tpu-inference 0.0.1rc1__py3-none-any.whl → 0.11.1.dev202511180814__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of tpu-inference might be problematic. Click here for more details.

Files changed (56) hide show
  1. tests/kernels/fused_moe_v1_test.py +34 -303
  2. tests/kernels/ragged_paged_attention_kernel_v3_hd64_test.py +2 -2
  3. tests/lora/test_layers.py +6 -0
  4. tests/lora/utils.py +8 -0
  5. tests/test_envs.py +11 -32
  6. tests/test_utils.py +2 -1
  7. tpu_inference/__init__.py +3 -22
  8. tpu_inference/core/disagg_utils.py +8 -6
  9. tpu_inference/distributed/tpu_connector.py +4 -3
  10. tpu_inference/distributed/utils.py +2 -3
  11. tpu_inference/envs.py +8 -61
  12. tpu_inference/executors/ray_distributed_executor.py +2 -9
  13. tpu_inference/kernels/fused_moe/v1/kernel.py +110 -641
  14. tpu_inference/kernels/ragged_paged_attention/v3/kernel.py +54 -77
  15. tpu_inference/kernels/ragged_paged_attention/v3/kernel_hd64.py +145 -266
  16. tpu_inference/layers/common/attention_interface.py +1 -7
  17. tpu_inference/layers/common/sharding.py +5 -5
  18. tpu_inference/layers/vllm/fused_moe.py +208 -170
  19. tpu_inference/layers/vllm/quantization/common.py +1 -6
  20. tpu_inference/layers/vllm/quantization/mxfp4.py +73 -138
  21. tpu_inference/layers/vllm/quantization/unquantized.py +64 -58
  22. tpu_inference/layers/vllm/sharding.py +2 -2
  23. tpu_inference/lora/torch_punica_tpu.py +2 -1
  24. tpu_inference/mock/__init__.py +0 -0
  25. tpu_inference/mock/vllm_config_utils.py +28 -0
  26. tpu_inference/mock/vllm_envs.py +1219 -0
  27. tpu_inference/mock/vllm_logger.py +212 -0
  28. tpu_inference/mock/vllm_logging_utils.py +15 -0
  29. tpu_inference/models/common/model_loader.py +10 -43
  30. tpu_inference/models/jax/llama3.py +1 -2
  31. tpu_inference/models/jax/llama_eagle3.py +5 -8
  32. tpu_inference/models/jax/phi3.py +376 -0
  33. tpu_inference/models/jax/qwen2.py +1 -2
  34. tpu_inference/models/jax/qwen2_5_vl.py +48 -163
  35. tpu_inference/models/jax/qwen3.py +1 -2
  36. tpu_inference/models/jax/utils/quantization/quantization_utils.py +6 -3
  37. tpu_inference/models/jax/utils/weight_utils.py +143 -198
  38. tpu_inference/models/vllm/vllm_model_wrapper.py +8 -14
  39. tpu_inference/platforms/tpu_platform.py +31 -37
  40. tpu_inference/runner/compilation_manager.py +58 -141
  41. tpu_inference/runner/kv_cache.py +1 -1
  42. tpu_inference/runner/kv_cache_manager.py +18 -17
  43. tpu_inference/runner/persistent_batch_manager.py +2 -40
  44. tpu_inference/runner/structured_decoding_manager.py +3 -2
  45. tpu_inference/runner/tpu_runner.py +147 -271
  46. tpu_inference/runner/utils.py +2 -2
  47. tpu_inference/spec_decode/jax/eagle3.py +21 -71
  48. tpu_inference/tpu_info.py +3 -4
  49. tpu_inference/utils.py +13 -36
  50. tpu_inference/worker/tpu_worker.py +25 -162
  51. {tpu_inference-0.0.1rc1.dist-info → tpu_inference-0.11.1.dev202511180814.dist-info}/METADATA +3 -4
  52. {tpu_inference-0.0.1rc1.dist-info → tpu_inference-0.11.1.dev202511180814.dist-info}/RECORD +55 -50
  53. tpu_inference/models/jax/llama_guard_4.py +0 -361
  54. {tpu_inference-0.0.1rc1.dist-info → tpu_inference-0.11.1.dev202511180814.dist-info}/WHEEL +0 -0
  55. {tpu_inference-0.0.1rc1.dist-info → tpu_inference-0.11.1.dev202511180814.dist-info}/licenses/LICENSE +0 -0
  56. {tpu_inference-0.0.1rc1.dist-info → tpu_inference-0.11.1.dev202511180814.dist-info}/top_level.txt +0 -0
@@ -1,7 +1,7 @@
1
1
  import jax
2
2
  import jax.numpy as jnp
3
3
  import numpy as np
4
- from absl.testing import absltest, parameterized
4
+ from absl.testing import absltest
5
5
  from jax._src import test_util as jtu
6
6
  from jax.sharding import Mesh
7
7
 
