tpu-inference 0.0.1rc1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tpu-inference might be problematic. Click here for more details.
- tests/__init__.py +0 -0
- tests/core/__init__.py +0 -0
- tests/core/test_core_tpu.py +513 -0
- tests/core/test_disagg_executor.py +60 -0
- tests/core/test_disagg_utils.py +53 -0
- tests/core/test_dp_scheduler.py +899 -0
- tests/core/test_init.py +49 -0
- tests/kernels/__init__.py +0 -0
- tests/kernels/fused_moe_v1_test.py +374 -0
- tests/kernels/mla_v1_test.py +396 -0
- tests/kernels/quantized_matmul_kernel_test.py +191 -0
- tests/kernels/ragged_kv_cache_update_v2_test.py +234 -0
- tests/kernels/ragged_paged_attention_kernel_v2_test.py +400 -0
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +549 -0
- tests/kernels/ragged_paged_attention_kernel_v3_test.py +504 -0
- tests/lora/__init__.py +0 -0
- tests/lora/conftest.py +32 -0
- tests/lora/test_bgmv.py +43 -0
- tests/lora/test_layers.py +648 -0
- tests/lora/test_lora.py +133 -0
- tests/lora/utils.py +88 -0
- tests/test_base.py +201 -0
- tests/test_envs.py +203 -0
- tests/test_quantization.py +836 -0
- tests/test_tpu_info.py +120 -0
- tests/test_utils.py +235 -0
- tpu_inference/__init__.py +53 -0
- tpu_inference/core/__init__.py +0 -0
- tpu_inference/core/core_tpu.py +786 -0
- tpu_inference/core/disagg_executor.py +118 -0
- tpu_inference/core/disagg_utils.py +49 -0
- tpu_inference/core/sched/__init__.py +0 -0
- tpu_inference/core/sched/dp_scheduler.py +523 -0
- tpu_inference/distributed/__init__.py +0 -0
- tpu_inference/distributed/jax_parallel_state.py +67 -0
- tpu_inference/distributed/tpu_connector.py +727 -0
- tpu_inference/distributed/utils.py +60 -0
- tpu_inference/env_override.py +9 -0
- tpu_inference/envs.py +160 -0
- tpu_inference/executors/__init__.py +0 -0
- tpu_inference/executors/ray_distributed_executor.py +382 -0
- tpu_inference/experimental/__init__.py +0 -0
- tpu_inference/experimental/llama3_jax_stashed.py +258 -0
- tpu_inference/kernels/__init__.py +0 -0
- tpu_inference/kernels/collectives/__init__.py +0 -0
- tpu_inference/kernels/collectives/all_gather_matmul.py +735 -0
- tpu_inference/kernels/collectives/all_gather_matmul_tuned_block_sizes.py +60 -0
- tpu_inference/kernels/collectives/util.py +47 -0
- tpu_inference/kernels/flash_attention/__init__.py +0 -0
- tpu_inference/kernels/flash_attention/kernel.py +772 -0
- tpu_inference/kernels/fused_moe/__init__.py +0 -0
- tpu_inference/kernels/fused_moe/v1/__init__.py +0 -0
- tpu_inference/kernels/fused_moe/v1/kernel.py +1566 -0
- tpu_inference/kernels/mla/__init__.py +0 -0
- tpu_inference/kernels/mla/v1/__init__.py +0 -0
- tpu_inference/kernels/mla/v1/kernel.py +1349 -0
- tpu_inference/kernels/quantized_matmul/__init__.py +0 -0
- tpu_inference/kernels/quantized_matmul/kernel.py +395 -0
- tpu_inference/kernels/quantized_matmul/tuned_block_sizes.py +609 -0
- tpu_inference/kernels/quantized_matmul/util.py +58 -0
- tpu_inference/kernels/ragged_paged_attention/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v2/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v2/kernel.py +875 -0
- tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py +287 -0
- tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py +1482 -0
- tpu_inference/kernels/ragged_paged_attention/v3/__init__.py +0 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +1501 -0
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +1603 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py +4147 -0
- tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py +367 -0
- tpu_inference/kernels/ragged_paged_attention/v3/util.py +51 -0
- tpu_inference/layers/__init__.py +0 -0
- tpu_inference/layers/common/__init__.py +0 -0
- tpu_inference/layers/common/attention_interface.py +396 -0
- tpu_inference/layers/common/attention_metadata.py +34 -0
- tpu_inference/layers/common/binary_search.py +295 -0
- tpu_inference/layers/common/quant_methods.py +8 -0
- tpu_inference/layers/common/sharding.py +582 -0
- tpu_inference/layers/jax/__init__.py +0 -0
- tpu_inference/layers/jax/attention/__init__.py +0 -0
- tpu_inference/layers/jax/attention/attention.py +255 -0
- tpu_inference/layers/jax/attention/deepseek_v3_attention.py +354 -0
- tpu_inference/layers/jax/attention/gpt_oss_attention.py +262 -0
- tpu_inference/layers/jax/attention/llama4_attention.py +153 -0
- tpu_inference/layers/jax/base.py +151 -0
- tpu_inference/layers/jax/constants.py +88 -0
- tpu_inference/layers/jax/layers.py +301 -0
- tpu_inference/layers/jax/misc.py +16 -0
- tpu_inference/layers/jax/moe/__init__.py +0 -0
- tpu_inference/layers/jax/moe/deepseek_v3_moe.py +608 -0
- tpu_inference/layers/jax/moe/gpt_oss_moe.py +185 -0
- tpu_inference/layers/jax/moe/moe.py +209 -0
- tpu_inference/layers/jax/rope.py +280 -0
- tpu_inference/layers/jax/rope_interface.py +214 -0
- tpu_inference/layers/jax/sample/__init__.py +0 -0
- tpu_inference/layers/jax/sample/rejection_sampler.py +515 -0
- tpu_inference/layers/jax/sample/sampling.py +96 -0
- tpu_inference/layers/jax/sample/sampling_metadata.py +76 -0
- tpu_inference/layers/jax/transformer_block.py +107 -0
- tpu_inference/layers/vllm/__init__.py +0 -0
- tpu_inference/layers/vllm/attention.py +221 -0
- tpu_inference/layers/vllm/fused_moe.py +469 -0
- tpu_inference/layers/vllm/linear_common.py +186 -0
- tpu_inference/layers/vllm/quantization/__init__.py +39 -0
- tpu_inference/layers/vllm/quantization/awq.py +207 -0
- tpu_inference/layers/vllm/quantization/common.py +110 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py +0 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py +120 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py +203 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/__init__.py +0 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_fp8.py +208 -0
- tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py +136 -0
- tpu_inference/layers/vllm/quantization/mxfp4.py +331 -0
- tpu_inference/layers/vllm/quantization/unquantized.py +368 -0
- tpu_inference/layers/vllm/sharding.py +230 -0
- tpu_inference/logger.py +10 -0
- tpu_inference/lora/__init__.py +0 -0
- tpu_inference/lora/torch_lora_ops.py +103 -0
- tpu_inference/lora/torch_punica_tpu.py +310 -0
- tpu_inference/models/__init__.py +0 -0
- tpu_inference/models/common/__init__.py +0 -0
- tpu_inference/models/common/model_loader.py +478 -0
- tpu_inference/models/jax/__init__.py +0 -0
- tpu_inference/models/jax/deepseek_v3.py +868 -0
- tpu_inference/models/jax/gpt_oss.py +492 -0
- tpu_inference/models/jax/jax_intermediate_tensor.py +79 -0
- tpu_inference/models/jax/llama3.py +376 -0
- tpu_inference/models/jax/llama4.py +629 -0
- tpu_inference/models/jax/llama_eagle3.py +336 -0
- tpu_inference/models/jax/llama_guard_4.py +361 -0
- tpu_inference/models/jax/qwen2.py +376 -0
- tpu_inference/models/jax/qwen2_5_vl.py +1218 -0
- tpu_inference/models/jax/qwen3.py +303 -0
- tpu_inference/models/jax/utils/__init__.py +0 -0
- tpu_inference/models/jax/utils/file_utils.py +96 -0
- tpu_inference/models/jax/utils/multi_modal_utils.py +163 -0
- tpu_inference/models/jax/utils/quantization/__init__.py +0 -0
- tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml +5 -0
- tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml +6 -0
- tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml +5 -0
- tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml +6 -0
- tpu_inference/models/jax/utils/quantization/mxfp4_utils.py +105 -0
- tpu_inference/models/jax/utils/quantization/quantization_utils.py +650 -0
- tpu_inference/models/jax/utils/weight_utils.py +584 -0
- tpu_inference/models/vllm/__init__.py +0 -0
- tpu_inference/models/vllm/vllm_model_wrapper.py +293 -0
- tpu_inference/models/vllm/vllm_model_wrapper_context.py +45 -0
- tpu_inference/platforms/__init__.py +2 -0
- tpu_inference/platforms/tpu_platform.py +275 -0
- tpu_inference/runner/__init__.py +0 -0
- tpu_inference/runner/block_table.py +122 -0
- tpu_inference/runner/compilation_manager.py +865 -0
- tpu_inference/runner/input_batch.py +435 -0
- tpu_inference/runner/kv_cache.py +132 -0
- tpu_inference/runner/kv_cache_manager.py +478 -0
- tpu_inference/runner/lora_utils.py +92 -0
- tpu_inference/runner/multimodal_manager.py +217 -0
- tpu_inference/runner/persistent_batch_manager.py +282 -0
- tpu_inference/runner/speculative_decoding_manager.py +248 -0
- tpu_inference/runner/structured_decoding_manager.py +87 -0
- tpu_inference/runner/tpu_runner.py +1744 -0
- tpu_inference/runner/utils.py +426 -0
- tpu_inference/spec_decode/__init__.py +0 -0
- tpu_inference/spec_decode/jax/__init__.py +0 -0
- tpu_inference/spec_decode/jax/eagle3.py +417 -0
- tpu_inference/tpu_info.py +78 -0
- tpu_inference/utils.py +340 -0
- tpu_inference/worker/__init__.py +0 -0
- tpu_inference/worker/tpu_worker.py +458 -0
- tpu_inference-0.0.1rc1.dist-info/METADATA +108 -0
- tpu_inference-0.0.1rc1.dist-info/RECORD +174 -0
- tpu_inference-0.0.1rc1.dist-info/WHEEL +5 -0
- tpu_inference-0.0.1rc1.dist-info/licenses/LICENSE +201 -0
- tpu_inference-0.0.1rc1.dist-info/top_level.txt +2 -0
|
@@ -0,0 +1,336 @@
|
|
|
1
|
+
from typing import List, Tuple
|
|
2
|
+
|
|
3
|
+
import jax
|
|
4
|
+
import jax.numpy as jnp
|
|
5
|
+
from flax import nnx
|
|
6
|
+
from jax.sharding import Mesh
|
|
7
|
+
from transformers import LlamaConfig
|
|
8
|
+
from vllm.config import VllmConfig
|
|
9
|
+
|
|
10
|
+
from tpu_inference.layers.common.attention_metadata import AttentionMetadata
|
|
11
|
+
from tpu_inference.logger import init_logger
|
|
12
|
+
from tpu_inference.models.jax.llama3 import LlamaDecoderLayer
|
|
13
|
+
from tpu_inference.models.jax.utils.weight_utils import (MetadataMap,
|
|
14
|
+
get_default_maps,
|
|
15
|
+
load_hf_weights)
|
|
16
|
+
|
|
17
|
+
logger = init_logger(__name__)
|
|
18
|
+
|
|
19
|
+
init_fn = nnx.initializers.uniform()
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class Eagle3LlamaDecoderLayer(LlamaDecoderLayer):
|
|
23
|
+
|
|
24
|
+
def __init__(self, config: LlamaConfig, dtype: jnp.dtype, rng: nnx.Rngs,
|
|
25
|
+
mesh: Mesh, kv_cache_dtype: str):
|
|
26
|
+
super().__init__(config,
|
|
27
|
+
dtype=dtype,
|
|
28
|
+
rng=rng,
|
|
29
|
+
mesh=mesh,
|
|
30
|
+
kv_cache_dtype=kv_cache_dtype)
|
|
31
|
+
self.config = config
|
|
32
|
+
# Override qkv
|
|
33
|
+
hidden_size = 2 * self.self_attn.hidden_size
|
|
34
|
+
self.self_attn.q_proj = nnx.Einsum(
|
|
35
|
+
"TD,DNH->TNH",
|
|
36
|
+
(hidden_size, self.self_attn.num_heads, self.self_attn.head_dim),
|
|
37
|
+
param_dtype=dtype,
|
|
38
|
+
dtype=dtype,
|
|
39
|
+
kernel_init=nnx.with_partitioning(init_fn, (None, "model", None)),
|
|
40
|
+
rngs=rng,
|
|
41
|
+
)
|
|
42
|
+
self.self_attn.k_proj = nnx.Einsum(
|
|
43
|
+
"TD,DKH->TKH",
|
|
44
|
+
(hidden_size, self.self_attn.num_kv_heads,
|
|
45
|
+
self.self_attn.head_dim),
|
|
46
|
+
param_dtype=dtype,
|
|
47
|
+
dtype=dtype,
|
|
48
|
+
kernel_init=nnx.with_partitioning(init_fn, (None, "model", None)),
|
|
49
|
+
rngs=rng,
|
|
50
|
+
)
|
|
51
|
+
self.self_attn.v_proj = nnx.Einsum(
|
|
52
|
+
"TD,DKH->TKH",
|
|
53
|
+
(hidden_size, self.self_attn.num_kv_heads,
|
|
54
|
+
self.self_attn.head_dim),
|
|
55
|
+
param_dtype=dtype,
|
|
56
|
+
dtype=dtype,
|
|
57
|
+
kernel_init=nnx.with_partitioning(init_fn, (None, "model", None)),
|
|
58
|
+
rngs=rng,
|
|
59
|
+
)
