tpu-inference 0.0.1rc1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tpu-inference might be problematic. Click here for more details.

Files changed (174) hide show
  1. tests/__init__.py +0 -0
  2. tests/core/__init__.py +0 -0
  3. tests/core/test_core_tpu.py +513 -0
  4. tests/core/test_disagg_executor.py +60 -0
  5. tests/core/test_disagg_utils.py +53 -0
  6. tests/core/test_dp_scheduler.py +899 -0
  7. tests/core/test_init.py +49 -0
  8. tests/kernels/__init__.py +0 -0
  9. tests/kernels/fused_moe_v1_test.py +374 -0
  10. tests/kernels/mla_v1_test.py +396 -0
  11. tests/kernels/quantized_matmul_kernel_test.py +191 -0
  12. tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
  13. tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
  14. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +549 -0
  15. tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
  16. tests/lora/__init__.py +0 -0
  17. tests/lora/conftest.py +32 -0
  18. tests/lora/test_bgmv.py +43 -0
  19. tests/lora/test_layers.py +648 -0
  20. tests/lora/test_lora.py +133 -0
  21. tests/lora/utils.py +88 -0
  22. tests/test_base.py +201 -0
  23. tests/test_envs.py +203 -0
  24. tests/test_quantization.py +836 -0
  25. tests/test_tpu_info.py +120 -0
  26. tests/test_utils.py +235 -0
  27. tpu_inference/__init__.py +53 -0
  28. tpu_inference/core/__init__.py +0 -0
  29. tpu_inference/core/core_tpu.py +786 -0
  30. tpu_inference/core/disagg_executor.py +118 -0
  31. tpu_inference/core/disagg_utils.py +49 -0
  32. tpu_inference/core/sched/__init__.py +0 -0
  33. tpu_inference/core/sched/dp_scheduler.py +523 -0
  34. tpu_inference/distributed/__init__.py +0 -0
  35. tpu_inference/distributed/jax_parallel_state.py +67 -0
  36. tpu_inference/distributed/tpu_connector.py +727 -0
  37. tpu_inference/distributed/utils.py +60 -0
  38. tpu_inference/env_override.py +9 -0
  39. tpu_inference/envs.py +160 -0
  40. tpu_inference/executors/__init__.py +0 -0
  41. tpu_inference/executors/ray_distributed_executor.py +382 -0
  42. tpu_inference/experimental/__init__.py +0 -0
  43. tpu_inference/experimental/llama3_jax_stashed.py +258 -0
  44. tpu_inference/kernels/__init__.py +0 -0
  45. tpu_inference/kernels/collectives/__init__.py +0 -0
  46. tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
  47. tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
  48. tpu_inference/kernels/collectives/util.py +47 -0
  49. tpu_inference/kernels/flash_attention/__init__.py +0 -0
  50. tpu_inference/kernels/flash_attention/kernel.py +772 -0
  51. tpu_inference/kernels/fused_moe/__init__.py +0 -0
  52. tpu_inference/kernels/fused_moe/v1/__init__.py +0 -0
  53. tpu_inference/kernels/fused_moe/v1/kernel.py +1566 -0
  54. tpu_inference/kernels/mla/__init__.py +0 -0
  55. tpu_inference/kernels/mla/v1/__init__.py +0 -0
  56. tpu_inference/kernels/mla/v1/kernel.py +1349 -0
  57. tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
  58. tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
  59. tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
  60. tpu_inference/kernels/quantized_matmul/util.py +58 -0
  61. tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
  62. tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
  63. tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
  64. tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
  65. tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
  66. tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
  67. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1501 -0
  68. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1603 -0
  69. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4147 -0
  70. tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +367 -0
  71. tpu_inference/kernels/ragged_paged_attention/v3/util.py +51 -0
  72. tpu_inference/layers/__init__.py +0 -0
  73. tpu_inference/layers/common/__init__.py +0 -0
  74. tpu_inference/layers/common/attention_interface.py +396 -0
  75. tpu_inference/layers/common/attention_metadata.py +34 -0
  76. tpu_inference/layers/common/binary_search.py +295 -0
  77. tpu_inference/layers/common/quant_methods.py +8 -0
  78. tpu_inference/layers/common/sharding.py +582 -0
  79. tpu_inference/layers/jax/__init__.py +0 -0
  80. tpu_inference/layers/jax/attention/__init__.py +0 -0
  81. tpu_inference/layers/jax/attention/attention.py +255 -0