@@ -10,15 +10,6 @@ from tpu_inference.kernels.fused_moe.v1.kernel import fused_ep_moe, ref_moe
10
10
  jax.config.parse_flags_with_absl()
11
11
 
12
12
 
13
- def cdiv(a, b):
14
- assert b != 0
15
- return (a + b - 1) // b
16
-
17
-
18
- def align_to(x, a):
19
- return cdiv(x, a) * a
20
-
21
-
22
13
  def gen_moe_inputs(
23
14
  dtype,
24
15
  top_k,
@@ -28,14 +19,11 @@ def gen_moe_inputs(
28
19
  num_tokens,
29
20
  *,
30
21
  seed=1234,
31
- has_bias=False,
32
22
  ):
33
23
  key = jax.random.key(seed)
34
- k0, k1, k2, k3, k4, k5, k6 = jax.random.split(key, 7)
35
-
24
+ k0, k1, k2, k4, k5 = jax.random.split(key, 5)
36
25
  a = jax.random.normal(k0, (num_tokens, hidden_size),
37
26
  dtype=jnp.float32).astype(dtype) / 10
38
-
39
27
  w1 = (jax.random.normal(
40
28
  k1,
41
29
  (num_experts, 2, hidden_size, intermediate_size),
@@ -43,54 +31,21 @@ def gen_moe_inputs(
43
31
  ) / 10).astype(dtype)
44
32
  w2 = (jax.random.normal(k2, (num_experts, intermediate_size, hidden_size),
45
33
  dtype=jnp.float32) / 10).astype(dtype)
46
-
47
- if has_bias:
48
- b1 = (jax.random.normal(k3, (num_experts, 2, intermediate_size),
49
- dtype=jnp.float32) / 10).astype(dtype)
50
- b2 = (jax.random.normal(k4, (num_experts, hidden_size),
51
- dtype=jnp.float32) / 10).astype(dtype)
52
- else:
53
- b1 = b2 = None
54
-
55
34
  gating_output = (
56
- jax.random.normal(k5, (num_tokens, num_experts), dtype=jnp.float32) +
35
+ jax.random.normal(k4, (num_tokens, num_experts), dtype=jnp.float32) +
57
36
  jnp.arange(num_tokens * num_experts, dtype=jnp.float32).reshape(
58
37
  num_tokens, num_experts) / 100)
59
-
60
38
  # To generate unique top-k!
61
- top_k_indices = jax.random.randint(k6, (num_tokens, top_k),
39
+ top_k_indices = jax.random.randint(k5, (num_tokens, top_k),
62
40
  minval=0,
63
41
  maxval=num_experts - 1,
64
42
  dtype=jnp.int32)
65
-
66
43
  one_hot = (jnp.sum(
67
44
  jax.nn.one_hot(top_k_indices, num_experts, dtype=jnp.float32),
68
45
  axis=1,
69
- ) * 30)
70
-
46
+ ) * 10)
71
47
  gating_output = (gating_output + one_hot).astype(dtype)
72
-
73
- return a, w1, w2, b1, b2, gating_output
74
-
75
-
76
- def sub_channel_quantize(x, quant_dtype, wsz=256):
77
- """Quantizes x with sub-channel quantization on the 2nd minor."""
78
- if jnp.issubdtype(quant_dtype, jnp.floating):
79
- dtype_info = jnp.finfo(quant_dtype)
80
- else:
81
- dtype_info = jnp.iinfo(quant_dtype)
82
- dtype_max = float(dtype_info.max)
83
- w_lst, scale_lst = [], []
84
- assert len(x.shape) >= 2
85
- assert x.shape[-2] % wsz == 0
86
- for i in range(0, x.shape[-2], wsz):
87
- y = x[..., i:i + wsz, :]
88
- abs_max = jnp.abs(y).max(axis=-2, keepdims=True)
89
- scale = (abs_max / dtype_max).astype(jnp.float32)
90
- w = (y / scale).astype(quant_dtype)
91
- w_lst.append(w)
92
- scale_lst.append(scale)
93
- return jnp.concat(w_lst, axis=-2), jnp.concat(scale_lst, axis=-2)
48
+ return a, w1, w2, gating_output
94
49
 