|
|
60
|
+
# Override input layernorm and specify dtype to avoid unexpected upcasting.
|
|
61
|
+
self.input_layernorm = nnx.RMSNorm(
|
|
62
|
+
config.hidden_size,
|
|
63
|
+
epsilon=config.rms_norm_eps,
|
|
64
|
+
param_dtype=dtype,
|
|
65
|
+
dtype=dtype,
|
|
66
|
+
scale_init=nnx.with_partitioning(init_fn, (None, )),
|
|
67
|
+
rngs=rng,
|
|
68
|
+
)
|
|
69
|
+
self.hidden_norm = nnx.RMSNorm(
|
|
70
|
+
config.hidden_size,
|
|
71
|
+
epsilon=config.rms_norm_eps,
|
|
72
|
+
param_dtype=dtype,
|
|
73
|
+
scale_init=nnx.with_partitioning(init_fn, (None, )),
|
|
74
|
+
rngs=rng,
|
|
75
|
+
)
|
|
76
|
+
|
|
77
|
+
def _norm_before_residual(
|
|
78
|
+
self, hidden_states: jax.Array) -> tuple[jax.Array, jax.Array]:
|
|
79
|
+
hidden_states = self.hidden_norm(hidden_states)
|
|
80
|
+
residual = hidden_states
|
|
81
|
+
return hidden_states, residual
|
|
82
|
+
|
|
83
|
+
def _norm_after_residual(
|
|
84
|
+
self, hidden_states: jax.Array) -> tuple[jax.Array, jax.Array]:
|
|
85
|
+
residual = hidden_states
|
|
86
|
+
hidden_states = self.hidden_norm(hidden_states)
|
|
87
|
+
return hidden_states, residual
|
|
88
|
+
|
|
89
|
+
def __call__(
|
|
90
|
+
self,
|
|
91
|
+
kv_cache: jax.Array,
|
|
92
|
+
embeds: jax.Array,
|
|
93
|
+
hidden_states: jax.Array,
|
|
94
|
+
attention_metadata: AttentionMetadata,
|
|
95
|
+
) -> Tuple[jax.Array, jax.Array, jax.Array]:
|
|
96
|
+
embeds = self.input_layernorm(embeds)
|
|
97
|
+
if getattr(self.config, "norm_before_residual", False):
|
|
98
|
+
hidden_states, residual = self._norm_before_residual(
|
|
99
|
+
hidden_states=hidden_states)
|
|
100
|
+
else:
|
|
101
|
+
hidden_states, residual = self._norm_after_residual(
|
|
102
|
+
hidden_states=hidden_states)
|
|
103
|
+
hidden_states = jnp.concatenate([embeds, hidden_states], axis=-1)
|
|
104
|
+
|
|
105
|
+
kv_cache, attn_output = self.self_attn(
|
|
106
|
+
kv_cache,
|
|
107
|
+
hidden_states,
|
|
108
|
+
attention_metadata,
|
|
109
|
+
)
|
|
110
|
+
|
|
111
|
+
# TODO(ranlihao): Check if this residual connection is correct.
|
|
112
|
+
hidden_states = attn_output + residual
|
|
113
|
+
residual = hidden_states
|
|
114
|
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
|
115
|
+
mlp_output = self.mlp(hidden_states)
|
|
116
|
+
|
|
117
|
+
return kv_cache, mlp_output, residual
|
|
118
|
+
|
|
119
|
+
|
|
120
|
+
class Eagle3LlamaModel(nnx.Module):
|
|
121
|
+
|
|
122
|
+
def __init__(self, vllm_config: VllmConfig, rng: nnx.Rngs, mesh: Mesh):
|
|
123
|
+
super().__init__()
|
|
124
|
+
hf_config = vllm_config.speculative_config.draft_model_config.hf_config
|
|
125
|
+
dtype: jnp.dtype = jnp.bfloat16
|
|
126
|
+
|
|
127
|
+
self.embed_tokens = nnx.Embed(
|
|
128
|
+
num_embeddings=hf_config.vocab_size,
|
|
129
|
+
features=hf_config.hidden_size,
|
|
130
|
+
param_dtype=dtype,
|
|
131
|
+
embedding_init=nnx.with_partitioning(init_fn, ("model", None)),
|
|
132
|
+
rngs=rng,
|
|
133
|
+
)
|
|
134
|
+
|
|
135
|
+
self.layers = [
|
|
136
|
+
Eagle3LlamaDecoderLayer(
|
|
137
|
+
config=hf_config,
|
|
138
|
+
dtype=dtype,
|
|
139
|
+
rng=rng,
|
|
140
|
+
mesh=mesh,
|
|
141
|
+
# TODO (jacobplatin): we should refactor this to pass a dtype (or config) directly
|
|
142
|
+
kv_cache_dtype=vllm_config.cache_config.cache_dtype)
|
|
143
|
+
]
|
|
144
|
+
|
|
145
|
+
if hasattr(hf_config, "target_hidden_size"):
|
|
146
|
+
input_size = hf_config.target_hidden_size * 3
|
|
147
|
+
else:
|
|
148
|
+
input_size = hf_config.hidden_size * 3
|
|
149
|
+
|
|
150
|
+
self.fc = nnx.Linear(
|
|
151
|
+
in_features=input_size,
|
|
152
|
+
out_features=hf_config.hidden_size,
|
|
153
|
+
use_bias=False,
|
|
154
|
+
param_dtype=dtype,
|
|
155
|
+
kernel_init=nnx.with_partitioning(init_fn, (None, "model")),
|
|
156
|
+
rngs=rng,
|
|
157
|
+
)
|
|
158
|
+
|
|
159
|
+
self.norm = nnx.RMSNorm(
|
|
160
|
+
hf_config.hidden_size,
|
|
161
|
+
epsilon=hf_config.rms_norm_eps,
|
|
162
|
+
param_dtype=dtype,
|
|
163
|
+
scale_init=nnx.with_partitioning(init_fn, (None, )),
|
|
164
|
+
rngs=rng,
|
|
165
|
+
)
|
|
166
|
+
|
|
167
|
+
def __call__(
|
|
168
|
+
self,
|
|
169
|
+
kv_caches: List[jax.Array],
|
|
170
|
+
input_ids: jax.Array,
|
|
171
|
+
hidden_states: jax.Array,
|
|
172
|
+
attention_metadata: AttentionMetadata,
|
|
173
|
+
) -> Tuple[List[jax.Array], jax.Array, List[jax.Array]]:
|
|
174
|
+
embeds = self.embed_tokens(input_ids)
|
|
175
|
+
assert hidden_states.shape[-1] == embeds.shape[-1]
