tpu-inference 0.0.1rc1__py3-none-any.whl → 0.11.1.dev202511180814__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of tpu-inference might be problematic. Click here for more details.
- tests/kernels/fused_moe_v1_test.py +34 -303
- tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +2 -2
- tests/lora/test_layers.py +6 -0
- tests/lora/utils.py +8 -0
- tests/test_envs.py +11 -32
- tests/test_utils.py +2 -1
- tpu_inference/__init__.py +3 -22
- tpu_inference/core/disagg_utils.py +8 -6
- tpu_inference/distributed/tpu_connector.py +4 -3
- tpu_inference/distributed/utils.py +2 -3
- tpu_inference/envs.py +8 -61
- tpu_inference/executors/ray_distributed_executor.py +2 -9
- tpu_inference/kernels/fused_moe/v1/kernel.py +110 -641
- tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +54 -77
- tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +145 -266
- tpu_inference/layers/common/attention_interface.py +1 -7
- tpu_inference/layers/common/sharding.py +5 -5
- tpu_inference/layers/vllm/fused_moe.py +208 -170
- tpu_inference/layers/vllm/quantization/common.py +1 -6
- tpu_inference/layers/vllm/quantization/mxfp4.py +73 -138
- tpu_inference/layers/vllm/quantization/unquantized.py +64 -58
- tpu_inference/layers/vllm/sharding.py +2 -2
- tpu_inference/lora/torch_punica_tpu.py +2 -1
- tpu_inference/mock/__init__.py +0 -0
- tpu_inference/mock/vllm_config_utils.py +28 -0
- tpu_inference/mock/vllm_envs.py +1219 -0
- tpu_inference/mock/vllm_logger.py +212 -0
- tpu_inference/mock/vllm_logging_utils.py +15 -0
- tpu_inference/models/common/model_loader.py +10 -43
- tpu_inference/models/jax/llama3.py +1 -2
- tpu_inference/models/jax/llama_eagle3.py +5 -8
- tpu_inference/models/jax/phi3.py +376 -0
- tpu_inference/models/jax/qwen2.py +1 -2
- tpu_inference/models/jax/qwen2_5_vl.py +48 -163
- tpu_inference/models/jax/qwen3.py +1 -2
- tpu_inference/models/jax/utils/quantization/quantization_utils.py +6 -3
- tpu_inference/models/jax/utils/weight_utils.py +143 -198
- tpu_inference/models/vllm/vllm_model_wrapper.py +8 -14
- tpu_inference/platforms/tpu_platform.py +31 -37
- tpu_inference/runner/compilation_manager.py +58 -141
- tpu_inference/runner/kv_cache.py +1 -1
- tpu_inference/runner/kv_cache_manager.py +18 -17
- tpu_inference/runner/persistent_batch_manager.py +2 -40
- tpu_inference/runner/structured_decoding_manager.py +3 -2
- tpu_inference/runner/tpu_runner.py +147 -271
- tpu_inference/runner/utils.py +2 -2
- tpu_inference/spec_decode/jax/eagle3.py +21 -71
- tpu_inference/tpu_info.py +3 -4
- tpu_inference/utils.py +13 -36
- tpu_inference/worker/tpu_worker.py +25 -162
- {tpu_inference-0.0.1rc1.dist-info → tpu_inference-0.11.1.dev202511180814.dist-info}/METADATA +3 -4
- {tpu_inference-0.0.1rc1.dist-info → tpu_inference-0.11.1.dev202511180814.dist-info}/RECORD +55 -50
- tpu_inference/models/jax/llama_guard_4.py +0 -361
- {tpu_inference-0.0.1rc1.dist-info → tpu_inference-0.11.1.dev202511180814.dist-info}/WHEEL +0 -0
- {tpu_inference-0.0.1rc1.dist-info → tpu_inference-0.11.1.dev202511180814.dist-info}/licenses/LICENSE +0 -0
- {tpu_inference-0.0.1rc1.dist-info → tpu_inference-0.11.1.dev202511180814.dist-info}/top_level.txt +0 -0
|
@@ -1,9 +1,9 @@
|
|
|
1
1
|
tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
2
|
tests/test_base.py,sha256=Ct5WFRMHL7IHEIxk8FrzAvO8m0xFuDpzDBKkAKKAL2Q,7341
|
|
3
|
-
tests/test_envs.py,sha256=
|
|
3
|
+
tests/test_envs.py,sha256=Woyfp_d5HS-uTGo4_u9dYlBbgmhfIEoFb-Rx_k7YXD4,6298
|
|
4
4
|
tests/test_quantization.py,sha256=IT5ASyS1uuWcxc22kRtBcA-V4j3Z3hb7pMztm3GOlBs,34445
|
|
5
5
|
tests/test_tpu_info.py,sha256=ZrwlMsp8ffITkS_b8Q1t_QG-a-WVAd4NUcjHhGibcsI,4670
|
|
6
|
-
tests/test_utils.py,sha256=
|
|
6
|
+
tests/test_utils.py,sha256=Mta5ZzYCgRAh1-BjcOvvx9iQ9DnnXLps7oDHxVQp2yE,8236
|
|
7
7
|
tests/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
8
8
|
tests/core/test_core_tpu.py,sha256=r496rk1eOsK_F4nvm9zprl_T-RcO6eCUb7LuVReOZno,21413
|
|
9
9
|
tests/core/test_disagg_executor.py,sha256=QdE2YZs08EyDDCmSjhiXkXqQ9BJTgO6csr_E1xkkfSg,2256
|
|
@@ -11,37 +11,37 @@ tests/core/test_disagg_utils.py,sha256=alktTGppaGdg-_un0Amz8Y0IDQz-xNJN0dXG-YApE
|
|
|
11
11
|
tests/core/test_dp_scheduler.py,sha256=IwCR1Vs96V4CQdWA051rNaYxxr2V_byA1yx9HWyRoMg,37339
|
|
12
12
|
tests/core/test_init.py,sha256=NEFI5A9eKGu4rmeJ2iqd0EmhlA3bzbVkXmMi1PV1b9U,1687
|
|
13
13
|
tests/kernels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
14
|
-
tests/kernels/fused_moe_v1_test.py,sha256=
|
|
14
|
+
tests/kernels/fused_moe_v1_test.py,sha256=c6zbSHQDzOseeyL9VCjQeP7zayNnwYf059CPlKcvZzQ,3137
|
|
15
15
|