95
50
 
96
51
  @jtu.with_config(jax_numpy_dtype_promotion="standard")
@@ -108,266 +63,42 @@ class MoEKernelTest(jtu.JaxTestCase):
108
63
  self.mesh = Mesh(np.array(self.mesh_devices).reshape(1, -1),
109
64
  axis_names=("data", "model"))
110
65
 
111
- def _test_moe(
112
- self,
113
- dtype,
114
- top_k,
115
- num_experts,
116
- hidden_size,
117
- intermediate_size,
118
- num_tokens,
119
- seed,
120
- renormalize_topk_logits,
121
- bt,
122
- bf,
123
- bd1,
124
- bd2,
125
- btc,
126
- bfc,
127
- bd1c,
128
- bd2c,
129
- act_fn="silu",
130
- w_dtype=None,
131
- subc_quant_wsz=None,
132
- has_bias=False,
133
- atol=2e-1,
134
- rtol=2e-1,
135
- ):
136
- a, w1, w2, b1, b2, gating_output = gen_moe_inputs(
66
+ def test_basic(self):
67
+ dtype = jnp.bfloat16
68
+ top_k = 2
69
+ num_experts = 16
70
+ hidden_size = 256
71
+ intermediate_size = 256
72
+ num_tokens = 8 * 2
73
+
74
+ a, w1, w2, gating_output = gen_moe_inputs(
137
75
  dtype,
138
76
  top_k,
139
77
  num_experts,
140
78
  hidden_size,
141
79
  intermediate_size,
142
80
  num_tokens,
143
- seed=seed,
144
- has_bias=has_bias,
145
81
  )
146
- w1_scale = None
147
- w2_scale = None
148
- if w_dtype is not None:
149
- if subc_quant_wsz is None:
150
- subc_quant_wsz = 256
151
- w1, w1_scale = sub_channel_quantize(w1, w_dtype, subc_quant_wsz)
152
- w2, w2_scale = sub_channel_quantize(w2, w_dtype, subc_quant_wsz)
153
82
 
