py +317 -34
- tests/kernels/gmm_test.py +205 -0
- tests/kernels/mla_v1_test.py +143 -41
- tests/kernels/quantized_matmul_kernel_test.py +2 -34
- tests/kernels/ragged_kv_cache_update_v2_test.py +14 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +14 -0
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +17 -1
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +17 -1
- tests/layers/__init__.py +13 -0
- tests/layers/common/__init__.py +13 -0
- tests/layers/common/test_attention_interface.py +156 -0
- tests/layers/common/test_quantization.py +149 -0
- tests/layers/jax/__init__.py +13 -0
- tests/layers/jax/attention/__init__.py +13 -0
- tests/layers/jax/attention/test_common_attention.py +103 -0
- tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
- tests/layers/jax/attention/test_llama4_attention.py +135 -0
- tests/layers/jax/moe/__init__.py +13 -0
- tests/layers/jax/moe/test_deepseek_moe.py +235 -0
- tests/layers/jax/sample/__init__.py +13 -0
- tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
- tests/layers/jax/sample/test_sampling.py +115 -0
- tests/layers/jax/sample/test_sampling_metadata.py +254 -0
- tests/layers/jax/test_layers.py +155 -0
- tests/{test_quantization.py → layers/jax/test_qwix.py} +183 -50
- tests/layers/jax/test_rope.py +93 -0
- tests/layers/jax/test_sharding.py +159 -0
- tests/layers/jax/test_transformer_block.py +152 -0
- tests/layers/vllm/__init__.py +13 -0
- tests/layers/vllm/test_attention.py +363 -0
- tests/layers/vllm/test_awq.py +406 -0
- tests/layers/vllm/test_compressed_tensors_moe.py +199 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +441 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +443 -0
- tests/layers/vllm/test_fp8.py +17 -0
- tests/layers/vllm/test_mxfp4.py +320 -0
- tests/layers/vllm/test_unquantized.py +662 -0
- tests/layers/vllm/utils.py +87 -0
- tests/lora/__init__.py +13 -0
- tests/lora/conftest.py +14 -0
- tests/lora/test_bgmv.py +14 -0
- tests/lora/test_layers.py +26 -6
- tests/lora/test_lora.py +15 -1
- tests/lora/test_lora_perf.py +67 -0
- tests/models/__init__.py +13 -0
- tests/models/common/__init__.py +13 -0
- tests/models/common/test_model_loader.py +455 -0
- tests/models/jax/__init__.py +13 -0
- tests/models/jax/test_deepseek_v3.py +401 -0
- tests/models/jax/test_llama3.py +184 -0
- tests/models/jax/test_llama4.py +298 -0
- tests/models/jax/test_llama_eagle3.py +197 -0
- tests/models/jax/test_llama_guard_4.py +242 -0
- tests/models/jax/test_qwen2.py +172 -0
- tests/models/jax/test_qwen2_5_vl.py +605 -0
- tests/models/jax/test_qwen3.py +169 -0
- tests/models/jax/test_weight_loading.py +180 -0
- tests/models/jax/utils/__init__.py +13 -0
- tests/models/jax/utils/test_multi_modal_utils.py +212 -0
- tests/platforms/__init__.py +13 -0
- tests/platforms/test_tpu_platform.py +54 -0
- tests/runner/__init__.py +13 -0
- tests/runner/test_block_table.py +395 -0
- tests/runner/test_input_batch.py +226 -0
- tests/runner/test_kv_cache.py +220 -0
- tests/runner/test_kv_cache_manager.py +498 -0
- tests/runner/test_multimodal_manager.py +429 -0
- tests/runner/test_persistent_batch_manager.py +84 -0
- tests/runner/test_speculative_decoding_manager.py +368 -0
- tests/runner/test_structured_decoding_manager.py +220 -0
- tests/runner/test_tpu_runner.py +261 -0
- tests/runner/test_tpu_runner_dp.py +1099 -0
- tests/runner/test_tpu_runner_mesh.py +200 -0
- tests/runner/test_utils.py +411 -0
- tests/spec_decode/__init__.py +13 -0
- tests/spec_decode/test_eagle3.py +311 -0
- tests/test_base.py +14 -0
- tests/test_envs.py +110 -12
- tests/test_tpu_info.py +14 -0
- tests/test_utils.py +2 -45
- tests/worker/__init__.py +13 -0
- tests/worker/tpu_worker_test.py +414 -0
- tpu_inference/__init__.py +14 -0
- tpu_inference/core/__init__.py +13 -0
- tpu_inference/core/sched/__init__.py +13 -0
- tpu_inference/core/sched/dp_scheduler.py +372 -56
- tpu_inference/distributed/__init__.py +13 -0
- tpu_inference/distributed/jax_parallel_state.py +14 -0
- tpu_inference/distributed/tpu_connector.py +15 -10
- tpu_inference/distributed/utils.py +56 -4
- tpu_inference/envs.py +92 -8
- tpu_inference/executors/__init__.py +13 -0
- tpu_inference/executors/ray_distributed_executor.py +25 -4
- tpu_inference/experimental/__init__.py +13 -0
- tpu_inference/experimental/llama3_jax_stashed.py +14 -0
- tpu_inference/kernels/__init__.py +13 -0
- tpu_inference/kernels/collectives/__init__.py +13 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +12 -6
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +7 -2