|
|
176
|
+
|
|
177
|
+
assert len(self.layers) == 1
|
|
178
|
+
# The first N - 1 KV caches are for the target model, and the last one is for the draft model.
|
|
179
|
+
# N is the number of layers in the target model.
|
|
180
|
+
# The draft model has only 1 layer.
|
|
181
|
+
kv_caches[-1], hidden_states, residual = self.layers[0](
|
|
182
|
+
kv_caches[-1],
|
|
183
|
+
embeds,
|
|
184
|
+
hidden_states,
|
|
185
|
+
attention_metadata,
|
|
186
|
+
)
|
|
187
|
+
|
|
188
|
+
# TODO(ranlihao): Check if this residual connection is correct.
|
|
189
|
+
hidden_states = hidden_states + residual
|
|
190
|
+
residual = hidden_states
|
|
191
|
+
hidden_states = self.norm(hidden_states)
|
|
192
|
+
return kv_caches, hidden_states, [residual]
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
def update_reshape_map_for_eagle3(vllm_config: VllmConfig,
|
|
196
|
+
metadata_map: MetadataMap):
|
|
197
|
+
model_config = vllm_config.speculative_config.draft_model_config
|
|
198
|
+
hf_config = model_config.hf_config
|
|
199
|
+
|
|
200
|
+
num_heads = hf_config.num_attention_heads
|
|
201
|
+
num_kv_heads = hf_config.num_key_value_heads
|
|
202
|
+
hidden_size = hf_config.hidden_size
|
|
203
|
+
head_dim_original = model_config.get_head_size()
|
|
204
|
+
|
|
205
|
+
metadata_map.reshape_map.update({
|
|
206
|
+
"q_proj": (num_heads, head_dim_original, 2 * hidden_size),
|
|
207
|
+
"k_proj": (num_kv_heads, head_dim_original, 2 * hidden_size),
|
|
208
|
+
"v_proj": (num_kv_heads, head_dim_original, 2 * hidden_size),\
|
|
209
|
+
})
|
|
210
|
+
|
|
211
|
+
|
|
212
|
+
class EagleLlama3ForCausalLM(nnx.Module):
|
|
213
|
+
|
|
214
|
+
def __init__(self, vllm_config: VllmConfig, rng_key: jax.Array,
|
|
215
|
+
mesh: Mesh):
|
|
216
|
+
nnx.Module.__init__(self)
|
|
217
|
+
self.vllm_config = vllm_config
|
|
218
|
+
self.rng = nnx.Rngs(rng_key)
|
|
219
|
+
self.mesh = mesh
|
|
220
|
+
dtype: jnp.dtype = jnp.bfloat16
|
|
221
|
+
|
|
222
|
+
spec_config = vllm_config.speculative_config
|
|
223
|
+
assert spec_config is not None
|
|
224
|
+
model_config = spec_config.draft_model_config
|
|
225
|
+
assert model_config is not None
|
|
226
|
+
hf_config = model_config.hf_config
|
|
227
|
+
|
|
228
|
+
self.model = Eagle3LlamaModel(
|
|
229
|
+
vllm_config=vllm_config,
|
|
230
|
+
rng=self.rng,
|
|
231
|
+
mesh=mesh,
|
|
232
|
+
)
|
|
233
|
+
|
|
234
|
+
self.lm_head = nnx.Linear(
|
|
235
|
+
hf_config.hidden_size,
|
|
236
|
+
hf_config.draft_vocab_size,
|
|
237
|
+
use_bias=False,
|
|
238
|
+
param_dtype=dtype,
|
|
239
|
+
kernel_init=nnx.with_partitioning(init_fn, (None, "model")),
|
|
240
|
+
rngs=self.rng,
|
|
241
|
+
)
|
|
242
|
+
|
|
243
|
+
self.draft_id_to_target_id = nnx.Param(jnp.zeros(
|
|
244
|
+
hf_config.draft_vocab_size, dtype=jnp.int32),
|
|
245
|
+
sharding=(None, ))
|
|
246
|
+
|
|
247
|
+
def __call__(
|
|
248
|
+
self,
|
|
249
|
+
kv_caches: List[jax.Array],
|
|
250
|
+
input_ids: jax.Array,
|
|
251
|
+
hidden_states: jax.Array,
|
|
252
|
+
attention_metadata: AttentionMetadata,
|
|
253
|
+
) -> Tuple[List[jax.Array], jax.Array, List[jax.Array]]:
|
|
254
|
+
return self.model(
|
|
255
|
+
kv_caches,
|
|
256
|
+
input_ids,
|
|
257
|
+
hidden_states,
|
|
258
|
+
attention_metadata,
|
|
259
|
+
)
|
|
260
|
+
|
|
261
|
+
def compute_logits(self, hidden_states: jax.Array) -> jax.Array:
|
|
262
|
+
logits = self.lm_head(hidden_states)
|
|
263
|
+
|
|
264
|
+
target_vocab_size = self.vllm_config.model_config.get_vocab_size()
|
|
265
|
+
draft_vocab_size = self.vllm_config.speculative_config.draft_model_config.hf_config.draft_vocab_size
|
|
266
|
+
|
|
267
|
+
base = jnp.arange(draft_vocab_size, dtype=jnp.int32)
|
|
268
|
+
targets = base + self.draft_id_to_target_id.value
|
|
269
|
+
|
|
270
|
+
logits_new = jnp.full((logits.shape[0], target_vocab_size),
|
|
271
|
+
-jnp.inf,
|
|
272
|
+
dtype=logits.dtype)
|
|
273
|
+
|
|
274
|
+
logits_new = logits_new.at[:, targets].set(logits)
|
|
275
|
+
|
|
276
|
+
return logits_new
|
|
277
|
+
|
|
278
|
+
def combine_hidden_states(self, hidden_states: jax.Array) -> jax.Array:
|
|
279
|
+
return self.model.fc(hidden_states)
|
|
280
|
+
|
|
281
|
+
def load_weights(self, rng_key: jax.Array):
|
|