154
- actual = fused_ep_moe(
155
- mesh=self.mesh,
156
- tokens=a,
157
- w1=w1,
158
- w2=w2,
159
- gating_output=gating_output,
160
- top_k=top_k,
161
- renormalize_topk_logits=renormalize_topk_logits,
162
- act_fn=act_fn,
163
- subc_quant_wsz=subc_quant_wsz,
164
- w1_scale=w1_scale,
165
- w2_scale=w2_scale,
166
- b1=b1,
167
- b2=b2,
168
- bt=bt,
169
- bf=bf,
170
- bd1=bd1,
171
- bd2=bd2,
172
- btc=btc,
173
- bfc=bfc,
174
- bd1c=bd1c,
175
- bd2c=bd2c,
176
- )
177
- expected = ref_moe(
178
- a,
179
- w1,
180
- w2,
181
- gating_output,
182
- top_k,
183
- b1=b1,
184
- b2=b2,
185
- renormalize_topk_logits=renormalize_topk_logits,
186
- activation=act_fn,
187
- subc_quant_wsz=subc_quant_wsz,
188
- w1_scale=w1_scale,
189
- w2_scale=w2_scale,
190
- )
191
- self.assertAllClose(actual, expected, atol=atol, rtol=rtol)
192
-
193
- @parameterized.product(renormalize_topk_logits=[True, False], )
194
- def test_basic(self, renormalize_topk_logits):
195
- dtype = jnp.bfloat16
196
- top_k = 8
197
- num_experts = 128
198
- hidden_size = 1024
199
- intermediate_size = 1024
200
- num_tokens = 8 * 32
201
- self._test_moe(
202
- dtype=dtype,
203
- top_k=top_k,
204
- num_experts=num_experts,
205
- hidden_size=hidden_size,
206
- intermediate_size=intermediate_size,
207
- num_tokens=num_tokens,
208
- seed=1234,
209
- renormalize_topk_logits=renormalize_topk_logits,
210
- bt=32,
211
- bf=1024,
212
- bd1=1024,
213
- bd2=1024,
214
- btc=32,
215
- bfc=256,
216
- bd1c=256,
217
- bd2c=256,
218
- )
219
-
220
- @parameterized.product(act_fn=["silu", "gelu", "swigluoai"], )
221
- def test_activation(self, act_fn):
222
- dtype = jnp.bfloat16
223
- top_k = 8
224
- num_experts = 128
225
- hidden_size = 1024
226
- intermediate_size = 1024
227
- num_tokens = 8 * 32
228
- self._test_moe(
229
- dtype=dtype,
230
- top_k=top_k,
231
- num_experts=num_experts,
232
- hidden_size=hidden_size,
233
- intermediate_size=intermediate_size,
234
- num_tokens=num_tokens,
235
- seed=1234,
236
- renormalize_topk_logits=True,
237
- act_fn=act_fn,
238
- bt=32,
239
- bf=512,
240
- bd1=512,
241
- bd2=512,
242
- btc=32,
243
- bfc=256,
244
- bd1c=256,
245
- bd2c=256,
246
- )
247
-
248
- def test_benchmark_qwen_235(self):
249
- num_experts = 128
250
- top_k = 8
251
- hidden_size = 4096
252
- intermediate_size = 1536
253
- dtype = jnp.bfloat16
254
- num_tokens = 8 * 64
255
- seed = 54321
256
- renormalize_topk_logits = True
257
- self._test_moe(
258
- dtype=dtype,
259
- top_k=top_k,
260
- num_experts=num_experts,
261
- hidden_size=hidden_size,
262
- intermediate_size=intermediate_size,
263
- num_tokens=num_tokens,
264
- seed=seed,
265
- renormalize_topk_logits=renormalize_topk_logits,
266
- bt=64,
267
- bf=768,
268
- bd1=2048,
269
- bd2=2048,
270
- btc=64,
271
- bfc=768,
272
- bd1c=2048,
273
- bd2c=2048,
274
- act_fn="silu",
275
- atol=5e-2,
276
- rtol=5e-2,
277
- )
278
-
279
- def test_benchmark_qwen_30b_a3b(self):
280
- num_experts = 128
281
- top_k = 8
282
- hidden_size = 2048
283
- intermediate_size = 768
284
- dtype = jnp.bfloat16
285
- num_tokens = 512
286
- seed = 54321
287
- renormalize_topk_logits = True
288
- self._test_moe(
289
- dtype=dtype,
290
- top_k=top_k,
291
- num_experts=num_experts,
292
- hidden_size=hidden_size,
293
- intermediate_size=intermediate_size,
294
- num_tokens=num_tokens,
295
- seed=seed,
296
- renormalize_topk_logits=renormalize_topk_logits,
297
- bt=16,
298
- bf=384,
299
- bd1=512,
300
- bd2=512,
301
- btc=16,
302
- bfc=384,
303
- bd1c=256,
304
- bd2c=256,
305
- act_fn="silu",
306
- atol=5e-2,
307
- rtol=5e-2,
308
- )
309
-
310
- @parameterized.product(
311
- w_dtype=[jnp.int8, jnp.float8_e5m2, jnp.float4_e2m1fn], )
312
- def test_sub_channel_quantization(self, w_dtype):
313
- if w_dtype in (
314
- jnp.float8_e5m2,
315
- jnp.float4_e2m1fn,
316
- ) and not jtu.is_device_tpu_at_least(version=7):
317
- self.skipTest("Expect TPUv7+")
318
- dtype = jnp.bfloat16
319
- top_k = 8
320
- num_experts = 128
321
- hidden_size = 1024
322
- intermediate_size = 1024
323
- num_tokens = 8 * 32
324
- self._test_moe(
325
- dtype=dtype,
326
- top_k=top_k,
327
- num_experts=num_experts,
328
- hidden_size=hidden_size,
329
- intermediate_size=intermediate_size,
330
- num_tokens=num_tokens,
331
- seed=1234,
332
- renormalize_topk_logits=False,
333
- w_dtype=w_dtype,
334
- subc_quant_wsz=256,
335
- bt=32,
336
- bf=1024,
337
- bd1=1024,
338
- bd2=1024,
339
- btc=32,
340
- bfc=256,
341
- bd1c=256,
342
- bd2c=256,
343
- )
344
-
345
- def test_bias(self):
346
- dtype = jnp.bfloat16
347
- top_k = 8
348
- num_experts = 128
349
- hidden_size = 1024
350
- intermediate_size = 1024
351
- num_tokens = 8 * 32
352
- self._test_moe(
353
- dtype=dtype,
354
- top_k=top_k,
355
- num_experts=num_experts,
356
- hidden_size=hidden_size,
357
- intermediate_size=intermediate_size,
358
- num_tokens=num_tokens,
359
- seed=1234,
360
- renormalize_topk_logits=False,
361
- has_bias=True,
362
- bt=32,
363
- bf=512,
364
- bd1=512,
365
- bd2=512,
366
- btc=32,
367
- bfc=256,
368
- bd1c=256,
369
- bd2c=256,
370
- )
83
+ actual = jax.block_until_ready(
84
+ fused_ep_moe(
85
+ mesh=self.mesh,
86
+ tokens=a,
87
+ w1=w1,
88
+ w2=w2,
89
+ gating_output=gating_output,
90
+ top_k=top_k,
91
+ bt=32,
92
+ bf=512,
93
+ bd1=512,
94
+ bd2=512,
95
+ btc=32,
96
+ bfc=256,
97
+ bd1c=256,
98
+ bd2c=256,
99
+ ))
100
+ expected = ref_moe(a, w1, w2, gating_output, top_k)
101
+ self.assertAllClose(expected, actual, atol=2e-2, rtol=2e-2)
371
102
 