- tpu_inference/kernels/flash_attention/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/kernel.py +807 -230
- tpu_inference/kernels/megablox/__init__.py +13 -0
- tpu_inference/kernels/megablox/common.py +54 -0
- tpu_inference/kernels/megablox/gmm.py +646 -0
- tpu_inference/kernels/mla/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/kernel.py +117 -145
- tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +69 -8
- tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +2 -1
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +2 -1
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +194 -101
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +218 -137
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +3817 -3504
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +376 -195
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +15 -1
- tpu_inference/layers/__init__.py +13 -0
- tpu_inference/layers/common/__init__.py +13 -0
- tpu_inference/layers/common/attention_interface.py +25 -12
- tpu_inference/layers/common/attention_metadata.py +14 -0
- tpu_inference/layers/common/fused_moe_gmm.py +506 -0
- tpu_inference/layers/common/quant_methods.py +15 -0
- tpu_inference/layers/common/quantization.py +282 -0
- tpu_inference/layers/common/sharding.py +32 -9
- tpu_inference/layers/common/utils.py +94 -0
- tpu_inference/layers/jax/__init__.py +13 -0
- tpu_inference/layers/jax/attention/__init__.py +13 -0
- tpu_inference/layers/jax/attention/attention.py +19 -6
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +270 -77
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +24 -11
- tpu_inference/layers/jax/attention/llama4_attention.py +17 -4
- tpu_inference/layers/jax/base.py +14 -0
- tpu_inference/layers/jax/constants.py +13 -0
- tpu_inference/layers/jax/layers.py +14 -0
- tpu_inference/layers/jax/misc.py +14 -0
- tpu_inference/layers/jax/moe/__init__.py +13 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +20 -13
- tpu_inference/layers/jax/moe/gpt_oss_moe.py +14 -0
- tpu_inference/layers/jax/moe/moe.py +43 -3
- tpu_inference/layers/jax/pp_utils.py +53 -0
- tpu_inference/layers/jax/rope.py +14 -0
- tpu_inference/layers/jax/rope_interface.py +14 -0
- tpu_inference/layers/jax/sample/__init__.py +13 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +13 -0
- tpu_inference/layers/jax/sample/sampling.py +15 -1
- tpu_inference/layers/jax/sample/sampling_metadata.py +14 -0
- tpu_inference/layers/jax/transformer_block.py +14 -0
- tpu_inference/layers/vllm/__init__.py +13 -0
- tpu_inference/layers/vllm/attention.py +4 -4
- tpu_inference/layers/vllm/fused_moe.py +101 -494
- tpu_inference/layers/vllm/linear.py +64 -0
- tpu_inference/layers/vllm/process_weights/__init__.py +13 -0
- tpu_inference/layers/vllm/{sharding.py → process_weights/cleanup_sharding.py} +24 -15
- tpu_inference/layers/vllm/process_weights/fused_moe_weights.py +369 -0
- tpu_inference/layers/vllm/process_weights/linear_weights.py +174 -0
- tpu_inference/layers/vllm/quantization/__init__.py +19 -3
- tpu_inference/layers/vllm/quantization/awq.py +96 -82
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +23 -8
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +172 -176
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +111 -91
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +79 -43
- tpu_inference/layers/vllm/quantization/{common.py → configs.py} +42 -25
- tpu_inference/layers/vllm/quantization/fp8.py +119 -0
- tpu_inference/layers/vllm/quantization/mxfp4.py +137 -178
- tpu_inference/layers/vllm/quantization/unquantized.py +157 -233
- tpu_inference/lora/__init__.py +13 -0
- tpu_inference/lora/torch_lora_ops.py +8 -13
- tpu_inference/models/__init__.py +13 -0
- tpu_inference/models/common/__init__.py +13 -0
- tpu_inference/models/common/model_loader.py +112 -35
- tpu_inference/models/jax/__init__.py +13 -0
- tpu_inference/models/jax/deepseek_v3.py +267 -157
- tpu_inference/models/jax/gpt_oss.py +26 -10
- tpu_inference/models/jax/jax_intermediate_tensor.py +14 -0
- tpu_inference/models/jax/llama3.py +99 -36
- tpu_inference/models/jax/llama4.py +14 -0
- tpu_inference/models/jax/llama_eagle3.py +18 -5
- tpu_inference/models/jax/llama_guard_4.py +15 -1
- tpu_inference/models/jax/qwen2.py +17 -2
- tpu_inference/models/jax/qwen2_5_vl.py +179 -51
- tpu_inference/models/jax/qwen3.py +17 -2
- tpu_inference/models/jax/utils/__init__.py +13 -0
- tpu_inference/models/jax/utils/file_utils.py +14 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +18 -4
- tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
- tpu_inference/models/jax/utils/{quantization/quantization_utils.py → qwix/qwix_utils.py} +92 -32
- tpu_inference/models/jax/utils/weight_utils.py +234 -155
- tpu_inference/models/vllm/__init__.py +13 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +32 -8
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +14 -0
- tpu_inference/platforms/__init__.py +14 -0
- tpu_inference/platforms/tpu_platform.py +51 -72
- tpu_inference/runner/__init__.py +13 -0
- tpu_inference/runner/compilation_manager.py +180 -80
- tpu_inference/runner/kv_cache.py +54 -20
- tpu_inference/runner/kv_cache_manager.py +55 -33
- tpu_inference/runner/lora_utils.py +16 -1
- tpu_inference/runner/multimodal_manager.py +16 -2
- tpu_inference/runner/persistent_batch_manager.py +54 -2
- tpu_inference/runner/speculative_decoding_manager.py +14 -0
- tpu_inference/runner/structured_decoding_manager.py +16 -3
- tpu_inference/runner/tpu_runner.py +124 -61
- tpu_inference/runner/utils.py +2 -2
- tpu_inference/spec_decode/__init__.py +13 -0
- tpu_inference/spec_decode/jax/__init__.py +13 -0
- tpu_inference/spec_decode/jax/eagle3.py +84 -22
- tpu_inference/tpu_info.py +14 -0
- tpu_inference/utils.py +72 -44
- tpu_inference/worker/__init__.py +13 -0
- tpu_inference/worker/tpu_worker.py +66 -52
- {tpu_inference-0.11.1.dev202511220812.dist-info → tpu_inference-0.13.2.dev20251230.dist-info}/METADATA +8 -9
- tpu_inference-0.13.2.dev20251230.dist-info/RECORD +266 -0
- tpu_inference/layers/vllm/linear_common.py +0 -186
- tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
- tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +0 -5
- tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +0 -6
- tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +0 -5
- tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +0 -6
- tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +0 -105
- tpu_inference-0.11.1.dev202511220812.dist-info/RECORD +0 -174
- {tpu_inference-0.11.1.dev202511220812.dist-info → tpu_inference-0.13.2.dev20251230.dist-info}/WHEEL +0 -0
- {tpu_inference-0.11.1.dev202511220812.dist-info → tpu_inference-0.13.2.dev20251230.dist-info}/licenses/LICENSE +0 -0
- {tpu_inference-0.11.1.dev202511220812.dist-info → tpu_inference-0.13.2.dev20251230.dist-info}/top_level.txt +0 -0
|
@@ -1,7 +1,21 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
1
15
|
import jax
|
|
2
16
|
import jax.numpy as jnp
|
|
3
17
|
import numpy as np
|
|
4
|
-
from absl.testing import absltest
|
|
18
|
+
from absl.testing import absltest, parameterized
|
|
5
19
|
from jax._src import test_util as jtu
|
|
6
20
|
from jax.sharding import Mesh
|
|
7
21
|
|
|
@@ -10,6 +24,15 @@ from tpu_inference.kernels.fused_moe.v1.kernel import fused_ep_moe, ref_moe
|
|
|
10
24
|
jax.config.parse_flags_with_absl()
|
|
11
25
|
|
|
12
26
|
|
|
27
|
+
def cdiv(a, b):
|
|
28
|
+
assert b != 0
|
|
29
|
+
return (a + b - 1) // b
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
def align_to(x, a):
|
|
33
|
+
return cdiv(x, a) * a
|
|
34
|
+
|
|
35
|
+
|
|
13
36
|
def gen_moe_inputs(
|
|
14
37
|
dtype,
|
|
15
38
|
top_k,
|
|
@@ -19,11 +42,14 @@ def gen_moe_inputs(
|
|
|
19
42
|
num_tokens,
|
|
20
43
|
*,
|
|
21
44
|
seed=1234,
|
|
45
|
+
has_bias=False,
|
|
22
46
|
):
|
|
23
47
|
key = jax.random.key(seed)
|
|
24
|
-
k0, k1, k2, k4, k5 = jax.random.split(key,
|
|
48
|
+
k0, k1, k2, k3, k4, k5, k6 = jax.random.split(key, 7)
|
|
49
|
+
|
|
25
50
|
a = jax.random.normal(k0, (num_tokens, hidden_size),
|
|
26
51
|
dtype=jnp.float32).astype(dtype) / 10
|
|
52
|
+
|
|
27
53
|
w1 = (jax.random.normal(
|
|
28
54
|
k1,
|
|
29
55
|
(num_experts, 2, hidden_size, intermediate_size),
|
|
@@ -31,21 +57,54 @@ def gen_moe_inputs(
|
|
|
31
57
|
) / 10).astype(dtype)
|
|
32
58
|
w2 = (jax.random.normal(k2, (num_experts, intermediate_size, hidden_size),
|
|
33
59
|
dtype=jnp.float32) / 10).astype(dtype)
|
|
60
|
+
|
|
61
|
+
if has_bias:
|
|
62
|
+
b1 = (jax.random.normal(k3, (num_experts, 2, intermediate_size),
|
|
63
|
+
dtype=jnp.float32) / 10).astype(dtype)
|
|
64
|
+
b2 = (jax.random.normal(k4, (num_experts, hidden_size),
|
|
65
|
+
dtype=jnp.float32) / 10).astype(dtype)
|
|
66
|
+
else:
|
|
67
|
+
b1 = b2 = None
|
|
68
|
+
|
|
34
69
|
gating_output = (
|
|
35
|
-
jax.random.normal(
|
|
70
|
+
jax.random.normal(k5, (num_tokens, num_experts), dtype=jnp.float32) +
|
|
36
71
|
jnp.arange(num_tokens * num_experts, dtype=jnp.float32).reshape(
|
|
37
72
|
num_tokens, num_experts) / 100)
