torchaudio 2.9.1__cp311-cp311-manylinux_2_28_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- torchaudio/__init__.py +204 -0
- torchaudio/_extension/__init__.py +61 -0
- torchaudio/_extension/utils.py +133 -0
- torchaudio/_internal/__init__.py +10 -0
- torchaudio/_internal/module_utils.py +171 -0
- torchaudio/_torchcodec.py +340 -0
- torchaudio/compliance/__init__.py +5 -0
- torchaudio/compliance/kaldi.py +813 -0
- torchaudio/datasets/__init__.py +47 -0
- torchaudio/datasets/cmuarctic.py +157 -0
- torchaudio/datasets/cmudict.py +186 -0
- torchaudio/datasets/commonvoice.py +86 -0
- torchaudio/datasets/dr_vctk.py +121 -0
- torchaudio/datasets/fluentcommands.py +108 -0
- torchaudio/datasets/gtzan.py +1118 -0
- torchaudio/datasets/iemocap.py +147 -0
- torchaudio/datasets/librilight_limited.py +111 -0
- torchaudio/datasets/librimix.py +133 -0
- torchaudio/datasets/librispeech.py +174 -0
- torchaudio/datasets/librispeech_biasing.py +189 -0
- torchaudio/datasets/libritts.py +168 -0
- torchaudio/datasets/ljspeech.py +107 -0
- torchaudio/datasets/musdb_hq.py +139 -0
- torchaudio/datasets/quesst14.py +136 -0
- torchaudio/datasets/snips.py +157 -0
- torchaudio/datasets/speechcommands.py +183 -0
- torchaudio/datasets/tedlium.py +218 -0
- torchaudio/datasets/utils.py +54 -0
- torchaudio/datasets/vctk.py +143 -0
- torchaudio/datasets/voxceleb1.py +309 -0
- torchaudio/datasets/yesno.py +89 -0
- torchaudio/functional/__init__.py +130 -0
- torchaudio/functional/_alignment.py +128 -0
- torchaudio/functional/filtering.py +1685 -0
- torchaudio/functional/functional.py +2505 -0
- torchaudio/lib/__init__.py +0 -0
- torchaudio/lib/_torchaudio.so +0 -0
- torchaudio/lib/libtorchaudio.so +0 -0
- torchaudio/models/__init__.py +85 -0
- torchaudio/models/_hdemucs.py +1008 -0
- torchaudio/models/conformer.py +293 -0
- torchaudio/models/conv_tasnet.py +330 -0
- torchaudio/models/decoder/__init__.py +64 -0
- torchaudio/models/decoder/_ctc_decoder.py +568 -0
- torchaudio/models/decoder/_cuda_ctc_decoder.py +187 -0
- torchaudio/models/deepspeech.py +84 -0
- torchaudio/models/emformer.py +884 -0
- torchaudio/models/rnnt.py +816 -0
- torchaudio/models/rnnt_decoder.py +339 -0
- torchaudio/models/squim/__init__.py +11 -0
- torchaudio/models/squim/objective.py +326 -0
- torchaudio/models/squim/subjective.py +150 -0
- torchaudio/models/tacotron2.py +1046 -0
- torchaudio/models/wav2letter.py +72 -0
- torchaudio/models/wav2vec2/__init__.py +45 -0
- torchaudio/models/wav2vec2/components.py +1167 -0
- torchaudio/models/wav2vec2/model.py +1579 -0
- torchaudio/models/wav2vec2/utils/__init__.py +7 -0
- torchaudio/models/wav2vec2/utils/import_fairseq.py +213 -0
- torchaudio/models/wav2vec2/utils/import_huggingface.py +134 -0
- torchaudio/models/wav2vec2/wavlm_attention.py +214 -0
- torchaudio/models/wavernn.py +409 -0
- torchaudio/pipelines/__init__.py +102 -0
- torchaudio/pipelines/_source_separation_pipeline.py +109 -0
- torchaudio/pipelines/_squim_pipeline.py +156 -0
- torchaudio/pipelines/_tts/__init__.py +16 -0
- torchaudio/pipelines/_tts/impl.py +385 -0
- torchaudio/pipelines/_tts/interface.py +255 -0
- torchaudio/pipelines/_tts/utils.py +230 -0
- torchaudio/pipelines/_wav2vec2/__init__.py +0 -0
- torchaudio/pipelines/_wav2vec2/aligner.py +87 -0
- torchaudio/pipelines/_wav2vec2/impl.py +1699 -0
- torchaudio/pipelines/_wav2vec2/utils.py +346 -0
- torchaudio/pipelines/rnnt_pipeline.py +380 -0
- torchaudio/transforms/__init__.py +78 -0
- torchaudio/transforms/_multi_channel.py +467 -0
- torchaudio/transforms/_transforms.py +2138 -0
- torchaudio/utils/__init__.py +4 -0
- torchaudio/utils/download.py +89 -0
- torchaudio/version.py +2 -0
- torchaudio-2.9.1.dist-info/METADATA +133 -0
- torchaudio-2.9.1.dist-info/RECORD +85 -0
- torchaudio-2.9.1.dist-info/WHEEL +5 -0
- torchaudio-2.9.1.dist-info/licenses/LICENSE +25 -0
- torchaudio-2.9.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,213 @@
|
|
|
1
|
+
"""Import fariseq's wav2vec2.0 pretrained weights to torchaudios's format.
|
|
2
|
+
|
|
3
|
+
For this module to work, you need `fairseq`.