372
103
 
373
104
  if __name__ == "__main__":
@@ -99,7 +99,7 @@ class RaggedPagedAttentionHeadDim64KernelTest(jtu.JaxTestCase):
99
99
  (0, 0),
100
100
  (0, 0),
101
101
  ),
102
- constant_values=0,
102
+ constant_values=jnp.nan,
103
103
  ).reshape(
104
104
  -1,
105
105
  page_size,
@@ -122,7 +122,7 @@ class RaggedPagedAttentionHeadDim64KernelTest(jtu.JaxTestCase):
122
122
  kv_cache,
123
123
  ((0, num_pages - kv_cache.shape[0]), (0, 0), (0, 0), (0, 0),
124
124
  (0, 0)),
125
- constant_values=0,
125
+ constant_values=jnp.nan,
126
126
  )
127
127
  page_indices = jnp.stack(page_indices_list, axis=0)
128
128
  page_indices = jnp.pad(
tests/lora/test_layers.py CHANGED
@@ -91,6 +91,7 @@ def populate_loras(
91
91
  index_to_id: list[Optional[int]],
92
92
  lora_layer: BaseLayerWithLoRA,
93
93
  baselayer_weights: torch.Tensor,
94
+ generate_embeddings_tensor: int = 0,
94
95
  repeats: int = 1,
95
96
  ) -> tuple[dict[int, LoRALayerWeights], dict[int, list[LoRALayerWeights]]]:
96
97
  """This method populates the lora weights (lora_a and lora_b) in the lora layers (BaseLayerWithLoRA).
@@ -102,6 +103,8 @@ def populate_loras(
102
103
  lora_layer: the LoRAlayer to populate.
103
104
  baselayer_weights: the PyTorch tensor containing the layer's
104
105
  weights.
106
+ generate_embeddings_tensor: whether to generate an
107
+ embeddings tensor for each LoRA.
105
108
  repeats: must only be set for column parallel packed
106
109
  layers. Indicates the number of loras to compose
107
110
  together to create a single lora layer.
@@ -128,6 +131,7 @@ def populate_loras(
128
131
  baselayer_weights.device).init_random_lora(
129
132
  module_name=f"fake_{i}",
130
133
  weight=baselayer_weights,
134
+ generate_embeddings_tensor=generate_embeddings_tensor,
131
135
  )
132
136
  sublora.lora_b = sublora.lora_b[(sublora_len *
133
137
  i):(sublora_len * (i + 1)), :]
@@ -143,6 +147,7 @@ def populate_loras(
143
147
  slot_idx,
144
148
  lora_a=lora.lora_a,
145
149
  lora_b=lora.lora_b,
150
+ embeddings_tensor=lora.embeddings_tensor,
146
151
  )
147
152
 
