torchrl 0.11.0__cp314-cp314-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (395) hide show
  1. benchmarks/benchmark_batched_envs.py +104 -0
  2. benchmarks/conftest.py +91 -0
  3. benchmarks/ecosystem/gym_env_throughput.py +321 -0
  4. benchmarks/ecosystem/vmas_rllib_vs_torchrl_sampling_performance.py +231 -0
  5. benchmarks/requirements.txt +7 -0
  6. benchmarks/storage/benchmark_sample_latency_over_rpc.py +193 -0
  7. benchmarks/test_collectors_benchmark.py +240 -0
  8. benchmarks/test_compressed_storage_benchmark.py +145 -0
  9. benchmarks/test_envs_benchmark.py +133 -0
  10. benchmarks/test_llm.py +101 -0
  11. benchmarks/test_non_tensor_env_benchmark.py +70 -0
  12. benchmarks/test_objectives_benchmarks.py +1199 -0
  13. benchmarks/test_replaybuffer_benchmark.py +254 -0
  14. sota-check/README.md +35 -0
  15. sota-implementations/README.md +142 -0
  16. sota-implementations/a2c/README.md +39 -0
  17. sota-implementations/a2c/a2c_atari.py +291 -0
  18. sota-implementations/a2c/a2c_mujoco.py +273 -0
  19. sota-implementations/a2c/utils_atari.py +240 -0
  20. sota-implementations/a2c/utils_mujoco.py +160 -0
  21. sota-implementations/bandits/README.md +7 -0
  22. sota-implementations/bandits/dqn.py +126 -0
  23. sota-implementations/cql/cql_offline.py +198 -0
  24. sota-implementations/cql/cql_online.py +249 -0
  25. sota-implementations/cql/discrete_cql_offline.py +180 -0
  26. sota-implementations/cql/discrete_cql_online.py +227 -0
  27. sota-implementations/cql/utils.py +471 -0
  28. sota-implementations/crossq/crossq.py +271 -0
  29. sota-implementations/crossq/utils.py +320 -0
  30. sota-implementations/ddpg/ddpg.py +231 -0
  31. sota-implementations/ddpg/utils.py +325 -0
  32. sota-implementations/decision_transformer/dt.py +163 -0
  33. sota-implementations/decision_transformer/lamb.py +167 -0
  34. sota-implementations/decision_transformer/online_dt.py +178 -0
  35. sota-implementations/decision_transformer/utils.py +562 -0
  36. sota-implementations/discrete_sac/discrete_sac.py +243 -0
  37. sota-implementations/discrete_sac/utils.py +324 -0
  38. sota-implementations/dqn/README.md +30 -0
  39. sota-implementations/dqn/dqn_atari.py +272 -0
  40. sota-implementations/dqn/dqn_cartpole.py +236 -0
  41. sota-implementations/dqn/utils_atari.py +132 -0
  42. sota-implementations/dqn/utils_cartpole.py +90 -0
  43. sota-implementations/dreamer/README.md +129 -0
  44. sota-implementations/dreamer/dreamer.py +586 -0
  45. sota-implementations/dreamer/dreamer_utils.py +1107 -0
  46. sota-implementations/expert-iteration/README.md +352 -0
  47. sota-implementations/expert-iteration/ei_utils.py +770 -0
  48. sota-implementations/expert-iteration/expert-iteration-async.py +512 -0
  49. sota-implementations/expert-iteration/expert-iteration-sync.py +508 -0
  50. sota-implementations/expert-iteration/requirements_gsm8k.txt +13 -0
  51. sota-implementations/expert-iteration/requirements_ifeval.txt +16 -0
  52. sota-implementations/gail/gail.py +327 -0
  53. sota-implementations/gail/gail_utils.py +68 -0
  54. sota-implementations/gail/ppo_utils.py +157 -0
  55. sota-implementations/grpo/README.md +273 -0
  56. sota-implementations/grpo/grpo-async.py +437 -0
  57. sota-implementations/grpo/grpo-sync.py +435 -0
  58. sota-implementations/grpo/grpo_utils.py +843 -0
  59. sota-implementations/grpo/requirements_gsm8k.txt +11 -0
  60. sota-implementations/grpo/requirements_ifeval.txt +16 -0
  61. sota-implementations/impala/README.md +33 -0
  62. sota-implementations/impala/impala_multi_node_ray.py +292 -0
  63. sota-implementations/impala/impala_multi_node_submitit.py +284 -0
  64. sota-implementations/impala/impala_single_node.py +261 -0
  65. sota-implementations/impala/utils.py +184 -0
  66. sota-implementations/iql/discrete_iql.py +230 -0
  67. sota-implementations/iql/iql_offline.py +164 -0
  68. sota-implementations/iql/iql_online.py +225 -0
  69. sota-implementations/iql/utils.py +437 -0
  70. sota-implementations/multiagent/README.md +74 -0
  71. sota-implementations/multiagent/iql.py +237 -0
  72. sota-implementations/multiagent/maddpg_iddpg.py +266 -0
  73. sota-implementations/multiagent/mappo_ippo.py +267 -0
  74. sota-implementations/multiagent/qmix_vdn.py +271 -0
  75. sota-implementations/multiagent/sac.py +337 -0
  76. sota-implementations/multiagent/utils/__init__.py +4 -0
  77. sota-implementations/multiagent/utils/logging.py +151 -0