tests/kernels/mla_v1_test.py,sha256=oZc4TCgquiG0KOeWfv46yJbUIpro_CgCMFc7vzyB7t8,11646
|
|
16
16
|
tests/kernels/quantized_matmul_kernel_test.py,sha256=od5-zXFjcsc_gWGRDrREL8E_ftymNniQVTzgtkBo_Gc,5679
|
|
17
17
|
tests/kernels/ragged_kv_cache_update_v2_test.py,sha256=6-HjP5CoUG-kcuP8MS-JJVMiBnPRo_zadS3VInnO0D4,10821
|
|
18
18
|
tests/kernels/ragged_paged_attention_kernel_v2_test.py,sha256=pWqo9UYF0tzwgBKO_xYw-TYSPrtAsKcMK5Haj8hFG7I,11340
|
|
19
|
-
tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py,sha256=
|
|
19
|
+
tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py,sha256=JhIElqUZIRqIsfQ3U1RUzSiH_gz_SabAqDosGGZ2tlA,16321
|
|
20
20
|
tests/kernels/ragged_paged_attention_kernel_v3_test.py,sha256=Hrd8iUkS1pS3rxeTyY53aYRg_ZL_d3NqgBXvOgnigSU,14838
|
|
21
21
|
tests/lora/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
22
22
|
tests/lora/conftest.py,sha256=EXjwE1CjmUUlMEXpyE3UwxvgrKUllE73I8BNKfP1FTc,984
|
|
23
23
|
tests/lora/test_bgmv.py,sha256=gQxWsJdNX2nkrE2xyrG0exwf3E2eHm2k2nkEXoANuQc,1359
|
|
24
|
-
tests/lora/test_layers.py,sha256=
|
|
24
|
+
tests/lora/test_layers.py,sha256=21ekYlsK36r1GPZOfzs7E-KIsfI1JcuZl1E6vaQbHf4,26273
|
|
25
25
|
tests/lora/test_lora.py,sha256=wJiF1P1BDnPN8TLX2tlFtdZ_QCkV-S9nPl6_uR6DqFc,4439
|
|
26
|
-
tests/lora/utils.py,sha256=
|
|
27
|
-
tpu_inference/__init__.py,sha256=
|
|
26
|
+
tests/lora/utils.py,sha256=dR_v1H20vPVjFHdBhDajWOz0WJZlKuPLgMFQsME0LtA,3009
|
|
27
|
+
tpu_inference/__init__.py,sha256=7IduGWw-_fwx0VA6EvC_AqHF67fnnShz6YvkqCfvFx8,1317
|
|
28
28
|
tpu_inference/env_override.py,sha256=pmL7lfs_rGCP92ya3wuWuudsCYeOMZ6tFZY82A4KkQc,365
|
|
29
|
-
tpu_inference/envs.py,sha256=
|
|
29
|
+
tpu_inference/envs.py,sha256=MTT_Pdtd6cAcciYjv1OekEmvspaq3SYL0oR_jDkQ_aE,3948
|
|
30
30
|
tpu_inference/logger.py,sha256=HQCz7NefmbturuhOC7-3Ixbtcdgoz4g9FHh2RB6o8cc,334
|
|
31
|
-
tpu_inference/tpu_info.py,sha256=
|
|
32
|
-
tpu_inference/utils.py,sha256=
|
|
31
|
+
tpu_inference/tpu_info.py,sha256=9UohshkndR6dZpGWpWXfTD4qvIVdVgHf0yOoSEkLTrw,2276
|
|
32
|
+
tpu_inference/utils.py,sha256=iGPY147jP_8AKMu3g7vYTndjJJiOrK_4opA0JWtws5Q,10068
|
|
33
33
|
tpu_inference/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
34
34
|
tpu_inference/core/core_tpu.py,sha256=WDD3koE_j1QhWS2BbMA2aQOZayPZm4tYPvzL4YCX2jY,33294
|
|
35
35
|
tpu_inference/core/disagg_executor.py,sha256=HZpgYMVxRxm0RQxO4l8IDYBWJ6Z3Tac6xavc5otcirc,4657
|
|
36
|
-
tpu_inference/core/disagg_utils.py,sha256=
|
|
36
|
+
tpu_inference/core/disagg_utils.py,sha256=ufWNFWQ5n4YnZpPOtoReHlYo4dlN7AbIqCyqS4an0t4,1572
|
|
37
37
|
tpu_inference/core/sched/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
38
38
|
tpu_inference/core/sched/dp_scheduler.py,sha256=mKs8Ms46szdlBfo8hjdqis2ZKAZbcKnHAGfEr0X5R8g,22527
|
|
39
39
|
tpu_inference/distributed/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
40
40
|
tpu_inference/distributed/jax_parallel_state.py,sha256=5_xCwcL03lFPUoSO_OP7hIVKpUFroW1m-jVO7R6FbUc,2223
|
|
41
|
-
tpu_inference/distributed/tpu_connector.py,sha256=
|
|
42
|
-
tpu_inference/distributed/utils.py,sha256=
|
|
41
|
+
tpu_inference/distributed/tpu_connector.py,sha256=Zah46Sm5iOuh72SzXw69NxMc0MLnqsLEpe2BfDhpnqA,29731
|
|
42
|
+
tpu_inference/distributed/utils.py,sha256=RwFQi8G4TzN1g9RjQu0pb5JxSc_jhoIZVsFJo0uHjxo,1513
|
|
43
43
|
tpu_inference/executors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
44
|
-
tpu_inference/executors/ray_distributed_executor.py,sha256=
|
|
44
|
+
tpu_inference/executors/ray_distributed_executor.py,sha256=ZMuVUwmroi7UUZs3u67OsOwUIkxNDz9IszUPG20F18E,15904
|
|
45
45
|
tpu_inference/experimental/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
46
46
|
tpu_inference/experimental/llama3_jax_stashed.py,sha256=YK1oSIfto9ALo-HB45XfSrbq9XgVbE4m2C-9zRwmSzI,10913
|
|
47
47
|
tpu_inference/kernels/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
@@ -53,7 +53,7 @@ tpu_inference/kernels/flash_attention/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCe
|
|
|
53
53
|
tpu_inference/kernels/flash_attention/kernel.py,sha256=n8gmAFVfchMXlyaSEj8xXJm6AadFt26edQihPRdithY,25897
|
|
54
54
|
tpu_inference/kernels/fused_moe/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
55
55
|
tpu_inference/kernels/fused_moe/v1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
56
|
-
tpu_inference/kernels/fused_moe/v1/kernel.py,sha256=
|
|
56
|
+
tpu_inference/kernels/fused_moe/v1/kernel.py,sha256=QHB0QEvC3x_6zhwz06JQpaOncQcNAhOSV92dD5tGVq8,40869
|
|
57
57
|
tpu_inference/kernels/mla/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
58
58
|
tpu_inference/kernels/mla/v1/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