|
|
4
|
+
"""
|
|
5
|
+
import re
|
|
6
|
+
|
|
7
|
+
from torch.nn import Module
|
|
8
|
+
|
|
9
|
+
from ..model import wav2vec2_model, Wav2Vec2Model
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def _parse_config(w2v_model):
|
|
13
|
+
encoder = w2v_model.encoder
|
|
14
|
+
conv_layers = w2v_model.feature_extractor.conv_layers
|
|
15
|
+
|
|
16
|
+
extractor_mode = "layer_norm"
|
|
17
|
+
if "GroupNorm" in conv_layers[0][2].__class__.__name__:
|
|
18
|
+
extractor_mode = "group_norm"
|
|
19
|
+
else:
|
|
20
|
+
extractor_mode = "layer_norm"
|
|
21
|
+
|
|
22
|
+
conv_layer_config = [(l[0].out_channels, l[0].kernel_size[0], l[0].stride[0]) for l in conv_layers]
|
|
23
|
+
|
|
24
|
+
if all(l[0].bias is None for l in conv_layers):
|
|
25
|
+
conv_bias = False
|
|
26
|
+
elif all(l[0].bias is not None for l in conv_layers):
|
|
27
|
+
conv_bias = True
|
|
28
|
+
else:
|
|
29
|
+
raise ValueError("Either all the convolutions layers have bias term or none of them should.")
|
|
30
|
+
|
|
31
|
+
config = {
|
|
32
|
+
"extractor_mode": extractor_mode,
|
|
33
|
+
"extractor_conv_layer_config": conv_layer_config,
|
|
34
|
+
"extractor_conv_bias": conv_bias,
|
|
35
|
+
"encoder_embed_dim": w2v_model.post_extract_proj.out_features,
|
|
36
|
+
"encoder_projection_dropout": w2v_model.dropout_input.p,
|
|
37
|
+
"encoder_pos_conv_kernel": encoder.pos_conv[0].kernel_size[0],
|
|
38
|
+
"encoder_pos_conv_groups": encoder.pos_conv[0].groups,
|
|
39
|
+
"encoder_num_layers": len(encoder.layers),
|
|
40
|
+
"encoder_num_heads": encoder.layers[0].self_attn.num_heads,
|
|
41
|
+
"encoder_attention_dropout": encoder.layers[0].self_attn.dropout_module.p,
|
|
42
|
+
"encoder_ff_interm_features": encoder.layers[0].fc1.out_features,
|
|
43
|
+
"encoder_ff_interm_dropout": encoder.layers[0].dropout2.p,
|
|
44
|
+
"encoder_dropout": encoder.layers[0].dropout3.p,
|
|
45
|
+
"encoder_layer_norm_first": encoder.layer_norm_first,
|
|
46
|
+
"encoder_layer_drop": encoder.layerdrop,
|
|
47
|
+
}
|
|
48
|
+
return config
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def _map_key(key):
|
|
52
|
+
key_ = key
|
|
53
|
+
if key.startswith("w2v_model."):
|
|
54
|
+
key = key.replace("w2v_model.", "")
|
|
55
|
+
if re.match(r"(mask_emb|quantizer|project_q|final_proj|mask_emb)", key):
|
|
56
|
+
return None
|
|
57
|
+
# Feature Extractor
|
|
58
|
+
# Group norm when "extractor_mode" is "default".
|
|
59
|
+
# (Only the first layer)
|
|
60
|
+
# "conv_layers.0.2.weight" -> "conv_layers.0.layer_norm.weight"
|
|
61
|
+
# "conv_layers.0.2.bias" -> "conv_layers.0.layer_norm.bias"
|
|
62
|
+
match = re.match(r"feature_extractor\.conv_layers\.0\.2\.(weight|bias)", key)
|
|
63
|
+
if match:
|
|
64
|
+
return f"feature_extractor.conv_layers.0.layer_norm.{match.group(1)}"
|
|
65
|
+
# Convolutions
|
|
66
|
+
# "conv_layers.X.0.weight" -> "conv_layers.X.conv.weight"
|
|
67
|
+
# "conv_layers.X.0.bias" -> "conv_layers.X.conv.bias"
|
|
68
|
+
match = re.match(r"feature_extractor\.conv_layers\.(\d+)\.0\.(weight|bias)", key)
|
|
69
|
+
if match:
|
|
70
|
+
return f"feature_extractor.conv_layers.{match.group(1)}.conv.{match.group(2)}"