  82. tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
  83. tpu_inference/layers/jax/attention/gpt_oss_attention.py +262 -0
  84. tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
  85. tpu_inference/layers/jax/base.py +151 -0
  86. tpu_inference/layers/jax/constants.py +88 -0
  87. tpu_inference/layers/jax/layers.py +301 -0
  88. tpu_inference/layers/jax/misc.py +16 -0
  89. tpu_inference/layers/jax/moe/__init__.py +0 -0
  90. tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
  91. tpu_inference/layers/jax/moe/gpt_oss_moe.py +185 -0
  92. tpu_inference/layers/jax/moe/moe.py +209 -0
  93. tpu_inference/layers/jax/rope.py +280 -0
  94. tpu_inference/layers/jax/rope_interface.py +214 -0
  95. tpu_inference/layers/jax/sample/__init__.py +0 -0
  96. tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
  97. tpu_inference/layers/jax/sample/sampling.py +96 -0
  98. tpu_inference/layers/jax/sample/sampling_metadata.py +76 -0
  99. tpu_inference/layers/jax/transformer_block.py +107 -0
  100. tpu_inference/layers/vllm/__init__.py +0 -0
  101. tpu_inference/layers/vllm/attention.py +221 -0
  102. tpu_inference/layers/vllm/fused_moe.py +469 -0
  103. tpu_inference/layers/vllm/linear_common.py +186 -0
  104. tpu_inference/layers/vllm/quantization/__init__.py +39 -0
  105. tpu_inference/layers/vllm/quantization/awq.py +207 -0
  106. tpu_inference/layers/vllm/quantization/common.py +110 -0
  107. tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
  108. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +120 -0
  109. tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +203 -0
  110. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
  111. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
  112. tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
  113. tpu_inference/layers/vllm/quantization/mxfp4.py +331 -0
  114. tpu_inference/layers/vllm/quantization/unquantized.py +368 -0
  115. tpu_inference/layers/vllm/sharding.py +230 -0
  116. tpu_inference/logger.py +10 -0
  117. tpu_inference/lora/__init__.py +0 -0
  118. tpu_inference/lora/torch_lora_ops.py +103 -0
  119. tpu_inference/lora/torch_punica_tpu.py +310 -0
  120. tpu_inference/models/__init__.py +0 -0
  121. tpu_inference/models/common/__init__.py +0 -0
  122. tpu_inference/models/common/model_loader.py +478 -0
  123. tpu_inference/models/jax/__init__.py +0 -0
  124. tpu_inference/models/jax/deepseek_v3.py +868 -0
  125. tpu_inference/models/jax/gpt_oss.py +492 -0
  126. tpu_inference/models/jax/jax_intermediate_tensor.py +79 -0
  127. tpu_inference/models/jax/llama3.py +376 -0
  128. tpu_inference/models/jax/llama4.py +629 -0
  129. tpu_inference/models/jax/llama_eagle3.py +336 -0
  130. tpu_inference/models/jax/llama_guard_4.py +361 -0
  131. tpu_inference/models/jax/qwen2.py +376 -0
  132. tpu_inference/models/jax/qwen2_5_vl.py +1218 -0
  133. tpu_inference/models/jax/qwen3.py +303 -0
  134. tpu_inference/models/jax/utils/__init__.py +0 -0
  135. tpu_inference/models/jax/utils/file_utils.py +96 -0
  136. tpu_inference/models/jax/utils/multi_modal_utils.py +163 -0
  137. tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
  138. tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +5 -0
  139. tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +6 -0
  140. tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +5 -0
  141. tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +6 -0
  142. tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +105 -0
  143. tpu_inference/models/jax/utils/quantization/quantization_utils.py +650 -0
  144. tpu_inference/models/jax/utils/weight_utils.py +584 -0
  145. tpu_inference/models/vllm/__init__.py +0 -0
  146. tpu_inference/models/vllm/vllm_model_wrapper.py +293 -0
  147. tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
  148. tpu_inference/platforms/__init__.py +2 -0
  149. tpu_inference/platforms/tpu_platform.py +275 -0
  150. tpu_inference/runner/__init__.py +0 -0
  151. tpu_inference/runner/block_table.py +122 -0
  152. tpu_inference/runner/compilation_manager.py +865 -0
  153. tpu_inference/runner/input_batch.py +435 -0
  154. tpu_inference/runner/kv_cache.py +132 -0
  155. tpu_inference/runner/kv_cache_manager.py +478 -0
  156. tpu_inference/runner/lora_utils.py +92 -0
  157. tpu_inference/runner/multimodal_manager.py +217 -0
