torchaudio 2.9.1__cp311-cp311-manylinux_2_28_aarch64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (85) hide show
  1. torchaudio/__init__.py +204 -0
  2. torchaudio/_extension/__init__.py +61 -0
  3. torchaudio/_extension/utils.py +133 -0
  4. torchaudio/_internal/__init__.py +10 -0
  5. torchaudio/_internal/module_utils.py +171 -0
  6. torchaudio/_torchcodec.py +340 -0
  7. torchaudio/compliance/__init__.py +5 -0
  8. torchaudio/compliance/kaldi.py +813 -0
  9. torchaudio/datasets/__init__.py +47 -0
  10. torchaudio/datasets/cmuarctic.py +157 -0
  11. torchaudio/datasets/cmudict.py +186 -0
  12. torchaudio/datasets/commonvoice.py +86 -0
  13. torchaudio/datasets/dr_vctk.py +121 -0
  14. torchaudio/datasets/fluentcommands.py +108 -0
  15. torchaudio/datasets/gtzan.py +1118 -0
  16. torchaudio/datasets/iemocap.py +147 -0
  17. torchaudio/datasets/librilight_limited.py +111 -0
  18. torchaudio/datasets/librimix.py +133 -0
  19. torchaudio/datasets/librispeech.py +174 -0
  20. torchaudio/datasets/librispeech_biasing.py +189 -0
  21. torchaudio/datasets/libritts.py +168 -0
  22. torchaudio/datasets/ljspeech.py +107 -0
  23. torchaudio/datasets/musdb_hq.py +139 -0
  24. torchaudio/datasets/quesst14.py +136 -0
  25. torchaudio/datasets/snips.py +157 -0
  26. torchaudio/datasets/speechcommands.py +183 -0
  27. torchaudio/datasets/tedlium.py +218 -0
  28. torchaudio/datasets/utils.py +54 -0
  29. torchaudio/datasets/vctk.py +143 -0
  30. torchaudio/datasets/voxceleb1.py +309 -0
  31. torchaudio/datasets/yesno.py +89 -0
  32. torchaudio/functional/__init__.py +130 -0
  33. torchaudio/functional/_alignment.py +128 -0
  34. torchaudio/functional/filtering.py +1685 -0
  35. torchaudio/functional/functional.py +2505 -0
  36. torchaudio/lib/__init__.py +0 -0
  37. torchaudio/lib/_torchaudio.so +0 -0
  38. torchaudio/lib/libtorchaudio.so +0 -0
  39. torchaudio/models/__init__.py +85 -0
  40. torchaudio/models/_hdemucs.py +1008 -0
  41. torchaudio/models/conformer.py +293 -0
  42. torchaudio/models/conv_tasnet.py +330 -0
  43. torchaudio/models/decoder/__init__.py +64 -0
  44. torchaudio/models/decoder/_ctc_decoder.py +568 -0
  45. torchaudio/models/decoder/_cuda_ctc_decoder.py +187 -0
  46. torchaudio/models/deepspeech.py +84 -0
  47. torchaudio/models/emformer.py +884 -0
  48. torchaudio/models/rnnt.py +816 -0
  49. torchaudio/models/rnnt_decoder.py +339 -0
  50. torchaudio/models/squim/__init__.py +11 -0
  51. torchaudio/models/squim/objective.py +326 -0
  52. torchaudio/models/squim/subjective.py +150 -0
  53. torchaudio/models/tacotron2.py +1046 -0
  54. torchaudio/models/wav2letter.py +72 -0
  55. torchaudio/models/wav2vec2/__init__.py +45 -0
  56. torchaudio/models/wav2vec2/components.py +1167 -0
  57. torchaudio/models/wav2vec2/model.py +1579 -0
  58. torchaudio/models/wav2vec2/utils/__init__.py +7 -0
  59. torchaudio/models/wav2vec2/utils/import_fairseq.py +213 -0
  60. torchaudio/models/wav2vec2/utils/import_huggingface.py +134 -0
  61. torchaudio/models/wav2vec2/wavlm_attention.py +214 -0
  62. torchaudio/models/wavernn.py +409 -0
  63. torchaudio/pipelines/__init__.py +102 -0
  64. torchaudio/pipelines/_source_separation_pipeline.py +109 -0
  65. torchaudio/pipelines/_squim_pipeline.py +156 -0
  66. torchaudio/pipelines/_tts/__init__.py +16 -0
  67. torchaudio/pipelines/_tts/impl.py +385 -0
  68. torchaudio/pipelines/_tts/interface.py +255 -0
  69. torchaudio/pipelines/_tts/utils.py +230 -0
  70. torchaudio/pipelines/_wav2vec2/__init__.py +0 -0
  71. torchaudio/pipelines/_wav2vec2/aligner.py +87 -0
  72. torchaudio/pipelines/_wav2vec2/impl.py +1699 -0
  73. torchaudio/pipelines/_wav2vec2/utils.py +346 -0
  74. torchaudio/pipelines/rnnt_pipeline.py +380 -0
  75. torchaudio/transforms/__init__.py +78 -0
  76. torchaudio/transforms/_multi_channel.py +467 -0
  77. torchaudio/transforms/_transforms.py +2138 -0
  78. torchaudio/utils/__init__.py +4 -0
  79. torchaudio/utils/download.py +89 -0
  80. torchaudio/version.py +2 -0
  81. torchaudio-2.9.1.dist-info/METADATA +133 -0
  82. torchaudio-2.9.1.dist-info/RECORD +85 -0
  83. torchaudio-2.9.1.dist-info/WHEEL +5 -0
  84. torchaudio-2.9.1.dist-info/licenses/LICENSE +25 -0
  85. torchaudio-2.9.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,2505 @@
1
+ # -*- coding: utf-8 -*-
2
+
3
+ import math
4
+ import warnings
5
+ from collections.abc import Sequence
6
+ from typing import List, Optional, Tuple, Union
7
+
8
+ import torch
9
+ import torchaudio
10
+ from torch import Tensor
11
+ from torchaudio._internal.module_utils import dropping_support
12
+
13
+ from .filtering import highpass_biquad, treble_biquad
14
+
15
+ __all__ = [
16
+ "spectrogram",
17
+ "inverse_spectrogram",
18
+ "griffinlim",
19
+ "amplitude_to_DB",
20
+ "DB_to_amplitude",
21
+ "compute_deltas",
22
+ "melscale_fbanks",
23
+ "linear_fbanks",
24
+ "create_dct",
25
+ "compute_deltas",
26
+ "detect_pitch_frequency",
27
+ "DB_to_amplitude",
28
+ "mu_law_encoding",
29
+ "mu_law_decoding",
30
+ "phase_vocoder",
31
+ "mask_along_axis",
32
+ "mask_along_axis_iid",
33
+ "sliding_window_cmn",
34
+ "spectral_centroid",
35
+ "resample",
36
+ "edit_distance",
37
+ "loudness",
38
+ "pitch_shift",
39
+ "rnnt_loss",
40
+ "psd",
41
+ "mvdr_weights_souden",
42
+ "mvdr_weights_rtf",
43
+ "rtf_evd",
44
+ "rtf_power",
45
+ "apply_beamforming",
46
+ "fftconvolve",
47
+ "convolve",
48
+ "add_noise",
49
+ "speed",
50
+ "preemphasis",
51
+ "deemphasis",
52
+ ]
53
+
54
+
55
+ def spectrogram(
56
+ waveform: Tensor,
57
+ pad: int,
58
+ window: Tensor,
59
+ n_fft: int,
60
+ hop_length: int,
61
+ win_length: int,
62
+ power: Optional[float],
63
+ normalized: Union[bool, str],
64
+ center: bool = True,
65
+ pad_mode: str = "reflect",
66
+ onesided: bool = True,
67
+ return_complex: Optional[bool] = None,
68
+ ) -> Tensor:
69
+ r"""Create a spectrogram or a batch of spectrograms from a raw audio signal.