|
|
71
|
+
# Layer norm when "extractor_mode" is "layer_norm".
|
|
72
|
+
# "conv_layers.X.2.1.weight" -> "conv_layers.X.layer_norm.weight"
|
|
73
|
+
# "conv_layers.X.2.1.bias" -> "conv_layers.X.layer_norm.bias"
|
|
74
|
+
match = re.match(r"feature_extractor\.conv_layers\.(\d+)\.2\.1\.(weight|bias)", key)
|
|
75
|
+
if match:
|
|
76
|
+
return f"feature_extractor.conv_layers.{match.group(1)}.layer_norm.{match.group(2)}"
|
|
77
|
+
match = re.match(r"post_extract_proj\.(weight|bias)", key)
|
|
78
|
+
# Encoder - Feature projection
|
|
79
|
+
if match:
|
|
80
|
+
return f"encoder.feature_projection.projection.{match.group(1)}"
|
|
81
|
+
match = re.match(r"layer_norm\.(weight|bias)", key)
|
|
82
|
+
if match:
|
|
83
|
+
return f"encoder.feature_projection.layer_norm.{match.group(1)}"
|
|
84
|
+
# Encoder - Transformer - Convolutional positional embedding
|
|
85
|
+
match = re.match(r"encoder\.pos_conv\.0\.(bias|weight_g|weight_v)", key)
|
|
86
|
+
if match:
|
|
87
|
+
return f"encoder.transformer.pos_conv_embed.conv.{match.group(1)}"
|
|
88
|
+
match = re.match(r"encoder\.layer_norm\.(weight|bias)", key)
|
|
89
|
+
if match:
|
|
90
|
+
return f"encoder.transformer.layer_norm.{match.group(1)}"
|
|
91
|
+
# Encoder - Transformer - Self attention layers
|
|
92
|
+
match = re.match(r"encoder\.layers\.(\d+)\.self_attn\.((k_|v_|q_|out_)proj\.(weight|bias))", key)
|
|
93
|
+
if match:
|
|
94
|
+
return f"encoder.transformer.layers.{match.group(1)}.attention.{match.group(2)}"
|
|
95
|
+
match = re.match(r"encoder\.layers\.(\d+)\.self_attn_layer_norm\.(weight|bias)", key)
|
|
96
|
+
if match:
|
|
97
|
+
return f"encoder.transformer.layers.{match.group(1)}.layer_norm.{match.group(2)}"
|
|
98
|
+
match = re.match(r"encoder\.layers\.(\d+)\.fc1\.(weight|bias)", key)
|
|
99
|
+
if match:
|
|
100
|
+
return f"encoder.transformer.layers.{match.group(1)}.feed_forward.intermediate_dense.{match.group(2)}"
|
|
101
|
+
match = re.match(r"encoder\.layers\.(\d+)\.fc2\.(weight|bias)", key)
|
|
102
|
+
if match:
|
|
103
|
+
return f"encoder.transformer.layers.{match.group(1)}.feed_forward.output_dense.{match.group(2)}"
|
|
104
|
+
match = re.match(r"encoder\.layers\.(\d+)\.final_layer_norm\.(weight|bias)", key)
|
|
105
|
+
if match:
|
|
106
|
+
return f"encoder.transformer.layers.{match.group(1)}.final_layer_norm.{match.group(2)}"
|
|
107
|
+
match = re.match(r"proj\.(weight|bias)", key)
|
|
108
|
+
# Auxiliary Module
|
|
109
|
+
# Only relevant when loading fine-tuned models
|
|
110
|
+
if match:
|
|
111
|
+
return f"aux.{match.group(1)}"
|
|
112
|
+
# HuBERT Extension
|
|
113
|
+
if key in ["label_embs_concat"]:
|
|
114
|
+
return key
|
|
115
|
+
raise ValueError(f"Unexpected key: {key_}")
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
def _convert_state_dict(state_dict):
|
|
119
|
+
converted = {}
|
|
120
|
+
for k, v in state_dict.items():
|
|
121
|
+
k = _map_key(k)
|
|
122
|
+
if k is not None:
|
|
123
|
+
converted[k] = v
|
|
124
|
+
return converted
|
|
125
|
+
|
|
126
|
+
|
|
127
|
+
def import_fairseq_model(original: Module) -> Wav2Vec2Model:
|
|
128
|
+
"""Builds :class:`Wav2Vec2Model` from the corresponding model object of
|
|
129
|
+
`fairseq <https://github.com/pytorch/fairseq>`_.
|
|
130
|
+
|
|
131
|
+
Args:
|
|
132
|
+
original (torch.nn.Module):
|
|
133
|
+
An instance of fairseq's Wav2Vec2.0 or HuBERT model.
|
|
134
|
+
One of ``fairseq.models.wav2vec.wav2vec2_asr.Wav2VecEncoder``,
|
|
135
|
+
``fairseq.models.wav2vec.wav2vec2.Wav2Vec2Model`` or
|
|
136
|
+
``fairseq.models.hubert.hubert_asr.HubertEncoder``.
|
|
137
|
+
|
|
138
|
+
Returns:
|
|
139
|
+
Wav2Vec2Model: Imported model.
