tpu-inference 0.11.1.dev202511220812__py3-none-any.whl → 0.13.2.dev20251230__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tpu-inference might be problematic. Click here for more details.
- tests/__init__.py +13 -0
- tests/core/__init__.py +13 -0
- tests/core/test_disagg_utils.py +14 -0
- tests/core/test_dp_scheduler.py +650 -768
- tests/core/test_init.py +14 -0
- tests/distributed/__init__.py +13 -0
- tests/distributed/test_distributed_utils.py +120 -0
- tests/distributed/test_tpu_connector.py +478 -0
- tests/e2e/__init__.py +13 -0
- tests/e2e/test_async_scheduler.py +211 -0
- tests/e2e/test_data_parallel.py +289 -0
- tests/e2e/test_hybrid_kvcache.py +219 -0
- tests/e2e/test_local_disagg.py +257 -0
- tests/e2e/test_model_loader.py +268 -0
- tests/e2e/test_multi_modal_inference.py +111 -0
- tests/e2e/test_pipeline_parallel.py +265 -0
- tests/e2e/test_runai_model_streamer_loader.py +104 -0
- tests/e2e/test_sampling_params.py +269 -0
- tests/e2e/test_speculative_decoding.py +311 -0
- tests/e2e/test_structured_decoding.py +46 -0
- tests/executors/__init__.py +13 -0
- tests/executors/test_ray_distributed_executor.py +199 -0
- tests/experimental/__init__.py +13 -0
- tests/experimental/test_llama3_jax_stashed.py +208 -0
- tests/kernels/__init__.py +13 -0
- tests/kernels/collectives/__init__.py +13 -0
- tests/kernels/collectives/all_gather_matmul_kernel_test.py +69 -0
- tests/kernels/fused_moe_v1_test.py +317 -34
- tests/kernels/gmm_test.py +205 -0
- tests/kernels/mla_v1_test.py +143 -41
- tests/kernels/quantized_matmul_kernel_test.py +2 -34
- tests/kernels/ragged_kv_cache_update_v2_test.py +14 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +14 -0
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +17 -1
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +17 -1
- tests/layers/__init__.py +13 -0
- tests/layers/common/__init__.py +13 -0
- tests/layers/common/test_attention_interface.py +156 -0
- tests/layers/common/test_quantization.py +149 -0
- tests/layers/jax/__init__.py +13 -0
- tests/layers/jax/attention/__init__.py +13 -0
- tests/layers/jax/attention/test_common_attention.py +103 -0
- tests/layers/jax/attention/test_deepseek_v3_attention.py +233 -0
- tests/layers/jax/attention/test_llama4_attention.py +135 -0
- tests/layers/jax/moe/__init__.py +13 -0
- tests/layers/jax/moe/test_deepseek_moe.py +235 -0
- tests/layers/jax/sample/__init__.py +13 -0
- tests/layers/jax/sample/test_rejection_sampler.py +1624 -0
- tests/layers/jax/sample/test_sampling.py +115 -0
- tests/layers/jax/sample/test_sampling_metadata.py +254 -0
- tests/layers/jax/test_layers.py +155 -0
- tests/{test_quantization.py → layers/jax/test_qwix.py} +183 -50
- tests/layers/jax/test_rope.py +93 -0
- tests/layers/jax/test_sharding.py +159 -0
- tests/layers/jax/test_transformer_block.py +152 -0
- tests/layers/vllm/__init__.py +13 -0
- tests/layers/vllm/test_attention.py +363 -0
- tests/layers/vllm/test_awq.py +406 -0
- tests/layers/vllm/test_compressed_tensors_moe.py +199 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_fp8.py +441 -0
- tests/layers/vllm/test_compressed_tensors_w8a8_int8.py +443 -0
- tests/layers/vllm/test_fp8.py +17 -0
- tests/layers/vllm/test_mxfp4.py +320 -0
- tests/layers/vllm/test_unquantized.py +662 -0
- tests/layers/vllm/utils.py +87 -0