282
|
+
# Create a new Rngs object for the draft model to avoid sharing RNG state
|
|
283
|
+
self.rng = jax.random.key(self.vllm_config.model_config.seed)
|
|
284
|
+
spec_config = self.vllm_config.speculative_config
|
|
285
|
+
assert spec_config is not None
|
|
286
|
+
|
|
287
|
+
mappings = {
|
|
288
|
+
"midlayer.input_layernorm": "model.layers.0.input_layernorm.scale",
|
|
289
|
+
"midlayer.hidden_norm": "model.layers.0.hidden_norm.scale",
|
|
290
|
+
"midlayer.mlp.down_proj": "model.layers.0.mlp.down_proj.kernel",
|
|
291
|
+
"midlayer.mlp.gate_proj": "model.layers.0.mlp.gate_proj.kernel",
|
|
292
|
+
"midlayer.mlp.up_proj": "model.layers.0.mlp.up_proj.kernel",
|
|
293
|
+
"midlayer.post_attention_layernorm":
|
|
294
|
+
"model.layers.0.post_attention_layernorm.scale",
|
|
295
|
+
"midlayer.self_attn.k_proj":
|
|
296
|
+
"model.layers.0.self_attn.k_proj.kernel",
|
|
297
|
+
"midlayer.self_attn.o_proj":
|
|
298
|
+
"model.layers.0.self_attn.o_proj.kernel",
|
|
299
|
+
"midlayer.self_attn.q_proj":
|
|
300
|
+
"model.layers.0.self_attn.q_proj.kernel",
|
|
301
|
+
"midlayer.self_attn.v_proj":
|
|
302
|
+
"model.layers.0.self_attn.v_proj.kernel",
|
|
303
|
+
"norm": "model.norm.scale",
|
|
304
|
+
"fc": "model.fc.kernel",
|
|
305
|
+
"lm_head": "lm_head.kernel",
|
|
306
|
+
"d2t": "draft_id_to_target_id",
|
|
307
|
+
"embed_tokens":
|
|
308
|
+
"model.embed_tokens.embedding", # Some checkpoints need this
|
|
309
|
+
}
|
|
310
|
+
|
|
311
|
+
# Define keys to keep in original dtype (e.g., float32 for stability)
|
|
312
|
+
keep_original_dtype_keys_regex = [
|
|
313
|
+
r".*d2t.*",
|
|
314
|
+
]
|
|
315
|
+
|
|
316
|
+
metadata_map = get_default_maps(
|
|
317
|
+
self.vllm_config.speculative_config.draft_model_config, self.mesh,
|
|
318
|
+
mappings)
|
|
319
|
+
|
|
320
|
+
update_reshape_map_for_eagle3(self.vllm_config, metadata_map)
|
|
321
|
+
|
|
322
|
+
load_hf_weights(
|
|
323
|
+
vllm_config=self.vllm_config,
|
|
324
|
+
model=self,
|
|
325
|
+
metadata_map=metadata_map,
|
|
326
|
+
mesh=self.mesh,
|
|
327
|
+
is_draft_model=True,
|
|
328
|
+
keep_original_dtype_keys_regex=keep_original_dtype_keys_regex)
|
|
329
|
+
|
|
330
|
+
# If the embedding is not initialized, initialize it with a dummy array here to pass jit compilation. The real weights will be shared from the target model in eagle3 class.
|
|
331
|
+
if isinstance(self.model.embed_tokens.embedding.value,
|
|
332
|
+
jax.ShapeDtypeStruct):
|
|
333
|
+
self.model.embed_tokens.embedding.value = jnp.zeros(
|
|
334
|
+
self.model.embed_tokens.embedding.shape,
|
|
335
|
+
dtype=self.model.embed_tokens.embedding.dtype,
|
|
336
|
+
)
|
|
@@ -0,0 +1,361 @@
|
|
|
1
|
+
import re
|
|
2
|
+
from typing import Any, List, Optional, Tuple
|
|
3
|
+
|
|
4
|
+
import jax
|
|
5
|
+
import jax.numpy as jnp
|
|
6
|
+
import torch
|
|
7
|
+
from flax import nnx
|
|
8
|
+
from flax.typing import PRNGKey
|
|
9
|
+
from jax.sharding import Mesh
|
|
10
|
+
from jax.sharding import PartitionSpec as P
|
|
11
|
+
from vllm.config import VllmConfig
|
|
12
|
+
|
|
13
|
+
from tpu_inference.layers.jax.attention.attention import AttentionMetadata
|
|
14
|
+
from tpu_inference.layers.jax.attention.llama4_attention import Llama4Attention
|
|
15
|
+
from tpu_inference.layers.jax.constants import KVCacheType
|
|
16
|
+
from tpu_inference.layers.jax.layers import DenseFFW, Embedder, LMhead, RMSNorm
|
|
17
|
+
from tpu_inference.layers.jax.misc import shard_put
|
|
18
|
+
from tpu_inference.layers.jax.transformer_block import TransformerBlock
|
|
19
|
+
from tpu_inference.logger import init_logger
|
|
20
|
+
from tpu_inference.models.jax.utils.weight_utils import (
|
|
21
|
+
get_param, model_weights_generator, print_param_info, reshape_params,
|
|
22
|
+
transpose_params)
|
|
23
|
+
|
|
24
|
+
logger = init_logger(__name__)
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class LlamaGuard4ForCausalLM(nnx.Module):
|
|
28
|
+
|
|
29
|
+
def __init__(self,
|
|
30
|
+
vllm_config: VllmConfig,
|
|
31
|
+
rng: PRNGKey,
|
|
32
|
+
mesh: Mesh,
|
|
33
|
+
force_random_weights: bool = False):
|
|
34
|
+
logger.warning(
|
|
35
|
+
"🚨🚨🚨WARNING🚨🚨🚨 🚨🚨🚨WARNING🚨🚨🚨 🚨🚨🚨WARNING🚨🚨🚨\n"
|
|
36
|
+