  78. sota-implementations/multiagent/utils/utils.py +43 -0
  79. sota-implementations/ppo/README.md +29 -0
  80. sota-implementations/ppo/ppo_atari.py +305 -0
  81. sota-implementations/ppo/ppo_mujoco.py +293 -0
  82. sota-implementations/ppo/utils_atari.py +238 -0
  83. sota-implementations/ppo/utils_mujoco.py +152 -0
  84. sota-implementations/ppo_trainer/train.py +21 -0
  85. sota-implementations/redq/README.md +7 -0
  86. sota-implementations/redq/redq.py +199 -0
  87. sota-implementations/redq/utils.py +1060 -0
  88. sota-implementations/sac/sac-async.py +266 -0
  89. sota-implementations/sac/sac.py +239 -0
  90. sota-implementations/sac/utils.py +381 -0
  91. sota-implementations/sac_trainer/train.py +16 -0
  92. sota-implementations/td3/td3.py +254 -0
  93. sota-implementations/td3/utils.py +319 -0
  94. sota-implementations/td3_bc/td3_bc.py +177 -0
  95. sota-implementations/td3_bc/utils.py +251 -0
  96. torchrl/.dylibs/libc++.1.0.dylib +0 -0
  97. torchrl/__init__.py +144 -0
  98. torchrl/_extension.py +74 -0
  99. torchrl/_torchrl.cpython-314-darwin.so +0 -0
  100. torchrl/_utils.py +1431 -0
  101. torchrl/collectors/__init__.py +48 -0
  102. torchrl/collectors/_base.py +1058 -0
  103. torchrl/collectors/_constants.py +88 -0
  104. torchrl/collectors/_multi_async.py +324 -0
  105. torchrl/collectors/_multi_base.py +1805 -0
  106. torchrl/collectors/_multi_sync.py +464 -0
  107. torchrl/collectors/_runner.py +581 -0
  108. torchrl/collectors/_single.py +2009 -0
  109. torchrl/collectors/_single_async.py +259 -0
  110. torchrl/collectors/collectors.py +62 -0
  111. torchrl/collectors/distributed/__init__.py +32 -0
  112. torchrl/collectors/distributed/default_configs.py +133 -0
  113. torchrl/collectors/distributed/generic.py +1306 -0
  114. torchrl/collectors/distributed/ray.py +1092 -0
  115. torchrl/collectors/distributed/rpc.py +1006 -0
  116. torchrl/collectors/distributed/sync.py +731 -0
  117. torchrl/collectors/distributed/utils.py +160 -0
  118. torchrl/collectors/llm/__init__.py +10 -0
  119. torchrl/collectors/llm/base.py +494 -0
  120. torchrl/collectors/llm/ray_collector.py +275 -0
  121. torchrl/collectors/llm/utils.py +36 -0
  122. torchrl/collectors/llm/weight_update/__init__.py +10 -0
  123. torchrl/collectors/llm/weight_update/vllm.py +348 -0
  124. torchrl/collectors/llm/weight_update/vllm_v2.py +311 -0
  125. torchrl/collectors/utils.py +433 -0
  126. torchrl/collectors/weight_update.py +591 -0
  127. torchrl/csrc/numpy_utils.h +38 -0
  128. torchrl/csrc/pybind.cpp +27 -0
  129. torchrl/csrc/segment_tree.h +458 -0
  130. torchrl/csrc/torch_utils.h +34 -0
  131. torchrl/csrc/utils.cpp +48 -0
  132. torchrl/csrc/utils.h +31 -0
  133. torchrl/data/__init__.py +187 -0
  134. torchrl/data/datasets/__init__.py +58 -0
  135. torchrl/data/datasets/atari_dqn.py +878 -0
  136. torchrl/data/datasets/common.py +281 -0
  137. torchrl/data/datasets/d4rl.py +489 -0
  138. torchrl/data/datasets/d4rl_infos.py +187 -0
  139. torchrl/data/datasets/gen_dgrl.py +375 -0
  140. torchrl/data/datasets/minari_data.py +643 -0
  141. torchrl/data/datasets/openml.py +177 -0
  142. torchrl/data/datasets/openx.py +798 -0
  143. torchrl/data/datasets/roboset.py +363 -0
  144. torchrl/data/datasets/utils.py +11 -0
  145. torchrl/data/datasets/vd4rl.py +432 -0
  146. torchrl/data/llm/__init__.py +34 -0
  147. torchrl/data/llm/dataset.py +491 -0
  148. torchrl/data/llm/history.py +1378 -0
  149. torchrl/data/llm/prompt.py +198 -0
  150. torchrl/data/llm/reward.py +225 -0
  151. torchrl/data/llm/topk.py +186 -0
  152. torchrl/data/llm/utils.py +543 -0
  153. torchrl/data/map/__init__.py +21 -0
  154. torchrl/data/map/hash.py +185 -0
  155. torchrl/data/map/query.py +204 -0
  156. torchrl/data/map/tdstorage.py +363 -0
  157. torchrl/data/map/tree.py +1434 -0
  158. torchrl/data/map/utils.py +103 -0
  159. torchrl/data/postprocs/__init__.py +8 -0
  160. torchrl/data/postprocs/postprocs.py +391 -0
  161. torchrl/data/replay_buffers/__init__.py +99 -0
  162. torchrl/data/replay_buffers/checkpointers.py +622 -0
  163. torchrl/data/replay_buffers/ray_buffer.py +292 -0
  164. torchrl/data/replay_buffers/replay_buffers.py +2376 -0
  165. torchrl/data/replay_buffers/samplers.py +2578 -0
  166. torchrl/data/replay_buffers/scheduler.py +265 -0
  167. torchrl/data/replay_buffers/storages.py +2412 -0
  168. torchrl/data/replay_buffers/utils.py +1042 -0
  169. torchrl/data/replay_buffers/writers.py +781 -0