70
+ The spectrogram can be either magnitude-only or complex.
71
+
72
+ .. devices:: CPU CUDA
73
+
74
+ .. properties:: Autograd TorchScript
75
+
76
+ Args:
77
+ waveform (Tensor): Tensor of audio of dimension `(..., time)`
78
+ pad (int): Two sided padding of signal
79
+ window (Tensor): Window tensor that is applied/multiplied to each frame/window
80
+ n_fft (int): Size of FFT
81
+ hop_length (int): Length of hop between STFT windows
82
+ win_length (int): Window size
83
+ power (float or None): Exponent for the magnitude spectrogram,
84
+ (must be > 0) e.g., 1 for magnitude, 2 for power, etc.
85
+ If None, then the complex spectrum is returned instead.
86
+ normalized (bool or str): Whether to normalize by magnitude after stft. If input is str, choices are
87
+ ``"window"`` and ``"frame_length"``, if specific normalization type is desirable. ``True`` maps to
88
+ ``"window"``. When normalized on ``"window"``, waveform is normalized upon the window's L2 energy. If
89
+ normalized on ``"frame_length"``, waveform is normalized by dividing by
90
+ :math:`(\text{frame\_length})^{0.5}`.
91
+ center (bool, optional): whether to pad :attr:`waveform` on both sides so
92
+ that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
93
+ Default: ``True``
94
+ pad_mode (string, optional): controls the padding method used when
95
+ :attr:`center` is ``True``. Default: ``"reflect"``
96
+ onesided (bool, optional): controls whether to return half of results to
97
+ avoid redundancy. Default: ``True``
98
+ return_complex (bool, optional):
99
+ Deprecated and not used.
100
+
101
+ Returns:
102
+ Tensor: Dimension `(..., freq, time)`, freq is
103
+ ``n_fft // 2 + 1`` and ``n_fft`` is the number of
104
+ Fourier bins, and time is the number of window hops (n_frame).
105
+ """
106
+ if return_complex is not None:
107
+ warnings.warn(
108
+ "`return_complex` argument is now deprecated and is not effective."
109
+ "`torchaudio.functional.spectrogram(power=None)` always returns a tensor with "
110
+ "complex dtype. Please remove the argument in the function call."
111
+ )
112
+
113
+ if pad > 0:
114
+ # TODO add "with torch.no_grad():" back when JIT supports it
115
+ waveform = torch.nn.functional.pad(waveform, (pad, pad), "constant")
116
+
117
+ frame_length_norm, window_norm = _get_spec_norms(normalized)
118
+
119
+ # pack batch
120
+ shape = waveform.size()
121
+ waveform = waveform.reshape(-1, shape[-1])
122
+
123
+ # default values are consistent with librosa.core.spectrum._spectrogram
124
+ spec_f = torch.stft(
125
+ input=waveform,
126
+ n_fft=n_fft,
127
+ hop_length=hop_length,
128
+ win_length=win_length,
129
+ window=window,
130
+ center=center,
131
+ pad_mode=pad_mode,
132
+ normalized=frame_length_norm,
133
+ onesided=onesided,
134
+ return_complex=True,
135
+ )
136
+
137
+ # unpack batch
138
+ spec_f = spec_f.reshape(shape[:-1] + spec_f.shape[-2:])
139
+
140
+ if window_norm:
141
+ spec_f /= window.pow(2.0).sum().sqrt()
142
+ if power is not None:
143
+ if power == 1.0:
144
+ return spec_f.abs()
145
+ return spec_f.abs().pow(power)
146
+ return spec_f
147
+
148
+
149
+ def inverse_spectrogram(
150
+ spectrogram: Tensor,
151
+ length: Optional[int],
152
+ pad: int,
153
+ window: Tensor,
154
+ n_fft: int,
155
+ hop_length: int,
156
+ win_length: int,
157
+ normalized: Union[bool, str],
158
+ center: bool = True,
159
+ pad_mode: str = "reflect",
160
+ onesided: bool = True,
161
+ ) -> Tensor:
162
+ r"""Create an inverse spectrogram or a batch of inverse spectrograms from the provided
163
+ complex-valued spectrogram.
164
+
165
+ .. devices:: CPU CUDA
166
+
167
+ .. properties:: Autograd TorchScript
168
+
169
+ Args:
170
+ spectrogram (Tensor): Complex tensor of audio of dimension (..., freq, time).
171
+ length (int or None): The output length of the waveform.
172
+ pad (int): Two sided padding of signal. It is only effective when ``length`` is provided.
173
+ window (Tensor): Window tensor that is applied/multiplied to each frame/window
174
+ n_fft (int): Size of FFT
175
+ hop_length (int): Length of hop between STFT windows
176
+ win_length (int): Window size
177
+ normalized (bool or str): Whether the stft output was normalized by magnitude. If input is str, choices are
178
+ ``"window"`` and ``"frame_length"``, dependent on normalization mode. ``True`` maps to
179
+ ``"window"``.
180
+ center (bool, optional): whether the waveform was padded on both sides so
181
+ that the :math:`t`-th frame is centered at time :math:`t \times \text{hop\_length}`.
182
+ Default: ``True``
183
+ pad_mode (string, optional): controls the padding method used when
184
+ :attr:`center` is ``True``. This parameter is provided for compatibility with the
185
+ spectrogram function and is not used. Default: ``"reflect"``
186
+ onesided (bool, optional): controls whether spectrogram was done in onesided mode.
187
+ Default: ``True``
188
+
189
+ Returns:
190
+ Tensor: Dimension `(..., time)`. Least squares estimation of the original signal.
191
+ """
192
+
193
+ frame_length_norm, window_norm = _get_spec_norms(normalized)
194
+
195
+ if not spectrogram.is_complex():
196
+ raise ValueError("Expected `spectrogram` to be complex dtype.")
197
+
198
+ if window_norm:
199
+ spectrogram = spectrogram * window.pow(2.0).sum().sqrt()
200
+
201
+ # pack batch
202
+ shape = spectrogram.size()
203
+ spectrogram = spectrogram.reshape(-1, shape[-2], shape[-1])
204
+
205
+ # default values are consistent with librosa.core.spectrum._spectrogram
206
+ waveform = torch.istft(
207
+ input=spectrogram,
208
+ n_fft=n_fft,
209
+ hop_length=hop_length,
210
+ win_length=win_length,
211
+ window=window,
212
+ center=center,
213
+ normalized=frame_length_norm,
214
+ onesided=onesided,
215
+ length=length + 2 * pad if length is not None else None,
216
+ return_complex=False,
217
+ )
218
+
219
+ if length is not None and pad > 0:
220
+ # remove padding from front and back
221
+ waveform = waveform[:, pad:-pad]
222
+
223
+ # unpack batch
224
+ waveform = waveform.reshape(shape[:-2] + waveform.shape[-1:])
225
+
226
+ return waveform
227
+
228
+
229
+ def _get_spec_norms(normalized: Union[str, bool]):
230
+ frame_length_norm, window_norm = False, False
231
+ if torch.jit.isinstance(normalized, str):
232
+ if normalized not in ["frame_length", "window"]:
233
+ raise ValueError("Invalid normalized parameter: {}".format(normalized))
234
+ if normalized == "frame_length":
235
+ frame_length_norm = True
236
+ elif normalized == "window":
237
+ window_norm = True
238
+ elif torch.jit.isinstance(normalized, bool):
239
+ if normalized:
240
+ window_norm = True
241
+ else:
242
+ raise TypeError("Input type not supported")
243
+ return frame_length_norm, window_norm
244
+
245
+
246
+ def _get_complex_dtype(real_dtype: torch.dtype):
247
+ if real_dtype == torch.double:
248
+ return torch.cdouble
249
+ if real_dtype == torch.float:
250
+ return torch.cfloat
251
+ if real_dtype == torch.half:
252
+ return torch.complex32
253
+ raise ValueError(f"Unexpected dtype {real_dtype}")
254
+
255
+
256
+ def griffinlim(
257
+ specgram: Tensor,
258
+ window: Tensor,
259
+ n_fft: int,
260
+ hop_length: int,
261
+ win_length: int,
262
+ power: float,
263
+ n_iter: int,
264
+ momentum: float,
265
+ length: Optional[int],
266
+ rand_init: bool,
267
+ ) -> Tensor:
268
+ r"""Compute waveform from a linear scale magnitude spectrogram using the Griffin-Lim transformation.