|
|
73
|
+
|
|
38
74
|
# To generate unique top-k!
|
|
39
|
-
top_k_indices = jax.random.randint(
|
|
75
|
+
top_k_indices = jax.random.randint(k6, (num_tokens, top_k),
|
|
40
76
|
minval=0,
|
|
41
77
|
maxval=num_experts - 1,
|
|
42
78
|
dtype=jnp.int32)
|
|
79
|
+
|
|
43
80
|
one_hot = (jnp.sum(
|
|
44
81
|
jax.nn.one_hot(top_k_indices, num_experts, dtype=jnp.float32),
|
|
45
82
|
axis=1,
|
|
46
|
-
) *
|
|
83
|
+
) * 30)
|
|
84
|
+
|
|
47
85
|
gating_output = (gating_output + one_hot).astype(dtype)
|
|
48
|
-
|
|
86
|
+
|
|
87
|
+
return a, w1, w2, b1, b2, gating_output
|
|
88
|
+
|
|
89
|
+
|
|
90
|
+
def sub_channel_quantize(x, quant_dtype, wsz=256):
|
|
91
|
+
"""Quantizes x with sub-channel quantization on the 2nd minor."""
|
|
92
|
+
if jnp.issubdtype(quant_dtype, jnp.floating):
|
|
93
|
+
dtype_info = jnp.finfo(quant_dtype)
|
|
94
|
+
else:
|
|
95
|
+
dtype_info = jnp.iinfo(quant_dtype)
|
|
96
|
+
dtype_max = float(dtype_info.max)
|
|
97
|
+
w_lst, scale_lst = [], []
|
|
98
|
+
assert len(x.shape) >= 2
|
|
99
|
+
assert x.shape[-2] % wsz == 0
|
|
100
|
+
for i in range(0, x.shape[-2], wsz):
|
|
101
|
+
y = x[..., i:i + wsz, :]
|
|
102
|
+
abs_max = jnp.abs(y).max(axis=-2, keepdims=True)
|
|
103
|
+
scale = (abs_max / dtype_max).astype(jnp.float32)
|
|
104
|
+
w = (y / scale).astype(quant_dtype)
|
|
105
|
+
w_lst.append(w)
|
|
106
|
+
scale_lst.append(scale)
|
|
107
|
+
return jnp.concat(w_lst, axis=-2), jnp.concat(scale_lst, axis=-2)
|
|
49
108
|
|
|
50
109
|
|
|
51
110
|
@jtu.with_config(jax_numpy_dtype_promotion="standard")
|
|
@@ -63,42 +122,266 @@ class MoEKernelTest(jtu.JaxTestCase):
|
|
|
63
122
|
self.mesh = Mesh(np.array(self.mesh_devices).reshape(1, -1),
|
|
64
123
|
axis_names=("data", "model"))
|
|
65
124
|
|
|
66
|
-
def
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
125
|
+
def _test_moe(
|
|
126
|
+
self,
|
|
127
|
+
dtype,
|
|
128
|
+
top_k,
|
|
129
|
+
num_experts,
|
|
130
|
+
hidden_size,
|
|
131
|
+
intermediate_size,
|
|
132
|
+
num_tokens,
|
|
133
|
+
seed,
|
|
134
|
+
renormalize_topk_logits,
|
|
135
|
+
bt,
|
|
136
|
+
bf,
|
|
137
|
+
bd1,
|
|
138
|
+
bd2,
|
|
139
|
+
btc,
|
|
140
|
+
bfc,
|
|
141
|
+
bd1c,
|
|
142
|
+
bd2c,
|
|
143
|
+
act_fn="silu",
|
|
144
|
+
w_dtype=None,
|
|
145
|
+
subc_quant_wsz=None,
|
|
146
|
+
has_bias=False,
|
|
147
|
+
atol=2e-1,
|
|
148
|
+
rtol=2e-1,
|
|
149
|
+
):
|
|
150
|
+
a, w1, w2, b1, b2, gating_output = gen_moe_inputs(
|
|
75
151
|
dtype,
|
|
76
152
|
top_k,
|
|
77
153
|
num_experts,
|
|
78
154
|
hidden_size,
|
|
79
155
|
intermediate_size,
|
|
80
156
|
num_tokens,
|
|
157
|
+
seed=seed,
|
|
158
|
+
has_bias=has_bias,
|
|
159
|
+
)
|
|
160
|
+
w1_scale = None
|
|
161
|
+
w2_scale = None
|
|
162
|
+
if w_dtype is not None:
|
|
163
|
+
if subc_quant_wsz is None:
|
|
164
|
+
subc_quant_wsz = 256
|
|
165
|
+
w1, w1_scale = sub_channel_quantize(w1, w_dtype, subc_quant_wsz)
|
|
166
|
+
w2, w2_scale = sub_channel_quantize(w2, w_dtype, subc_quant_wsz)
|
|
167
|
+
|
|
168
|
+
actual = fused_ep_moe(
|
|
169
|
+
mesh=self.mesh,
|
|
170
|
+
tokens=a,
|
|
171
|
+
w1=w1,
|
|
172
|
+
w2=w2,
|
|
173
|
+
gating_output=gating_output,
|
|
174
|
+
top_k=top_k,
|
|
175
|
+
renormalize_topk_logits=renormalize_topk_logits,