|
|
140
|
+
|
|
141
|
+
Example - Loading pretrain-only model
|
|
142
|
+
>>> from torchaudio.models.wav2vec2.utils import import_fairseq_model
|
|
143
|
+
>>>
|
|
144
|
+
>>> # Load model using fairseq
|
|
145
|
+
>>> model_file = 'wav2vec_small.pt'
|
|
146
|
+
>>> model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([model_file])
|
|
147
|
+
>>> original = model[0]
|
|
148
|
+
>>> imported = import_fairseq_model(original)
|
|
149
|
+
>>>
|
|
150
|
+
>>> # Perform feature extraction
|
|
151
|
+
>>> waveform, _ = torchaudio.load('audio.wav')
|
|
152
|
+
>>> features, _ = imported.extract_features(waveform)
|
|
153
|
+
>>>
|
|
154
|
+
>>> # Compare result with the original model from fairseq
|
|
155
|
+
>>> reference = original.feature_extractor(waveform).transpose(1, 2)
|
|
156
|
+
>>> torch.testing.assert_allclose(features, reference)
|
|
157
|
+
|
|
158
|
+
Example - Fine-tuned model
|
|
159
|
+
>>> from torchaudio.models.wav2vec2.utils import import_fairseq_model
|
|
160
|
+
>>>
|
|
161
|
+
>>> # Load model using fairseq
|
|
162
|
+
>>> model_file = 'wav2vec_small_960h.pt'
|
|
163
|
+
>>> model, _, _ = fairseq.checkpoint_utils.load_model_ensemble_and_task([model_file])
|
|
164
|
+
>>> original = model[0]
|
|
165
|
+
>>> imported = import_fairseq_model(original.w2v_encoder)
|
|
166
|
+
>>>
|
|
167
|
+
>>> # Perform encoding
|
|
168
|
+
>>> waveform, _ = torchaudio.load('audio.wav')
|
|
169
|
+
>>> emission, _ = imported(waveform)
|
|
170
|
+
>>>
|
|
171
|
+
>>> # Compare result with the original model from fairseq
|
|
172
|
+
>>> mask = torch.zeros_like(waveform)
|
|
173
|
+
>>> reference = original(waveform, mask)['encoder_out'].transpose(0, 1)
|
|
174
|
+
>>> torch.testing.assert_allclose(emission, reference)
|
|
175
|
+
"""
|
|
176
|
+
class_ = original.__class__.__name__
|
|
177
|
+
if class_ == "Wav2Vec2Model":
|
|
178
|
+
return _import_wav2vec2_pretraining(original)
|
|
179
|
+
if class_ == "Wav2VecEncoder":
|
|
180
|
+
return _import_wav2vec2_finetuning(original)
|
|
181
|
+
if class_ == "HubertModel":
|
|
182
|
+
return _import_hubert_pretraining(original)
|
|
183
|
+
if class_ == "HubertEncoder":
|
|
184
|
+
return _import_hubert_finetuning(original)
|
|
185
|
+
raise ValueError(f"Expected an instance of `Wav2Vec2Model` or `Wav2VecEncoder`. Found: {class_}")
|
|
186
|
+
|
|
187
|
+
|
|
188
|
+
def _import_wav2vec2_finetuning(original: Module) -> Wav2Vec2Model:
|
|
189
|
+
config = _parse_config(original.w2v_model)
|
|
190
|
+
model = wav2vec2_model(**config, aux_num_out=original.proj.out_features)
|
|
191
|
+
model.load_state_dict(_convert_state_dict(original.state_dict()))
|
|
192
|
+
return model
|
|
193
|
+
|
|
194
|
+
|
|
195
|
+
def _import_wav2vec2_pretraining(original: Module) -> Wav2Vec2Model:
|
|
196
|
+
config = _parse_config(original)
|
|
197
|
+
model = wav2vec2_model(**config, aux_num_out=None)
|
|
198
|
+
model.load_state_dict(_convert_state_dict(original.state_dict()), strict=False)
|
|
199
|
+
return model
|
|
200
|
+
|
|
201
|
+
|
|
202
|
+
def _import_hubert_finetuning(original: Module) -> Wav2Vec2Model:
|
|
203
|
+
config = _parse_config(original.w2v_model)
|
|
204
|
+
model = wav2vec2_model(**config, aux_num_out=original.proj.out_features)
|
|
205
|
+
model.load_state_dict(_convert_state_dict(original.state_dict()), strict=False)
|
|
206
|
+
return model
|
|
207
|
+
|
|
208
|
+
|
|
209
|
+
def _import_hubert_pretraining(original: Module) -> Wav2Vec2Model:
|
|
210
|
+
config = _parse_config(original)
|
|
211
|
+
model = wav2vec2_model(**config, aux_num_out=None)
|
|
212
|
+
model.load_state_dict(_convert_state_dict(original.state_dict()), strict=False)
|
|
213
|
+
return model
|
|
@@ -0,0 +1,134 @@
|
|
|
1
|
+
"""Import Hugging Face transformers's wav2vec2.0 pretrained weights to torchaudios's format.
|
|
2
|
+
"""
|
|
3
|
+
import logging
|
|
4
|
+
from typing import Any, Dict
|
|
5
|
+
|
|
6
|
+
import torch
|
|
7
|
+
from torch.nn import Module
|
|
8
|
+
|
|
9
|
+
from ..model import wav2vec2_model, Wav2Vec2Model, wavlm_model
|
|
10
|
+
|
|
11
|
+
_LG = logging.getLogger(__name__)
|
|
12
|
+
|
|
13
|
+
|
|
14
|
+
def _get_config(cfg):
|
|
15
|
+
config = {
|
|
16
|
+
"extractor_mode": f"{cfg.feat_extract_norm}_norm",
|
|
17
|
+
"extractor_conv_layer_config": list(zip(cfg.conv_dim, cfg.conv_kernel, cfg.conv_stride)),
|
|
18
|
+
"extractor_conv_bias": cfg.conv_bias,
|
|
19
|
+
"encoder_embed_dim": cfg.hidden_size,
|
|
20
|
+
"encoder_projection_dropout": cfg.feat_proj_dropout,
|
|
21
|
+
"encoder_pos_conv_kernel": cfg.num_conv_pos_embeddings,
|
|
22
|
+
"encoder_pos_conv_groups": cfg.num_conv_pos_embedding_groups,
|
|
23
|
+
"encoder_num_layers": cfg.num_hidden_layers,
|