- tests/lora/__init__.py +13 -0
- tests/lora/conftest.py +14 -0
- tests/lora/test_bgmv.py +14 -0
- tests/lora/test_layers.py +26 -6
- tests/lora/test_lora.py +15 -1
- tests/lora/test_lora_perf.py +67 -0
- tests/models/__init__.py +13 -0
- tests/models/common/__init__.py +13 -0
- tests/models/common/test_model_loader.py +455 -0
- tests/models/jax/__init__.py +13 -0
- tests/models/jax/test_deepseek_v3.py +401 -0
- tests/models/jax/test_llama3.py +184 -0
- tests/models/jax/test_llama4.py +298 -0
- tests/models/jax/test_llama_eagle3.py +197 -0
- tests/models/jax/test_llama_guard_4.py +242 -0
- tests/models/jax/test_qwen2.py +172 -0
- tests/models/jax/test_qwen2_5_vl.py +605 -0
- tests/models/jax/test_qwen3.py +169 -0
- tests/models/jax/test_weight_loading.py +180 -0
- tests/models/jax/utils/__init__.py +13 -0
- tests/models/jax/utils/test_multi_modal_utils.py +212 -0
- tests/platforms/__init__.py +13 -0
- tests/platforms/test_tpu_platform.py +54 -0
- tests/runner/__init__.py +13 -0
- tests/runner/test_block_table.py +395 -0
- tests/runner/test_input_batch.py +226 -0
- tests/runner/test_kv_cache.py +220 -0
- tests/runner/test_kv_cache_manager.py +498 -0
- tests/runner/test_multimodal_manager.py +429 -0
- tests/runner/test_persistent_batch_manager.py +84 -0
- tests/runner/test_speculative_decoding_manager.py +368 -0
- tests/runner/test_structured_decoding_manager.py +220 -0
- tests/runner/test_tpu_runner.py +261 -0
- tests/runner/test_tpu_runner_dp.py +1099 -0
- tests/runner/test_tpu_runner_mesh.py +200 -0
- tests/runner/test_utils.py +411 -0
- tests/spec_decode/__init__.py +13 -0
- tests/spec_decode/test_eagle3.py +311 -0
- tests/test_base.py +14 -0
- tests/test_envs.py +110 -12
- tests/test_tpu_info.py +14 -0
- tests/test_utils.py +2 -45
- tests/worker/__init__.py +13 -0
- tests/worker/tpu_worker_test.py +414 -0
- tpu_inference/__init__.py +14 -0
- tpu_inference/core/__init__.py +13 -0
- tpu_inference/core/sched/__init__.py +13 -0
- tpu_inference/core/sched/dp_scheduler.py +372 -56
- tpu_inference/distributed/__init__.py +13 -0
- tpu_inference/distributed/jax_parallel_state.py +14 -0
- tpu_inference/distributed/tpu_connector.py +15 -10
- tpu_inference/distributed/utils.py +56 -4
- tpu_inference/envs.py +92 -8
- tpu_inference/executors/__init__.py +13 -0
- tpu_inference/executors/ray_distributed_executor.py +25 -4
- tpu_inference/experimental/__init__.py +13 -0
- tpu_inference/experimental/llama3_jax_stashed.py +14 -0
- tpu_inference/kernels/__init__.py +13 -0
- tpu_inference/kernels/collectives/__init__.py +13 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +12 -6
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +7 -2
- tpu_inference/kernels/flash_attention/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/__init__.py +13 -0
- tpu_inference/kernels/fused_moe/v1/kernel.py +807 -230
- tpu_inference/kernels/megablox/__init__.py +13 -0
- tpu_inference/kernels/megablox/common.py +54 -0
- tpu_inference/kernels/megablox/gmm.py +646 -0
- tpu_inference/kernels/mla/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/__init__.py +13 -0
- tpu_inference/kernels/mla/v1/kernel.py +117 -145
- tpu_inference/kernels/quantized_matmul/__init__.py +13 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +69 -8