  158. tpu_inference/runner/persistent_batch_manager.py +282 -0
  159. tpu_inference/runner/speculative_decoding_manager.py +248 -0
  160. tpu_inference/runner/structured_decoding_manager.py +87 -0
  161. tpu_inference/runner/tpu_runner.py +1744 -0
  162. tpu_inference/runner/utils.py +426 -0
  163. tpu_inference/spec_decode/__init__.py +0 -0
  164. tpu_inference/spec_decode/jax/__init__.py +0 -0
  165. tpu_inference/spec_decode/jax/eagle3.py +417 -0
  166. tpu_inference/tpu_info.py +78 -0
  167. tpu_inference/utils.py +340 -0
  168. tpu_inference/worker/__init__.py +0 -0
  169. tpu_inference/worker/tpu_worker.py +458 -0
  170. tpu_inference-0.0.1rc1.dist-info/METADATA +108 -0
  171. tpu_inference-0.0.1rc1.dist-info/RECORD +174 -0
  172. tpu_inference-0.0.1rc1.dist-info/WHEEL +5 -0
  173. tpu_inference-0.0.1rc1.dist-info/licenses/LICENSE +201 -0
  174. tpu_inference-0.0.1rc1.dist-info/top_level.txt +2 -0
@@ -0,0 +1,584 @@
1
+ """Utilities for downloading model weights from HuggingFace."""
2
+
3
+ import functools
4
+ import glob
5
+ import math
6
+ import os
7
+ import re
8
+ from collections.abc import Generator
9
+ from concurrent.futures import ThreadPoolExecutor
10
+ from dataclasses import dataclass, field
11
+ from typing import Any, Optional
12
+
13
+ import jax
14
+ import jax.numpy as jnp
15
+ import torch
16
+ import torchax
17
+ from flax import nnx
18
+ from jax.sharding import Mesh, NamedSharding
19
+ from jax.sharding import PartitionSpec as P
20
+ from safetensors import safe_open
21
+ from vllm.config import VllmConfig
22
+
23
+ from tpu_inference import envs, utils
24
+ from tpu_inference.logger import init_logger
25
+ from tpu_inference.models.jax.utils import file_utils
26
+
27
+ logger = init_logger(__name__)
28
+
29
+ HF_WEIGHTS_FORMAT = "*.safetensors"
30
+
31
+ DTYPE_VIEW_MAP = {
32
+ jnp.dtype(jnp.float8_e4m3fn): torch.uint8,
33
+ jnp.dtype(jnp.bfloat16): torch.uint16,
34
+ jnp.dtype(jnp.float32): torch.uint32,
35
+ }
36
+
37
+
38
+ @dataclass
39
+ class MetadataMap:
40
+ name_map: dict[str, str] = field(default_factory=dict)
41
+ transpose_map: dict[str, tuple[int, ...]] = field(default_factory=dict)
42
+ reshape_map: dict[str, tuple[int, ...]] = field(default_factory=dict)
43
+ bias_reshape_map: dict[str, tuple[int, ...]] = field(default_factory=dict)
44
+ pad_map: dict[str, tuple[int, ...]] = field(default_factory=dict)
45
+ bias_pad_map: dict[str, tuple[int, ...]] = field(default_factory=dict)
46
+
47
+
48
+ ############ START Used by llama4, deepseek only for now START ############
49
+
50
+
51
+ def print_param_info(param: nnx.Param, name: str):
52
+ logger.warning(f"Global shape for {name}: {param.value.shape}")
53
+ logger.warning(f"Sharding for {name}: {param.sharding}")
54
+
55
+ logger.warning(
56
+ f"Shape of {name} on a single device: {param.value.addressable_shards[0].data.shape}"
57
+ )
58
+
59
+
60
+ def transpose_params(param_key: str, param_tensor: jax.Array, transpose_map):
61
+ for key, value in transpose_map.items():
62
+ if key in param_key:
63
+ return jnp.transpose(param_tensor, value)
64
+ return param_tensor # Base case / no-op
65
+
66
+
67
+ def reshape_params(param_key: str, param_tensor: jax.Array, shape_map):
68
+ for key, new_shape in shape_map.items():
69
+ if key in param_key:
70
+ return jnp.reshape(param_tensor, new_shape)
71
+ return param_tensor # Base case / no-op
72
+
73
+
74
+ def model_file_generator(
75
+ model_name_or_path: str,
76
+ download_dir: Optional[str]) -> Generator[str, None, None]:
77
+ weights_files = get_model_weights_files(model_name_or_path, download_dir)
78
+ for st_file in weights_files:
79
+ yield st_file
80
+
81
+
82
+ def model_weights_generator(
83
+ model_name_or_path: str,
84
+ framework: str,
85
+ filter_regex: Optional[str] = None,
86
+ download_dir: Optional[str] = None,
87
+ ) -> Generator[tuple, None, None]:
88
+ for st_file in model_file_generator(model_name_or_path, download_dir):
89
+ for name, weight_tensor in model_weights_single_file_generator(
90
+ st_file, framework, filter_regex):
91
+ yield name, weight_tensor
92
+
93
+
94
+ def convert_torch_to_jax_with_view(loaded_weight: torch.Tensor,
95
+ cast_type: jnp.dtype) -> jax.Array:
96
+ """
97
+ Converts a PyTorch tensor to a JAX array by reinterpreting its
98
+ bit representation using a dtype view map.