  170. torchrl/data/tensor_specs.py +7101 -0
  171. torchrl/data/utils.py +334 -0
  172. torchrl/envs/__init__.py +265 -0
  173. torchrl/envs/async_envs.py +1105 -0
  174. torchrl/envs/batched_envs.py +3093 -0
  175. torchrl/envs/common.py +4241 -0
  176. torchrl/envs/custom/__init__.py +11 -0
  177. torchrl/envs/custom/chess.py +617 -0
  178. torchrl/envs/custom/llm.py +214 -0
  179. torchrl/envs/custom/pendulum.py +401 -0
  180. torchrl/envs/custom/san_moves.txt +29274 -0
  181. torchrl/envs/custom/tictactoeenv.py +288 -0
  182. torchrl/envs/env_creator.py +263 -0
  183. torchrl/envs/gym_like.py +752 -0
  184. torchrl/envs/libs/__init__.py +68 -0
  185. torchrl/envs/libs/_gym_utils.py +326 -0
  186. torchrl/envs/libs/brax.py +846 -0
  187. torchrl/envs/libs/dm_control.py +544 -0
  188. torchrl/envs/libs/envpool.py +447 -0
  189. torchrl/envs/libs/gym.py +2239 -0
  190. torchrl/envs/libs/habitat.py +138 -0
  191. torchrl/envs/libs/isaac_lab.py +87 -0
  192. torchrl/envs/libs/isaacgym.py +203 -0
  193. torchrl/envs/libs/jax_utils.py +166 -0
  194. torchrl/envs/libs/jumanji.py +963 -0
  195. torchrl/envs/libs/meltingpot.py +599 -0
  196. torchrl/envs/libs/openml.py +153 -0
  197. torchrl/envs/libs/openspiel.py +652 -0
  198. torchrl/envs/libs/pettingzoo.py +1042 -0
  199. torchrl/envs/libs/procgen.py +351 -0
  200. torchrl/envs/libs/robohive.py +429 -0
  201. torchrl/envs/libs/smacv2.py +645 -0
  202. torchrl/envs/libs/unity_mlagents.py +891 -0
  203. torchrl/envs/libs/utils.py +147 -0
  204. torchrl/envs/libs/vmas.py +813 -0
  205. torchrl/envs/llm/__init__.py +63 -0
  206. torchrl/envs/llm/chat.py +730 -0
  207. torchrl/envs/llm/datasets/README.md +4 -0
  208. torchrl/envs/llm/datasets/__init__.py +17 -0
  209. torchrl/envs/llm/datasets/gsm8k.py +353 -0
  210. torchrl/envs/llm/datasets/ifeval.py +274 -0
  211. torchrl/envs/llm/envs.py +789 -0
  212. torchrl/envs/llm/libs/README.md +3 -0
  213. torchrl/envs/llm/libs/__init__.py +8 -0
  214. torchrl/envs/llm/libs/mlgym.py +869 -0
  215. torchrl/envs/llm/reward/__init__.py +10 -0
  216. torchrl/envs/llm/reward/gsm8k.py +324 -0
  217. torchrl/envs/llm/reward/ifeval/README.md +13 -0
  218. torchrl/envs/llm/reward/ifeval/__init__.py +10 -0
  219. torchrl/envs/llm/reward/ifeval/_instructions.py +1667 -0
  220. torchrl/envs/llm/reward/ifeval/_instructions_main.py +131 -0
  221. torchrl/envs/llm/reward/ifeval/_instructions_registry.py +100 -0
  222. torchrl/envs/llm/reward/ifeval/_instructions_util.py +1677 -0
  223. torchrl/envs/llm/reward/ifeval/_scorer.py +454 -0
  224. torchrl/envs/llm/transforms/__init__.py +55 -0
  225. torchrl/envs/llm/transforms/browser.py +292 -0
  226. torchrl/envs/llm/transforms/dataloading.py +859 -0
  227. torchrl/envs/llm/transforms/format.py +73 -0
  228. torchrl/envs/llm/transforms/kl.py +1544 -0
  229. torchrl/envs/llm/transforms/policy_version.py +189 -0
  230. torchrl/envs/llm/transforms/reason.py +323 -0
  231. torchrl/envs/llm/transforms/tokenizer.py +321 -0
  232. torchrl/envs/llm/transforms/tools.py +1955 -0
  233. torchrl/envs/model_based/__init__.py +9 -0
  234. torchrl/envs/model_based/common.py +180 -0
  235. torchrl/envs/model_based/dreamer.py +112 -0
  236. torchrl/envs/transforms/__init__.py +147 -0
  237. torchrl/envs/transforms/functional.py +48 -0
  238. torchrl/envs/transforms/gym_transforms.py +203 -0
  239. torchrl/envs/transforms/module.py +341 -0
  240. torchrl/envs/transforms/r3m.py +372 -0
  241. torchrl/envs/transforms/ray_service.py +663 -0
  242. torchrl/envs/transforms/rb_transforms.py +214 -0
  243. torchrl/envs/transforms/transforms.py +11835 -0
  244. torchrl/envs/transforms/utils.py +94 -0
  245. torchrl/envs/transforms/vc1.py +307 -0
  246. torchrl/envs/transforms/vecnorm.py +845 -0
  247. torchrl/envs/transforms/vip.py +407 -0
  248. torchrl/envs/utils.py +1718 -0
  249. torchrl/envs/vec_envs.py +11 -0
  250. torchrl/modules/__init__.py +206 -0
  251. torchrl/modules/distributions/__init__.py +73 -0
  252. torchrl/modules/distributions/continuous.py +830 -0
  253. torchrl/modules/distributions/discrete.py +908 -0
  254. torchrl/modules/distributions/truncated_normal.py +187 -0
  255. torchrl/modules/distributions/utils.py +233 -0
  256. torchrl/modules/llm/__init__.py +62 -0
  257. torchrl/modules/llm/backends/__init__.py +65 -0
  258. torchrl/modules/llm/backends/vllm/__init__.py +94 -0
  259. torchrl/modules/llm/backends/vllm/_models.py +46 -0
  260. torchrl/modules/llm/backends/vllm/base.py +72 -0