269
+
270
+ .. devices:: CPU CUDA
271
+
272
+ .. properties:: Autograd TorchScript
273
+
274
+ Implementation ported from
275
+ *librosa* :cite:`brian_mcfee-proc-scipy-2015`, *A fast Griffin-Lim algorithm* :cite:`6701851`
276
+ and *Signal estimation from modified short-time Fourier transform* :cite:`1172092`.
277
+
278
+ Args:
279
+ specgram (Tensor): A magnitude-only STFT spectrogram of dimension `(..., freq, frames)`
280
+ where freq is ``n_fft // 2 + 1``.
281
+ window (Tensor): Window tensor that is applied/multiplied to each frame/window
282
+ n_fft (int): Size of FFT, creates ``n_fft // 2 + 1`` bins
283
+ hop_length (int): Length of hop between STFT windows. (
284
+ Default: ``win_length // 2``)
285
+ win_length (int): Window size. (Default: ``n_fft``)
286
+ power (float): Exponent for the magnitude spectrogram,
287
+ (must be > 0) e.g., 1 for magnitude, 2 for power, etc.
288
+ n_iter (int): Number of iteration for phase recovery process.
289
+ momentum (float): The momentum parameter for fast Griffin-Lim.
290
+ Setting this to 0 recovers the original Griffin-Lim method.
291
+ Values near 1 can lead to faster convergence, but above 1 may not converge.
292
+ length (int or None): Array length of the expected output.
293
+ rand_init (bool): Initializes phase randomly if True, to zero otherwise.
294
+
295
+ Returns:
296
+ Tensor: waveform of `(..., time)`, where time equals the ``length`` parameter if given.
297
+ """
298
+ if not 0 <= momentum < 1:
299
+ raise ValueError("momentum must be in range [0, 1). Found: {}".format(momentum))
300
+
301
+ momentum = momentum / (1 + momentum)
302
+
303
+ # pack batch
304
+ shape = specgram.size()
305
+ specgram = specgram.reshape([-1] + list(shape[-2:]))
306
+
307
+ specgram = specgram.pow(1 / power)
308
+
309
+ # initialize the phase
310
+ if rand_init:
311
+ angles = torch.rand(specgram.size(), dtype=_get_complex_dtype(specgram.dtype), device=specgram.device)
312
+ else:
313
+ angles = torch.full(specgram.size(), 1, dtype=_get_complex_dtype(specgram.dtype), device=specgram.device)
314
+
315
+ # And initialize the previous iterate to 0
316
+ tprev = torch.tensor(0.0, dtype=specgram.dtype, device=specgram.device)
317
+ for _ in range(n_iter):
318
+ # Invert with our current estimate of the phases
319
+ inverse = torch.istft(
320
+ specgram * angles, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, length=length
321
+ )
322
+
323
+ # Rebuild the spectrogram
324
+ rebuilt = torch.stft(
325
+ input=inverse,
326
+ n_fft=n_fft,
327
+ hop_length=hop_length,
328
+ win_length=win_length,
329
+ window=window,
330
+ center=True,
331
+ pad_mode="reflect",
332
+ normalized=False,
333
+ onesided=True,
334
+ return_complex=True,
335
+ )
336
+
337
+ # Update our phase estimates
338
+ angles = rebuilt
339
+ if momentum:
340
+ angles = angles - tprev.mul_(momentum)
341
+ angles = angles.div(angles.abs().add(1e-16))
342
+
343
+ # Store the previous iterate
344
+ tprev = rebuilt
345
+
346
+ # Return the final phase estimates
347
+ waveform = torch.istft(
348
+ specgram * angles, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, length=length
349
+ )
350
+
351
+ # unpack batch
352
+ waveform = waveform.reshape(shape[:-2] + waveform.shape[-1:])
353
+
354
+ return waveform
355
+
356
+
357
+ def amplitude_to_DB(
358
+ x: Tensor, multiplier: float, amin: float, db_multiplier: float, top_db: Optional[float] = None
359
+ ) -> Tensor:
360
+ r"""Turn a spectrogram from the power/amplitude scale to the decibel scale.
361
+
362
+ .. devices:: CPU CUDA
363
+
364
+ .. properties:: Autograd TorchScript
365
+
366
+ The output of each tensor in a batch depends on the maximum value of that tensor,
367
+ and so may return different values for an audio clip split into snippets vs. a full clip.
368
+
369
+ Args:
370
+
371
+ x (Tensor): Input spectrogram(s) before being converted to decibel scale.
372
+ The expected shapes are ``(freq, time)``, ``(channel, freq, time)`` or
373
+ ``(..., batch, channel, freq, time)``.
374
+
375
+ .. note::
376
+
377
+ When ``top_db`` is specified, cut-off values are computed for each audio
378
+ in the batch. Therefore if the input shape is 4D (or larger), different
379
+ cut-off values are used for audio data in the batch.
380
+ If the input shape is 2D or 3D, a single cutoff value is used.
381
+
382
+ multiplier (float): Use 10. for power and 20. for amplitude
383
+ amin (float): Number to clamp ``x``
384
+ db_multiplier (float): Log10(max(reference value and amin))
385
+ top_db (float or None, optional): Minimum negative cut-off in decibels. A reasonable number
386
+ is 80. (Default: ``None``)
387
+
388
+ Returns:
389
+ Tensor: Output tensor in decibel scale
390
+ """
391
+ x_db = multiplier * torch.log10(torch.clamp(x, min=amin))
392
+ x_db -= multiplier * db_multiplier
393
+
394
+ if top_db is not None:
395
+ # Expand batch
396
+ shape = x_db.size()
397
+ packed_channels = shape[-3] if x_db.dim() > 2 else 1
398
+ x_db = x_db.reshape(-1, packed_channels, shape[-2], shape[-1])
399
+
400
+ x_db = torch.max(x_db, (x_db.amax(dim=(-3, -2, -1)) - top_db).view(-1, 1, 1, 1))
401
+
402
+ # Repack batch
403
+ x_db = x_db.reshape(shape)
404
+
405
+ return x_db
406
+
407
+
408
+ def DB_to_amplitude(x: Tensor, ref: float, power: float) -> Tensor:
409
+ r"""Turn a tensor from the decibel scale to the power/amplitude scale.
410
+
411
+ .. devices:: CPU CUDA
412
+
413
+ .. properties:: TorchScript
414
+
415
+ Args:
416
+ x (Tensor): Input tensor before being converted to power/amplitude scale.
417
+ ref (float): Reference which the output will be scaled by.
418
+ power (float): If power equals 1, will compute DB to power. If 0.5, will compute DB to amplitude.
419
+
420
+ Returns:
421
+ Tensor: Output tensor in power/amplitude scale.
422
+ """
423
+ return ref * torch.pow(torch.pow(10.0, 0.1 * x), power)
424
+
425
+
426
+ def _hz_to_mel(freq: float, mel_scale: str = "htk") -> float:
427
+ r"""Convert Hz to Mels.