|
24
|
+
"encoder_num_heads": cfg.num_attention_heads,
|
|
25
|
+
"encoder_attention_dropout": cfg.attention_dropout,
|
|
26
|
+
"encoder_ff_interm_features": cfg.intermediate_size,
|
|
27
|
+
"encoder_ff_interm_dropout": cfg.activation_dropout,
|
|
28
|
+
"encoder_dropout": cfg.hidden_dropout,
|
|
29
|
+
"encoder_layer_norm_first": cfg.do_stable_layer_norm,
|
|
30
|
+
"encoder_layer_drop": cfg.layerdrop,
|
|
31
|
+
}
|
|
32
|
+
return config
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def _get_config_wavlm(cfg):
|
|
36
|
+
config = {
|
|
37
|
+
"extractor_mode": f"{cfg.feat_extract_norm}_norm",
|
|
38
|
+
"extractor_conv_layer_config": list(zip(cfg.conv_dim, cfg.conv_kernel, cfg.conv_stride)),
|
|
39
|
+
"extractor_conv_bias": cfg.conv_bias,
|
|
40
|
+
"encoder_embed_dim": cfg.hidden_size,
|
|
41
|
+
"encoder_projection_dropout": cfg.feat_proj_dropout,
|
|
42
|
+
"encoder_pos_conv_kernel": cfg.num_conv_pos_embeddings,
|
|
43
|
+
"encoder_pos_conv_groups": cfg.num_conv_pos_embedding_groups,
|
|
44
|
+
"encoder_num_layers": cfg.num_hidden_layers,
|
|
45
|
+
"encoder_num_heads": cfg.num_attention_heads,
|
|
46
|
+
"encoder_num_buckets": cfg.num_buckets,
|
|
47
|
+
"encoder_max_distance": cfg.max_bucket_distance,
|
|
48
|
+
"encoder_attention_dropout": cfg.attention_dropout,
|
|
49
|
+
"encoder_ff_interm_features": cfg.intermediate_size,
|
|
50
|
+
"encoder_ff_interm_dropout": cfg.activation_dropout,
|
|
51
|
+
"encoder_dropout": cfg.hidden_dropout,
|
|
52
|
+
"encoder_layer_norm_first": cfg.do_stable_layer_norm,
|
|
53
|
+
"encoder_layer_drop": cfg.layerdrop,
|
|
54
|
+
}
|
|
55
|
+
return config
|
|
56
|
+
|
|
57
|
+
|
|
58
|
+
def _build(config, original):
|
|
59
|
+
is_for_ctc = original.__class__.__name__ in ["Wav2Vec2ForCTC", "WavLMForCTC"]
|
|
60
|
+
if is_for_ctc:
|
|
61
|
+
aux_num_out = original.config.vocab_size
|
|
62
|
+
wav2vec2 = original.wav2vec2
|
|
63
|
+
else:
|
|
64
|
+
_LG.warning(
|
|
65
|
+
"The model is not an instance of Wav2Vec2ForCTC or WavLMForCTC. " '"lm_head" module is not imported.'
|
|
66
|
+
)
|
|
67
|
+
aux_num_out = None
|
|
68
|
+
wav2vec2 = original
|
|
69
|
+
is_wavlm = original.__class__.__name__ in ["WavLMModel", "WavLMForCTC"]
|
|
70
|
+
if is_wavlm:
|
|
71
|
+
imported = wavlm_model(**config, aux_num_out=aux_num_out)
|
|
72
|
+
else:
|
|
73
|
+
imported = wav2vec2_model(**config, aux_num_out=aux_num_out)
|
|
74
|
+
imported.feature_extractor.load_state_dict(wav2vec2.feature_extractor.state_dict())
|
|
75
|
+
imported.encoder.feature_projection.load_state_dict(wav2vec2.feature_projection.state_dict())
|
|
76
|
+
encoder_state_dict = wav2vec2.encoder.state_dict()
|
|
77
|
+
if is_wavlm: # Rename paramaters of linear transformations for compatibility with the HF model
|
|
78
|
+
transform_wavlm_encoder_state(encoder_state_dict, config["encoder_num_layers"])
|
|
79
|
+
imported.encoder.transformer.load_state_dict(encoder_state_dict)
|
|
80
|
+
if is_for_ctc:
|
|
81
|
+
imported.aux.load_state_dict(original.lm_head.state_dict())
|
|
82
|
+
return imported
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
def transform_wavlm_encoder_state(state: Dict[str, Any], encoder_num_layers: int):
|
|
86
|
+
"""Converts WavLM encoder state from HuggingFace format. In particular, concatenates linear projection weights and
|
|
87
|
+
biases to align with the structure of ``torch.nn.MultiheadAttention``.
|
|
88
|
+
"""
|
|
89
|
+
for i in range(encoder_num_layers):
|
|
90
|
+
q_proj_bias = state.pop(f"layers.{i}.attention.q_proj.bias")
|
|
91
|
+
k_proj_bias = state.pop(f"layers.{i}.attention.k_proj.bias")
|
|
92
|
+
v_proj_bias = state.pop(f"layers.{i}.attention.v_proj.bias")
|
|
93
|
+
q_proj_weight = state.pop(f"layers.{i}.attention.q_proj.weight")
|
|
94
|
+
k_proj_weight = state.pop(f"layers.{i}.attention.k_proj.weight")
|
|
95
|
+
v_proj_weight = state.pop(f"layers.{i}.attention.v_proj.weight")
|
|
96
|
+
state[f"layers.{i}.attention.attention.in_proj_bias"] = torch.cat((q_proj_bias, k_proj_bias, v_proj_bias))
|
|
97
|
+
state[f"layers.{i}.attention.attention.in_proj_weight"] = torch.cat(
|
|
98
|
+
(q_proj_weight, k_proj_weight, v_proj_weight)
|
|
99
|
+
)
|
|
100
|
+
|
|
101
|
+
state[f"layers.{i}.attention.attention.out_proj.weight"] = state.pop(f"layers.{i}.attention.out_proj.weight")
|
|
102
|
+
state[f"layers.{i}.attention.attention.out_proj.bias"] = state.pop(f"layers.{i}.attention.out_proj.bias")
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
def import_huggingface_model(original: Module) -> Wav2Vec2Model:
|
|
106
|
+
"""Builds :class:`Wav2Vec2Model` from the corresponding model object of
|
|
107
|
+
`Transformers <https://huggingface.co/transformers/>`_.