  261. torchrl/modules/llm/backends/vllm/vllm_async.py +2075 -0
  262. torchrl/modules/llm/backends/vllm/vllm_plugin.py +22 -0
  263. torchrl/modules/llm/backends/vllm/vllm_sync.py +446 -0
  264. torchrl/modules/llm/backends/vllm/vllm_utils.py +129 -0
  265. torchrl/modules/llm/policies/__init__.py +28 -0
  266. torchrl/modules/llm/policies/common.py +1809 -0
  267. torchrl/modules/llm/policies/transformers_wrapper.py +2756 -0
  268. torchrl/modules/llm/policies/vllm_wrapper.py +2241 -0
  269. torchrl/modules/llm/utils.py +23 -0
  270. torchrl/modules/mcts/__init__.py +21 -0
  271. torchrl/modules/mcts/scores.py +579 -0
  272. torchrl/modules/models/__init__.py +86 -0
  273. torchrl/modules/models/batchrenorm.py +119 -0
  274. torchrl/modules/models/decision_transformer.py +179 -0
  275. torchrl/modules/models/exploration.py +731 -0
  276. torchrl/modules/models/llm.py +156 -0
  277. torchrl/modules/models/model_based.py +596 -0
  278. torchrl/modules/models/models.py +1712 -0
  279. torchrl/modules/models/multiagent.py +1067 -0
  280. torchrl/modules/models/recipes/impala.py +185 -0
  281. torchrl/modules/models/utils.py +162 -0
  282. torchrl/modules/planners/__init__.py +10 -0
  283. torchrl/modules/planners/cem.py +228 -0
  284. torchrl/modules/planners/common.py +73 -0
  285. torchrl/modules/planners/mppi.py +265 -0
  286. torchrl/modules/tensordict_module/__init__.py +89 -0
  287. torchrl/modules/tensordict_module/actors.py +2457 -0
  288. torchrl/modules/tensordict_module/common.py +529 -0
  289. torchrl/modules/tensordict_module/exploration.py +814 -0
  290. torchrl/modules/tensordict_module/probabilistic.py +321 -0
  291. torchrl/modules/tensordict_module/rnn.py +1639 -0
  292. torchrl/modules/tensordict_module/sequence.py +132 -0
  293. torchrl/modules/tensordict_module/world_models.py +34 -0
  294. torchrl/modules/utils/__init__.py +38 -0
  295. torchrl/modules/utils/mappings.py +9 -0
  296. torchrl/modules/utils/utils.py +89 -0
  297. torchrl/objectives/__init__.py +78 -0
  298. torchrl/objectives/a2c.py +659 -0
  299. torchrl/objectives/common.py +753 -0
  300. torchrl/objectives/cql.py +1346 -0
  301. torchrl/objectives/crossq.py +710 -0
  302. torchrl/objectives/ddpg.py +453 -0
  303. torchrl/objectives/decision_transformer.py +371 -0
  304. torchrl/objectives/deprecated.py +516 -0
  305. torchrl/objectives/dqn.py +683 -0
  306. torchrl/objectives/dreamer.py +488 -0
  307. torchrl/objectives/functional.py +48 -0
  308. torchrl/objectives/gail.py +258 -0
  309. torchrl/objectives/iql.py +996 -0
  310. torchrl/objectives/llm/__init__.py +30 -0
  311. torchrl/objectives/llm/grpo.py +846 -0
  312. torchrl/objectives/llm/sft.py +482 -0
  313. torchrl/objectives/multiagent/__init__.py +8 -0
  314. torchrl/objectives/multiagent/qmixer.py +396 -0
  315. torchrl/objectives/ppo.py +1669 -0
  316. torchrl/objectives/redq.py +683 -0
  317. torchrl/objectives/reinforce.py +530 -0
  318. torchrl/objectives/sac.py +1580 -0
  319. torchrl/objectives/td3.py +570 -0
  320. torchrl/objectives/td3_bc.py +625 -0
  321. torchrl/objectives/utils.py +782 -0
  322. torchrl/objectives/value/__init__.py +28 -0
  323. torchrl/objectives/value/advantages.py +1956 -0
  324. torchrl/objectives/value/functional.py +1459 -0
  325. torchrl/objectives/value/utils.py +360 -0
  326. torchrl/record/__init__.py +17 -0
  327. torchrl/record/loggers/__init__.py +23 -0
  328. torchrl/record/loggers/common.py +48 -0
  329. torchrl/record/loggers/csv.py +226 -0
  330. torchrl/record/loggers/mlflow.py +142 -0
  331. torchrl/record/loggers/tensorboard.py +139 -0
  332. torchrl/record/loggers/trackio.py +163 -0
  333. torchrl/record/loggers/utils.py +78 -0
  334. torchrl/record/loggers/wandb.py +214 -0
  335. torchrl/record/recorder.py +554 -0
  336. torchrl/services/__init__.py +79 -0
  337. torchrl/services/base.py +109 -0
  338. torchrl/services/ray_service.py +453 -0
  339. torchrl/testing/__init__.py +107 -0
  340. torchrl/testing/assertions.py +179 -0
  341. torchrl/testing/dist_utils.py +122 -0
  342. torchrl/testing/env_creators.py +227 -0
  343. torchrl/testing/env_helper.py +35 -0
  344. torchrl/testing/gym_helpers.py +156 -0
  345. torchrl/testing/llm_mocks.py +119 -0
  346. torchrl/testing/mocking_classes.py +2720 -0
  347. torchrl/testing/modules.py +295 -0
  348. torchrl/testing/mp_helpers.py +15 -0
  349. torchrl/testing/ray_helpers.py +293 -0
  350. torchrl/testing/utils.py +190 -0