99
+ """
100
+ torch_view_type = DTYPE_VIEW_MAP.get(jnp.dtype(cast_type))
101
+ loaded_weight = jnp.array(
102
+ loaded_weight.view(torch_view_type).numpy()).view(cast_type)
103
+ return loaded_weight
104
+
105
+
106
+ ############ END Used by llama4, deepseek only for now END ############
107
+
108
+
109
+ def get_model_weights_files(
110
+ model_name_or_path: str,
111
+ download_dir: Optional[str]) -> tuple[list[str], str]:
112
+ """
113
+ Helper to get weight files and their location.
114
+ """
115
+
116
+ if os.path.isdir(model_name_or_path):
117
+ logger.info(f"Found weights from local: {model_name_or_path}")
118
+ weights_files = glob.glob(
119
+ os.path.join(model_name_or_path, HF_WEIGHTS_FORMAT))
120
+ elif file_utils.is_hf_repo(model_name_or_path):
121
+ logger.info(f"Downloading weights from HF {model_name_or_path}")
122
+ weights_files = file_utils.download_model_weights_from_hf(
123
+ model_name_or_path, download_dir, HF_WEIGHTS_FORMAT)
124
+ else:
125
+ raise ValueError(
126
+ f"{model_name_or_path} must be a local directory, or a Huggingface model id."
127
+ )
128
+
129
+ if not weights_files:
130
+ raise RuntimeError(
131
+ f"Cannot find any {HF_WEIGHTS_FORMAT} files in {model_name_or_path}."
132
+ )
133
+
134
+ weights_files.sort()
135
+ return weights_files
136
+
137
+
138
+ def model_weights_single_file_generator(
139
+ weights_file: str,
140
+ framework: str,
141
+ filter_regex: Optional[str] = None,
142
+ ) -> Generator[tuple, None, None]:
143
+ logger.info(f"Loading weights from {weights_file}")
144
+ # NOTE: We enforce loading tensors on CPU here.
145
+ # Because otherwise the tensor will be loaded on TPU:0 by default,
146
+ # although the tensor would eventually be sharded across multiple TPUs,
147
+ # it would lead to OOM on TPU:0 for large models.
148
+ with jax.default_device(jax.devices("cpu")[0]):
149
+ with safe_open(weights_file, framework=framework) as f:
150
+ for name in f.keys():
151
+ if filter_regex is not None and not re.match(
152
+ filter_regex, name):
153
+ continue
154
+ weight_tensor = f.get_tensor(name)
155
+ yield name, weight_tensor
156
+
157
+
158
+ def get_param(params: nnx.State, path: str) -> nnx.State:
159
+ keys = path.split(".")
160
+ plevel = params
161
+ for key in keys:
162
+ if key.isdigit():
163
+ plevel = plevel[int(key)]
164
+ else:
165
+ if key in plevel:
166
+ plevel = plevel[key]
167
+ else:
168
+ raise ValueError(f"{path} is not a valid param path")
169
+ return plevel
170
+
171
+
172
+ def get_param_and_sharding(params: nnx.State, shardings: Any,
173
+ path: str) -> tuple[nnx.State, nnx.State]:
174
+ keys = path.split(".")
175
+ plevel = params
176
+ slevel = shardings
177
+ for key in keys:
178
+ if key.isdigit():
179
+ plevel = plevel[int(key)]
180
+ slevel = slevel[int(key)]
181
+ else:
182
+ if key in plevel:
183
+ plevel = plevel[key]
184
+ slevel = slevel[key]
185
+ else:
186
+ raise ValueError(f"{path} is not a valid param path")
187
+ return plevel, slevel.value
188
+
189
+
190
+ def shard_put(x: jax.Array, shardings, mesh: jax.sharding.Mesh) -> jax.Array:
191
+ # Single device sharding requires this special handling
192
+ # to avoid the recursive jit error.