428
+
429
+ Args:
430
+ freqs (float): Frequencies in Hz
431
+ mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``)
432
+
433
+ Returns:
434
+ mels (float): Frequency in Mels
435
+ """
436
+
437
+ if mel_scale not in ["slaney", "htk"]:
438
+ raise ValueError('mel_scale should be one of "htk" or "slaney".')
439
+
440
+ if mel_scale == "htk":
441
+ return 2595.0 * math.log10(1.0 + (freq / 700.0))
442
+
443
+ # Fill in the linear part
444
+ f_min = 0.0
445
+ f_sp = 200.0 / 3
446
+
447
+ mels = (freq - f_min) / f_sp
448
+
449
+ # Fill in the log-scale part
450
+ min_log_hz = 1000.0
451
+ min_log_mel = (min_log_hz - f_min) / f_sp
452
+ logstep = math.log(6.4) / 27.0
453
+
454
+ if freq >= min_log_hz:
455
+ mels = min_log_mel + math.log(freq / min_log_hz) / logstep
456
+
457
+ return mels
458
+
459
+
460
+ def _mel_to_hz(mels: Tensor, mel_scale: str = "htk") -> Tensor:
461
+ """Convert mel bin numbers to frequencies.
462
+
463
+ Args:
464
+ mels (Tensor): Mel frequencies
465
+ mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``)
466
+
467
+ Returns:
468
+ freqs (Tensor): Mels converted in Hz
469
+ """
470
+
471
+ if mel_scale not in ["slaney", "htk"]:
472
+ raise ValueError('mel_scale should be one of "htk" or "slaney".')
473
+
474
+ if mel_scale == "htk":
475
+ return 700.0 * (10.0 ** (mels / 2595.0) - 1.0)
476
+
477
+ # Fill in the linear scale
478
+ f_min = 0.0
479
+ f_sp = 200.0 / 3
480
+ freqs = f_min + f_sp * mels
481
+
482
+ # And now the nonlinear scale
483
+ min_log_hz = 1000.0
484
+ min_log_mel = (min_log_hz - f_min) / f_sp
485
+ logstep = math.log(6.4) / 27.0
486
+
487
+ log_t = mels >= min_log_mel
488
+ freqs[log_t] = min_log_hz * torch.exp(logstep * (mels[log_t] - min_log_mel))
489
+
490
+ return freqs
491
+
492
+
493
+ def _create_triangular_filterbank(
494
+ all_freqs: Tensor,
495
+ f_pts: Tensor,
496
+ ) -> Tensor:
497
+ """Create a triangular filter bank.
498
+
499
+ Args:
500
+ all_freqs (Tensor): STFT freq points of size (`n_freqs`).
501
+ f_pts (Tensor): Filter mid points of size (`n_filter`).
502
+
503
+ Returns:
504
+ fb (Tensor): The filter bank of size (`n_freqs`, `n_filter`).
505
+ """
506
+ # Adopted from Librosa
507
+ # calculate the difference between each filter mid point and each stft freq point in hertz
508
+ f_diff = f_pts[1:] - f_pts[:-1] # (n_filter + 1)
509
+ slopes = f_pts.unsqueeze(0) - all_freqs.unsqueeze(1) # (n_freqs, n_filter + 2)
510
+ # create overlapping triangles
511
+ zero = torch.zeros(1)
512
+ down_slopes = (-1.0 * slopes[:, :-2]) / f_diff[:-1] # (n_freqs, n_filter)
513
+ up_slopes = slopes[:, 2:] / f_diff[1:] # (n_freqs, n_filter)
514
+ fb = torch.max(zero, torch.min(down_slopes, up_slopes))
515
+
516
+ return fb
517
+
518
+
519
+ def melscale_fbanks(
520
+ n_freqs: int,
521
+ f_min: float,
522
+ f_max: float,
523
+ n_mels: int,
524
+ sample_rate: int,
525
+ norm: Optional[str] = None,
526
+ mel_scale: str = "htk",
527
+ ) -> Tensor:
528
+ r"""Create a frequency bin conversion matrix.
529
+
530
+ .. devices:: CPU
531
+
532
+ .. properties:: TorchScript
533
+
534
+ Note:
535
+ For the sake of the numerical compatibility with librosa, not all the coefficients
536
+ in the resulting filter bank has magnitude of 1.
537
+
538
+ .. image:: https://download.pytorch.org/torchaudio/doc-assets/mel_fbanks.png
539
+ :alt: Visualization of generated filter bank
540
+
541
+ Args:
542
+ n_freqs (int): Number of frequencies to highlight/apply
543
+ f_min (float): Minimum frequency (Hz)
544
+ f_max (float): Maximum frequency (Hz)
545
+ n_mels (int): Number of mel filterbanks
546
+ sample_rate (int): Sample rate of the audio waveform
547
+ norm (str or None, optional): If "slaney", divide the triangular mel weights by the width of the mel band
548
+ (area normalization). (Default: ``None``)
549
+ mel_scale (str, optional): Scale to use: ``htk`` or ``slaney``. (Default: ``htk``)
550
+
551
+ Returns:
552
+ Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_mels``)
553
+ meaning number of frequencies to highlight/apply to x the number of filterbanks.
554
+ Each column is a filterbank so that assuming there is a matrix A of
555
+ size (..., ``n_freqs``), the applied result would be
556
+ ``A @ melscale_fbanks(A.size(-1), ...)``.
557
+
558
+ """
559
+
560
+ if norm is not None and norm != "slaney":
561
+ raise ValueError('norm must be one of None or "slaney"')
562
+
563
+ # freq bins
564
+ all_freqs = torch.linspace(0, sample_rate // 2, n_freqs)
565
+
566
+ # calculate mel freq bins
567
+ m_min = _hz_to_mel(f_min, mel_scale=mel_scale)
568
+ m_max = _hz_to_mel(f_max, mel_scale=mel_scale)
569
+
570
+ m_pts = torch.linspace(m_min, m_max, n_mels + 2)
571
+ f_pts = _mel_to_hz(m_pts, mel_scale=mel_scale)
572
+
573
+ # create filterbank
574
+ fb = _create_triangular_filterbank(all_freqs, f_pts)
575
+
576
+ if norm is not None and norm == "slaney":
577
+ # Slaney-style mel is scaled to be approx constant energy per channel
578
+ enorm = 2.0 / (f_pts[2 : n_mels + 2] - f_pts[:n_mels])
579
+ fb *= enorm.unsqueeze(0)
580
+
581
+ if (fb.max(dim=0).values == 0.0).any():
582
+ warnings.warn(
583
+ "At least one mel filterbank has all zero values. "
584
+ f"The value for `n_mels` ({n_mels}) may be set too high. "
585
+ f"Or, the value for `n_freqs` ({n_freqs}) may be set too low."
586
+ )
587
+
588
+ return fb
589
+
590
+
591
+ def linear_fbanks(
592
+ n_freqs: int,
593
+ f_min: float,
594
+ f_max: float,
595
+ n_filter: int,
596
+ sample_rate: int,
597
+ ) -> Tensor:
598
+ r"""Creates a linear triangular filterbank.
599
+
600
+ .. devices:: CPU
601
+
602
+ .. properties:: TorchScript
603
+
604
+ Note:
605
+ For the sake of the numerical compatibility with librosa, not all the coefficients
606
+ in the resulting filter bank has magnitude of 1.
607
+
608
+ .. image:: https://download.pytorch.org/torchaudio/doc-assets/lin_fbanks.png
609
+ :alt: Visualization of generated filter bank
610
+
611
+ Args:
612
+ n_freqs (int): Number of frequencies to highlight/apply
613
+ f_min (float): Minimum frequency (Hz)
614
+ f_max (float): Maximum frequency (Hz)
615
+ n_filter (int): Number of (linear) triangular filter
616
+ sample_rate (int): Sample rate of the audio waveform
617
+
618
+ Returns:
619
+ Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_filter``)
620
+ meaning number of frequencies to highlight/apply to x the number of filterbanks.