  351. torchrl/trainers/__init__.py +42 -0
  352. torchrl/trainers/algorithms/__init__.py +11 -0
  353. torchrl/trainers/algorithms/configs/__init__.py +705 -0
  354. torchrl/trainers/algorithms/configs/collectors.py +216 -0
  355. torchrl/trainers/algorithms/configs/common.py +41 -0
  356. torchrl/trainers/algorithms/configs/data.py +308 -0
  357. torchrl/trainers/algorithms/configs/envs.py +104 -0
  358. torchrl/trainers/algorithms/configs/envs_libs.py +361 -0
  359. torchrl/trainers/algorithms/configs/logging.py +80 -0
  360. torchrl/trainers/algorithms/configs/modules.py +570 -0
  361. torchrl/trainers/algorithms/configs/objectives.py +177 -0
  362. torchrl/trainers/algorithms/configs/trainers.py +340 -0
  363. torchrl/trainers/algorithms/configs/transforms.py +955 -0
  364. torchrl/trainers/algorithms/configs/utils.py +252 -0
  365. torchrl/trainers/algorithms/configs/weight_sync_schemes.py +191 -0
  366. torchrl/trainers/algorithms/configs/weight_update.py +159 -0
  367. torchrl/trainers/algorithms/ppo.py +373 -0
  368. torchrl/trainers/algorithms/sac.py +308 -0
  369. torchrl/trainers/helpers/__init__.py +40 -0
  370. torchrl/trainers/helpers/collectors.py +416 -0
  371. torchrl/trainers/helpers/envs.py +573 -0
  372. torchrl/trainers/helpers/logger.py +33 -0
  373. torchrl/trainers/helpers/losses.py +132 -0
  374. torchrl/trainers/helpers/models.py +658 -0
  375. torchrl/trainers/helpers/replay_buffer.py +59 -0
  376. torchrl/trainers/helpers/trainers.py +301 -0
  377. torchrl/trainers/trainers.py +2052 -0
  378. torchrl/weight_update/__init__.py +33 -0
  379. torchrl/weight_update/_distributed.py +749 -0
  380. torchrl/weight_update/_mp.py +624 -0
  381. torchrl/weight_update/_noupdate.py +102 -0
  382. torchrl/weight_update/_ray.py +1032 -0
  383. torchrl/weight_update/_rpc.py +284 -0
  384. torchrl/weight_update/_shared.py +891 -0
  385. torchrl/weight_update/llm/__init__.py +32 -0
  386. torchrl/weight_update/llm/vllm_double_buffer.py +370 -0
  387. torchrl/weight_update/llm/vllm_nccl.py +710 -0
  388. torchrl/weight_update/utils.py +73 -0
  389. torchrl/weight_update/weight_sync_schemes.py +1244 -0
  390. torchrl-0.11.0.dist-info/METADATA +1308 -0
  391. torchrl-0.11.0.dist-info/RECORD +395 -0
  392. torchrl-0.11.0.dist-info/WHEEL +5 -0
  393. torchrl-0.11.0.dist-info/entry_points.txt +2 -0
  394. torchrl-0.11.0.dist-info/licenses/LICENSE +21 -0
  395. torchrl-0.11.0.dist-info/top_level.txt +7 -0
@@ -0,0 +1,433 @@
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ #
3
+ # This source code is licensed under the MIT license found in the
4
+ # LICENSE file in the root directory of this source tree.
5
+ from __future__ import annotations
6
+
7
+ import contextlib
8
+ from collections.abc import Callable, Sequence
9
+
10
+ import torch
11
+ from pyvers import implement_for
12
+
13
+ from tensordict import NestedKey, pad, set_lazy_legacy, TensorDict, TensorDictBase
14
+ from tensordict.utils import Buffer
15
+ from torch import multiprocessing as mp, nn as nn
16
+ from torch.nn import Parameter
17
+
18
+ _NON_NN_POLICY_WEIGHTS = (
19
+ "The policy is not an nn.Module. TorchRL will assume that the parameter set is empty and "
20
+ "update_policy_weights_ will be a no-op. Consider passing a local/weight_updater object "
21
+ "to your collector to handle the weight updates."
22
+ )
23
+
24
+
25
+ def _stack_output(fun) -> Callable:
26
+ def stacked_output_fun(*args, **kwargs):
27
+ out = fun(*args, **kwargs)
28
+ return tuple(torch.stack(_o, 0) for _o in out)
29
+
30
+ return stacked_output_fun
31
+
32
+
33
+ def _stack_output_zip(fun) -> Callable:
34
+ def stacked_output_fun(*args, **kwargs):
35
+ out = fun(*args, **kwargs)
36
+ return tuple(torch.stack(_o, 0) for _o in zip(*out))
37
+
38
+ return stacked_output_fun
39
+
40
+
41
+ @set_lazy_legacy(False)
42
+ def split_trajectories(
43
+ rollout_tensordict: TensorDictBase,
44
+ *,
45
+ prefix=None,
46
+ trajectory_key: NestedKey | None = None,
47
+ done_key: NestedKey | None = None,
48
+ as_nested: bool = False,
49
+ ) -> TensorDictBase:
50
+ """A util function for trajectory separation.
51
+
52
+ Takes a tensordict with a key traj_ids that indicates the id of each trajectory.
53
+
54
+ From there, builds a B x T x ... zero-padded tensordict with B batches on max duration T
55
+
56
+ Args:
57
+ rollout_tensordict (TensorDictBase): a rollout with adjacent trajectories
58
+ along the last dimension.