193
+ if math.prod(mesh.axis_sizes) == 1:
194
+ return jax.device_put(x, mesh.devices.flatten()[0])
195
+
196
+ if isinstance(shardings, tuple):
197
+ return jax.device_put(x, NamedSharding(mesh, P(*shardings)))
198
+ else:
199
+ return jax.device_put(x, shardings)
200
+
201
+
202
+ def get_default_maps(model_config, mesh: Mesh,
203
+ name_map: dict[str, str]) -> MetadataMap:
204
+ """Load weights from one model weights file to the model, run on single thread."""
205
+ sharding_size = mesh.shape["model"]
206
+
207
+ hf_config = model_config.hf_config
208
+
209
+ num_heads = hf_config.num_attention_heads
210
+ num_kv_heads = hf_config.num_key_value_heads
211
+ hidden_size = model_config.get_hidden_size()
212
+
213
+ # Pad head_dim for kernel performance.
214
+ head_dim_original = model_config.get_head_size()
215
+
216
+ reshape_keys: dict[str, tuple[int, ...]] = {
217
+ "q_proj": (num_heads, head_dim_original, hidden_size),
218
+ "k_proj": (num_kv_heads, head_dim_original, hidden_size),
219
+ "v_proj": (num_kv_heads, head_dim_original, hidden_size),
220
+ "o_proj": (hidden_size, num_heads, head_dim_original),
221
+ }
222
+ bias_reshape_keys: dict[str, tuple[int, ...]] = {
223
+ "q_proj.bias": (num_heads, head_dim_original),
224
+ "k_proj.bias": (num_kv_heads, head_dim_original),
225
+ "v_proj.bias": (num_kv_heads, head_dim_original)
226
+ }
227
+ transpose_keys: dict[str, tuple[int, ...]] = {
228
+ "lm_head": (1, 0),
229
+ "fc": (1, 0),
230
+ "gate_proj": (1, 0),
231
+ "up_proj": (1, 0),
232
+ "down_proj": (1, 0),
233
+ "q_proj": (2, 0, 1),
234
+ "k_proj": (2, 0, 1),
235
+ "v_proj": (2, 0, 1),
236
+ "o_proj": (1, 2, 0),
237
+ }
238
+
239
+ # # get vision config
240
+ if model_config.is_multimodal_model:
241
+ # TODO: Wenlong: Do not consider padding for now
242
+ transpose_keys.update({
243
+ "attn.proj": (1, 0),
244
+ "attn.qkv": (1, 0),
245
+ "visual.merger.mlp": (1, 0),
246
+ "visual.patch_embed.proj": (2, 3, 4, 1, 0),
247
+ })
248
+
249
+ # key: (padding_dim, padding_size)
250
+ pad_keys: dict[str, tuple[int, ...]] = {
251
+ "q_proj": (1, sharding_size // num_heads),
252
+ "k_proj": (1, sharding_size // num_kv_heads),
253
+ "v_proj": (1, sharding_size // num_kv_heads),
254
+ "o_proj": (0, sharding_size // num_heads),
255
+ }
256
+ bias_pad_keys: dict[str, tuple[int, ...]] = {
257
+ "q_proj.bias": (0, sharding_size // num_heads),
258
+ "k_proj.bias": (0, sharding_size // num_kv_heads),
259
+ "v_proj.bias": (0, sharding_size // num_kv_heads),
260
+ }
261
+
262
+ return MetadataMap(name_map=name_map,
263
+ reshape_map=reshape_keys,
264
+ bias_reshape_map=bias_reshape_keys,
265
+ transpose_map=transpose_keys,
266
+ pad_map=pad_keys,
267
+ bias_pad_map=bias_pad_keys)
268
+
269
+
270
+ def _load_and_shard_weight(vllm_config,
271
+ params: nnx.State,
272
+ shardings: Any,
273
+ metadata_map: MetadataMap,
274
+ mesh: Mesh,
275
+ hf_key: str,
276
+ hf_weight: jax.Array,
277
+ keep_original_dtype_keys_regex: list[str]
278
+ | None = None):
279
+ name_map = metadata_map.name_map
280
+ reshape_keys = metadata_map.reshape_map
281
+ bias_reshape_keys = metadata_map.bias_reshape_map
282
+ transpose_keys = metadata_map.transpose_map
283
+ pad_keys = metadata_map.pad_map
284
+ bias_pad_keys = metadata_map.bias_pad_map
285
+
286
+ shard = functools.partial(shard_put, mesh=mesh)
287
+
288
+ model_config = vllm_config.model_config
289
+
290
+ # Pad head_dim for kernel performance.