59
59
|
tpu_inference/kernels/mla/v1/kernel.py,sha256=dw1nhpL47uQxMFOIN2kENC6aITbalT81YZLAyr1usLU,51571
|
|
@@ -67,18 +67,18 @@ tpu_inference/kernels/ragged_paged_attention/v2/kernel.py,sha256=OiQGAHhyggbp1Pe
|
|
|
67
67
|
tpu_inference/kernels/ragged_paged_attention/v2/ragged_kv_cache_update.py,sha256=vGp2ZWODTbjyG9z2z0Qf_BX-wYHd5bUybnc_DtOz0nI,10995
|
|
68
68
|
tpu_inference/kernels/ragged_paged_attention/v2/tuned_block_sizes.py,sha256=mw80bXBGenroGdrITV0F_EaI2s-Z9KWwqU9WodvJg14,97919
|
|
69
69
|
tpu_inference/kernels/ragged_paged_attention/v3/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
70
|
-
tpu_inference/kernels/ragged_paged_attention/v3/kernel.py,sha256=
|
|
71
|
-
tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py,sha256=
|
|
70
|
+
tpu_inference/kernels/ragged_paged_attention/v3/kernel.py,sha256=tlP6121yfXaukx_RQroHlHcZnbKPyyum0lAcvT0B_Pk,56132
|
|
71
|
+
tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py,sha256=pD1Pte3neoLAxE3I3-VyV_4FuqgCHeAHGzEjMVt0MMk,56004
|
|
72
72
|
tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes.py,sha256=k3LwduhZO85cJ-pSgnGN0c2Nn8eNeQq4eA94KUXJzMw,142198
|
|
73
73
|
tpu_inference/kernels/ragged_paged_attention/v3/tuned_block_sizes_hd64.py,sha256=P3_ivi8iUz5QMU_3pgpl4Bkbmn0q0NpDtVJX39haRQA,11208
|
|
74
74
|
tpu_inference/kernels/ragged_paged_attention/v3/util.py,sha256=1N_ozjKboDYLteFJndWoLXNudj2z53rGXMkELa5Z9tY,1102
|
|
75
75
|
tpu_inference/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
76
76
|
tpu_inference/layers/common/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
77
|
-
tpu_inference/layers/common/attention_interface.py,sha256=
|
|
77
|
+
tpu_inference/layers/common/attention_interface.py,sha256=CImMS8tuWgvaRY9YbGS3pY7OBnzeJ4Jla7LRFb4Xoa4,13224
|
|
78
78
|
tpu_inference/layers/common/attention_metadata.py,sha256=St8ZatbY1D7xQACKJH459jMgp3oTP3AQ36mi9FZdrPU,850
|
|
79
79
|
tpu_inference/layers/common/binary_search.py,sha256=ZQi-z1wG6WTcfVQXeTGOZokX4K1DSf9kCzqfrhEU8lk,12320
|
|
80
80
|
tpu_inference/layers/common/quant_methods.py,sha256=mQSxZ44-QQtm22C_8ViejnP1cP2Dv6yc2YaP6oMKJeQ,185
|
|
81
|
-
tpu_inference/layers/common/sharding.py,sha256=
|
|
81
|
+
tpu_inference/layers/common/sharding.py,sha256=wBqdkXZSWfnnH8pkJtyW2DSqmAe_V4Vxi0iMPaXq0Z0,25185
|
|
82
82
|
tpu_inference/layers/jax/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
83
83
|
tpu_inference/layers/jax/base.py,sha256=Vhts6ZMwNCZ8LbnEXeB0rl3nHdS5hDJWX7HEa7Fl7yE,5775
|
|
84
84
|
tpu_inference/layers/jax/constants.py,sha256=NcYg0zAf3ClfP7YMYdYu_F1GngOzZaIxIAHBZDunKw4,2755
|
|
@@ -102,14 +102,14 @@ tpu_inference/layers/jax/sample/sampling.py,sha256=C30KgmdOVSaagvHhbfLgVJtVQmJo8
|
|
|
102
102
|
tpu_inference/layers/jax/sample/sampling_metadata.py,sha256=Gd835LNWfGM0NRQBVBqEv0nPwt5q9F4AdFym0CUS1fw,2561
|
|
103
103
|
tpu_inference/layers/vllm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
104
104
|
tpu_inference/layers/vllm/attention.py,sha256=wbJpcgqEAuIirv5PIULbiP-ggMKjmTanbB7Dg0BVYv4,7366
|
|
105
|
-
tpu_inference/layers/vllm/fused_moe.py,sha256=
|
|
105
|
+
tpu_inference/layers/vllm/fused_moe.py,sha256=XZt2CPUz00qZzDcyfBFz6buhVzmGL1amHalHJALl9zw,18945
|
|
106
106
|
tpu_inference/layers/vllm/linear_common.py,sha256=_YlJtbdaYcck_j-gFLos_k0ycktVWxT8Qo57tR2YqJ8,7749
|
|
107
|
-
tpu_inference/layers/vllm/sharding.py,sha256=
|
|
107
|
+
tpu_inference/layers/vllm/sharding.py,sha256=WTx1tF_7R99AdyE-lL7HQJ378hAafeI-JVRsugAvwn4,9177
|
|
108
108
|
tpu_inference/layers/vllm/quantization/__init__.py,sha256=SEppGayBzzQ5tsXLSy99aqilkAawQwYxnv2alCg6-ZU,1777
|
|
109
109
|
tpu_inference/layers/vllm/quantization/awq.py,sha256=-8ZmjGvSKJB6_JuwSctNWt8xHWq4VSvK_AK9iahlgCo,8495
|
|
110
|
-
tpu_inference/layers/vllm/quantization/common.py,sha256=
|
|
111
|
-
tpu_inference/layers/vllm/quantization/mxfp4.py,sha256=
|
|
112
|
-
tpu_inference/layers/vllm/quantization/unquantized.py,sha256=
|
|
110
|
+
tpu_inference/layers/vllm/quantization/common.py,sha256=wm3pge6XMTMsLK7_SSdgBP0PvQzz-1mrqN2I6xMqzrc,4218
|
|
111
|
+
tpu_inference/layers/vllm/quantization/mxfp4.py,sha256=KwGoqIiPkd6FplGuYAKi4uX5A8MPlZqq99MVPchXyi4,11561
|
|
112
|
+
tpu_inference/layers/vllm/quantization/unquantized.py,sha256=Q1v1ZbSIDmaoOg97Ehv6rA5CnSf6nTP40xDBMmHHeLw,15054
|
|
113
113
|
tpu_inference/layers/vllm/quantization/compressed_tensors/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
114
114
|
tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors.py,sha256=6idEyy3e849fZ1UeNvc9eSHYX7e6qvohrJa_d_D9MBk,5285
|
|
115
115
|