621
+ Each column is a filterbank so that assuming there is a matrix A of
622
+ size (..., ``n_freqs``), the applied result would be
623
+ ``A * linear_fbanks(A.size(-1), ...)``.
624
+ """
625
+ # freq bins
626
+ all_freqs = torch.linspace(0, sample_rate // 2, n_freqs)
627
+
628
+ # filter mid-points
629
+ f_pts = torch.linspace(f_min, f_max, n_filter + 2)
630
+
631
+ # create filterbank
632
+ fb = _create_triangular_filterbank(all_freqs, f_pts)
633
+
634
+ return fb
635
+
636
+
637
+ def create_dct(n_mfcc: int, n_mels: int, norm: Optional[str]) -> Tensor:
638
+ r"""Create a DCT transformation matrix with shape (``n_mels``, ``n_mfcc``),
639
+ normalized depending on norm.
640
+
641
+ .. devices:: CPU
642
+
643
+ .. properties:: TorchScript
644
+
645
+ Args:
646
+ n_mfcc (int): Number of mfc coefficients to retain
647
+ n_mels (int): Number of mel filterbanks
648
+ norm (str or None): Norm to use (either "ortho" or None)
649
+
650
+ Returns:
651
+ Tensor: The transformation matrix, to be right-multiplied to
652
+ row-wise data of size (``n_mels``, ``n_mfcc``).
653
+ """
654
+
655
+ if norm is not None and norm != "ortho":
656
+ raise ValueError('norm must be either "ortho" or None')
657
+
658
+ # http://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II
659
+ n = torch.arange(float(n_mels))
660
+ k = torch.arange(float(n_mfcc)).unsqueeze(1)
661
+ dct = torch.cos(math.pi / float(n_mels) * (n + 0.5) * k) # size (n_mfcc, n_mels)
662
+
663
+ if norm is None:
664
+ dct *= 2.0
665
+ else:
666
+ dct[0] *= 1.0 / math.sqrt(2.0)
667
+ dct *= math.sqrt(2.0 / float(n_mels))
668
+ return dct.t()
669
+
670
+
671
+ def mu_law_encoding(x: Tensor, quantization_channels: int) -> Tensor:
672
+ r"""Encode signal based on mu-law companding.
673
+
674
+ .. devices:: CPU CUDA
675
+
676
+ .. properties:: TorchScript
677
+
678
+ For more info see the
679
+ `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
680
+
681
+ This algorithm expects the signal has been scaled to between -1 and 1 and
682
+ returns a signal encoded with values from 0 to quantization_channels - 1.
683
+
684
+ Args:
685
+ x (Tensor): Input tensor
686
+ quantization_channels (int): Number of channels
687
+
688
+ Returns:
689
+ Tensor: Input after mu-law encoding
690
+ """
691
+ mu = quantization_channels - 1.0
692
+ if not x.is_floating_point():
693
+ warnings.warn(
694
+ "The input Tensor must be of floating type. \
695
+ This will be an error in the v0.12 release."
696
+ )
697
+ x = x.to(torch.float)
698
+ mu = torch.tensor(mu, dtype=x.dtype)
699
+ x_mu = torch.sign(x) * torch.log1p(mu * torch.abs(x)) / torch.log1p(mu)
700
+ x_mu = ((x_mu + 1) / 2 * mu + 0.5).to(torch.int64)
701
+ return x_mu
702
+
703
+
704
+ def mu_law_decoding(x_mu: Tensor, quantization_channels: int) -> Tensor:
705
+ r"""Decode mu-law encoded signal.
706
+
707
+ .. devices:: CPU CUDA
708
+
709
+ .. properties:: TorchScript
710
+
711
+ For more info see the
712
+ `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_
713
+
714
+ This expects an input with values between 0 and quantization_channels - 1
715
+ and returns a signal scaled between -1 and 1.
716
+
717
+ Args:
718
+ x_mu (Tensor): Input tensor
719
+ quantization_channels (int): Number of channels
720
+
721
+ Returns:
722
+ Tensor: Input after mu-law decoding
723
+ """
724
+ mu = quantization_channels - 1.0
725
+ if not x_mu.is_floating_point():
726
+ x_mu = x_mu.to(torch.float)
727
+ mu = torch.tensor(mu, dtype=x_mu.dtype)
728
+ x = ((x_mu) / mu) * 2 - 1.0
729
+ x = torch.sign(x) * (torch.exp(torch.abs(x) * torch.log1p(mu)) - 1.0) / mu
730
+ return x
731
+
732
+
733
+ def phase_vocoder(complex_specgrams: Tensor, rate: float, phase_advance: Tensor) -> Tensor:
734
+ r"""Given a STFT tensor, speed up in time without modifying pitch by a factor of ``rate``.
735
+
736
+ .. devices:: CPU CUDA
737
+
738
+ .. properties:: Autograd TorchScript
739
+
740
+ Args:
741
+ complex_specgrams (Tensor):
742
+ A tensor of dimension `(..., freq, num_frame)` with complex dtype.
743
+ rate (float): Speed-up factor
744
+ phase_advance (Tensor): Expected phase advance in each bin. Dimension of `(freq, 1)`
745
+
746
+ Returns:
747
+ Tensor:
748
+ Stretched spectrogram. The resulting tensor is of the same dtype as the input
749
+ spectrogram, but the number of frames is changed to ``ceil(num_frame / rate)``.
750
+
751
+ Example
752
+ >>> freq, hop_length = 1025, 512
753
+ >>> # (channel, freq, time)
754
+ >>> complex_specgrams = torch.randn(2, freq, 300, dtype=torch.cfloat)
755
+ >>> rate = 1.3 # Speed up by 30%
756
+ >>> phase_advance = torch.linspace(
757
+ >>> 0, math.pi * hop_length, freq)[..., None]
758
+ >>> x = phase_vocoder(complex_specgrams, rate, phase_advance)
759
+ >>> x.shape # with 231 == ceil(300 / 1.3)
760
+ torch.Size([2, 1025, 231])
761
+ """
762
+ if rate == 1.0:
763
+ return complex_specgrams
764
+
765
+ # pack batch
766
+ shape = complex_specgrams.size()
767
+ complex_specgrams = complex_specgrams.reshape([-1] + list(shape[-2:]))
768
+
769
+ # Figures out the corresponding real dtype, i.e. complex128 -> float64, complex64 -> float32
770
+ # Note torch.real is a view so it does not incur any memory copy.
771
+ real_dtype = torch.real(complex_specgrams).dtype
772
+ time_steps = torch.arange(0, complex_specgrams.size(-1), rate, device=complex_specgrams.device, dtype=real_dtype)
773
+
774
+ alphas = time_steps % 1.0
775
+ phase_0 = complex_specgrams[..., :1].angle()
776
+
777
+ # Time Padding
778
+ complex_specgrams = torch.nn.functional.pad(complex_specgrams, [0, 2])
779
+
780
+ # (new_bins, freq, 2)
781
+ complex_specgrams_0 = complex_specgrams.index_select(-1, time_steps.long())
782
+ complex_specgrams_1 = complex_specgrams.index_select(-1, (time_steps + 1).long())
783
+
784
+ angle_0 = complex_specgrams_0.angle()
785
+ angle_1 = complex_specgrams_1.angle()
786
+
787
+ norm_0 = complex_specgrams_0.abs()
788
+ norm_1 = complex_specgrams_1.abs()
789
+
790
+ phase = angle_1 - angle_0 - phase_advance
791
+ phase = phase - 2 * math.pi * torch.round(phase / (2 * math.pi))
792
+
793
+ # Compute Phase Accum
794
+ phase = phase + phase_advance
795
+ phase = torch.cat([phase_0, phase[..., :-1]], dim=-1)
796
+ phase_acc = torch.cumsum(phase, -1)
797
+
798
+ mag = alphas * norm_1 + (1 - alphas) * norm_0
799
+
800
+ complex_specgrams_stretch = torch.polar(mag, phase_acc)
801
+
802
+ # unpack batch
803
+ complex_specgrams_stretch = complex_specgrams_stretch.reshape(shape[:-2] + complex_specgrams_stretch.shape[1:])
804
+ return complex_specgrams_stretch
805
+
806
+
807
+ def _get_mask_param(mask_param: int, p: float, axis_length: int) -> int:
808
+ if p == 1.0:
809
+ return mask_param
810
+ else:
811
+ return min(mask_param, int(axis_length * p))
812
+
813
+
814
+ def mask_along_axis_iid(
815
+ specgrams: Tensor,
816
+ mask_param: int,
817
+ mask_value: Union[float, Tensor],
818
+ axis: int,
819
+ p: float = 1.0,
820
+ ) -> Tensor:
821
+ r"""Apply a mask along ``axis``.