59
+
60
+ Keyword Args:
61
+ prefix (NestedKey, optional): the prefix used to read and write meta-data,
62
+ such as ``"traj_ids"`` (the optional integer id of each trajectory)
63
+ and the ``"mask"`` entry indicating which data are valid and which
64
+ aren't. Defaults to ``"collector"`` if the input has a ``"collector"``
65
+ entry, ``()`` (no prefix) otherwise.
66
+ ``prefix`` is kept as a legacy feature and will be deprecated eventually.
67
+ Prefer ``trajectory_key`` or ``done_key`` whenever possible.
68
+ trajectory_key (NestedKey, optional): the key pointing to the trajectory
69
+ ids. Supersedes ``done_key`` and ``prefix``. If not provided, defaults
70
+ to ``(prefix, "traj_ids")``.
71
+ done_key (NestedKey, optional): the key pointing to the ``"done""`` signal,
72
+ if the trajectory could not be directly recovered. Defaults to ``"done"``.
73
+ as_nested (bool or torch.layout, optional): whether to return the results as nested
74
+ tensors. Defaults to ``False``. If a ``torch.layout`` is provided, it will be used
75
+ to construct the nested tensor, otherwise the default layout will be used.
76
+
77
+ .. note:: Using ``split_trajectories(tensordict, as_nested=True).to_padded_tensor(mask=mask_key)``
78
+ should result in the exact same result as ``as_nested=False``. Since this is an experimental
79
+ feature and relies on nested_tensors, which API may change in the future, we made this
80
+ an optional feature. The runtime should be faster with ``as_nested=True``.
81
+
82
+ .. note:: Providing a layout lets the user control whether the nested tensor is to be used
83
+ with ``torch.strided`` or ``torch.jagged`` layout. While the former has slightly more
84
+ capabilities at the time of writing, the second will be the main focus of the PyTorch team
85
+ in the future due to its better compatibility with :func:`~torch.compile`.
86
+
87
+ Returns:
88
+ A new tensordict with a leading dimension corresponding to the trajectory.
89
+ A ``"mask"`` boolean entry sharing the ``trajectory_key`` prefix
90
+ and the tensordict shape is also added. It indicated the valid elements of the tensordict,
91
+ as well as a ``"traj_ids"`` entry if ``trajectory_key`` could not be found.
92
+
93
+ Examples:
94
+ >>> from tensordict import TensorDict
95
+ >>> import torch
96
+ >>> from torchrl.collectors.utils import split_trajectories
97
+ >>> obs = torch.cat([torch.arange(10), torch.arange(5)])
98
+ >>> obs_ = torch.cat([torch.arange(1, 11), torch.arange(1, 6)])
99
+ >>> done = torch.zeros(15, dtype=torch.bool)
100
+ >>> done[9] = True
101
+ >>> trajectory_id = torch.cat([torch.zeros(10, dtype=torch.int32),
102
+ ... torch.ones(5, dtype=torch.int32)])
103
+ >>> data = TensorDict({"obs": obs, ("next", "obs"): obs_, ("next", "done"): done, "trajectory": trajectory_id}, batch_size=[15])
104
+ >>> data_split = split_trajectories(data, done_key="done")
105
+ >>> print(data_split)
106
+ TensorDict(
107
+ fields={
108
+ mask: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.bool, is_shared=False),
109
+ next: TensorDict(
110
+ fields={
111
+ done: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.bool, is_shared=False),
112
+ obs: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.int64, is_shared=False)},
113
+ batch_size=torch.Size([2, 10]),
114
+ device=None,
115
+ is_shared=False),
116
+ obs: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.int64, is_shared=False),
117
+ traj_ids: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.int64, is_shared=False),
118
+ trajectory: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.int32, is_shared=False)},
119
+ batch_size=torch.Size([2, 10]),
120
+ device=None,
121
+ is_shared=False)
122
+ >>> # check that split_trajectories got the trajectories right with the done signal
123
+ >>> assert (data_split["traj_ids"] == data_split["trajectory"]).all()
124
+ >>> print(data_split["mask"])
125
+ tensor([[ True, True, True, True, True, True, True, True, True, True],
126
+ [ True, True, True, True, True, False, False, False, False, False]])
127
+ >>> data_split = split_trajectories(data, trajectory_key="trajectory")
128
+ >>> print(data_split)
129
+ TensorDict(
130
+ fields={
131
+ mask: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.bool, is_shared=False),
132
+ next: TensorDict(
133
+ fields={
134
+ done: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.bool, is_shared=False),
135
+ obs: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.int64, is_shared=False)},
136
+ batch_size=torch.Size([2, 10]),
137
+ device=None,
138
+ is_shared=False),
139
+ obs: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.int64, is_shared=False),
140
+ trajectory: Tensor(shape=torch.Size([2, 10]), device=cpu, dtype=torch.int32, is_shared=False)},
141
+ batch_size=torch.Size([2, 10]),
142
+ device=None,
143
+ is_shared=False)
144
+
145
+ """
146
+ mask_key = None
147
+ if trajectory_key is not None:
148