291
+ head_dim_original = model_config.get_head_size()
292
+ head_dim = utils.get_padded_head_dim(head_dim_original)
293
+ head_dim_pad = head_dim - head_dim_original
294
+
295
+ # Check if the key should retain its original dtype
296
+ keep_original_dtype = False
297
+ if keep_original_dtype_keys_regex:
298
+ for pattern in keep_original_dtype_keys_regex:
299
+ if re.match(pattern, hf_key):
300
+ keep_original_dtype = True
301
+ break
302
+
303
+ # Converting to config's dtype
304
+ if not keep_original_dtype and hf_weight.dtype != model_config.dtype:
305
+ logger.warning(
306
+ f"Converting dtype for {hf_key} from {hf_weight.dtype} to {model_config.dtype}"
307
+ )
308
+ hf_weight = hf_weight.astype(model_config.dtype)
309
+
310
+ if hf_key.endswith(".weight"):
311
+ hf_key = hf_key.removesuffix(".weight")
312
+
313
+ # Find the corresponding model key using the HF key
314
+ if "layers" in hf_key:
315
+ layer_num = re.search(r"layers\.(\d+)", hf_key).group(1)
316
+ layer_key = re.sub(r"layers\.\d+", "layers.*", hf_key)
317
+ model_key = name_map[layer_key]
318
+ model_key = re.sub(r"layers\.\*", f"layers.{layer_num}", model_key)
319
+ elif "blocks" in hf_key:
320
+ layer_num = re.search(r"blocks\.(\d+)", hf_key).group(1)
321
+ layer_key = re.sub(r"blocks\.\d+", "blocks.*", hf_key)
322
+ model_key = name_map[layer_key]
323
+ model_key = re.sub(r"blocks\.\*", f"blocks.{layer_num}", model_key)
324
+ else:
325
+ if hf_key not in name_map and hf_key == "lm_head":
326
+ logger.warning(f"Skip loading {hf_key} due to tie_word_embeddings")
327
+ return
328
+ if hf_key not in name_map and "t2d" in hf_key:
329
+ logger.warning(
330
+ f"Skip loading {hf_key} as it's not used in eagle-3 for now")
331
+ return
332
+ model_key = name_map.get(hf_key, hf_key)
333
+
334
+ model_weight, model_sharding = get_param_and_sharding(
335
+ params, shardings, model_key)
336
+
337
+ logger.debug(
338
+ "before transform | "
339
+ f"{hf_key}: {hf_weight.shape} --> {model_key}: {model_weight.value.shape} {model_sharding}"
340
+ )
341
+
342
+ if hf_key.endswith(".bias"):
343
+ for key in bias_reshape_keys:
344
+ if key in hf_key:
345
+ hf_weight = jnp.reshape(hf_weight, bias_reshape_keys[key])
346
+ if head_dim_pad > 0:
347
+ hf_weight = jnp.pad(hf_weight, ((0, 0), (0, head_dim_pad)))
348
+ break
349
+ else:
350
+ for key in reshape_keys:
351
+ if key in hf_key:
352
+ hf_weight = jnp.reshape(hf_weight, reshape_keys[key])
353
+ if head_dim_pad > 0:
354
+ if "o_proj" in key:
355
+ hf_weight = jnp.pad(hf_weight, ((0, 0), (0, 0),
356
+ (0, head_dim_pad)))
357
+ else:
358
+ hf_weight = jnp.pad(hf_weight,
359
+ ((0, 0), (0, head_dim_pad),
360
+ (0, 0)))
361
+ break
362
+ for key in transpose_keys:
363
+ if key in hf_key:
364
+ hf_weight = jnp.transpose(hf_weight, transpose_keys[key])
365
+ break
366
+
367
+ # Pad num-kv-heads
368
+ if hf_key.endswith(".bias"):
369
+ for key, value in bias_pad_keys.items():
370
+ dim = value[0]
371
+ dim_size = value[1]
372
+ if key in hf_key and dim_size != 0:
373
+ hf_weight = jnp.repeat(hf_weight, dim_size, axis=dim)
374
+ break
375
+ else:
376
+ for key, value in pad_keys.items():
377
+ dim = value[0]
378
+ dim_size = value[1]
379
+ if key in hf_key and dim_size != 0:
380
+ hf_weight = jnp.repeat(hf_weight, dim_size, axis=dim)
381
+ break
382
+
383
+ logger.debug(
384
+ "after transform | "
385
+ f"{hf_key}: {hf_weight.shape} --> {model_key}: {model_weight.value.shape} {model_sharding}"
386
+ )
387
+
388
+ if head_dim_pad == 0:
389
+ assert model_weight.value.shape == hf_weight.shape, f"{hf_key}: {model_weight.value.shape} != {hf_weight.shape}"
390
+
391
+ # Update the model weight
392
+ spec = model_weight.sharding.spec if isinstance(
393
+ model_weight.sharding, NamedSharding) else model_weight.sharding
394
+ model_weight.value = shard(hf_weight, spec)
395
+
396
+
397
+ def _load_hf_weights_on_thread(
398
+ vllm_config: VllmConfig,
399
+ params: nnx.State,
400
+ metadata_map: "MetadataMap",
401
+ mesh: Mesh,
402
+ weights_file: str,
403
+ filter_regex: Optional[str] = None,
404
+ keep_original_dtype_keys_regex: Optional[list[str]] = None,
405
+ ):
406
+ """Loads weights from a single weights file."""