822
+
823
+ .. devices:: CPU CUDA
824
+
825
+ .. properties:: Autograd TorchScript
826
+
827
+ Mask will be applied from indices ``[v_0, v_0 + v)``,
828
+ where ``v`` is sampled from ``uniform(0, max_v)`` and
829
+ ``v_0`` from ``uniform(0, specgrams.size(axis) - v)``,
830
+ with ``max_v = mask_param`` when ``p = 1.0`` and
831
+ ``max_v = min(mask_param, floor(specgrams.size(axis) * p))`` otherwise.
832
+
833
+ Args:
834
+ specgrams (Tensor): Real spectrograms `(..., freq, time)`, with at least 3 dimensions.
835
+ mask_param (int): Number of columns to be masked will be uniformly sampled from [0, mask_param]
836
+ mask_value (float): Value to assign to the masked columns
837
+ axis (int): Axis to apply masking on, which should be the one of the last two dimensions.
838
+ p (float, optional): maximum proportion of columns that can be masked. (Default: 1.0)
839
+
840
+ Returns:
841
+ Tensor: Masked spectrograms with the same dimensions as input specgrams Tensor`
842
+ """
843
+
844
+ dim = specgrams.dim()
845
+
846
+ if dim < 3:
847
+ raise ValueError(f"Spectrogram must have at least three dimensions ({dim} given).")
848
+
849
+ if axis not in [dim - 2, dim - 1]:
850
+ raise ValueError(
851
+ f"Only Frequency and Time masking are supported (axis {dim-2} and axis {dim-1} supported; {axis} given)."
852
+ )
853
+
854
+ if not 0.0 <= p <= 1.0:
855
+ raise ValueError(f"The value of p must be between 0.0 and 1.0 ({p} given).")
856
+
857
+ mask_param = _get_mask_param(mask_param, p, specgrams.shape[axis])
858
+ if mask_param < 1:
859
+ return specgrams
860
+
861
+ device = specgrams.device
862
+ dtype = specgrams.dtype
863
+
864
+ value = torch.rand(specgrams.shape[: (dim - 2)], device=device, dtype=dtype) * mask_param
865
+ min_value = torch.rand(specgrams.shape[: (dim - 2)], device=device, dtype=dtype) * (specgrams.size(axis) - value)
866
+
867
+ # Create broadcastable mask
868
+ mask_start = min_value.long()[..., None, None]
869
+ mask_end = (min_value.long() + value.long())[..., None, None]
870
+ mask = torch.arange(0, specgrams.size(axis), device=device, dtype=dtype)
871
+
872
+ # Per batch example masking
873
+ specgrams = specgrams.transpose(axis, -1)
874
+ # this aims to avoid CPU-GPU sync from upstream
875
+ specgrams = (
876
+ torch.where((mask >= mask_start) & (mask < mask_end), mask_value.repeat(specgrams.shape), specgrams)
877
+ if isinstance(mask_value, Tensor)
878
+ else specgrams.masked_fill((mask >= mask_start) & (mask < mask_end), mask_value)
879
+ )
880
+ specgrams = specgrams.transpose(axis, -1)
881
+
882
+ return specgrams
883
+
884
+
885
+ def mask_along_axis(
886
+ specgram: Tensor,
887
+ mask_param: int,
888
+ mask_value: float,
889
+ axis: int,
890
+ p: float = 1.0,
891
+ ) -> Tensor:
892
+ r"""Apply a mask along ``axis``.
893
+
894
+ .. devices:: CPU CUDA
895
+
896
+ .. properties:: Autograd TorchScript
897
+
898
+ Mask will be applied from indices ``[v_0, v_0 + v)``,
899
+ where ``v`` is sampled from ``uniform(0, max_v)`` and
900
+ ``v_0`` from ``uniform(0, specgram.size(axis) - v)``, with
901
+ ``max_v = mask_param`` when ``p = 1.0`` and
902
+ ``max_v = min(mask_param, floor(specgram.size(axis) * p))``
903
+ otherwise.
904
+ All examples will have the same mask interval.
905
+
906
+ Args:
907
+ specgram (Tensor): Real spectrograms `(..., freq, time)`, with at least 2 dimensions.
908
+ mask_param (int): Number of columns to be masked will be uniformly sampled from [0, mask_param]
909
+ mask_value (float): Value to assign to the masked columns
910
+ axis (int): Axis to apply masking on, which should be the one of the last two dimensions.
911
+ p (float, optional): maximum proportion of columns that can be masked. (Default: 1.0)
912
+
913
+ Returns:
914
+ Tensor: Masked spectrograms with the same dimensions as input specgram Tensor
915
+ """
916
+ dim = specgram.dim()
917
+
918
+ if dim < 2:
919
+ raise ValueError(f"Spectrogram must have at least two dimensions (time and frequency) ({dim} given).")
920
+
921
+ if axis not in [dim - 2, dim - 1]:
922
+ raise ValueError(
923
+ f"Only Frequency and Time masking are supported (axis {dim-2} and axis {dim-1} supported; {axis} given)."
924
+ )
925
+
926
+ if not 0.0 <= p <= 1.0:
927
+ raise ValueError(f"The value of p must be between 0.0 and 1.0 ({p} given).")
928
+
929
+ mask_param = _get_mask_param(mask_param, p, specgram.shape[axis])
930
+ if mask_param < 1:
931
+ return specgram
932
+
933
+ # pack batch
934
+ shape = specgram.size()
935
+ specgram = specgram.reshape([-1] + list(shape[-2:]))
936
+ # After packing, specgram is a 3D tensor, and the axis corresponding to the to-be-masked dimension
937
+ # is now (axis - dim + 3), e.g. a tensor of shape (10, 2, 50, 10, 2) becomes a tensor of shape (1000, 10, 2).
938
+ value = torch.rand(1) * mask_param
939
+ min_value = torch.rand(1) * (specgram.size(axis - dim + 3) - value)
940
+
941
+ mask_start = (min_value.long()).squeeze()
942
+ mask_end = (min_value.long() + value.long()).squeeze()
943
+ mask = torch.arange(0, specgram.shape[axis - dim + 3], device=specgram.device, dtype=specgram.dtype)
944
+ mask = (mask >= mask_start) & (mask < mask_end)
945
+ # unsqueeze the mask if the axis is frequency
946
+ if axis == dim - 2:
947
+ mask = mask.unsqueeze(-1)
948
+
949
+ if mask_end - mask_start >= mask_param:
950
+ raise ValueError("Number of columns to be masked should be less than mask_param")
951
+
952
+ specgram = specgram.masked_fill(mask, mask_value)
953
+
954
+ # unpack batch
955
+ specgram = specgram.reshape(shape[:-2] + specgram.shape[-2:])
956
+
957
+ return specgram
958
+
959
+
960
+ def compute_deltas(specgram: Tensor, win_length: int = 5, mode: str = "replicate") -> Tensor:
961
+ r"""Compute delta coefficients of a tensor, usually a spectrogram:
962
+
963
+ .. devices:: CPU CUDA
964
+
965
+ .. properties:: TorchScript
966
+
967
+ .. math::
968
+ d_t = \frac{\sum_{n=1}^{\text{N}} n (c_{t+n} - c_{t-n})}{2 \sum_{n=1}^{\text{N}} n^2}
969
+
970
+ where :math:`d_t` is the deltas at time :math:`t`,
971
+ :math:`c_t` is the spectrogram coeffcients at time :math:`t`,
972
+ :math:`N` is ``(win_length-1)//2``.