tpu_inference/layers/vllm/quantization/compressed_tensors/compressed_tensors_moe.py,sha256=FM901QhyhJRC8CuMeICzCVVERvBHbhruRxYW0EQ570s,8820
|
|
@@ -118,57 +118,62 @@ tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_ten
|
|
|
118
118
|
tpu_inference/layers/vllm/quantization/compressed_tensors/schemes/compressed_tensors_w8a8_int8.py,sha256=4y7lYgybpXszpCAtxGFhR8LDEbEoCCeo3DfUSOXxhaQ,5202
|
|
119
119
|
tpu_inference/lora/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
120
120
|
tpu_inference/lora/torch_lora_ops.py,sha256=pr3N7DVfkn3ANijUC6dBoiCtIJW4fdJpKdC3zWBUsxE,3121
|
|
121
|
-
tpu_inference/lora/torch_punica_tpu.py,sha256=
|
|
121
|
+
tpu_inference/lora/torch_punica_tpu.py,sha256=b27DpmIS_N5bhlIcryiENYNmPxp_cu40CGxjPW64d44,12706
|
|
122
|
+
tpu_inference/mock/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
123
|
+
tpu_inference/mock/vllm_config_utils.py,sha256=FlQshLjoHdgs3C66tYHYbKFUjbk9DhUwY-7HibZk0fI,878
|
|
124
|
+
tpu_inference/mock/vllm_envs.py,sha256=cCubeOhH2WeYZQFJt6W0y_IiQo0fzIWR1LCCE8i6kI4,50990
|
|
125
|
+
tpu_inference/mock/vllm_logger.py,sha256=vUGnN5nKT--ZvU15YCzODUM_FGiXKhcrrjDGjeN00RQ,7297
|
|
126
|
+
tpu_inference/mock/vllm_logging_utils.py,sha256=TEUmKj3xHiLzHBnFqAujcxH0t2hBQ04sUaho2RyORnk,486
|
|
122
127
|
tpu_inference/models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
123
128
|
tpu_inference/models/common/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
124
|
-
tpu_inference/models/common/model_loader.py,sha256=
|
|
129
|
+
tpu_inference/models/common/model_loader.py,sha256=VgxM2OODb0-69dexv4aNJ4g24Nrx5sj_ra4XStkhl14,18289
|
|
125
130
|
tpu_inference/models/jax/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
126
131
|
tpu_inference/models/jax/deepseek_v3.py,sha256=SKOHVEC-_2NLxBnzBzbu5tu0d6FTlAEiI1EefGaO2QE,40047
|
|
127
132
|
tpu_inference/models/jax/gpt_oss.py,sha256=Vw4LRB5Kp6hbA2hjZGFS8kiEqOCjf881XH2JNtu2S1I,20924
|
|
128
133
|
tpu_inference/models/jax/jax_intermediate_tensor.py,sha256=Pxu1PCV5LN5X58aYVkPiohcXZIeKVim2oqvrS_cVgw4,2604
|
|
129
|
-
tpu_inference/models/jax/llama3.py,sha256=
|
|
134
|
+
tpu_inference/models/jax/llama3.py,sha256=w99DAfipGS9HyX2ZRwqyYLxC3oa0ew5eEQ6EXlMMf18,13426
|
|
130
135
|
tpu_inference/models/jax/llama4.py,sha256=wf2Sp2iYViaYD5rSfv3_ryO6gYuYM5XaOyvghaP4OCY,29631
|
|
131
|
-
tpu_inference/models/jax/llama_eagle3.py,sha256=
|
|
132
|
-
tpu_inference/models/jax/
|
|
133
|
-
tpu_inference/models/jax/qwen2.py,sha256=
|
|
134
|
-
tpu_inference/models/jax/qwen2_5_vl.py,sha256=
|
|
135
|
-
tpu_inference/models/jax/qwen3.py,sha256=
|
|
136
|
+
tpu_inference/models/jax/llama_eagle3.py,sha256=STUkAK6XEA7JM3i_Lx36-t5BhkAGeW_xYiq3zYhHP1A,12297
|
|
137
|
+
tpu_inference/models/jax/phi3.py,sha256=TpP3Nvr1myW_Qd8xNrLP1VmXtq7BuTcWNayJitskFd0,13579
|
|
138
|
+
tpu_inference/models/jax/qwen2.py,sha256=P_x_Qygf-nanmF8Uufk4c-qLNxP4RAk4yuqSF8VwbxE,13357
|
|
139
|
+
tpu_inference/models/jax/qwen2_5_vl.py,sha256=fvMgM5GfUn5EECaMbR0z37mmbCHphAT1AvWPvGkhVn4,43942
|
|
140
|
+
tpu_inference/models/jax/qwen3.py,sha256=lr3TIIQKmNgWFDFxwuPsVOypqBijkqrpnNCopVg4iBo,10997
|
|
136
141
|
tpu_inference/models/jax/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
137
142
|
tpu_inference/models/jax/utils/file_utils.py,sha256=NOuSC3YFnZpf3CZgYdghbbiNYJt42zgjlEYbOZIVct4,2840
|
|
138
143
|
tpu_inference/models/jax/utils/multi_modal_utils.py,sha256=rrIrQWidkUnGilBHKNpdYh7_2BkvnAaqanXjC81GNcg,6156
|
|
139
|
-
tpu_inference/models/jax/utils/weight_utils.py,sha256=
|
|
144
|
+
tpu_inference/models/jax/utils/weight_utils.py,sha256=65-H8BTbyilIBMBfvWjkkW3mf4soYASbhrJFqbFKzL4,20129
|
|
140
145
|
tpu_inference/models/jax/utils/quantization/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
141
146
|
tpu_inference/models/jax/utils/quantization/mxfp4_utils.py,sha256=boGnqJCRIOf5nedAxQ8_IUTV6Rfll10DXnRC40BeeE8,3682
|
|
142
|
-
tpu_inference/models/jax/utils/quantization/quantization_utils.py,sha256=
|
|
147
|
+
tpu_inference/models/jax/utils/quantization/quantization_utils.py,sha256=xgKoKB7AM3TYPxzVgEGLTK9ebQH2Kx8mNuO0heovkmk,26778
|
|
143
148
|
tpu_inference/models/jax/utils/quantization/configs/fp8_all_modules_w_only.yaml,sha256=d_YHPtaRJ_7PBrPijSzJGnVeoJO62tKIGqrgFqpYT1k,137
|
|
144
149
|
tpu_inference/models/jax/utils/quantization/configs/fp8_default.yaml,sha256=b7SyL75HuSTj3fN9_ZLCK_CDiccL5DGq_DddGmxj_qk,170
|
|
145
150
|
tpu_inference/models/jax/utils/quantization/configs/int8_all_modules_w_only.yaml,sha256=0Qwij71zj9k6rmrUNd8Q5df9YYfkoJ1ZkgMAHxQy81k,128
|
|
146
151
|
tpu_inference/models/jax/utils/quantization/configs/int8_default.yaml,sha256=lGec0UwwxmNPNgKPSsTsCMSXNJjhw507KMtM2NsSCMw,152