148
153
  lora_dict[lora_id] = lora
@@ -541,6 +546,7 @@ def _update_punica_wrapper_metadata(punica_wrapper, index_mapping,
541
546
  index_to_id,
542
547
  lora_config.max_loras,
543
548
  vocab_size=512,
549
+ extra_vocab_size=lora_config.lora_extra_vocab_size,
544
550
  )
545
551
  assert jax_view(punica_wrapper._lora_indices_per_batch).platform(
546
552
  ) == 'tpu', 'punica_wrapper._lora_indices_per_batch should have been moved to TPU.'
tests/lora/utils.py CHANGED
@@ -24,6 +24,7 @@ class DummyLoRAManager:
24
24
  module_name: str,
25
25
  weight: torch.Tensor,
26
26
  rank: int = 8,
27
+ generate_embeddings_tensor: int = 0,
27
28
  ):
28
29
  lora = LoRALayerWeights(
29
30
  module_name,
@@ -36,6 +37,13 @@ class DummyLoRAManager:
36
37
  dtype=weight.dtype,
37
38
  device=self._device),
38
39
  )
40
+ if generate_embeddings_tensor:
41
+ lora.embeddings_tensor = torch.rand(
42
+ 5,
43
+ generate_embeddings_tensor,
44
+ dtype=weight.dtype,
45
+ device=self._device,
46
+ )
39
47
  self.set_module_lora(module_name, lora)
40
48
 
41
49
  return lora
tests/test_envs.py CHANGED
@@ -56,12 +56,6 @@ def test_getattr_with_cache(monkeypatch: pytest.MonkeyPatch):
56
56
 
57
57
 
58
58
  def test_boolean_env_vars(monkeypatch: pytest.MonkeyPatch):
59
- # Ensure clean environment for boolean vars by setting to default "0"
60
- monkeypatch.setenv("SKIP_JAX_PRECOMPILE", "0")
61
- monkeypatch.setenv("VLLM_XLA_CHECK_RECOMPILATION", "0")
62
- monkeypatch.setenv("NEW_MODEL_DESIGN", "0")
63
- monkeypatch.setenv("USE_MOE_EP_KERNEL", "0")
64
-
65
59
  # Test SKIP_JAX_PRECOMPILE (default False)
66
60
  assert envs.SKIP_JAX_PRECOMPILE is False
67
61
  monkeypatch.setenv("SKIP_JAX_PRECOMPILE", "1")
@@ -69,13 +63,6 @@ def test_boolean_env_vars(monkeypatch: pytest.MonkeyPatch):
69
63
  monkeypatch.setenv("SKIP_JAX_PRECOMPILE", "0")
70
64
  assert envs.SKIP_JAX_PRECOMPILE is False
71
65
 
72
- # Test VLLM_XLA_CHECK_RECOMPILATION (default False)
73
- assert envs.VLLM_XLA_CHECK_RECOMPILATION is False
74
- monkeypatch.setenv("VLLM_XLA_CHECK_RECOMPILATION", "1")
75
- assert envs.VLLM_XLA_CHECK_RECOMPILATION is True
76
- monkeypatch.setenv("VLLM_XLA_CHECK_RECOMPILATION", "0")
77
- assert envs.VLLM_XLA_CHECK_RECOMPILATION is False
78
-
79
66
  # Test NEW_MODEL_DESIGN (default False)
80
67
  assert envs.NEW_MODEL_DESIGN is False
81
68
  monkeypatch.setenv("NEW_MODEL_DESIGN", "1")
@@ -88,32 +75,20 @@ def test_boolean_env_vars(monkeypatch: pytest.MonkeyPatch):
88
75
 