|
|
108
|
+
|
|
109
|
+
Args:
|
|
110
|
+
original (torch.nn.Module): An instance of ``Wav2Vec2ForCTC`` from ``transformers``.
|
|
111
|
+
|
|
112
|
+
Returns:
|
|
113
|
+
Wav2Vec2Model: Imported model.
|
|
114
|
+
|
|
115
|
+
Example
|
|
116
|
+
>>> from torchaudio.models.wav2vec2.utils import import_huggingface_model
|
|
117
|
+
>>>
|
|
118
|
+
>>> original = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")
|
|
119
|
+
>>> model = import_huggingface_model(original)
|
|
120
|
+
>>>
|
|
121
|
+
>>> waveforms, _ = torchaudio.load("audio.wav")
|
|
122
|
+
>>> logits, _ = model(waveforms)
|
|
123
|
+
"""
|
|
124
|
+
_LG.info("Importing model.")
|
|
125
|
+
_LG.info("Loading model configuration.")
|
|
126
|
+
is_wavlm = original.__class__.__name__ in ["WavLMModel", "WavLMForCTC"]
|
|
127
|
+
if is_wavlm:
|
|
128
|
+
config = _get_config_wavlm(original.config)
|
|
129
|
+
else:
|
|
130
|
+
config = _get_config(original.config)
|
|
131
|
+
_LG.debug(" - config: %s", config)
|
|
132
|
+
_LG.info("Building model.")
|
|
133
|
+
imported = _build(config, original)
|
|
134
|
+
return imported
|
|
@@ -0,0 +1,214 @@
|
|
|
1
|
+
"""
|
|
2
|
+
The MIT License (MIT)
|
|
3
|
+
|
|
4
|
+
Copyright (c) Microsoft Corporation
|
|
5
|
+
|
|
6
|
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
7
|
+
of this software and associated documentation files (the "Software"), to deal
|
|
8
|
+
in the Software without restriction, including without limitation the rights
|
|
9
|
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
10
|
+
copies of the Software, and to permit persons to whom the Software is
|
|
11
|
+
furnished to do so, subject to the following conditions:
|
|
12
|
+
|
|
13
|
+
The above copyright notice and this permission notice shall be included in all
|
|
14
|
+
copies or substantial portions of the Software.
|
|
15
|
+
|
|
16
|
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
17
|
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
18
|
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
19
|
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
20
|
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
21
|
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
22
|
+
SOFTWARE.
|
|
23
|
+
"""
|
|
24
|
+
|
|
25
|
+
import math
|
|
26
|
+
from typing import Optional, Tuple
|
|
27
|
+
|
|
28
|
+
import torch
|
|
29
|
+
from torch import nn, Tensor
|
|
30
|
+
|
|
31
|
+
|
|
32
|
+
class WavLMSelfAttention(nn.Module):
|
|
33
|
+
"""Multi-headed self-attention for WavLM model :cite:`chen2022wavlm`.
|
|
34
|
+
Wraps around ``torch.nn.MultiheadAttention``, creating relaive position embeddings and passing them to multi-headed
|
|
35
|
+
attention as a mask.
|
|
36
|
+
Source: https://github.com/microsoft/unilm/blob/2d8302f09c99bca2b82e6e868d81d4281cceebc8/wavlm/modules.py#L303-L763
|
|
37
|
+
|
|
38
|
+
Args:
|
|
39
|
+
embed_dim (int): Total dimension of the model.
|
|
40
|
+
num_heads (int): The number of heads.
|
|
41
|
+
dropout (float, optional): Dropout probability on attn_output_weights. (Default: to ``0.0``)
|
|
42
|
+
bias (bool, optional): If ``True``, add bias to input / output projection layers. (Default: ``True``)
|
|
43
|
+
has_relative_attention_bias (bool, optional): If ``True``, apply relative position embedding.