973
+
974
+ Args:
975
+ specgram (Tensor): Tensor of audio of dimension `(..., freq, time)`
976
+ win_length (int, optional): The window length used for computing delta (Default: ``5``)
977
+ mode (str, optional): Mode parameter passed to padding (Default: ``"replicate"``)
978
+
979
+ Returns:
980
+ Tensor: Tensor of deltas of dimension `(..., freq, time)`
981
+
982
+ Example
983
+ >>> specgram = torch.randn(1, 40, 1000)
984
+ >>> delta = compute_deltas(specgram)
985
+ >>> delta2 = compute_deltas(delta)
986
+ """
987
+ device = specgram.device
988
+ dtype = specgram.dtype
989
+
990
+ # pack batch
991
+ shape = specgram.size()
992
+ specgram = specgram.reshape(1, -1, shape[-1])
993
+
994
+ if win_length < 3:
995
+ raise ValueError(f"Window length should be greater than or equal to 3. Found win_length {win_length}")
996
+
997
+ n = (win_length - 1) // 2
998
+
999
+ # twice sum of integer squared
1000
+ denom = n * (n + 1) * (2 * n + 1) / 3
1001
+
1002
+ specgram = torch.nn.functional.pad(specgram, (n, n), mode=mode)
1003
+
1004
+ kernel = torch.arange(-n, n + 1, 1, device=device, dtype=dtype).repeat(specgram.shape[1], 1, 1)
1005
+
1006
+ output = torch.nn.functional.conv1d(specgram, kernel, groups=specgram.shape[1]) / denom
1007
+
1008
+ # unpack batch
1009
+ output = output.reshape(shape)
1010
+
1011
+ return output
1012
+
1013
+
1014
+ def _compute_nccf(waveform: Tensor, sample_rate: int, frame_time: float, freq_low: int) -> Tensor:
1015
+ r"""
1016
+ Compute Normalized Cross-Correlation Function (NCCF).
1017
+
1018
+ .. math::
1019
+ \phi_i(m) = \frac{\sum_{n=b_i}^{b_i + N-1} w(n) w(m+n)}{\sqrt{E(b_i) E(m+b_i)}},
1020
+
1021
+ where
1022
+ :math:`\phi_i(m)` is the NCCF at frame :math:`i` with lag :math:`m`,
1023
+ :math:`w` is the waveform,
1024
+ :math:`N` is the length of a frame,
1025
+ :math:`b_i` is the beginning of frame :math:`i`,
1026
+ :math:`E(j)` is the energy :math:`\sum_{n=j}^{j+N-1} w^2(n)`.
1027
+ """
1028
+
1029
+ EPSILON = 10 ** (-9)
1030
+
1031
+ # Number of lags to check
1032
+ lags = int(math.ceil(sample_rate / freq_low))
1033
+
1034
+ frame_size = int(math.ceil(sample_rate * frame_time))
1035
+
1036
+ waveform_length = waveform.size()[-1]
1037
+ num_of_frames = int(math.ceil(waveform_length / frame_size))
1038
+
1039
+ p = lags + num_of_frames * frame_size - waveform_length
1040
+ waveform = torch.nn.functional.pad(waveform, (0, p))
1041
+
1042
+ # Compute lags
1043
+ output_lag = []
1044
+ for lag in range(1, lags + 1):
1045
+ s1 = waveform[..., :-lag].unfold(-1, frame_size, frame_size)[..., :num_of_frames, :]
1046
+ s2 = waveform[..., lag:].unfold(-1, frame_size, frame_size)[..., :num_of_frames, :]
1047
+
1048
+ output_frames = (
1049
+ (s1 * s2).sum(-1)
1050
+ / (EPSILON + torch.linalg.vector_norm(s1, ord=2, dim=-1)).pow(2)
1051
+ / (EPSILON + torch.linalg.vector_norm(s2, ord=2, dim=-1)).pow(2)
1052
+ )
1053
+
1054
+ output_lag.append(output_frames.unsqueeze(-1))
1055
+
1056
+ nccf = torch.cat(output_lag, -1)
1057
+
1058
+ return nccf
1059
+
1060
+
1061
+ def _combine_max(a: Tuple[Tensor, Tensor], b: Tuple[Tensor, Tensor], thresh: float = 0.99) -> Tuple[Tensor, Tensor]:
1062
+ """
1063
+ Take value from first if bigger than a multiplicative factor of the second, elementwise.
1064
+ """
1065
+ mask = a[0] > thresh * b[0]
1066
+ values = mask * a[0] + ~mask * b[0]
1067
+ indices = mask * a[1] + ~mask * b[1]
1068
+ return values, indices
1069
+
1070
+
1071
+ def _find_max_per_frame(nccf: Tensor, sample_rate: int, freq_high: int) -> Tensor:
1072
+ r"""
1073
+ For each frame, take the highest value of NCCF,
1074
+ apply centered median smoothing, and convert to frequency.
1075
+
1076
+ Note: If the max among all the lags is very close
1077
+ to the first half of lags, then the latter is taken.
1078
+ """
1079
+
1080
+ lag_min = int(math.ceil(sample_rate / freq_high))
1081
+
1082
+ # Find near enough max that is smallest
1083
+
1084
+ best = torch.max(nccf[..., lag_min:], -1)
1085
+
1086
+ half_size = nccf.shape[-1] // 2
1087
+ half = torch.max(nccf[..., lag_min:half_size], -1)
1088
+
1089
+ best = _combine_max(half, best)
1090
+ indices = best[1]
1091
+
1092
+ # Add back minimal lag
1093
+ indices += lag_min
1094
+ # Add 1 empirical calibration offset
1095
+ indices += 1
1096
+
1097
+ return indices
1098
+
1099
+
1100
+ def _median_smoothing(indices: Tensor, win_length: int) -> Tensor:
1101
+ r"""
1102
+ Apply median smoothing to the 1D tensor over the given window.
1103
+ """
1104
+
1105
+ # Centered windowed
1106
+ pad_length = (win_length - 1) // 2
1107
+
1108
+ # "replicate" padding in any dimension
1109
+ indices = torch.nn.functional.pad(indices, (pad_length, 0), mode="constant", value=0.0)
1110
+
1111
+ indices[..., :pad_length] = torch.cat(pad_length * [indices[..., pad_length].unsqueeze(-1)], dim=-1)
1112
+ roll = indices.unfold(-1, win_length, 1)
1113
+
1114
+ values, _ = torch.median(roll, -1)
1115
+ return values
1116
+
1117
+
1118
+ def detect_pitch_frequency(
1119
+ waveform: Tensor,
1120
+ sample_rate: int,
1121
+ frame_time: float = 10 ** (-2),
1122
+ win_length: int = 30,
1123
+ freq_low: int = 85,
1124
+ freq_high: int = 3400,
1125
+ ) -> Tensor:
1126
+ r"""Detect pitch frequency.
1127
+
1128
+ .. devices:: CPU CUDA
1129
+
1130
+ .. properties:: TorchScript
1131
+
1132
+ It is implemented using normalized cross-correlation function and median smoothing.