"Llama Guard 4 (JAX) is WIP: Only the text modality is currently implemented. "
|
|
37
|
+
"Multimodal inputs will fail.\n"
|
|
38
|
+
"🚨🚨🚨WARNING🚨🚨🚨 🚨🚨🚨WARNING🚨🚨🚨 🚨🚨🚨WARNING🚨🚨🚨")
|
|
39
|
+
assert mesh is not None
|
|
40
|
+
|
|
41
|
+
self.vllm_config = vllm_config
|
|
42
|
+
self.vllm_config.model_config.dtype = torch.bfloat16
|
|
43
|
+
model_config = vllm_config.model_config
|
|
44
|
+
text_config = model_config.hf_config.text_config
|
|
45
|
+
|
|
46
|
+
self.mesh = mesh
|
|
47
|
+
self.is_verbose = getattr(self.vllm_config.additional_config,
|
|
48
|
+
"is_verbose", False)
|
|
49
|
+
|
|
50
|
+
self.use_qk_norm = getattr(text_config, "use_qk_norm", True)
|
|
51
|
+
|
|
52
|
+
vocab_size = model_config.get_vocab_size()
|
|
53
|
+
self.hidden_size = model_config.get_hidden_size()
|
|
54
|
+
|
|
55
|
+
self.dtype: jnp.dtype = jnp.bfloat16
|
|
56
|
+
|
|
57
|
+
self.num_layers: int = getattr(text_config, "num_layers", 48)
|
|
58
|
+
hidden_act: str = getattr(text_config, "hidden_act", "silu")
|
|
59
|
+
|
|
60
|
+
rms_norm_eps = getattr(text_config, "rms_norm_eps", 1e-5)
|
|
61
|
+
self.num_attention_heads = getattr(text_config, "num_attention_heads",
|
|
62
|
+
40)
|
|
63
|
+
self.num_key_value_heads = getattr(text_config, "num_key_value_heads",
|
|
64
|
+
8)
|
|
65
|
+
self.head_dim = getattr(text_config, "head_dim", 128)
|
|
66
|
+
|
|
67
|
+
intermediate_size = getattr(text_config, "intermediate_size", 8192)
|
|
68
|
+
|
|
69
|
+
self.rope_theta_text = getattr(text_config, "rope_theta", 500000.0)
|
|
70
|
+
self.rope_scaling = getattr(text_config, "rope_scaling")
|
|
71
|
+
|
|
72
|
+
self.rng = nnx.Rngs(rng)
|
|
73
|
+
|
|
74
|
+
self.embedder = Embedder(
|
|
75
|
+
vocab_size=vocab_size,
|
|
76
|
+
hidden_size=self.hidden_size,
|
|
77
|
+
dtype=self.dtype,
|
|
78
|
+
vd_sharding=(('data', 'model'), None),
|
|
79
|
+
rngs=self.rng,
|
|
80
|
+
random_init=force_random_weights,
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
self.layers = []
|
|
84
|
+
|
|
85
|
+
for i in range(self.num_layers):
|
|
86
|
+
use_attention_rope = True
|
|
87
|
+
|
|
88
|
+
custom_module = DenseFFW(dtype=self.dtype,
|
|
89
|
+
hidden_act=hidden_act,
|
|
90
|
+
hidden_size=self.hidden_size,
|
|
91
|
+
intermediate_size=intermediate_size,
|
|
92
|
+
random_init=force_random_weights,
|
|
93
|
+
rngs=self.rng,
|
|
94
|
+
df_sharding=P(None, 'model'),
|
|
95
|
+
fd_sharding=P('model', None),
|
|
96
|
+
activation_ffw_td=P('data', None))
|
|
97
|
+
|
|
98
|
+
attn = Llama4Attention(
|
|
99
|
+
hidden_size=self.hidden_size,
|
|
100
|
+
dtype=self.dtype,
|
|
101
|
+
num_attention_heads=self.num_attention_heads,
|
|
102
|
+
num_key_value_heads=self.num_key_value_heads,
|
|
103
|
+
head_dim=self.head_dim,
|
|
104
|
+
rope_theta=self.rope_theta_text,
|
|
105
|
+
rope_scaling={
|
|
106
|
+
"scale_factor":
|
|
107
|
+
self.rope_scaling["factor"],
|
|
108
|
+
"low_freq_factor":
|
|
109
|
+
self.rope_scaling["low_freq_factor"],
|
|
110
|
+
"high_freq_factor":
|
|
111
|
+
self.rope_scaling["high_freq_factor"],
|
|
112
|
+
"original_max_position_embeddings":
|
|
113
|
+
self.rope_scaling["original_max_position_embeddings"]
|
|
114
|
+
},
|
|
115
|
+
rngs=self.rng,
|
|
116
|
+
rope_input_ordering="interleaved",
|
|
117
|
+
# TODO (jacobplatin): we should refactor this to pass a dtype (or config) directly
|
|
118
|
+
kv_cache_dtype=vllm_config.cache_config.cache_dtype,
|
|
119
|
+
temperature_tuning=True,
|
|
120
|
+
temperature_tuning_scale=0.1,
|
|
121
|
+
temperature_tuning_floor_scale=8192,
|
|
122
|
+
use_qk_norm=self.use_qk_norm,
|
|
123
|
+
attention_chunk_size=None if use_attention_rope else 8192,
|
|
124
|
+
mesh=self.mesh,
|
|
125
|
+
random_init=force_random_weights,
|
|
126
|
+
activation_attention_td=('data', 'model'),
|
|
127
|
+
activation_q_td=('data', 'model'),
|
|
128
|
+
query_tnh=P('data', 'model', None),
|
|
129
|
+
keyvalue_skh=P('data', 'model', None),
|
|
130
|
+
activation_attention_out_td=('data', 'model'),
|
|
131
|
+
attn_o_tnh=P('data', 'model', None),
|
|
132
|
+
dnh_sharding=(None, 'model', None),
|
|
133
|
+
dkh_sharding=(None, 'model', None),
|
|
134
|
+
nhd_sharding=('model', None, None),
|
|
135
|
+
)
|
|
136
|
+
|
|
137
|
+