407
+ try:
408
+ shardings = nnx.get_named_sharding(params, mesh)
409
+ except TypeError:
410
+ shardings = params
411
+
412
+ for hf_key, hf_weight in model_weights_single_file_generator(
413
+ weights_file, framework="flax", filter_regex=filter_regex):
414
+ _load_and_shard_weight(
415
+ vllm_config,
416
+ params,
417
+ shardings,
418
+ metadata_map,
419
+ mesh,
420
+ hf_key,
421
+ hf_weight,
422
+ keep_original_dtype_keys_regex,
423
+ )
424
+
425
+
426
+ def load_hf_weights(
427
+ vllm_config: VllmConfig,
428
+ model: nnx.Module,
429
+ metadata_map: "MetadataMap",
430
+ mesh: Mesh,
431
+ filter_regex: Optional[str] = None,
432
+ is_draft_model: bool = False,
433
+ keep_original_dtype_keys_regex: Optional[list[str]] = None,
434
+ ):
435
+ """Load weights into a JAX model from either an iterator or files."""
436
+ params = nnx.state(model)
437
+ try:
438
+ shardings = nnx.get_named_sharding(params, mesh)
439
+ except TypeError:
440
+ shardings = params
441
+ weights_iterator = None
442
+ if hasattr(vllm_config.model_config, "model_weights_iterator"):
443
+ weights_iterator = vllm_config.model_config.model_weights_iterator
444
+ env = torchax.default_env()
445
+ # The weights_iterator is used in RunAI model streamer integration.
446
+ if weights_iterator is not None:
447
+ for hf_key, hf_weight in weights_iterator:
448
+ if filter_regex and not re.match(filter_regex, hf_key):
449
+ continue
450
+
451
+ # Since the weights_iterator yields Pytorch tensors (torch.Tensor),
452
+ # we need to convert them to JAX arrays (jax.Array).
453
+ hf_weight_jax = env.t2j_copy(hf_weight)
454
+
455
+ _load_and_shard_weight(
456
+ vllm_config,
457
+ params,
458
+ shardings,
459
+ metadata_map,
460
+ mesh,
461
+ hf_key,
462
+ hf_weight_jax,
463
+ keep_original_dtype_keys_regex,
464
+ )
465
+ else:
466
+ # File-based path (multi-threaded)
467
+ if is_draft_model:
468
+ model_path = vllm_config.speculative_config.draft_model_config.model
469
+ else:
470
+ model_path = vllm_config.model_config.model
471
+ weights_files = get_model_weights_files(
472
+ model_path, vllm_config.load_config.download_dir)
473
+ max_workers = min(64, len(weights_files))
474
+ # NOTE(xiang): Disable multi-threading mode if running on multi-host.
475
+ # Because multi-threading would cause different JAX processes to load
476
+ # different weights at the same time.