|
|
176
|
+
act_fn=act_fn,
|
|
177
|
+
subc_quant_wsz=subc_quant_wsz,
|
|
178
|
+
w1_scale=w1_scale,
|
|
179
|
+
w2_scale=w2_scale,
|
|
180
|
+
b1=b1,
|
|
181
|
+
b2=b2,
|
|
182
|
+
bt=bt,
|
|
183
|
+
bf=bf,
|
|
184
|
+
bd1=bd1,
|
|
185
|
+
bd2=bd2,
|
|
186
|
+
btc=btc,
|
|
187
|
+
bfc=bfc,
|
|
188
|
+
bd1c=bd1c,
|
|
189
|
+
bd2c=bd2c,
|
|
190
|
+
)
|
|
191
|
+
expected = ref_moe(
|
|
192
|
+
a,
|
|
193
|
+
w1,
|
|
194
|
+
w2,
|
|
195
|
+
gating_output,
|
|
196
|
+
top_k,
|
|
197
|
+
b1=b1,
|
|
198
|
+
b2=b2,
|
|
199
|
+
renormalize_topk_logits=renormalize_topk_logits,
|
|
200
|
+
activation=act_fn,
|
|
201
|
+
subc_quant_wsz=subc_quant_wsz,
|
|
202
|
+
w1_scale=w1_scale,
|
|
203
|
+
w2_scale=w2_scale,
|
|
204
|
+
)
|
|
205
|
+
self.assertAllClose(actual, expected, atol=atol, rtol=rtol)
|
|
206
|
+
|
|
207
|
+
@parameterized.product(renormalize_topk_logits=[True, False], )
|
|
208
|
+
def test_basic(self, renormalize_topk_logits):
|
|
209
|
+
dtype = jnp.bfloat16
|
|
210
|
+
top_k = 8
|
|
211
|
+
num_experts = 128
|
|
212
|
+
hidden_size = 1024
|
|
213
|
+
intermediate_size = 1024
|
|
214
|
+
num_tokens = 8 * 32
|
|
215
|
+
self._test_moe(
|
|
216
|
+
dtype=dtype,
|
|
217
|
+
top_k=top_k,
|
|
218
|
+
num_experts=num_experts,
|
|
219
|
+
hidden_size=hidden_size,
|
|
220
|
+
intermediate_size=intermediate_size,
|
|
221
|
+
num_tokens=num_tokens,
|
|
222
|
+
seed=1234,
|
|
223
|
+
renormalize_topk_logits=renormalize_topk_logits,
|
|
224
|
+
bt=32,
|
|
225
|
+
bf=1024,
|
|
226
|
+
bd1=1024,
|
|
227
|
+
bd2=1024,
|
|
228
|
+
btc=32,
|
|
229
|
+
bfc=256,
|
|
230
|
+
bd1c=256,
|
|
231
|
+
bd2c=256,
|
|
81
232
|
)
|
|
82
233
|
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
234
|
+
@parameterized.product(act_fn=["silu", "gelu", "swigluoai"], )
|
|
235
|
+
def test_activation(self, act_fn):
|
|
236
|
+
dtype = jnp.bfloat16
|
|
237
|
+
top_k = 8
|
|
238
|
+
num_experts = 128
|
|
239
|
+
hidden_size = 1024
|
|
240
|
+
intermediate_size = 1024
|
|
241
|
+
num_tokens = 8 * 32
|
|
242
|
+
self._test_moe(
|
|
243
|
+
dtype=dtype,
|
|
244
|
+
top_k=top_k,
|
|
245
|
+
num_experts=num_experts,
|
|
246
|
+
hidden_size=hidden_size,
|
|
247
|
+
intermediate_size=intermediate_size,
|
|
248
|
+
num_tokens=num_tokens,
|
|
249
|
+
seed=1234,
|
|
250
|
+
renormalize_topk_logits=True,
|
|
251
|
+
act_fn=act_fn,
|
|
252
|
+
bt=32,
|
|
253
|
+
bf=512,
|
|
254
|
+
bd1=512,
|
|
255
|
+
bd2=512,
|
|
256
|
+
btc=32,
|
|
257
|
+
bfc=256,
|
|
258
|
+
bd1c=256,
|
|
259
|
+
bd2c=256,
|
|
260
|
+
)
|
|
261
|
+
|
|
262
|
+
def test_benchmark_qwen_235(self):
|
|
263
|
+
num_experts = 128
|
|
264
|
+
top_k = 8
|
|
265
|
+
hidden_size = 4096
|
|
266
|
+
intermediate_size = 1536
|
|
267
|
+
dtype = jnp.bfloat16
|
|
268
|
+
num_tokens = 8 * 64
|
|
269
|
+
seed = 54321
|
|
270
|
+
renormalize_topk_logits = True
|
|
271
|
+
self._test_moe(
|
|
272
|
+
dtype=dtype,
|
|
273
|
+
top_k=top_k,
|
|
274
|
+
num_experts=num_experts,
|
|
275
|
+
hidden_size=hidden_size,
|
|
276
|
+
intermediate_size=intermediate_size,
|
|
277
|
+
num_tokens=num_tokens,
|
|
278
|
+
seed=seed,
|
|
279
|
+
renormalize_topk_logits=renormalize_topk_logits,
|
|
280
|
+
bt=64,
|
|
281
|
+
bf=768,
|
|
282
|
+
bd1=2048,
|
|
283
|
+
bd2=2048,
|