- tpu_inference/kernels/ragged_paged_attention/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +2 -1
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +2 -1
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +13 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +194 -101
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +218 -137
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +3817 -3504
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +376 -195
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +15 -1
- tpu_inference/layers/__init__.py +13 -0
- tpu_inference/layers/common/__init__.py +13 -0
- tpu_inference/layers/common/attention_interface.py +25 -12
- tpu_inference/layers/common/attention_metadata.py +14 -0
- tpu_inference/layers/common/fused_moe_gmm.py +506 -0
- tpu_inference/layers/common/quant_methods.py +15 -0
- tpu_inference/layers/common/quantization.py +282 -0
- tpu_inference/layers/common/sharding.py +32 -9
- tpu_inference/layers/common/utils.py +94 -0
- tpu_inference/layers/jax/__init__.py +13 -0
- tpu_inference/layers/jax/attention/__init__.py +13 -0
- tpu_inference/layers/jax/attention/attention.py +19 -6
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +270 -77
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +24 -11
- tpu_inference/layers/jax/attention/llama4_attention.py +17 -4
- tpu_inference/layers/jax/base.py +14 -0
- tpu_inference/layers/jax/constants.py +13 -0
- tpu_inference/layers/jax/layers.py +14 -0
- tpu_inference/layers/jax/misc.py +14 -0
- tpu_inference/layers/jax/moe/__init__.py +13 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +20 -13
- tpu_inference/layers/jax/moe/gpt_oss_moe.py +14 -0
- tpu_inference/layers/jax/moe/moe.py +43 -3
- tpu_inference/layers/jax/pp_utils.py +53 -0
- tpu_inference/layers/jax/rope.py +14 -0
- tpu_inference/layers/jax/rope_interface.py +14 -0
- tpu_inference/layers/jax/sample/__init__.py +13 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +13 -0
- tpu_inference/layers/jax/sample/sampling.py +15 -1
- tpu_inference/layers/jax/sample/sampling_metadata.py +14 -0
- tpu_inference/layers/jax/transformer_block.py +14 -0
- tpu_inference/layers/vllm/__init__.py +13 -0
- tpu_inference/layers/vllm/attention.py +4 -4
- tpu_inference/layers/vllm/fused_moe.py +101 -494
- tpu_inference/layers/vllm/linear.py +64 -0
- tpu_inference/layers/vllm/process_weights/__init__.py +13 -0
- tpu_inference/layers/vllm/{sharding.py → process_weights/cleanup_sharding.py} +24 -15
- tpu_inference/layers/vllm/process_weights/fused_moe_weights.py +369 -0
- tpu_inference/layers/vllm/process_weights/linear_weights.py +174 -0
- tpu_inference/layers/vllm/quantization/__init__.py +19 -3
- tpu_inference/layers/vllm/quantization/awq.py +96 -82
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +23 -8
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +172 -176
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +13 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +111 -91
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +79 -43
- tpu_inference/layers/vllm/quantization/{common.py → configs.py} +42 -25
- tpu_inference/layers/vllm/quantization/fp8.py +119 -0
- tpu_inference/layers/vllm/quantization/mxfp4.py +137 -178
- tpu_inference/layers/vllm/quantization/unquantized.py +157 -233