pre_attention_norm = RMSNorm(
|
|
138
|
+
dims=self.hidden_size,
|
|
139
|
+
random_init=force_random_weights,
|
|
140
|
+
epsilon=rms_norm_eps,
|
|
141
|
+
rngs=self.rng,
|
|
142
|
+
activation_ffw_td=('data', None),
|
|
143
|
+
with_scale=True,
|
|
144
|
+
dtype=self.dtype,
|
|
145
|
+
)
|
|
146
|
+
|
|
147
|
+
pre_mlp_norm = RMSNorm(
|
|
148
|
+
dims=self.hidden_size,
|
|
149
|
+
activation_ffw_td=('data', None),
|
|
150
|
+
epsilon=rms_norm_eps,
|
|
151
|
+
rngs=self.rng,
|
|
152
|
+
with_scale=True,
|
|
153
|
+
dtype=self.dtype,
|
|
154
|
+
random_init=force_random_weights,
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
block = TransformerBlock(custom_module=custom_module,
|
|
158
|
+
attn=attn,
|
|
159
|
+
pre_attention_norm=pre_attention_norm,
|
|
160
|
+
pre_mlp_norm=pre_mlp_norm,
|
|
161
|
+
use_attention_rope=use_attention_rope)
|
|
162
|
+
self.layers.append(block)
|
|
163
|
+
|
|
164
|
+
self.final_norm = RMSNorm(
|
|
165
|
+
dims=self.hidden_size,
|
|
166
|
+
activation_ffw_td=P(),
|
|
167
|
+
epsilon=rms_norm_eps,
|
|
168
|
+
rngs=self.rng,
|
|
169
|
+
with_scale=True,
|
|
170
|
+
dtype=self.dtype,
|
|
171
|
+
random_init=force_random_weights,
|
|
172
|
+
)
|
|
173
|
+
|
|
174
|
+
self.lm_head = LMhead(vocab_size=vocab_size,
|
|
175
|
+
hidden_size=self.hidden_size,
|
|
176
|
+
dtype=self.dtype,
|
|
177
|
+
rngs=self.rng,
|
|
178
|
+
vd_sharding=(('data', 'model'), None),
|
|
179
|
+
dv_sharding=(None, ('data', 'model')),
|
|
180
|
+
random_init=force_random_weights)
|
|
181
|
+
if self.is_verbose:
|
|
182
|
+
self._print_model_architecture()
|
|
183
|
+
|
|
184
|
+
def _print_model_architecture(self):
|
|
185
|
+
|
|
186
|
+
logger.info("### Embedding ###")
|
|
187
|
+
nnx.display(self.embedder)
|
|
188
|
+
|
|
189
|
+
logger.info("\n### Layers ###")
|
|
190
|
+
for i, layer in enumerate(self.layers):
|
|
191
|
+
logger.info(f"\n--- Layer {i} ---")
|
|
192
|
+
nnx.display(layer)
|
|
193
|
+
|
|
194
|
+
logger.info("\n### LM Head ###")
|
|
195
|
+
nnx.display(self.lm_head)
|
|
196
|
+
|
|
197
|
+
def load_weights(self, rng: jax.Array, cache_dir: Optional[str] = None):
|
|
198
|
+
self.rng = nnx.Rngs(rng)
|
|
199
|
+
|
|
200
|
+
weight_loader = LlamaGuard4WeightLoader(
|
|
201
|
+
vllm_config=self.vllm_config,
|
|
202
|
+
hidden_size=self.hidden_size,
|
|
203
|
+
attn_heads=self.num_attention_heads,
|
|
204
|
+
num_key_value_heads=self.num_key_value_heads,
|
|
205
|
+
attn_head_dim=self.head_dim)
|
|
206
|
+
weight_loader.load_weights(self)
|
|
207
|
+
|
|
208
|
+
def __call__(
|
|
209
|
+
self,
|
|
210
|
+
kv_caches: List[jax.Array],
|
|
211
|
+
input_ids: jax.Array,
|
|
212
|
+
attention_metadata: AttentionMetadata,
|
|
213
|
+
inputs_embeds: Optional[jax.Array] = None,
|
|
214
|
+
layer_metadata_tuple: Optional[Tuple] = None,
|
|
215
|
+
lora_metadata: Optional[Any] = None,
|
|
216
|
+
*args,
|
|
217
|
+
) -> Tuple[List[KVCacheType], jax.Array]:
|
|
218
|
+
is_prefill = False
|
|
219
|
+
|
|
220
|
+
if inputs_embeds is not None:
|
|
221
|
+
x_TD = inputs_embeds
|
|
222
|
+
elif input_ids is not None:
|
|
223
|
+
x_TD = self.embedder.encode(input_ids)
|
|
224
|
+
else:
|
|
225
|
+
raise ValueError(
|
|
226
|
+
"Cannot run forward pass: Both input_ids and inputs_embeds are None."
|
|
227
|
+
)
|
|
228
|
+
|
|
229
|
+
for (i, block) in enumerate(self.layers):
|
|
230
|
+
kv_cache = kv_caches[i]
|
|
231
|
+
new_kv_cache, x_TD = block(x_TD, is_prefill, kv_cache,
|
|
232
|
+
attention_metadata)
|
|
233
|
+
jax.block_until_ready(x_TD)
|
|
234
|
+
kv_caches[i] = new_kv_cache
|
|
235
|
+
|
|
236
|
+
final_activation_TD = self.final_norm(x_TD)
|
|
237
|
+
|
|
238
|
+
return kv_caches, final_activation_TD, []
|
|
239
|
+
|
|
240
|
+
def compute_logits(self, hidden_states: jax.Array) -> jax.Array:
|
|
241
|
+
logits_TV = jnp.dot(hidden_states,
|
|
242
|
+
self.lm_head.input_embedding_table_DV.value)
|
|
243
|
+
return logits_TV
|
|
244
|
+
|
|
245
|
+
def get_input_embeddings(
|
|
246
|
+
self,
|
|
247
|
+
input_ids: jax.Array,
|
|
248
|
+
multimodal_embeddings: Optional[List[jax.Array]] = None
|
|
249
|
+
) -> jax.Array:
|
|
250
|
+
"""
|
|
251
|
+
Computes the embeddings for text input (used for input to fusion).