|
284
|
+
btc=64,
|
|
285
|
+
bfc=768,
|
|
286
|
+
bd1c=2048,
|
|
287
|
+
bd2c=2048,
|
|
288
|
+
act_fn="silu",
|
|
289
|
+
atol=5e-2,
|
|
290
|
+
rtol=5e-2,
|
|
291
|
+
)
|
|
292
|
+
|
|
293
|
+
def test_benchmark_qwen_30b_a3b(self):
|
|
294
|
+
num_experts = 128
|
|
295
|
+
top_k = 8
|
|
296
|
+
hidden_size = 2048
|
|
297
|
+
intermediate_size = 768
|
|
298
|
+
dtype = jnp.bfloat16
|
|
299
|
+
num_tokens = 512
|
|
300
|
+
seed = 54321
|
|
301
|
+
renormalize_topk_logits = True
|
|
302
|
+
self._test_moe(
|
|
303
|
+
dtype=dtype,
|
|
304
|
+
top_k=top_k,
|
|
305
|
+
num_experts=num_experts,
|
|
306
|
+
hidden_size=hidden_size,
|
|
307
|
+
intermediate_size=intermediate_size,
|
|
308
|
+
num_tokens=num_tokens,
|
|
309
|
+
seed=seed,
|
|
310
|
+
renormalize_topk_logits=renormalize_topk_logits,
|
|
311
|
+
bt=16,
|
|
312
|
+
bf=384,
|
|
313
|
+
bd1=512,
|
|
314
|
+
bd2=512,
|
|
315
|
+
btc=16,
|
|
316
|
+
bfc=384,
|
|
317
|
+
bd1c=256,
|
|
318
|
+
bd2c=256,
|
|
319
|
+
act_fn="silu",
|
|
320
|
+
atol=5e-2,
|
|
321
|
+
rtol=5e-2,
|
|
322
|
+
)
|
|
323
|
+
|
|
324
|
+
@parameterized.product(
|
|
325
|
+
w_dtype=[jnp.int8, jnp.float8_e5m2, jnp.float4_e2m1fn], )
|
|
326
|
+
def test_sub_channel_quantization(self, w_dtype):
|
|
327
|
+
if w_dtype in (
|
|
328
|
+
jnp.float8_e5m2,
|
|
329
|
+
jnp.float4_e2m1fn,
|
|
330
|
+
) and not jtu.is_device_tpu_at_least(version=7):
|
|
331
|
+
self.skipTest("Expect TPUv7+")
|
|
332
|
+
dtype = jnp.bfloat16
|
|
333
|
+
top_k = 8
|
|
334
|
+
num_experts = 128
|
|
335
|
+
hidden_size = 1024
|
|
336
|
+
intermediate_size = 1024
|
|
337
|
+
num_tokens = 8 * 32
|
|
338
|
+
self._test_moe(
|
|
339
|
+
dtype=dtype,
|
|
340
|
+
top_k=top_k,
|
|
341
|
+
num_experts=num_experts,
|
|
342
|
+
hidden_size=hidden_size,
|
|
343
|
+
intermediate_size=intermediate_size,
|
|
344
|
+
num_tokens=num_tokens,
|
|
345
|
+
seed=1234,
|
|
346
|
+
renormalize_topk_logits=False,
|
|
347
|
+
w_dtype=w_dtype,
|
|
348
|
+
subc_quant_wsz=256,
|
|
349
|
+
bt=32,
|
|
350
|
+
bf=1024,
|
|
351
|
+
bd1=1024,
|
|
352
|
+
bd2=1024,
|
|
353
|
+
btc=32,
|
|
354
|
+
bfc=256,
|
|
355
|
+
bd1c=256,
|
|
356
|
+
bd2c=256,
|
|
357
|
+
)
|
|
358
|
+
|
|
359
|
+
def test_bias(self):
|
|
360
|
+
dtype = jnp.bfloat16
|
|
361
|
+
top_k = 8
|
|
362
|
+
num_experts = 128
|
|
363
|
+
hidden_size = 1024
|
|
364
|
+
intermediate_size = 1024
|
|
365
|
+
num_tokens = 8 * 32
|
|
366
|
+
self._test_moe(
|
|
367
|
+
dtype=dtype,
|
|
368
|
+
top_k=top_k,
|
|
369
|
+
num_experts=num_experts,
|
|
370
|
+
hidden_size=hidden_size,
|
|
371
|
+
intermediate_size=intermediate_size,
|
|
372
|
+
num_tokens=num_tokens,
|
|
373
|
+
seed=1234,
|
|
374
|
+
renormalize_topk_logits=False,
|
|
375
|
+
has_bias=True,
|
|
376
|
+
bt=32,
|
|
377
|
+
bf=512,
|
|
378
|
+
bd1=512,
|
|
379
|
+
bd2=512,
|
|
380
|
+
btc=32,
|
|
381
|
+
bfc=256,
|
|
382
|
+
bd1c=256,
|
|
383
|
+
bd2c=256,
|
|
384
|
+
)
|
|
102
385
|
|
|
103
386
|
|
|
104
387
|
if __name__ == "__main__":
|
|
@@ -0,0 +1,205 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
import jax
|
|
16
|
+
import jax.numpy as jnp
|
|
17
|
+
from absl.testing import absltest, parameterized
|
|
18
|
+
from jax._src import test_util as jtu
|
|
19
|
+
|
|
20
|
+