- tpu_inference/lora/__init__.py +13 -0
- tpu_inference/lora/torch_lora_ops.py +8 -13
- tpu_inference/models/__init__.py +13 -0
- tpu_inference/models/common/__init__.py +13 -0
- tpu_inference/models/common/model_loader.py +112 -35
- tpu_inference/models/jax/__init__.py +13 -0
- tpu_inference/models/jax/deepseek_v3.py +267 -157
- tpu_inference/models/jax/gpt_oss.py +26 -10
- tpu_inference/models/jax/jax_intermediate_tensor.py +14 -0
- tpu_inference/models/jax/llama3.py +99 -36
- tpu_inference/models/jax/llama4.py +14 -0
- tpu_inference/models/jax/llama_eagle3.py +18 -5
- tpu_inference/models/jax/llama_guard_4.py +15 -1
- tpu_inference/models/jax/qwen2.py +17 -2
- tpu_inference/models/jax/qwen2_5_vl.py +179 -51
- tpu_inference/models/jax/qwen3.py +17 -2
- tpu_inference/models/jax/utils/__init__.py +13 -0
- tpu_inference/models/jax/utils/file_utils.py +14 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +18 -4
- tpu_inference/models/jax/utils/qwix/__init__.py +13 -0
- tpu_inference/models/jax/utils/{quantization/quantization_utils.py → qwix/qwix_utils.py} +92 -32
- tpu_inference/models/jax/utils/weight_utils.py +234 -155
- tpu_inference/models/vllm/__init__.py +13 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +32 -8
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +14 -0
- tpu_inference/platforms/__init__.py +14 -0
- tpu_inference/platforms/tpu_platform.py +51 -72
- tpu_inference/runner/__init__.py +13 -0
- tpu_inference/runner/compilation_manager.py +180 -80
- tpu_inference/runner/kv_cache.py +54 -20
- tpu_inference/runner/kv_cache_manager.py +55 -33
- tpu_inference/runner/lora_utils.py +16 -1
- tpu_inference/runner/multimodal_manager.py +16 -2
- tpu_inference/runner/persistent_batch_manager.py +54 -2
- tpu_inference/runner/speculative_decoding_manager.py +14 -0
- tpu_inference/runner/structured_decoding_manager.py +16 -3
- tpu_inference/runner/tpu_runner.py +124 -61
- tpu_inference/runner/utils.py +2 -2
- tpu_inference/spec_decode/__init__.py +13 -0
- tpu_inference/spec_decode/jax/__init__.py +13 -0
- tpu_inference/spec_decode/jax/eagle3.py +84 -22
- tpu_inference/tpu_info.py +14 -0
- tpu_inference/utils.py +72 -44
- tpu_inference/worker/__init__.py +13 -0
- tpu_inference/worker/tpu_worker.py +66 -52
- {tpu_inference-0.11.1.dev202511220812.dist-info → tpu_inference-0.13.2.dev20251230.dist-info}/METADATA +8 -9
- tpu_inference-0.13.2.dev20251230.dist-info/RECORD +266 -0
- tpu_inference/layers/vllm/linear_common.py +0 -186
- tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
- tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +0 -5
- tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +0 -6
- tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +0 -5
- tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +0 -6
- tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +0 -105
- tpu_inference-0.11.1.dev202511220812.dist-info/RECORD +0 -174
- {tpu_inference-0.11.1.dev202511220812.dist-info → tpu_inference-0.13.2.dev20251230.dist-info}/WHEEL +0 -0
- {tpu_inference-0.11.1.dev202511220812.dist-info → tpu_inference-0.13.2.dev20251230.dist-info}/licenses/LICENSE +0 -0
- {tpu_inference-0.11.1.dev202511220812.dist-info → tpu_inference-0.13.2.dev20251230.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,220 @@