|
|
44
|
+
Necessary in the first encoder layer, but not in the subsequent ones. (Default: ``False``)
|
|
45
|
+
num_buckets (int, optional): Number of buckets for relative position embedding. (Default: ``32``)
|
|
46
|
+
max_distance (int, optional): Naximum distance for relative position embedding. (Default: ``128``)
|
|
47
|
+
gru_rel_pos (bool, optional): If ``True``, apply gated relative position embedding. (Default: ``False``)
|
|
48
|
+
"""
|
|
49
|
+
|
|
50
|
+
def __init__(
|
|
51
|
+
self,
|
|
52
|
+
embed_dim: int,
|
|
53
|
+
num_heads: int,
|
|
54
|
+
dropout: float = 0.0,
|
|
55
|
+
bias: bool = True,
|
|
56
|
+
has_relative_attention_bias: bool = False,
|
|
57
|
+
num_buckets: int = 32,
|
|
58
|
+
max_distance: int = 128,
|
|
59
|
+
gru_rel_pos: bool = True,
|
|
60
|
+
):
|
|
61
|
+
super().__init__()
|
|
62
|
+
self.embed_dim = embed_dim
|
|
63
|
+
self.num_heads = num_heads
|
|
64
|
+
self.has_relative_attention_bias = has_relative_attention_bias
|
|
65
|
+
self.num_buckets = num_buckets
|
|
66
|
+
self.max_distance = max_distance
|
|
67
|
+
|
|
68
|
+
if has_relative_attention_bias:
|
|
69
|
+
self.rel_attn_embed = nn.Embedding(num_buckets, num_heads)
|
|
70
|
+
else:
|
|
71
|
+
self.rel_attn_embed = None
|
|
72
|
+
|
|
73
|
+
self.head_dim = embed_dim // num_heads
|
|
74
|
+
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
|
75
|
+
|
|
76
|
+
self.dropout = dropout
|
|
77
|
+
self.attention = nn.MultiheadAttention(embed_dim, num_heads, dropout=dropout, bias=bias, batch_first=True)
|
|
78
|
+
|
|
79
|
+
self.gru_rel_pos = gru_rel_pos
|
|
80
|
+
if self.gru_rel_pos:
|
|
81
|
+
self.gru_rel_pos_linear = nn.Linear(self.head_dim, 8)
|
|
82
|
+
self.gru_rel_pos_const = nn.Parameter(torch.ones(1, num_heads, 1, 1))
|
|
83
|
+
self.has_position_bias = True
|
|
84
|
+
|
|
85
|
+
def compute_bias(self, query_length: int, key_length: int) -> Tensor:
|
|
86
|
+
"""Compute relative position embeddings for WavLM model.
|
|
87
|
+
Args:
|
|
88
|
+
query_length (int): Query position can take values between 0 and ``query_length - 1``.
|
|
89
|
+
key_length (int): Key position can take values between 0 and ``key_length - 1``.
|
|
90
|
+
Returns:
|
|
91
|
+
Tensor of shape `(num_heads, query_length, key_length)`, relative positions embeddings
|
|
92
|
+
"""
|
|
93
|
+
context_position = torch.arange(query_length, dtype=torch.long)[:, None]
|
|
94
|
+
memory_position = torch.arange(key_length, dtype=torch.long)[None, :]
|
|
95
|
+
relative_position = memory_position - context_position # Shape (query_length, key_length)
|
|
96
|
+
relative_position_bucket = self._relative_positions_bucket(relative_position, bidirectional=True)
|
|
97
|
+
relative_position_bucket = relative_position_bucket.to(self.rel_attn_embed.weight.device)
|
|
98
|
+
values = self.rel_attn_embed(relative_position_bucket) # Shape (query_length, key_length, num_heads)
|
|
99
|
+
values = values.permute([2, 0, 1])
|
|
100
|
+
return values
|
|
101
|
+
|
|
102
|
+
def _relative_positions_bucket(self, relative_positions: Tensor, bidirectional: bool = True):
|
|
103
|
+
"""Compute relative position buckets for WavLM model. Computation similar to formula (5) in WavLM
|
|
104
|
+
paper :cite:`chen2022wavlm`.
|
|
105
|
+
Args:
|
|
106
|
+
relative_positions (Tensor): Relative offsets between query and key positions,
|
|
107
|
+
of shape ``(query_length, key_length)``.
|
|
108
|
+
bidirectional (bool): If ``True``, values will be filled both above and below the diagonal in the resulting
|
|
109
|
+
matrix. If ``False``, the elements above the diagonal (i.e. with negative relative offsets) will be set
|
|
110
|
+
to zero. (Default ``True``)
|
|
111
|
+
Returns:
|
|
112
|
+
Tensor of shape ``(query_length, key_length)`` filled bucketed values of with relative positions.
|
|
113
|
+
"""
|
|
114
|
+
num_buckets = self.num_buckets
|
|
115
|
+
max_distance = self.max_distance
|
|
116
|
+
# Shape (query_length, key_length)
|
|
117
|
+
relative_buckets = torch.zeros_like(relative_positions, dtype=torch.long)
|
|
118
|
+
|
|
119
|
+
if bidirectional:
|
|
120
|
+
num_buckets = num_buckets // 2
|
|
121
|
+
relative_buckets += (relative_positions > 0).to(torch.long) * num_buckets
|
|
122
|
+
relative_positions = torch.abs(relative_positions)
|
|
123
|
+
else:
|
|
124
|
+
relative_positions = -torch.min(relative_positions, torch.zeros_like(relative_positions))
|
|
125
|
+
|
|
126
|
+
max_exact = num_buckets // 2
|
|
127
|
+
is_small = relative_positions < max_exact
|
|
128
|
+
|
|
129
|
+
relative_postion_if_large = max_exact + (
|
|
130
|
+
torch.log(relative_positions.float() / max_exact)
|
|
131
|
+
/ math.log(max_distance / max_exact)
|
|
132
|
+
* (num_buckets - max_exact)
|
|
133
|
+
).to(torch.long)
|
|
134
|
+
relative_postion_if_large = torch.min(
|
|
135
|
+
relative_postion_if_large, torch.full_like(relative_postion_if_large, num_buckets - 1)
|
|
136
|
+
)
|
|
137
|
+
|
|
138
|
+
relative_buckets += torch.where(is_small, relative_positions, relative_postion_if_large)
|
|
139
|
+
return relative_buckets
|
|
140
|
+
|
|
141
|
+
def forward(
|
|
142
|
+
self,
|
|
143
|
+
query: Tensor,
|
|
144
|
+
key_padding_mask: Optional[Tensor] = None,
|
|
145
|
+
attention_mask: Optional[Tensor] = None,
|
|
146
|
+
position_bias: Optional[Tensor] = None,
|
|
147
|
+
) -> Tuple[Tensor, Optional[Tensor]]:
|
|
148
|
+
"""
|
|
149
|
+
Args:
|
|
150
|
+
query (Tensor): Input of shape ``(batch_size, src_len, embed_dim)``.