from tpu_inference.kernels.megablox.gmm import gmm
|
|
21
|
+
|
|
22
|
+
jax.config.parse_flags_with_absl()
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
def quantize_tensor(x: jax.Array,
|
|
26
|
+
dtype: jnp.dtype,
|
|
27
|
+
axis: int = -1,
|
|
28
|
+
block_size: int = 256):
|
|
29
|
+
if jnp.issubdtype(dtype, jnp.integer):
|
|
30
|
+
dtype_info = jnp.iinfo(dtype)
|
|
31
|
+
max_val = int(dtype_info.max)
|
|
32
|
+
min_val = int(dtype_info.min)
|
|
33
|
+
else:
|
|
34
|
+
dtype_info = jnp.finfo(dtype)
|
|
35
|
+
max_val = float(dtype_info.max)
|
|
36
|
+
min_val = float(dtype_info.min)
|
|
37
|
+
|
|
38
|
+
orig_shape = x.shape
|
|
39
|
+
blocked_shape = orig_shape[:axis] + (-1,
|
|
40
|
+
block_size) + orig_shape[axis + 1:]
|
|
41
|
+
x_blocked = x.reshape(blocked_shape)
|
|
42
|
+
|
|
43
|
+
x_blocked_abs_max = jnp.max(jnp.abs(x_blocked),
|
|
44
|
+
axis=axis + 1,
|
|
45
|
+
keepdims=True)
|
|
46
|
+
scale = x_blocked_abs_max / max_val
|
|
47
|
+
x_blocked_q = jnp.clip(x_blocked / scale, min_val, max_val).astype(dtype)
|
|
48
|
+
|
|
49
|
+
x_q = x_blocked_q.reshape(orig_shape)
|
|
50
|
+
scale = scale.squeeze(axis=axis + 1).astype(jnp.float32)
|
|
51
|
+
return x_q, scale
|
|
52
|
+
|
|
53
|
+
|
|
54
|
+
def reference_gmm(
|
|
55
|
+
lhs: jax.Array,
|
|
56
|
+
rhs: jax.Array,
|
|
57
|
+
group_sizes: jax.Array,
|
|
58
|
+
rhs_scale: jax.Array | None = None,
|
|
59
|
+
rhs_bias: jax.Array | None = None,
|
|
60
|
+
group_offset: jax.Array | None = None,
|
|
61
|
+
):
|
|
62
|
+
num_groups, out_size, in_size = rhs.shape
|
|
63
|
+
assert lhs.shape[1] == in_size
|
|
64
|
+
|
|
65
|
+
if group_offset is None:
|
|
66
|
+
group_offset = jnp.array(0, dtype=jnp.int32)
|
|
67
|
+
start = group_sizes[:group_offset].sum()
|
|
68
|
+
group_sizes = group_sizes[group_offset:]
|
|
69
|
+
assert len(group_sizes) == num_groups
|
|
70
|
+
|
|
71
|
+
if rhs_scale is not None:
|
|
72
|
+
num_blocks = rhs_scale.shape[1]
|
|
73
|
+
else:
|
|
74
|
+
num_blocks = 1
|
|
75
|
+
block_size = in_size // num_blocks
|
|
76
|
+
|
|
77
|
+
gmm_out = [jnp.zeros((start, out_size), lhs.dtype)]
|
|
78
|
+
for group in range(num_groups):
|
|
79
|
+
end = start + group_sizes[group]
|
|
80
|
+
|
|
81
|
+
lhs_slice = lhs[start:end]
|
|
82
|
+
rhs_slice = rhs[group]
|
|
83
|
+
|
|
84
|
+
out = 0
|
|
85
|
+
for block in range(num_blocks):
|
|
86
|
+
block_start = block * block_size
|
|
87
|
+
block_end = block_start + block_size
|
|
88
|
+
lhs_block = lhs_slice[:, block_start:block_end].astype(jnp.float32)
|
|
89
|
+
rhs_block = rhs_slice[:, block_start:block_end].astype(jnp.float32)
|
|
90
|
+
|
|
91
|
+
acc = jnp.einsum("bd,hd->bh", lhs_block, rhs_block)
|
|
92
|
+
if rhs_scale is not None:
|
|
93
|
+
acc *= rhs_scale[group][block]
|
|
94
|
+
out += acc
|
|
95
|
+
if rhs_bias is not None:
|
|
96
|
+
out = out + rhs_bias[group]
|
|
97
|
+
|
|
98
|
+
gmm_out.append(out.astype(lhs.dtype))
|
|
99
|
+
start = end
|
|
100
|
+
|
|
101
|
+
return jnp.concat(gmm_out, axis=0)
|
|
102
|
+
|
|
103
|
+
|
|
104
|
+
@jtu.with_config(jax_numpy_dtype_promotion="standard")
|
|
105
|
+
class GmmTest(jtu.JaxTestCase):
|
|
106
|
+
|
|
107
|
+
@parameterized.product(
|
|
108
|
+
batch_size=[128],
|
|
109
|
+
in_size=[1024],
|
|
110
|
+