|
|
|
1
|
+
# Copyright 2025 Google LLC
|
|
2
|
+
#
|
|
3
|
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
4
|
+
# you may not use this file except in compliance with the License.
|
|
5
|
+
# You may obtain a copy of the License at
|
|
6
|
+
#
|
|
7
|
+
# http://www.apache.org/licenses/LICENSE-2.0
|
|
8
|
+
#
|
|
9
|
+
# Unless required by applicable law or agreed to in writing, software
|
|
10
|
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
11
|
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
12
|
+
# See the License for the specific language governing permissions and
|
|
13
|
+
# limitations under the License.
|
|
14
|
+
|
|
15
|
+
from unittest.mock import MagicMock, patch
|
|
16
|
+
|
|
17
|
+
import jax
|
|
18
|
+
import jax.numpy as jnp
|
|
19
|
+
import numpy as np
|
|
20
|
+
import pytest
|
|
21
|
+
import torch
|
|
22
|
+
from jax.sharding import Mesh, NamedSharding, PartitionSpec
|
|
23
|
+
from vllm.v1.kv_cache_interface import FullAttentionSpec, MLAAttentionSpec
|
|
24
|
+
|
|
25
|
+
from tpu_inference.layers.common.sharding import ShardingAxisName
|
|
26
|
+
from tpu_inference.runner.kv_cache import (create_kv_caches,
|
|
27
|
+
get_attention_page_size_bytes,
|
|
28
|
+
get_kv_cache_shape_with_mesh)
|
|
29
|
+
from tpu_inference.utils import get_dtype_packing
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
@pytest.fixture
|
|
33
|
+
def mesh():
|
|
34
|
+
devices = np.array(jax.local_devices()[:1])
|
|
35
|
+
devices = devices.reshape((1, 1, -1))
|
|
36
|
+
return Mesh(devices, axis_names=("data", "attn_dp", "model"))
|
|
37
|
+
|
|
38
|
+
|
|
39
|
+
def test_create_kv_caches(mesh: Mesh):
|
|
40
|
+
"""
|
|
41
|
+
Tests that `create_kv_caches` correctly allocates and shards the KV caches
|
|
42
|
+
for all specified layers.
|
|
43
|
+
"""
|
|
44
|
+
num_blocks = 64
|
|
45
|
+
block_size = 16
|
|
46
|
+
num_kv_heads = 8
|
|
47
|
+
head_size = 128
|
|
48
|
+
layer_names = ["decoder.0", "decoder.1", "decoder.2"] # Test with 3 layers
|
|
49
|
+
|
|
50
|
+
expected_sharding = NamedSharding(
|
|
51
|
+
mesh, PartitionSpec(ShardingAxisName.ATTN_DATA, None, "model"))
|
|
52
|
+
expected_dtype = jnp.bfloat16
|
|
53
|
+
expected_shape = get_kv_cache_shape_with_mesh(mesh, num_blocks, block_size,
|
|
54
|
+
num_kv_heads, head_size,
|
|
55
|
+
expected_dtype)
|
|
56
|
+
|
|
57
|
+
with patch("tpu_inference.logger.init_logger",
|
|
58
|
+
return_value=MagicMock()), patch(
|
|
59
|
+
"tpu_inference.utils.hbm_usage_gb",
|
|
60
|
+
return_value=[(0.0, 0.0), (0.0, 0.0)]):
|
|
61
|
+
kv_caches = create_kv_caches(
|
|
62
|
+
num_blocks=num_blocks,
|
|
63
|
+
block_size=block_size,
|
|
64
|
+
num_kv_heads=num_kv_heads,
|
|
65
|
+
head_size=head_size,
|
|
66
|
+
mesh=mesh,
|
|
67
|
+
layer_names=layer_names,
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
assert isinstance(kv_caches, list)
|
|
71
|
+
assert len(kv_caches) == len(layer_names)
|
|
72
|
+
|
|
73
|
+
for cache_array in kv_caches:
|
|
74
|
+
assert isinstance(cache_array, jax.Array)
|
|
75
|
+
assert cache_array.shape == expected_shape
|
|
76
|
+
assert cache_array.dtype == expected_dtype
|
|
77
|
+
assert cache_array.sharding == expected_sharding
|
|
78
|
+
|
|
79
|
+
# Ensure that separate array objects were created for each layer
|
|
80
|
+
assert kv_caches[0] is not kv_caches[1]
|
|
81
|
+
|
|
82
|
+
|
|
83
|
+
def test_create_kv_caches_mla(mesh: Mesh):
|
|
84
|
+
"""
|
|
85
|
+
Tests that `create_kv_caches` correctly allocates and shards the KV caches
|
|
86
|
+
for all specified layers when `use_mla` is True.