89
76
 
90
77
  def test_integer_env_vars(monkeypatch: pytest.MonkeyPatch):
91
- # Ensure clean environment for integer vars by setting to defaults
92
- monkeypatch.setenv("PYTHON_TRACER_LEVEL", "1")
93
- monkeypatch.setenv("NUM_SLICES", "1")
94
-
95
78
  assert envs.PYTHON_TRACER_LEVEL == 1
96
79
  monkeypatch.setenv("PYTHON_TRACER_LEVEL", "3")
97
80
  assert envs.PYTHON_TRACER_LEVEL == 3
98
81
  monkeypatch.setenv("PYTHON_TRACER_LEVEL", "0")
99
82
  assert envs.PYTHON_TRACER_LEVEL == 0
100
83
 
101
- # Test NUM_SLICES (default 1)
102
- assert envs.NUM_SLICES == 1
103
- monkeypatch.setenv("NUM_SLICES", "2")
104
- assert envs.NUM_SLICES == 2
105
- monkeypatch.setenv("NUM_SLICES", "4")
106
- assert envs.NUM_SLICES == 4
107
84
 
85
+ def test_lowercase_conversion(monkeypatch: pytest.MonkeyPatch):
86
+ monkeypatch.setenv("TPU_MULTIHOST_BACKEND", "GRPC")
87
+ assert envs.TPU_MULTIHOST_BACKEND == "grpc"
108
88
 
109
- def test_model_impl_type_choices(monkeypatch: pytest.MonkeyPatch):
110
- # Test case sensitive choices
111
- monkeypatch.setenv("MODEL_IMPL_TYPE", "flax_nnx")
89
+ monkeypatch.setenv("MODEL_IMPL_TYPE", "FLAX_NNX")
112
90
  assert envs.MODEL_IMPL_TYPE == "flax_nnx"
113
91
 
114
- monkeypatch.setenv("MODEL_IMPL_TYPE", "vllm")
115
- assert envs.MODEL_IMPL_TYPE == "vllm"
116
-
117
92
 
118
93
  def test_string_env_vars_defaults(monkeypatch: pytest.MonkeyPatch):
119
94
  monkeypatch.delenv("JAX_PLATFORMS", raising=False)
@@ -142,6 +117,8 @@ def test_ray_env_vars(monkeypatch: pytest.MonkeyPatch):
142
117
  assert envs.RAY_USAGE_STATS_ENABLED == "1"
143
118
 
144
119
  assert envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE == "shm"
120
+ monkeypatch.setenv("VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE", "nccl")
121
+ assert envs.VLLM_USE_RAY_COMPILED_DAG_CHANNEL_TYPE == "nccl"
145
122
 
146
123
 
147
124
  def test_invalid_attribute_raises_error():
@@ -157,7 +134,6 @@ def test_dir_returns_all_env_vars():
157
134
  assert "JAX_PLATFORMS" in env_vars
158
135
  assert "TPU_NAME" in env_vars
159
136
  assert "SKIP_JAX_PRECOMPILE" in env_vars
160
- assert "VLLM_XLA_CHECK_RECOMPILATION" in env_vars
161
137
  assert "MODEL_IMPL_TYPE" in env_vars
162
138
 
163
139
 
@@ -165,8 +141,11 @@ def test_tpu_multihost_env_vars(monkeypatch: pytest.MonkeyPatch):
165
141
  monkeypatch.setenv("TPU_WORKER_ID", "0")
166
142
  assert envs.TPU_WORKER_ID == "0"
167
143
 
168
- monkeypatch.setenv("TPU_MULTIHOST_BACKEND", "ray")
169
- assert envs.TPU_MULTIHOST_BACKEND == "ray"
144
+ monkeypatch.setenv("TPU_MULTIHOST_BACKEND", "grpc")
145
+ assert envs.TPU_MULTIHOST_BACKEND == "grpc"
146
+
147
+ monkeypatch.setenv("TPU_MULTIHOST_BACKEND", "xla")
148
+ assert envs.TPU_MULTIHOST_BACKEND == "xla"
170
149
 