out_size=[1024],
|
|
111
|
+
num_groups=[16, 32],
|
|
112
|
+
has_bias=[True, False],
|
|
113
|
+
)
|
|
114
|
+
def test_gmm(self, batch_size, in_size, out_size, num_groups, has_bias):
|
|
115
|
+
key = jax.random.key(0)
|
|
116
|
+
|
|
117
|
+
lhs = jax.random.normal(key, (batch_size, in_size), dtype=jnp.bfloat16)
|
|
118
|
+
rhs = jax.random.normal(key, (num_groups, out_size, in_size),
|
|
119
|
+
dtype=jnp.bfloat16)
|
|
120
|
+
rhs_bias = None
|
|
121
|
+
if has_bias:
|
|
122
|
+
rhs_bias = jax.random.normal(key, (num_groups, 1, out_size),
|
|
123
|
+
dtype=jnp.bfloat16)
|
|
124
|
+
|
|
125
|
+
group_sizes = jax.random.randint(key, (num_groups, ),
|
|
126
|
+
0,
|
|
127
|
+
batch_size,
|
|
128
|
+
dtype=jnp.int32)
|
|
129
|
+
|
|
130
|
+
expected = reference_gmm(lhs, rhs, group_sizes, rhs_bias=rhs_bias)
|
|
131
|
+
actual = gmm(
|
|
132
|
+
lhs,
|
|
133
|
+
rhs,
|
|
134
|
+
group_sizes,
|
|
135
|
+
rhs_bias=rhs_bias,
|
|
136
|
+
transpose_rhs=True,
|
|
137
|
+
preferred_element_type=jnp.bfloat16,
|
|
138
|
+
)
|
|
139
|
+
|
|
140
|
+
self.assertArraysAllClose(actual, expected)
|
|
141
|
+
|
|
142
|
+
@parameterized.product(
|
|
143
|
+
batch_size=[128],
|
|
144
|
+
in_size=[1024],
|
|
145
|
+
out_size=[1024],
|
|
146
|
+
num_groups=[16, 32],
|
|
147
|
+
has_bias=[True, False],
|
|
148
|
+
weight_dtype=[jnp.int8, jnp.float8_e5m2, jnp.float4_e2m1fn],
|
|
149
|
+
block_size=[256, 512],
|
|
150
|
+
)
|
|
151
|
+
def test_gmm_weight_quantized(
|
|
152
|
+
self,
|
|
153
|
+
batch_size,
|
|
154
|
+
in_size,
|
|
155
|
+
out_size,
|
|
156
|
+
num_groups,
|
|
157
|
+
has_bias,
|
|
158
|
+
weight_dtype,
|
|
159
|
+
block_size,
|
|
160
|
+
):
|
|
161
|
+
if weight_dtype == jnp.float4_e2m1fn and not jtu.is_device_tpu_at_least(
|
|
162
|
+
version=7):
|
|
163
|
+
self.skipTest("Expect TPUv7+")
|
|
164
|
+
key = jax.random.key(0)
|
|
165
|
+
|
|
166
|
+
lhs = jax.random.normal(key, (batch_size, in_size), dtype=jnp.bfloat16)
|
|
167
|
+
rhs = jax.random.normal(key, (num_groups, out_size, in_size),
|
|
168
|
+
dtype=jnp.bfloat16)
|
|
169
|
+
rhs_q, rhs_scale = quantize_tensor(rhs,
|
|
170
|
+
weight_dtype,
|
|
171
|
+
axis=2,
|
|
172
|
+
block_size=block_size)
|
|
173
|
+
rhs_scale = jnp.swapaxes(rhs_scale, 1, 2)
|
|
174
|
+
rhs_scale = jnp.expand_dims(rhs_scale, axis=2)
|
|
175
|
+
|
|
176
|
+
rhs_bias = None
|
|
177
|
+
if has_bias:
|
|
178
|
+
rhs_bias = jax.random.normal(key, (num_groups, 1, out_size),
|
|
179
|
+
dtype=jnp.bfloat16)
|
|
180
|
+
|
|
181
|
+
group_sizes = jax.random.randint(key, (num_groups, ),
|
|
182
|
+
0,
|
|
183
|
+
batch_size,
|
|
184
|
+
dtype=jnp.int32)
|
|
185
|
+
|
|
186
|
+
expected = reference_gmm(lhs,
|
|
187
|
+
rhs_q,
|
|
188
|
+
group_sizes,
|
|
189
|
+
rhs_scale=rhs_scale,
|
|
190
|
+
rhs_bias=rhs_bias)
|
|
191
|
+
actual = gmm(
|
|
192
|
+
lhs,
|
|
193
|
+
rhs_q,
|
|
194
|
+
group_sizes,
|
|
195
|
+
rhs_scale=rhs_scale,
|
|
196
|
+
rhs_bias=rhs_bias,
|
|
197
|
+
transpose_rhs=True,
|
|
198
|
+
preferred_element_type=jnp.bfloat16,
|
|
199
|
+
)
|
|
200
|
+
|
|
201
|
+
self.assertArraysAllClose(actual, expected, atol=3e-1, rtol=3e-1)
|
|
202
|
+
|
|
203
|
+
|
|
204
|
+
if __name__ == "__main__":
|
|
205
|
+
absltest.main(testLoader=jtu.JaxTestLoader())
|