|
|
151
|
+
key_padding_mask (Tensor or None, optional): Mask to exclude keys that are pads, of shape
|
|
152
|
+
`(batch, src_len)`, where padding elements are indicated by 1s. (Default: ``None``)
|
|
153
|
+
attn_mask: Needs to be ``None``. The argument exists for compatibility with
|
|
154
|
+
``EncoderLayer``. (Default: ``None``)
|
|
155
|
+
position_bias (Tensor or None, optional): Position bias of shape
|
|
156
|
+
``(batch_size * num_heads, src_len, src_len)``. When used inside WavLM model encoder, will be
|
|
157
|
+
generated in the first layer and then passed from each encoder layer to the next one.
|
|
158
|
+
(Default: ``None``)
|
|
159
|
+
Returns:
|
|
160
|
+
attn_output (Tensor): Attention output of shape ``(batch_size, src_len, embed_dim)``.
|
|
161
|
+
position_bias (Tensor or None): Position bias of shape ``(batch_size * num_heads, src_len, src_len)``.
|
|
162
|
+
"""
|
|
163
|
+
bsz, seq_len, embed_dim = query.size()
|
|
164
|
+
assert embed_dim == self.embed_dim
|
|
165
|
+
assert attention_mask is None
|
|
166
|
+
|
|
167
|
+
if self.rel_attn_embed is not None and position_bias is None:
|
|
168
|
+
position_bias = self.compute_bias(seq_len, seq_len)
|
|
169
|
+
position_bias = position_bias.unsqueeze(0).repeat(bsz, 1, 1, 1)
|
|
170
|
+
|
|
171
|
+
attn_mask_rel_pos: Optional[Tensor] = None
|
|
172
|
+
if position_bias is not None:
|
|
173
|
+
attn_mask_rel_pos = position_bias
|
|
174
|
+
if self.gru_rel_pos: # Apply gating on relative position bias
|
|
175
|
+
query_layer = query.view(bsz, seq_len, self.num_heads, -1)
|
|
176
|
+
query_layer = query_layer.permute(0, 2, 1, 3)
|
|
177
|
+
|
|
178
|
+
gate_a, gate_b = torch.sigmoid(
|
|
179
|
+
self.gru_rel_pos_linear(query_layer).view(bsz, self.num_heads, seq_len, 2, 4).sum(-1, keepdim=False)
|
|
180
|
+
).chunk(2, dim=-1)
|
|
181
|
+
gate_a_1 = gate_a * (gate_b * self.gru_rel_pos_const - 1.0) + 2.0
|
|
182
|
+
attn_mask_rel_pos = gate_a_1.view(bsz, self.num_heads, -1, 1) * position_bias
|
|
183
|
+
|
|
184
|
+
attn_mask_rel_pos = attn_mask_rel_pos.view((bsz, self.num_heads, seq_len, seq_len))
|
|
185
|
+
|
|
186
|
+
if attn_mask_rel_pos is not None and key_padding_mask is not None:
|
|
187
|
+
key_padding_mask = key_padding_mask.view(bsz, 1, 1, seq_len).expand(-1, self.num_heads, -1, -1)
|
|
188
|
+
key_padding_mask = torch.nn.functional._canonical_mask(
|
|
189
|
+
mask=key_padding_mask,
|
|
190
|
+
mask_name="key_padding_mask",
|
|
191
|
+
other_type=torch.nn.functional._none_or_dtype(attn_mask_rel_pos),
|
|
192
|
+
other_name="",
|
|
193
|
+
target_type=query.dtype,
|
|
194
|
+
)
|
|
195
|
+
if attn_mask_rel_pos is not None and key_padding_mask is not None:
|
|
196
|
+
attn_mask_rel_pos = attn_mask_rel_pos + key_padding_mask
|
|
197
|
+
query_projected = torch.nn.functional.linear(query, self.attention.in_proj_weight, self.attention.in_proj_bias)
|
|
198
|
+
query, key, value = query_projected.chunk(3, -1)
|
|
199
|
+
shape = (bsz, seq_len, self.num_heads, self.head_dim)
|
|
200
|
+
query = query.view(shape).transpose(2, 1) # (batch, num_heads, seq_len, head_dim)
|
|
201
|
+
key = key.view(shape).transpose(2, 1) # (batch, num_heads, seq_len, head_dim)
|
|
202
|
+
value = value.view(shape).transpose(2, 1) # (batch, num_heads, seq_len, head_dim)
|
|
203
|
+
dropout = self.dropout if self.training else 0.0
|
|
204
|
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
|
205
|
+
query,
|
|
206
|
+
key,
|
|
207
|
+
value,
|
|
208
|
+
attn_mask=attn_mask_rel_pos,
|
|
209
|
+
dropout_p=dropout,
|
|
210
|
+
is_causal=False,
|
|
211
|
+
)
|
|
212
|
+
attn_output = attn_output.transpose(1, 2).reshape(bsz, -1, self.num_heads * self.head_dim)
|
|
213
|
+
attn_output = self.attention.out_proj(attn_output)
|
|
214
|
+
return attn_output, position_bias
|