+ from torchrl.envs.utils import _replace_last
149
+
150
+ traj_ids_key = trajectory_key
151
+ mask_key = _replace_last(trajectory_key, "mask")
152
+ else:
153
+ if prefix is None and "collector" in rollout_tensordict.keys():
154
+ prefix = "collector"
155
+ if prefix is None:
156
+ traj_ids_key = "traj_ids"
157
+ mask_key = "mask"
158
+ else:
159
+ traj_ids_key = (prefix, "traj_ids")
160
+ mask_key = (prefix, "mask")
161
+
162
+ rollout_tensordict = rollout_tensordict.copy()
163
+ traj_ids = rollout_tensordict.get(traj_ids_key, None)
164
+ if traj_ids is None:
165
+ if done_key is None:
166
+ done_key = "done"
167
+ done_key = ("next", done_key)
168
+ done = rollout_tensordict.get(done_key)
169
+ idx = (slice(None),) * (rollout_tensordict.ndim - 1) + (slice(None, -1),)
170
+ done_sel = done[idx]
171
+ pads = [1, 0]
172
+ pads = [0, 0] * (done.ndim - rollout_tensordict.ndim) + pads
173
+ done_sel = torch.nn.functional.pad(done_sel, pads)
174
+ if done_sel.shape != done.shape:
175
+ raise RuntimeError(
176
+ f"done and done_sel have different shape {done.shape} - {done_sel.shape} "
177
+ )
178
+ traj_ids = done_sel.cumsum(rollout_tensordict.ndim - 1)
179
+ traj_ids = traj_ids.squeeze(-1)
180
+ if rollout_tensordict.ndim > 1:
181
+ for i in range(1, rollout_tensordict.shape[0]):
182
+ traj_ids[i] += traj_ids[i - 1].max() + 1
183
+ rollout_tensordict.set(traj_ids_key, traj_ids)
184
+
185
+ splits = traj_ids.reshape(-1)
186
+ splits = [(splits == i).sum().item() for i in splits.unique_consecutive()]
187
+ # if all splits are identical then we can skip this function
188
+ if len(set(splits)) == 1 and splits[0] == traj_ids.shape[-1]:
189
+ rollout_tensordict.set(
190
+ mask_key,
191
+ torch.ones(
192
+ rollout_tensordict.shape,
193
+ device=rollout_tensordict.device,
194
+ dtype=torch.bool,
195
+ ),
196
+ )
197
+ if rollout_tensordict.ndimension() == 1:
198
+ rollout_tensordict = rollout_tensordict.unsqueeze(0)
199
+ return rollout_tensordict
200
+
201
+ out_splits = rollout_tensordict.reshape(-1)
202
+
203
+ if as_nested:
204
+ if hasattr(torch, "_nested_compute_contiguous_strides_offsets"):
205
+
206
+ def nest(x, splits=splits):
207
+ # Convert splits into shapes
208
+ shape = torch.tensor([[int(split), *x.shape[1:]] for split in splits])
209
+ return torch._nested_view_from_buffer(
210
+ x.reshape(-1),
211
+ shape,
212
+ *torch._nested_compute_contiguous_strides_offsets(shape),
213
+ )
214
+
215
+ return out_splits._fast_apply(
216
+ nest,
217
+ batch_size=[len(splits), -1],
218
+ )
219
+ else:
220
+ out_splits = out_splits.split(splits, 0)
221
+
222
+ layout = as_nested if as_nested is not bool else None
223
+
224
+ if torch.__version__ < "2.4":
225
+ # Layout must be True, there is no other layout available
226
+ if layout not in (True,):
227
+ raise RuntimeError(
228
+ f"layout={layout} is only available for torch>=v2.4"
229
+ )
230
+
231
+ def nest(*x):
232
+ return torch.nested.nested_tensor(list(x))
233
+
234
+ else:
235
+
236
+ def nest(*x):
237
+ return torch.nested.nested_tensor(list(x), layout=layout)
238
+
239
+ return out_splits[0]._fast_apply(
240
+ nest,
241
+ *out_splits[1:],
242
+ batch_size=[len(out_splits), *out_splits[0].batch_size[:-1], -1],
243
+ )
244
+
245
+ out_splits = out_splits.split(splits, 0)
246
+
247
+ for out_split in out_splits:
248
+ out_split.set(
249
+ mask_key,
250
+ torch.ones(
251
+ out_split.shape,
252
+ dtype=torch.bool,
253
+ device=out_split.device,
254
+ ),
255
+ )
256
+ if len(out_splits) > 1:
257
+ MAX = max(*[out_split.shape[0] for out_split in out_splits])
258
+ else:
259
+ MAX = out_splits[0].shape[0]
260
+ td = torch.stack(
261
+ [pad(out_split, [0, MAX - out_split.shape[0]]) for out_split in out_splits], 0
262
+ )
263
+ return td
264
+
265
+
266
+ @implement_for("torch", "2.5.0")
267
+ def _cast(
268
+ p: nn.Parameter | torch.Tensor,
269
+ param_maybe_buffer: nn.Parameter | torch.Tensor | None = None,
270
+ ) -> nn.Parameter | torch.Tensor:
271
+ if param_maybe_buffer is None:
272
+ param_maybe_buffer = p
273
+ p = p.data
274
+ if isinstance(param_maybe_buffer, Parameter):
275
+ # Create parameter without gradients to avoid serialization issues
276
+ return Parameter(p, requires_grad=False)
277
+ if isinstance(param_maybe_buffer, Buffer):
278
+ return Buffer(p)
279
+ if p.requires_grad:
280
+ raise RuntimeError(f"Cannot cast tensor {p} with gradients")
281
+ return p
282
+
283
+
284
+ def _make_meta_policy(policy: nn.Module):
285
+ """Create context manager that temporarily puts policy parameters on meta device.
286
+
287
+ This is used with weight sync schemes to send policy structure without weights.
288
+ The actual weights are distributed by the schemes.
289
+
290
+ Args:
291
+ policy: Policy module to temporarily modify.
292
+
293
+ Returns:
294
+ A context manager that temporarily replaces policy parameters with meta device versions.
295
+ On exit, the original parameters are restored to the policy.