|
|
87
|
+
"""
|
|
88
|
+
num_blocks = 64
|
|
89
|
+
block_size = 16
|
|
90
|
+
num_kv_heads = 1 # Not used for MLA shape calculation
|
|
91
|
+
head_size = 512 + 64 # Combined dimension for MLA
|
|
92
|
+
layer_names = ["decoder.0", "decoder.1"]
|
|
93
|
+
|
|
94
|
+
# For MLA, sharding is by the 'model' axis on the token dimension.
|
|
95
|
+
expected_sharding = NamedSharding(
|
|
96
|
+
mesh, PartitionSpec(ShardingAxisName.MLP_TENSOR))
|
|
97
|
+
expected_dtype = jnp.bfloat16
|
|
98
|
+
expected_shape = get_kv_cache_shape_with_mesh(
|
|
99
|
+
mesh,
|
|
100
|
+
num_blocks,
|
|
101
|
+
block_size,
|
|
102
|
+
num_kv_heads,
|
|
103
|
+
head_size,
|
|
104
|
+
expected_dtype,
|
|
105
|
+
use_mla=True,
|
|
106
|
+
)
|
|
107
|
+
|
|
108
|
+
with patch("tpu_inference.logger.init_logger",
|
|
109
|
+
return_value=MagicMock()), patch(
|
|
110
|
+
"tpu_inference.utils.hbm_usage_gb",
|
|
111
|
+
return_value=[(0.0, 0.0), (0.0, 0.0)]):
|
|
112
|
+
kv_caches = create_kv_caches(
|
|
113
|
+
num_blocks=num_blocks,
|
|
114
|
+
block_size=block_size,
|
|
115
|
+
num_kv_heads=num_kv_heads,
|
|
116
|
+
head_size=head_size,
|
|
117
|
+
mesh=mesh,
|
|
118
|
+
layer_names=layer_names,
|
|
119
|
+
use_mla=True,
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
assert isinstance(kv_caches, list)
|
|
123
|
+
assert len(kv_caches) == len(layer_names)
|
|
124
|
+
|
|
125
|
+
for cache_array in kv_caches:
|
|
126
|
+
assert isinstance(cache_array, jax.Array)
|
|
127
|
+
assert cache_array.shape == expected_shape
|
|
128
|
+
assert cache_array.dtype == expected_dtype
|
|
129
|
+
assert cache_array.sharding == expected_sharding
|
|
130
|
+
|
|
131
|
+
|
|
132
|
+
def test_get_kv_cache_shape_with_mesh_mla(mesh: Mesh):
|
|
133
|
+
"""
|
|
134
|
+
Tests `get_kv_cache_shape_with_mesh` with `use_mla=True`.
|
|
135
|
+
"""
|
|
136
|
+
total_num_pages = 64
|
|
137
|
+
page_size = 16
|
|
138
|
+
actual_num_kv_heads = 1 # Not used for MLA
|
|
139
|
+
actual_head_dim = 512 + 128 # lkv_dim + r_dim
|
|
140
|
+
kv_dtype = jnp.bfloat16
|
|
141
|
+
|
|
142
|
+
# Expected shape calculation for MLA:
|
|
143
|
+
# kv_packing = 2 (for bfloat16)
|
|
144
|
+
# shape[0] = total_num_pages = 64
|
|
145
|
+
# shape[1] = align_to(page_size, 2) // 2 = 16 // 2 = 8
|
|
146
|
+
# shape[2] = 2
|
|
147
|
+
# shape[3] = align_to(actual_head_dim, 128) = align_to(640, 128) = 640
|
|
148
|
+
expected_shape = (64, 8, 2, 640)
|
|
149
|
+
|
|
150
|
+
shape = get_kv_cache_shape_with_mesh(
|
|
151
|
+
mesh,
|
|
152
|
+
total_num_pages,
|
|
153
|
+
page_size,
|
|
154
|
+
actual_num_kv_heads,
|
|
155
|
+
actual_head_dim,
|
|
156
|
+
kv_dtype,
|
|
157
|
+
use_mla=True,
|
|
158
|
+
)
|
|
159
|
+
|
|
160
|
+
assert shape == expected_shape
|
|
161
|
+
|
|
162
|
+
|
|
163
|
+
def test_get_attention_page_size_bytes(mesh: Mesh):
|
|
164
|
+
"""
|
|
165
|
+
Tests `get_attention_page_size_bytes`.