171
150
 
172
151
  def test_disaggregated_serving_env_vars(monkeypatch: pytest.MonkeyPatch):
tests/test_utils.py CHANGED
@@ -231,5 +231,6 @@ def test_get_jax_dtype_from_str_dtype():
231
231
  assert get_jax_dtype_from_str_dtype("int8") == jnp.int8
232
232
  assert get_jax_dtype_from_str_dtype("bfloat16") == jnp.bfloat16
233
233
  assert get_jax_dtype_from_str_dtype("fp8") == jnp.float8_e4m3fn
234
- assert get_jax_dtype_from_str_dtype("fp8_e4m3") == jnp.float8_e4m3fn
234
+ assert get_jax_dtype_from_str_dtype("fp8_e4m3") == jnp.float8_e4m3
235
235
  assert get_jax_dtype_from_str_dtype("fp8_e5m2") == jnp.float8_e5m2
236
+ assert get_jax_dtype_from_str_dtype("auto") is None
tpu_inference/__init__.py CHANGED
@@ -1,40 +1,21 @@
1
+ import os
2
+
1
3
  # The environment variables override should be imported before any other
2
4
  # modules to ensure that the environment variables are set before any
3
5
  # other modules are imported.
4
6
  import tpu_inference.env_override # noqa: F401
5
- from tpu_inference import envs
6
7
  from tpu_inference import tpu_info as ti
7
8
  from tpu_inference.logger import init_logger
8
9
 
9
10
  logger = init_logger(__name__)
10
11
 
11
- if "proxy" in envs.JAX_PLATFORMS:
12
+ if "proxy" in os.environ.get('JAX_PLATFORMS', '').lower():
12
13
  logger.info("Running vLLM on TPU via Pathways proxy.")
13
14
  # Must run pathwaysutils.initialize() before any JAX operations
14
15
  try:
15
- import traceback
16
-
17
16
  import pathwaysutils
18
- import vllm
19
- from vllm.platforms import (resolve_current_platform_cls_qualname,
20
- resolve_obj_by_qualname)
21
17
  pathwaysutils.initialize()
22
18
  logger.info("Module pathwaysutils is imported.")
23
-
24
- # Pathways requires eager resolution of vllm.current_platform instead of
25
- # lazy resolution in the normal code path. Since this part involves
26
- # global topology discovery across multiple hosts, the platform
27
- # resolution must happen before other components are loaded.
28
- logger.info("Eagerly resolving vLLM current_platform for Pathways.")
29
- platform_cls_qualname = resolve_current_platform_cls_qualname()
30
- resolved_platform_instance = resolve_obj_by_qualname(
31
- platform_cls_qualname)()
32
- vllm.platforms._current_platform = resolved_platform_instance
33
- vllm.platforms._init_trace = "".join(traceback.format_stack())
34
- logger.info(
35
- f"vLLM platform resolved to: {resolved_platform_instance.__class__.__name__}"
36
- )
37
-
38
19
  except Exception as e:
39
20
  logger.error(
40
21
  f"Error occurred while importing pathwaysutils or logging TPU info: {e}"
@@ -1,15 +1,17 @@
1
1
  # SPDX-License-Identifier: Apache-2.0
2
2
 
3
+ import os
3
4
  from typing import Tuple
4
5
 
5
- from tpu_inference import envs
6
+ PREFILL_SLICES = 'PREFILL_SLICES'
7
+ DECODE_SLICES = 'DECODE_SLICES'
6
8
 
7
9
 
8
10
  def is_disagg_enabled() -> bool:
9
11
  # We triggrer our code path as long as prefill slices are set. This
10
12
  # allows us to test interleave mode effectively with the code path
11
13
  # for comparison purposes.
12
- return bool(envs.PREFILL_SLICES)
14
+ return PREFILL_SLICES in os.environ
13
15
 
14
16
 
15
17
  def _parse_slices(slices_str: str) -> Tuple[int, ...]:
@@ -38,12 +40,12 @@ def _parse_slices(slices_str: str) -> Tuple[int, ...]:
38
40
 
39
41
 
40
42
  def get_prefill_slices() -> Tuple[int, ...]:
41
- if not envs.PREFILL_SLICES:
43
+ if PREFILL_SLICES not in os.environ:
42
44
  return ()
43
- return _parse_slices(envs.PREFILL_SLICES)
45
+ return _parse_slices(os.environ[PREFILL_SLICES])
44
46
 
45
47
 
46
48
  def get_decode_slices() -> Tuple[int, ...]:
47
- if not envs.DECODE_SLICES:
49
+ if DECODE_SLICES not in os.environ:
48
50
  return ()
49
- return _parse_slices(envs.DECODE_SLICES)
51
+ return _parse_slices(os.environ[DECODE_SLICES])