296
+ """
297
+ param_and_buf = TensorDict.from_module(policy, as_module=True)
298
+ return param_and_buf.data.to("meta").apply(_cast, param_and_buf).to_module(policy)
299
+
300
+
301
+ @implement_for("torch", None, "2.8")
302
+ def _make_meta_policy_cm(
303
+ policy: nn.Module, *, mp_start_method: str
304
+ ) -> contextlib.AbstractContextManager:
305
+ """Return the context manager used to make a policy 'stateless' for worker pickling.
306
+
307
+ On older PyTorch versions (<2.8), pickling meta-device storages when using the
308
+ ``spawn`` start method may fail (e.g., triggering ``_share_filename_: only available on CPU``).
309
+ In that case, we avoid converting parameters/buffers to meta and simply return a no-op
310
+ context manager.
311
+ """
312
+ if mp_start_method == "spawn":
313
+ return contextlib.nullcontext()
314
+ return _make_meta_policy(policy)
315
+
316
+
317
+ @implement_for("torch", "2.8")
318
+ def _make_meta_policy_cm( # noqa: F811
319
+ policy: nn.Module, *, mp_start_method: str
320
+ ) -> contextlib.AbstractContextManager:
321
+ """Return the context manager used to make a policy 'stateless' for worker pickling.
322
+
323
+ On PyTorch >= 2.8, meta-device policy structures can be pickled reliably under ``spawn``.
324
+ """
325
+ return _make_meta_policy(policy)
326
+
327
+
328
+ @implement_for("torch", None, "2.5.0")
329
+ def _cast( # noqa
330
+ p: nn.Parameter | torch.Tensor,
331
+ param_maybe_buffer: nn.Parameter | torch.Tensor | None = None,
332
+ ) -> nn.Parameter | torch.Tensor:
333
+ if param_maybe_buffer is None:
334
+ param_maybe_buffer = p
335
+ p = p.data
336
+ if isinstance(param_maybe_buffer, Parameter):
337
+ # Create parameter without gradients to avoid serialization issues
338
+ return Parameter(p, requires_grad=False)
339
+ if p.requires_grad:
340
+ raise RuntimeError(f"Cannot cast tensor {p} with gradients")
341
+ return p
342
+
343
+
344
+ def _map_to_cpu_if_needed(x):
345
+ """Map tensors on exotic devices (MPS, NPU, etc.) to CPU.
346
+
347
+ CPU and CUDA tensors are kept as-is since they can be shared across processes.
348
+ Only exotic devices that don't support multiprocessing are mapped to CPU.
349
+ """
350
+ if isinstance(x, torch.Tensor):
351
+ # CPU and CUDA can be shared across processes
352
+ if x.device.type in ("cpu", "cuda"):
353
+ return x
354
+ # Exotic devices (MPS, NPU, etc.) need to be mapped to CPU
355
+ return x.cpu()
356
+ return x
357
+
358
+
359
+ def _make_meta_params(param):
360
+ is_param = isinstance(param, Parameter)
361
+
362
+ pd = param.detach().to("meta")
363
+
364
+ if is_param:
365
+ pd = Parameter(pd, requires_grad=False)
366
+ return pd
367
+
368
+
369
+ class _TrajectoryPool:
370
+ def __init__(self, ctx=None, lock: bool = False):
371
+ self.ctx = ctx
372
+ self._traj_id = torch.zeros((), device="cpu", dtype=torch.int)
373
+ # Only use shared memory when multiprocessing context is provided
374
+ # This avoids issues with shared memory when the mp subsystem is in a bad state
375
+ if ctx is not None:
376
+ self._traj_id = self._traj_id.share_memory_()
377
+ if ctx is None:
378
+ self.lock = contextlib.nullcontext() if not lock else mp.RLock()
379
+ else:
380
+ self.lock = contextlib.nullcontext() if not lock else ctx.RLock()
381
+
382
+ def get_traj_and_increment(self, n=1, device=None):
383
+ with self.lock:
384
+ v = self._traj_id.item()
385
+ out = torch.arange(v, v + n).to(device)
386
+ self._traj_id.copy_(1 + out[-1].item())
387
+ return out
388
+
389
+
390
+ def _map_weight(
391
+ weight,
392
+ policy_device,
393
+ ):
394
+
395
+ is_param = isinstance(weight, Parameter)
396
+ is_buffer = isinstance(weight, Buffer)
397
+ weight = weight.data
398
+ if weight.device != policy_device:
399
+ weight = weight.to(policy_device)
400
+ elif weight.device.type in ("cpu",):
401
+ weight = weight.share_memory_()
402
+ if is_param:
403
+ weight = Parameter(weight, requires_grad=False)
404
+ elif is_buffer:
405
+ weight = Buffer(weight)
406
+ return weight
407
+
408
+
409
+ def _make_policy_factory(
410
+ *, policy: Callable, policy_factory, weight_sync_scheme, worker_idx, pipe=None
411
+ ):
412
+ has_policy_factory = policy_factory is not None and (
413
+ (isinstance(policy_factory, Sequence) and any(policy_factory))
414
+ or not isinstance(policy_factory, Sequence)
415
+ )
416
+ if policy is not None and has_policy_factory:
417
+ raise ValueError("policy cannot be used with policy_factory")
418
+ elif has_policy_factory:
419
+ if isinstance(policy_factory, Sequence):
420
+ return policy_factory
421
+ else:
422
+ policy = policy_factory()
423
+
424
+ if weight_sync_scheme is not None:
425
+ # Initialize the receiver on the worker side
426
+ weight_sync_scheme.init_on_receiver(
427
+ model=policy,
428
+ model_id="policy",
429
+ worker_idx=worker_idx,
430
+ )
431
+ # Synchronize initial weights
432
+ weight_sync_scheme.connect(worker_idx=worker_idx)
433
+ return policy