|
|
147
152
|
tpu_inference/models/vllm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
148
|
-
tpu_inference/models/vllm/vllm_model_wrapper.py,sha256=
|
|
153
|
+
tpu_inference/models/vllm/vllm_model_wrapper.py,sha256=o3oJ7Uhu-vSJEFHHifF8e0Q7dULRKJ2GRsT1qAN6PWY,12099
|
|
149
154
|
tpu_inference/models/vllm/vllm_model_wrapper_context.py,sha256=yxlJHPmRQIAwlb1MmHK3xfXokgIkJ-evNU4PgyoJUdg,1187
|
|
150
155
|
tpu_inference/platforms/__init__.py,sha256=lQCrKddS_GcGpCbeogvz9zOZD1mQw5bBsiw8On46qFQ,74
|
|
151
|
-
tpu_inference/platforms/tpu_platform.py,sha256=
|
|
156
|
+
tpu_inference/platforms/tpu_platform.py,sha256=AYFr1Q7VUN76wcdgOe_wZuVIHgp2U8isBJ3iHrYqt0M,10530
|
|
152
157
|
tpu_inference/runner/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
153
158
|
tpu_inference/runner/block_table.py,sha256=K3Ic8EgPM08d_C5nEN60mxoRydlaQWySAemf_8Q_qVw,4175
|
|
154
|
-
tpu_inference/runner/compilation_manager.py,sha256=
|
|
159
|
+
tpu_inference/runner/compilation_manager.py,sha256=yIsonouB5G0-fyVtAKuyyRXaMGNFwnX8D7q6ppQYgUI,36318
|
|
155
160
|
tpu_inference/runner/input_batch.py,sha256=bx221NX2IOWzrtopss-B-2ZKW4y-U6nQpG09PjpUziw,18273
|
|
156
|
-
tpu_inference/runner/kv_cache.py,sha256=
|
|
157
|
-
tpu_inference/runner/kv_cache_manager.py,sha256=
|
|
161
|
+
tpu_inference/runner/kv_cache.py,sha256=F4dzW2d53xuxkFUn0oKzwE6VklGUeVm-QM19NVfIQDU,4577
|
|
162
|
+
tpu_inference/runner/kv_cache_manager.py,sha256=CJxXtdWuewJqcTBMoR70_Uvwxjtc3cK2jxe1KpI9kQc,22152
|
|
158
163
|
tpu_inference/runner/lora_utils.py,sha256=B4xMCgXGJ4VNdePvn89HH3tIZ-gYsQ7Vq_YCiYIATEY,3843
|
|
159
164
|
tpu_inference/runner/multimodal_manager.py,sha256=azEPdHOwz8CN11MQmorGdtrCLbFaTCxdWyuEsZTzjYM,9778
|
|
160
|
-
tpu_inference/runner/persistent_batch_manager.py,sha256=
|
|
165
|
+
tpu_inference/runner/persistent_batch_manager.py,sha256=KERSfKy6XjMejnbtPGI3hzoYAHJLeCxmpZVYPqBCago,11156
|
|
161
166
|
tpu_inference/runner/speculative_decoding_manager.py,sha256=I3FDWKh2dn6nV8LgTGfCTwMKYnxQsTPpBIrmaJngXHs,10215
|
|
162
|
-
tpu_inference/runner/structured_decoding_manager.py,sha256=
|
|
163
|
-
tpu_inference/runner/tpu_runner.py,sha256=
|
|
164
|
-
tpu_inference/runner/utils.py,sha256=
|
|
167
|
+
tpu_inference/runner/structured_decoding_manager.py,sha256=Y0ERPhj4olFh6Y2TxP0R1_4UIJwy7nemYA-h63YIR2U,3622
|
|
168
|
+
tpu_inference/runner/tpu_runner.py,sha256=3SZYn0CBA4LOaTO3GdQOxKx3HKmVcNmUEeSyzSAGyFY,73320
|
|
169
|
+
tpu_inference/runner/utils.py,sha256=ZnWUoNo-7INeB0mdXti1jwUOdbmxyExznOs-crRTQLk,17126
|
|
165
170
|
tpu_inference/spec_decode/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
166
171
|
tpu_inference/spec_decode/jax/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
167
|
-
tpu_inference/spec_decode/jax/eagle3.py,sha256=
|
|
172
|
+
tpu_inference/spec_decode/jax/eagle3.py,sha256=A1dt-dmBttpy-5DGcL4noEDCB0OGP8Xo6MXqgJvWIo8,16593
|
|
168
173
|
tpu_inference/worker/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
169
|
-
tpu_inference/worker/tpu_worker.py,sha256=
|
|
170
|
-
tpu_inference-0.
|
|
171
|
-
tpu_inference-0.
|
|
172
|
-
tpu_inference-0.
|
|
173
|
-
tpu_inference-0.
|
|
174
|
-
tpu_inference-0.
|
|
174
|
+
tpu_inference/worker/tpu_worker.py,sha256=0ZguK2BtIQjQSvyUTcUH9ENBrxt09w3CbgPoDY13Eok,14210
|
|
175
|
+
tpu_inference-0.11.1.dev202511180814.dist-info/licenses/LICENSE,sha256=xx0jnfkXJvxRnG63LTGOxlggYnIysveWIZ6H3PNdCrQ,11357
|
|
176
|
+
tpu_inference-0.11.1.dev202511180814.dist-info/METADATA,sha256=6dHy_ByQ0ihDNFuqyb-ZXTFczvQ8Ia54zBNTKaUPhSk,5465
|
|
177
|
+
tpu_inference-0.11.1.dev202511180814.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
178
|
+
tpu_inference-0.11.1.dev202511180814.dist-info/top_level.txt,sha256=gb1hRIQ3DOawUfVzvPL2E__2KPIl9I0vb5r0xcRBGYQ,20
|
|
179
|
+
tpu_inference-0.11.1.dev202511180814.dist-info/RECORD,,
|
|
@@ -1,361 +0,0 @@
|
|
|
1
|
-
import re
|
|
2
|
-
from typing import Any, List, Optional, Tuple
|
|
3
|
-
|
|
4
|
-
import jax
|
|
5
|
-
import jax.numpy as jnp
|
|
6
|
-
import torch
|
|
7
|
-
from flax import nnx
|
|
8
|
-
from flax.typing import PRNGKey
|
|
9
|
-
from jax.sharding import Mesh
|
|
10
|
-
from jax.sharding import PartitionSpec as P
|
|
11
|
-
from vllm.config import VllmConfig
|
|
12
|
-
|
|
13
|
-
from tpu_inference.layers.jax.attention.attention import AttentionMetadata
|
|
14
|
-
from tpu_inference.layers.jax.attention.llama4_attention import Llama4Attention
|
|
15
|
-
from tpu_inference.layers.jax.constants import KVCacheType
|
|
16
|
-
from tpu_inference.layers.jax.layers import DenseFFW, Embedder, LMhead, RMSNorm
|
|
17
|
-