|
|
252
|
+
"""
|
|
253
|
+
return self.embedder.encode(input_ids)
|
|
254
|
+
|
|
255
|
+
|
|
256
|
+
class LlamaGuard4WeightLoader:
|
|
257
|
+
|
|
258
|
+
def __init__(self, vllm_config: VllmConfig, hidden_size, attn_heads,
|
|
259
|
+
num_key_value_heads, attn_head_dim):
|
|
260
|
+
self.names_and_weights_generator = model_weights_generator(
|
|
261
|
+
model_name_or_path=vllm_config.model_config.model,
|
|
262
|
+
framework="flax",
|
|
263
|
+
filter_regex="language_model",
|
|
264
|
+
download_dir=vllm_config.load_config.download_dir)
|
|
265
|
+
self.is_verbose = getattr(vllm_config.additional_config, "is_verbose",
|
|
266
|
+
False)
|
|
267
|
+
self._transpose_map = {
|
|
268
|
+
"q_proj": (2, 0, 1),
|
|
269
|
+
"k_proj": (2, 0, 1),
|
|
270
|
+
"v_proj": (2, 0, 1),
|
|
271
|
+
"o_proj": (1, 2, 0),
|
|
272
|
+
"lm_head": (1, 0),
|
|
273
|
+
"feed_forward.down_proj": (1, 0),
|
|
274
|
+
"feed_forward.gate_proj": (1, 0),
|
|
275
|
+
"feed_forward.up_proj": (1, 0),
|
|
276
|
+
"mlp.down_proj": (1, 0),
|
|
277
|
+
"mlp.gate_proj": (1, 0),
|
|
278
|
+
"mlp.up_proj": (1, 0),
|
|
279
|
+
}
|
|
280
|
+
self._weight_shape_map = {
|
|
281
|
+
"q_proj": (attn_heads, attn_head_dim, hidden_size),
|
|
282
|
+
"k_proj": (num_key_value_heads, attn_head_dim, hidden_size),
|
|
283
|
+
"v_proj": (num_key_value_heads, attn_head_dim, hidden_size),
|
|
284
|
+
"o_proj": (hidden_size, attn_heads, attn_head_dim),
|
|
285
|
+
}
|
|
286
|
+
|
|
287
|
+
self._loaded_to_standardized_keys = {
|
|
288
|
+
"language_model.model.embed_tokens.weight":
|
|
289
|
+
"embedder.input_embedding_table_VD",
|
|
290
|
+
"language_model.lm_head.weight":
|
|
291
|
+
"lm_head.input_embedding_table_DV",
|
|
292
|
+
"language_model.model.norm.weight":
|
|
293
|
+
"final_norm.scale",
|
|
294
|
+
"language_model.model.layers.*.input_layernorm.weight":
|
|
295
|
+
"layers.*.pre_attention_norm.scale",
|
|
296
|
+
"language_model.model.layers.*.post_attention_layernorm.weight":
|
|
297
|
+
"layers.*.pre_mlp_norm.scale",
|
|
298
|
+
"language_model.model.layers.*.self_attn.q_proj.weight":
|
|
299
|
+
"layers.*.attn.kernel_q_proj_DNH",
|
|
300
|
+
"language_model.model.layers.*.self_attn.k_proj.weight":
|
|
301
|
+
"layers.*.attn.kernel_k_proj_DKH",
|
|
302
|
+
"language_model.model.layers.*.self_attn.v_proj.weight":
|
|
303
|
+
"layers.*.attn.kernel_v_proj_DKH",
|
|
304
|
+
"language_model.model.layers.*.self_attn.o_proj.weight":
|
|
305
|
+
"layers.*.attn.kernel_o_proj_NHD",
|
|
306
|
+
"language_model.model.layers.*.feed_forward.gate_proj.weight":
|
|
307
|
+
"layers.*.custom_module.kernel_gating_DF",
|
|
308
|
+
"language_model.model.layers.*.feed_forward.up_proj.weight":
|
|
309
|
+
"layers.*.custom_module.kernel_up_proj_DF",
|
|
310
|
+
"language_model.model.layers.*.feed_forward.down_proj.weight":
|
|
311
|
+
"layers.*.custom_module.kernel_down_proj_FD",
|
|
312
|
+
}
|
|
313
|
+
|
|
314
|
+
def map_loaded_to_standardized_name(self, loaded_key: str) -> str:
|
|
315
|
+
if "layer" in loaded_key:
|
|
316
|
+
layer_num = re.search(r"layers\.(\d+)", loaded_key).group(1)
|
|
317
|
+
layer_key = re.sub(r"layers\.\d+", "layers.*", loaded_key)
|
|
318
|
+
mapped_key = self._loaded_to_standardized_keys.get(
|
|
319
|
+
layer_key, loaded_key)
|
|
320
|
+
mapped_key = re.sub(r"layers\.\*", f"layers.{layer_num}",
|
|
321
|
+
mapped_key)
|
|
322
|
+
else:
|
|
323
|
+
mapped_key = self._loaded_to_standardized_keys.get(
|
|
324
|
+
loaded_key, loaded_key)
|
|
325
|
+
return mapped_key
|
|
326
|
+
|
|
327
|
+
def load_weights(self, model_for_loading: nnx.Module):
|
|
328
|
+
model_params = nnx.state(model_for_loading)
|
|
329
|
+
with jax.default_device(jax.devices("cpu")[0]):
|
|
330
|
+
for loaded_name, loaded_weight in self.names_and_weights_generator:
|
|
331
|
+
if loaded_name.endswith(".bias"):
|
|
332
|
+
continue
|
|
333
|
+
if "vision_model" in loaded_name or "multi_modal_projector" in loaded_name:
|
|
334
|
+
continue
|
|
335
|
+
|
|
336
|
+
mapped_name = self.map_loaded_to_standardized_name(loaded_name)
|
|
337
|
+
model_weight = get_param(model_params, mapped_name)
|
|
338
|
+
|
|
339
|
+
if not loaded_name.endswith(".bias"):
|
|
340
|
+
# For other layers, continue to use the transpose_params helper.
|
|
341
|
+
loaded_weight = reshape_params(loaded_name, loaded_weight,
|
|
342
|
+
self._weight_shape_map)
|
|
343
|
+
loaded_weight = transpose_params(loaded_name,
|
|
344
|
+
loaded_weight,
|
|
345
|
+
self._transpose_map)
|
|
346
|
+
if model_weight.value.shape != loaded_weight.shape:
|
|
347
|
+
raise ValueError(
|
|
348
|
+
f"Loaded shape for {loaded_name}: {loaded_weight.shape} "
|
|
349
|
+
f"does not match model shape for {mapped_name}: {model_weight.value.shape}!"
|
|
350
|
+
)
|
|
351
|
+
logger.debug(
|
|
352
|
+
f"Transformed parameter {loaded_name} to {mapped_name}: {loaded_weight.shape} --> {model_weight.value.shape}"
|
|
353
|
+
)
|
|
354
|
+
|
|
355
|
+
model_weight.value = shard_put(loaded_weight,
|
|
356
|
+
model_weight.sharding,
|
|
357
|
+
mesh=model_for_loading.mesh)
|
|
358
|
+
if self.is_verbose:
|
|
359
|
+
print_param_info(model_weight, loaded_name)
|
|
360
|
+
|
|
361
|
+
nnx.update(model_for_loading, model_params)
|