477
+ if envs.TPU_MULTIHOST_BACKEND == "ray":
478
+ max_workers = 1
479
+ with ThreadPoolExecutor(max_workers=max_workers) as executor:
480
+ futures = [
481
+ executor.submit(
482
+ _load_hf_weights_on_thread,
483
+ vllm_config,
484
+ params,
485
+ metadata_map,
486
+ mesh,
487
+ weights_file,
488
+ filter_regex=filter_regex,
489
+ keep_original_dtype_keys_regex=
490
+ keep_original_dtype_keys_regex,
491
+ ) for weights_file in weights_files
492
+ ]
493
+ for future in futures:
494
+ future.result()
495
+
496
+ check_all_loaded(params)
497
+ nnx.update(model, params)
498
+
499
+
500
+ def check_all_loaded(params: nnx.State):
501
+
502
+ def _check(x: Any):
503
+ if isinstance(x, nnx.Param) and isinstance(x.value,
504
+ jax.ShapeDtypeStruct):
505
+ raise ValueError(f"The param does not load weights: {x}")
506
+
507
+ jax.tree.map(_check, params)
508
+
509
+
510
+ def build_flat_dict(flat_state, mappings):
511
+ """Build a new flat dictionary from the flat state using the provided mappings."""
512
+ new_flat_dict = {}
513
+ for keys, v in flat_state:
514
+ path = '.'.join(str(key) for key in keys)
515
+ mapped = False
516
+ for src, (tgt, sharding) in mappings.items():
517
+ regex = "^" + re.escape(tgt).replace("\\.\\*", r"\.(\d+)") + "$"
518
+ matched = re.match(regex, path)
519
+ if matched:
520
+ # Extract wildcards if any
521
+ wildcards = matched.groups()
522
+ src_parts = []
523
+ wc_index = 0
524
+ for part in src.split("."):
525
+ if part == "*":
526
+ src_parts.append(wildcards[wc_index])
527
+ wc_index += 1
528
+ else:
529
+ src_parts.append(part)
530
+ actual_src = ".".join(src_parts)
531
+ new_flat_dict[actual_src] = v, sharding
532
+ mapped = True
533
+ break
534
+ if not mapped:
535
+ logger.info(f"!!! No mapping for flat state: {keys}")
536
+ return new_flat_dict
537
+
538
+
539
+ def transfer_state_with_mappings(src_state,
540
+ tgt_state,
541
+ mappings,
542
+ transpose_keys=None,
543
+ shard=None):
544
+ """Transfer state from src_state to tgt_state using the provided mappings."""
545
+ src_flat = src_state.flat_state()
546
+ tgt_flat = tgt_state.flat_state()
547
+
548
+ new_src_dict = build_flat_dict(tgt_flat, mappings)
549
+ logger.info(f"{mappings=}")
550
+ logger.info(f"{transpose_keys=}")
551
+ for src_keys, v in src_flat:
552
+ flattened_src_keys = '.'.join(str(k) for k in src_keys)
553
+ new_v = jnp.copy(v.value)
554
+ logger.info(
555
+ f"Processing source key: {flattened_src_keys} and value: {new_v.shape} {new_v.dtype}"
556
+ )
557
+ if flattened_src_keys not in new_src_dict:
558
+ logger.info(f"!!! No mapping for source key: {flattened_src_keys}")
559
+ continue
560
+ sharding = new_src_dict[flattened_src_keys][1]
561
+
562
+ # E.g. layers.*.attn.k_proj.w, layers.*.attn.k_proj.w_lora_a
563
+ # E.g. layers.*.mlp.down_proj.kernel, layers.*.mlp.down_proj.kernel_lora_a
564
+ if transpose_keys is not None \
565
+ and ((src_keys[-1] in transpose_keys) and ('lora' not in src_keys[-1])):
566
+ v_maybe_t = jnp.transpose(new_v, transpose_keys[src_keys[-1]])
567
+ else:
568
+ v_maybe_t = new_v
569
+
570
+ to_update_value = new_src_dict[flattened_src_keys][0].value
571
+ assert to_update_value.shape == v_maybe_t.shape, \
572
+ f"Shape mismatch for {flattened_src_keys}: {to_update_value.shape} vs {v_maybe_t.shape}"
573
+
574
+ if to_update_value.dtype != v_maybe_t.dtype:
575
+ logger.info(
576
+ f"Type mismatch between external model and vLLM model. Converting {v_maybe_t.dtype=} to {to_update_value.dtype=}"
577
+ )
578
+ v_maybe_t = v_maybe_t.astype(to_update_value.dtype)
579
+
580
+ new_src_dict[flattened_src_keys][0].value = shard(
581
+ v_maybe_t, sharding) if shard else v_maybe_t
582
+
583
+ tgt_state = tgt_state.from_flat_path(tgt_flat)
584
+ return tgt_state
File without changes