from tpu_inference.layers.jax.misc import shard_put
|
|
18
|
-
from tpu_inference.layers.jax.transformer_block import TransformerBlock
|
|
19
|
-
from tpu_inference.logger import init_logger
|
|
20
|
-
from tpu_inference.models.jax.utils.weight_utils import (
|
|
21
|
-
get_param, model_weights_generator, print_param_info, reshape_params,
|
|
22
|
-
transpose_params)
|
|
23
|
-
|
|
24
|
-
logger = init_logger(__name__)
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
class LlamaGuard4ForCausalLM(nnx.Module):
|
|
28
|
-
|
|
29
|
-
def __init__(self,
|
|
30
|
-
vllm_config: VllmConfig,
|
|
31
|
-
rng: PRNGKey,
|
|
32
|
-
mesh: Mesh,
|
|
33
|
-
force_random_weights: bool = False):
|
|
34
|
-
logger.warning(
|
|
35
|
-
"🚨🚨🚨WARNING🚨🚨🚨 🚨🚨🚨WARNING🚨🚨🚨 🚨🚨🚨WARNING🚨🚨🚨\n"
|
|
36
|
-
"Llama Guard 4 (JAX) is WIP: Only the text modality is currently implemented. "
|
|
37
|
-
"Multimodal inputs will fail.\n"
|
|
38
|
-
"🚨🚨🚨WARNING🚨🚨🚨 🚨🚨🚨WARNING🚨🚨🚨 🚨🚨🚨WARNING🚨🚨🚨")
|
|
39
|
-
assert mesh is not None
|
|
40
|
-
|
|
41
|
-
self.vllm_config = vllm_config
|
|
42
|
-
self.vllm_config.model_config.dtype = torch.bfloat16
|
|
43
|
-
model_config = vllm_config.model_config
|
|
44
|
-
text_config = model_config.hf_config.text_config
|
|
45
|
-
|
|
46
|
-
self.mesh = mesh
|
|
47
|
-
self.is_verbose = getattr(self.vllm_config.additional_config,
|
|
48
|
-
"is_verbose", False)
|
|
49
|
-
|
|
50
|
-
self.use_qk_norm = getattr(text_config, "use_qk_norm", True)
|
|
51
|
-
|
|
52
|
-
vocab_size = model_config.get_vocab_size()
|
|
53
|
-
self.hidden_size = model_config.get_hidden_size()
|
|
54
|
-
|
|
55
|
-
self.dtype: jnp.dtype = jnp.bfloat16
|
|
56
|
-
|
|
57
|
-
self.num_layers: int = getattr(text_config, "num_layers", 48)
|
|
58
|
-
hidden_act: str = getattr(text_config, "hidden_act", "silu")
|
|
59
|
-
|
|
60
|
-
rms_norm_eps = getattr(text_config, "rms_norm_eps", 1e-5)
|
|
61
|
-
self.num_attention_heads = getattr(text_config, "num_attention_heads",
|
|
62
|
-
40)
|
|
63
|
-
self.num_key_value_heads = getattr(text_config, "num_key_value_heads",
|
|
64
|
-
8)
|
|
65
|
-
self.head_dim = getattr(text_config, "head_dim", 128)
|
|
66
|
-
|
|
67
|
-
intermediate_size = getattr(text_config, "intermediate_size", 8192)
|
|
68
|
-
|
|
69
|
-
self.rope_theta_text = getattr(text_config, "rope_theta", 500000.0)
|
|
70
|
-
self.rope_scaling = getattr(text_config, "rope_scaling")
|
|
71
|
-
|
|
72
|
-
self.rng = nnx.Rngs(rng)
|
|
73
|
-
|
|
74
|
-
self.embedder = Embedder(
|
|
75
|
-
vocab_size=vocab_size,
|
|
76
|
-
hidden_size=self.hidden_size,
|
|
77
|
-
dtype=self.dtype,
|
|
78
|
-
vd_sharding=(('data', 'model'), None),
|
|
79
|
-
rngs=self.rng,
|
|
80
|
-
random_init=force_random_weights,
|
|
81
|
-
)
|
|
82
|
-
|
|
83
|
-
self.layers = []
|
|
84
|
-
|
|
85
|
-
for i in range(self.num_layers):
|
|
86
|
-
use_attention_rope = True
|
|
87
|
-
|
|
88
|
-
custom_module = DenseFFW(dtype=self.dtype,
|
|
89
|
-
hidden_act=hidden_act,
|
|
90
|
-
hidden_size=self.hidden_size,
|
|
91
|
-
intermediate_size=intermediate_size,
|
|
92
|
-
random_init=force_random_weights,
|
|
93
|
-
rngs=self.rng,
|
|
94
|
-
df_sharding=P(None, 'model'),
|
|
95
|
-
fd_sharding=P('model', None),
|
|
96
|
-
activation_ffw_td=P('data', None))
|
|
97
|
-
|
|
98
|
-
attn = Llama4Attention(
|
|
99
|
-
hidden_size=self.hidden_size,
|
|
100
|
-
dtype=self.dtype,
|
|
101
|
-
num_attention_heads=self.num_attention_heads,
|
|
102
|
-
num_key_value_heads=self.num_key_value_heads,
|
|
103
|
-
head_dim=self.head_dim,
|
|
104
|
-
rope_theta=self.rope_theta_text,
|
|
105
|
-
rope_scaling={
|
|
106
|
-
"scale_factor":
|
|
107
|
-
self.rope_scaling["factor"],
|
|
108
|
-
"low_freq_factor":
|
|
109
|
-
self.rope_scaling["low_freq_factor"],
|
|
110
|
-
"high_freq_factor":
|
|
111
|
-
self.rope_scaling["high_freq_factor"],
|
|
112
|
-
"original_max_position_embeddings":
|
|
113
|
-
self.rope_scaling["original_max_position_embeddings"]
|
|
114
|
-
},
|
|
115
|
-
rngs=self.rng,
|
|
116
|
-
rope_input_ordering="interleaved",
|
|
117
|
-
# TODO (jacobplatin): we should refactor this to pass a dtype (or config) directly
|
|
118
|
-
kv_cache_dtype=vllm_config.cache_config.cache_dtype,
|
|
119
|
-
temperature_tuning=True,
|
|
120
|
-
temperature_tuning_scale=0.1,
|
|
121
|
-
temperature_tuning_floor_scale=8192,
|
|
122
|
-
use_qk_norm=self.use_qk_norm,
|
|
123
|
-
attention_chunk_size=None if use_attention_rope else 8192,
|
|
124
|
-
mesh=self.mesh,
|
|
125
|
-
random_init=force_random_weights,
|
|
126
|
-
activation_attention_td=('data', 'model'),
|
|
127
|
-
activation_q_td=('data', 'model'),