|
|
166
|
+
"""
|
|
167
|
+
block_size = 16
|
|
168
|
+
num_kv_heads = 8
|
|
169
|
+
head_size = 128
|
|
170
|
+
dtype = torch.bfloat16
|
|
171
|
+
|
|
172
|
+
full_attn_spec = FullAttentionSpec(block_size=block_size,
|
|
173
|
+
num_kv_heads=num_kv_heads,
|
|
174
|
+
head_size=head_size,
|
|
175
|
+
dtype=dtype)
|
|
176
|
+
|
|
177
|
+
kv_cache_specs = {"layer.0": full_attn_spec}
|
|
178
|
+
|
|
179
|
+
page_size_bytes = get_attention_page_size_bytes(mesh, kv_cache_specs)
|
|
180
|
+
|
|
181
|
+
shape = get_kv_cache_shape_with_mesh(mesh, 1, block_size, num_kv_heads,
|
|
182
|
+
head_size, jnp.bfloat16)
|
|
183
|
+
expected_page_size = (
|
|
184
|
+
(32 // get_dtype_packing(jnp.bfloat16)) * np.prod(shape)) // 8
|
|
185
|
+
|
|
186
|
+
assert page_size_bytes == expected_page_size
|
|
187
|
+
|
|
188
|
+
|
|
189
|
+
def test_get_attention_page_size_bytes_mla(mesh: Mesh):
|
|
190
|
+
"""
|
|
191
|
+
Tests `get_attention_page_size_bytes` for MLA.
|
|
192
|
+
"""
|
|
193
|
+
block_size = 16
|
|
194
|
+
num_kv_heads = 1
|
|
195
|
+
head_size = 512 + 128 # lkv_dim + r_dim
|
|
196
|
+
dtype = torch.bfloat16
|
|
197
|
+
|
|
198
|
+
mla_spec = MLAAttentionSpec(
|
|
199
|
+
block_size=block_size,
|
|
200
|
+
num_kv_heads=num_kv_heads,
|
|
201
|
+
head_size=head_size,
|
|
202
|
+
dtype=dtype,
|
|
203
|
+
cache_dtype_str="bfloat16",
|
|
204
|
+
)
|
|
205
|
+
|
|
206
|
+
kv_cache_specs = {"layer.0": mla_spec}
|
|
207
|
+
|
|
208
|
+
page_size_bytes = get_attention_page_size_bytes(mesh, kv_cache_specs)
|
|
209
|
+
|
|
210
|
+
shape = get_kv_cache_shape_with_mesh(mesh,
|
|
211
|
+
1,
|
|
212
|
+
block_size,
|
|
213
|
+
num_kv_heads,
|
|
214
|
+
head_size,
|
|
215
|
+
jnp.bfloat16,
|
|
216
|
+
use_mla=True)
|
|
217
|
+
expected_page_size = (
|
|
218
|
+
(32 // get_dtype_packing(jnp.bfloat16)) * np.prod(shape)) // 8
|
|
219
|
+
|
|
220
|
+
assert page_size_bytes == expected_page_size
|