|
|
128
|
-
query_tnh=P('data', 'model', None),
|
|
129
|
-
keyvalue_skh=P('data', 'model', None),
|
|
130
|
-
activation_attention_out_td=('data', 'model'),
|
|
131
|
-
attn_o_tnh=P('data', 'model', None),
|
|
132
|
-
dnh_sharding=(None, 'model', None),
|
|
133
|
-
dkh_sharding=(None, 'model', None),
|
|
134
|
-
nhd_sharding=('model', None, None),
|
|
135
|
-
)
|
|
136
|
-
|
|
137
|
-
pre_attention_norm = RMSNorm(
|
|
138
|
-
dims=self.hidden_size,
|
|
139
|
-
random_init=force_random_weights,
|
|
140
|
-
epsilon=rms_norm_eps,
|
|
141
|
-
rngs=self.rng,
|
|
142
|
-
activation_ffw_td=('data', None),
|
|
143
|
-
with_scale=True,
|
|
144
|
-
dtype=self.dtype,
|
|
145
|
-
)
|
|
146
|
-
|
|
147
|
-
pre_mlp_norm = RMSNorm(
|
|
148
|
-
dims=self.hidden_size,
|
|
149
|
-
activation_ffw_td=('data', None),
|
|
150
|
-
epsilon=rms_norm_eps,
|
|
151
|
-
rngs=self.rng,
|
|
152
|
-
with_scale=True,
|
|
153
|
-
dtype=self.dtype,
|
|
154
|
-
random_init=force_random_weights,
|
|
155
|
-
)
|
|
156
|
-
|
|
157
|
-
block = TransformerBlock(custom_module=custom_module,
|
|
158
|
-
attn=attn,
|
|
159
|
-
pre_attention_norm=pre_attention_norm,
|
|
160
|
-
pre_mlp_norm=pre_mlp_norm,
|
|
161
|
-
use_attention_rope=use_attention_rope)
|
|
162
|
-
self.layers.append(block)
|
|
163
|
-
|
|
164
|
-
self.final_norm = RMSNorm(
|
|
165
|
-
dims=self.hidden_size,
|
|
166
|
-
activation_ffw_td=P(),
|
|
167
|
-
epsilon=rms_norm_eps,
|
|
168
|
-
rngs=self.rng,
|
|
169
|
-
with_scale=True,
|
|
170
|
-
dtype=self.dtype,
|
|
171
|
-
random_init=force_random_weights,
|
|
172
|
-
)
|
|
173
|
-
|
|
174
|
-
self.lm_head = LMhead(vocab_size=vocab_size,
|
|
175
|
-
hidden_size=self.hidden_size,
|
|
176
|
-
dtype=self.dtype,
|
|
177
|
-
rngs=self.rng,
|
|
178
|
-
vd_sharding=(('data', 'model'), None),
|
|
179
|
-
dv_sharding=(None, ('data', 'model')),
|
|
180
|
-
random_init=force_random_weights)
|
|
181
|
-
if self.is_verbose:
|
|
182
|
-
self._print_model_architecture()
|
|
183
|
-
|
|
184
|
-
def _print_model_architecture(self):
|
|
185
|
-
|
|
186
|
-
logger.info("### Embedding ###")
|
|
187
|
-
nnx.display(self.embedder)
|
|
188
|
-
|
|
189
|
-
logger.info("\n### Layers ###")
|
|
190
|
-
for i, layer in enumerate(self.layers):
|
|
191
|
-
logger.info(f"\n--- Layer {i} ---")
|
|
192
|
-
nnx.display(layer)
|
|
193
|
-
|
|
194
|
-
logger.info("\n### LM Head ###")
|
|
195
|
-
nnx.display(self.lm_head)
|
|
196
|
-
|
|
197
|
-
def load_weights(self, rng: jax.Array, cache_dir: Optional[str] = None):
|
|
198
|
-
self.rng = nnx.Rngs(rng)
|
|
199
|
-
|
|
200
|
-
weight_loader = LlamaGuard4WeightLoader(
|
|
201
|
-
vllm_config=self.vllm_config,
|
|
202
|
-
hidden_size=self.hidden_size,
|
|
203
|
-
attn_heads=self.num_attention_heads,
|
|
204
|
-
num_key_value_heads=self.num_key_value_heads,
|
|
205
|
-
attn_head_dim=self.head_dim)
|
|
206
|
-
weight_loader.load_weights(self)
|
|
207
|
-
|
|
208
|
-
def __call__(
|
|
209
|
-
self,
|
|
210
|
-
kv_caches: List[jax.Array],
|
|
211
|
-
input_ids: jax.Array,
|
|
212
|
-
attention_metadata: AttentionMetadata,
|
|
213
|
-
inputs_embeds: Optional[jax.Array] = None,
|
|
214
|
-
layer_metadata_tuple: Optional[Tuple] = None,
|
|
215
|
-
lora_metadata: Optional[Any] = None,
|
|
216
|
-
*args,
|
|
217
|
-
) -> Tuple[List[KVCacheType], jax.Array]:
|
|
218
|
-
is_prefill = False
|
|
219
|
-
|
|
220
|
-
if inputs_embeds is not None:
|
|
221
|
-
x_TD = inputs_embeds
|
|
222
|
-
elif input_ids is not None:
|
|
223
|
-
x_TD = self.embedder.encode(input_ids)
|
|
224
|
-
else:
|
|
225
|
-
raise ValueError(
|
|
226
|
-
"Cannot run forward pass: Both input_ids and inputs_embeds are None."
|
|
227
|
-
)
|
|
228
|
-
|
|
229
|
-
for (i, block) in enumerate(self.layers):
|
|
230
|
-
kv_cache = kv_caches[i]
|
|
231
|
-
new_kv_cache, x_TD = block(x_TD, is_prefill, kv_cache,
|
|
232
|
-
attention_metadata)
|
|
233
|
-
jax.block_until_ready(x_TD)
|
|
234
|
-
kv_caches[i] = new_kv_cache
|
|
235
|
-
|
|
236
|
-
final_activation_TD = self.final_norm(x_TD)
|
|
237
|
-
|
|
238
|
-
return kv_caches, final_activation_TD, []
|
|
239
|
-
|
|
240
|
-
def compute_logits(self, hidden_states: jax.Array) -> jax.Array:
|
|
241
|
-
logits_TV = jnp.dot(hidden_states,
|
|
242
|
-
self.lm_head.input_embedding_table_DV.value)
|
|
243
|
-
return logits_TV
|
|
244
|
-
|
|
245
|
-
def get_input_embeddings(
|
|
246
|
-
self,
|
|
247
|
-
input_ids: jax.Array,
|
|
248
|
-
multimodal_embeddings: Optional[List[jax.Array]] = None
|
|
249
|
-
) -> jax.Array:
|
|
250
|
-
"""
|
|
251
|
-
Computes the embeddings for text input (used for input to fusion).
|
|
252
|
-
"""
|
|
253
|
-
return self.embedder.encode(input_ids)
|
|
254
|
-
|
|
255
|
-
|
|
256
|
-
class LlamaGuard4WeightLoader:
|
|
257
|
-
|
|
258
|
-
def __init__(self, vllm_config: VllmConfig, hidden_size, attn_heads,
|
|
259
|
-
num_key_value_heads, attn_head_dim):
|
|
260
|
-
self.names_and_weights_generator = model_weights_generator(
|
|
261
|
-
model_name_or_path=vllm_config.model_config.model,
|
|
262
|
-
framework="flax",
|
|
263
|
-
filter_regex="language_model",
|
|
264
|
-
download_dir=vllm_config.load_config.download_dir)
|
|
265
|
-
self.is_verbose = getattr(vllm_config.additional_config, "is_verbose",
|
|
266
|
-
False)
|
|
267
|
-
self._transpose_map = {
|
|
268
|
-
"q_proj": (2, 0, 1),
|
|
269
|
-
"k_proj": (2, 0, 1),
|
|
270
|
-
"v_proj": (2, 0, 1),
|
|
271
|
-
"o_proj": (1, 2, 0),
|
|
272
|
-
"lm_head": (1, 0),
|
|
273
|
-
"feed_forward.down_proj": (1, 0),
|
|
274
|
-
"feed_forward.gate_proj": (1, 0),
|
|
275
|
-
"feed_forward.up_proj": (1, 0),
|
|
276
|
-
"mlp.down_proj": (1, 0),
|
|
277
|
-
"mlp.gate_proj": (1, 0),
|
|
278
|
-
"mlp.up_proj": (1, 0),
|
|
279
|
-
}
|
|
280
|
-
self._weight_shape_map = {
|
|
281
|
-
"q_proj": (attn_heads, attn_head_dim, hidden_size),
|
|
282
|
-
"k_proj": (num_key_value_heads, attn_head_dim, hidden_size),
|
|
283
|
-
"v_proj": (num_key_value_heads, attn_head_dim, hidden_size),
|
|
284
|
-
"o_proj": (hidden_size, attn_heads, attn_head_dim),
|
|
285
|
-
}
|
|
286
|
-
|
|
287
|
-
self._loaded_to_standardized_keys = {
|
|
288
|
-
"language_model.model.embed_tokens.weight":
|
|
289
|
-
"embedder.input_embedding_table_VD",
|
|
290
|
-
"language_model.lm_head.weight":
|
|
291
|
-
"lm_head.input_embedding_table_DV",
|
|
292
|
-
"language_model.model.norm.weight":
|
|
293
|
-
"final_norm.scale",
|
|
294
|
-
"language_model.model.layers.*.input_layernorm.weight":
|
|
295
|
-
"layers.*.pre_attention_norm.scale",
|
|
296
|
-
"language_model.model.layers.*.post_attention_layernorm.weight":
|
|
297
|
-
"layers.*.pre_mlp_norm.scale",
|
|
298
|
-
"language_model.model.layers.*.self_attn.q_proj.weight":
|
|
299
|
-
"layers.*.attn.kernel_q_proj_DNH",
|
|
300
|
-
"language_model.model.layers.*.self_attn.k_proj.weight":
|
|
301
|
-
"layers.*.attn.kernel_k_proj_DKH",
|
|
302
|
-
"language_model.model.layers.*.self_attn.v_proj.weight":
|
|
303
|
-
"layers.*.attn.kernel_v_proj_DKH",
|
|
304
|
-
"language_model.model.layers.*.self_attn.o_proj.weight":
|
|
305
|
-
"layers.*.attn.kernel_o_proj_NHD",
|
|
306
|
-
"language_model.model.layers.*.feed_forward.gate_proj.weight":
|
|
307
|
-
"layers.*.custom_module.kernel_gating_DF",
|
|
308
|
-
"language_model.model.layers.*.feed_forward.up_proj.weight":
|
|
309
|
-
"layers.*.custom_module.kernel_up_proj_DF",
|
|
310
|
-
"language_model.model.layers.*.feed_forward.down_proj.weight":
|
|
311
|
-
"layers.*.custom_module.kernel_down_proj_FD",
|
|
312
|
-
}
|
|
313
|
-
|
|
314
|
-
def map_loaded_to_standardized_name(self, loaded_key: str) -> str:
|
|
315
|
-
if "layer" in loaded_key:
|
|
316
|
-
layer_num = re.search(r"layers\.(\d+)", loaded_key).group(1)
|
|
317
|
-
layer_key = re.sub(r"layers\.\d+", "layers.*", loaded_key)
|
|
318
|
-
mapped_key = self._loaded_to_standardized_keys.get(
|
|
319
|
-
layer_key, loaded_key)
|
|
320
|
-
mapped_key = re.sub(r"layers\.\*", f"layers.{layer_num}",
|
|
321
|
-
mapped_key)
|
|
322
|
-
else:
|
|
323
|
-
mapped_key = self._loaded_to_standardized_keys.get(
|
|
324
|
-
loaded_key, loaded_key)
|
|
325
|
-
return mapped_key
|
|
326
|
-
|
|
327
|
-
def load_weights(self, model_for_loading: nnx.Module):
|
|
328
|
-
model_params = nnx.state(model_for_loading)
|
|
329
|
-
with jax.default_device(jax.devices("cpu")[0]):
|
|
330
|
-
for loaded_name, loaded_weight in self.names_and_weights_generator:
|
|
331
|
-
if loaded_name.endswith(".bias"):
|
|
332
|
-
continue
|
|
333
|
-
if "vision_model" in loaded_name or "multi_modal_projector" in loaded_name:
|
|
334
|
-
continue
|
|
335
|
-
|
|
336
|
-
mapped_name = self.map_loaded_to_standardized_name(loaded_name)
|
|
337
|
-
model_weight = get_param(model_params, mapped_name)
|
|
338
|
-
|
|
339
|
-
if not loaded_name.endswith(".bias"):
|
|
340
|
-
# For other layers, continue to use the transpose_params helper.
|
|
341
|
-
loaded_weight = reshape_params(loaded_name, loaded_weight,
|
|
342
|
-
self._weight_shape_map)
|
|
343
|
-
loaded_weight = transpose_params(loaded_name,
|
|
344
|
-
loaded_weight,
|
|
345
|
-
self._transpose_map)
|
|
346
|
-
if model_weight.value.shape != loaded_weight.shape:
|
|
347
|
-
raise ValueError(
|
|
348
|
-
f"Loaded shape for {loaded_name}: {loaded_weight.shape} "
|
|
349
|
-
f"does not match model shape for {mapped_name}: {model_weight.value.shape}!"
|
|
350
|
-
)
|
|
351
|
-
logger.debug(
|
|
352
|
-
f"Transformed parameter {loaded_name} to {mapped_name}: {loaded_weight.shape} --> {model_weight.value.shape}"
|
|
353
|
-
)
|
|
354
|
-
|
|
355
|
-
model_weight.value = shard_put(loaded_weight,
|
|
356
|
-
model_weight.sharding,
|
|
357
|
-
mesh=model_for_loading.mesh)
|
|
358
|
-
if self.is_verbose:
|
|
359
|
-
print_param_info(model_weight, loaded_name)
|
|
360
|
-
|
|
361
|
-
nnx.update(model_for_loading, model_params)
|
|
File without changes
|
{tpu_inference-0.0.1rc1.dist-info → tpu_inference-0.11.1.dev202511180814.dist-info}/licenses/LICENSE
RENAMED
|
File without changes
|
{tpu_inference-0.0.1rc1.dist-info → tpu_inference-0.11.1.dev202511180814.dist-info}/top_level.txt
RENAMED
|
File without changes
|