1133
+
1134
+ Args:
1135
+ waveform (Tensor): Tensor of audio of dimension `(..., freq, time)`
1136
+ sample_rate (int): The sample rate of the waveform (Hz)
1137
+ frame_time (float, optional): Duration of a frame (Default: ``10 ** (-2)``).
1138
+ win_length (int, optional): The window length for median smoothing (in number of frames) (Default: ``30``).
1139
+ freq_low (int, optional): Lowest frequency that can be detected (Hz) (Default: ``85``).
1140
+ freq_high (int, optional): Highest frequency that can be detected (Hz) (Default: ``3400``).
1141
+
1142
+ Returns:
1143
+ Tensor: Tensor of freq of dimension `(..., frame)`
1144
+ """
1145
+ # pack batch
1146
+ shape = list(waveform.size())
1147
+ waveform = waveform.reshape([-1] + shape[-1:])
1148
+
1149
+ nccf = _compute_nccf(waveform, sample_rate, frame_time, freq_low)
1150
+ indices = _find_max_per_frame(nccf, sample_rate, freq_high)
1151
+ indices = _median_smoothing(indices, win_length)
1152
+
1153
+ # Convert indices to frequency
1154
+ EPSILON = 10 ** (-9)
1155
+ freq = sample_rate / (EPSILON + indices.to(torch.float))
1156
+
1157
+ # unpack batch
1158
+ freq = freq.reshape(shape[:-1] + list(freq.shape[-1:]))
1159
+
1160
+ return freq
1161
+
1162
+
1163
+ def sliding_window_cmn(
1164
+ specgram: Tensor,
1165
+ cmn_window: int = 600,
1166
+ min_cmn_window: int = 100,
1167
+ center: bool = False,
1168
+ norm_vars: bool = False,
1169
+ ) -> Tensor:
1170
+ r"""
1171
+ Apply sliding-window cepstral mean (and optionally variance) normalization per utterance.
1172
+
1173
+ .. devices:: CPU CUDA
1174
+
1175
+ .. properties:: TorchScript
1176
+
1177
+ Args:
1178
+ specgram (Tensor): Tensor of spectrogram of dimension `(..., time, freq)`
1179
+ cmn_window (int, optional): Window in frames for running average CMN computation (int, default = 600)
1180
+ min_cmn_window (int, optional): Minimum CMN window used at start of decoding (adds latency only at start).
1181
+ Only applicable if center == false, ignored if center==true (int, default = 100)
1182
+ center (bool, optional): If true, use a window centered on the current frame
1183
+ (to the extent possible, modulo end effects). If false, window is to the left. (bool, default = false)
1184
+ norm_vars (bool, optional): If true, normalize variance to one. (bool, default = false)
1185
+
1186
+ Returns:
1187
+ Tensor: Tensor matching input shape `(..., freq, time)`
1188
+ """
1189
+ input_shape = specgram.shape
1190
+ num_frames, num_feats = input_shape[-2:]
1191
+ specgram = specgram.view(-1, num_frames, num_feats)
1192
+ num_channels = specgram.shape[0]
1193
+
1194
+ dtype = specgram.dtype
1195
+ device = specgram.device
1196
+ last_window_start = last_window_end = -1
1197
+ cur_sum = torch.zeros(num_channels, num_feats, dtype=dtype, device=device)
1198
+ cur_sumsq = torch.zeros(num_channels, num_feats, dtype=dtype, device=device)
1199
+ cmn_specgram = torch.zeros(num_channels, num_frames, num_feats, dtype=dtype, device=device)
1200
+ for t in range(num_frames):
1201
+ window_start = 0
1202
+ window_end = 0
1203
+ if center:
1204
+ window_start = t - cmn_window // 2
1205
+ window_end = window_start + cmn_window
1206
+ else:
1207
+ window_start = t - cmn_window
1208
+ window_end = t + 1
1209
+ if window_start < 0:
1210
+ window_end -= window_start
1211
+ window_start = 0
1212
+ if not center:
1213
+ if window_end > t:
1214
+ window_end = max(t + 1, min_cmn_window)
1215
+ if window_end > num_frames:
1216
+ window_start -= window_end - num_frames
1217
+ window_end = num_frames
1218
+ if window_start < 0:
1219
+ window_start = 0
1220
+ if last_window_start == -1:
1221
+ input_part = specgram[:, window_start : window_end - window_start, :]
1222
+ cur_sum += torch.sum(input_part, 1)
1223
+ if norm_vars:
1224
+ cur_sumsq += torch.cumsum(input_part**2, 1)[:, -1, :]
1225
+ else:
1226
+ if window_start > last_window_start:
1227
+ frame_to_remove = specgram[:, last_window_start, :]
1228
+ cur_sum -= frame_to_remove
1229
+ if norm_vars:
1230
+ cur_sumsq -= frame_to_remove**2
1231
+ if window_end > last_window_end:
1232
+ frame_to_add = specgram[:, last_window_end, :]
1233
+ cur_sum += frame_to_add
1234
+ if norm_vars:
1235
+ cur_sumsq += frame_to_add**2
1236
+ window_frames = window_end - window_start
1237
+ last_window_start = window_start
1238
+ last_window_end = window_end
1239
+ cmn_specgram[:, t, :] = specgram[:, t, :] - cur_sum / window_frames
1240
+ if norm_vars:
1241
+ if window_frames == 1:
1242
+ cmn_specgram[:, t, :] = torch.zeros(num_channels, num_feats, dtype=dtype, device=device)
1243
+ else:
1244
+ variance = cur_sumsq
1245
+ variance = variance / window_frames
1246
+ variance -= (cur_sum**2) / (window_frames**2)
1247
+ variance = torch.pow(variance, -0.5)
1248
+ cmn_specgram[:, t, :] *= variance
1249
+
1250
+ cmn_specgram = cmn_specgram.view(input_shape[:-2] + (num_frames, num_feats))
1251
+ if len(input_shape) == 2:
1252
+ cmn_specgram = cmn_specgram.squeeze(0)
1253
+ return cmn_specgram
1254
+
1255
+
1256
+ def spectral_centroid(
1257
+ waveform: Tensor,
1258
+ sample_rate: int,
1259
+ pad: int,
1260
+ window: Tensor,
1261
+ n_fft: int,
1262
+ hop_length: int,
1263
+ win_length: int,
1264
+ ) -> Tensor:
1265
+ r"""Compute the spectral centroid for each channel along the time axis.
1266
+
1267
+ .. devices:: CPU CUDA
1268
+
1269
+ .. properties:: Autograd TorchScript
1270
+
1271
+ The spectral centroid is defined as the weighted average of the
1272
+ frequency values, weighted by their magnitude.
1273
+
1274
+ Args:
1275
+ waveform (Tensor): Tensor of audio of dimension `(..., time)`
1276
+ sample_rate (int): Sample rate of the audio waveform
1277
+ pad (int): Two sided padding of signal
1278
+ window (Tensor): Window tensor that is applied/multiplied to each frame/window
1279
+ n_fft (int): Size of FFT
1280
+ hop_length (int): Length of hop between STFT windows
1281
+ win_length (int): Window size
1282
+
1283
+ Returns:
1284
+ Tensor: Dimension `(..., time)`
1285
+ """
1286
+ specgram = spectrogram(
1287
+ waveform,
1288
+ pad=pad,
1289
+ window=window,
1290
+ n_fft=n_fft,
1291
+ hop_length=hop_length,
1292
+ win_length=win_length,
1293
+ power=1.0,
1294
+ normalized=False,
1295
+ )
1296
+ freqs = torch.linspace(0, sample_rate // 2, steps=1 + n_fft // 2, device=specgram.device).reshape((-1, 1))
1297
+ freq_dim = -2
1298
+ return (freqs * specgram).sum(dim=freq_dim) / specgram.sum(dim=freq_dim)
1299
+
1300
+
1301
+ _CPU = torch.device("cpu")
1302
+
1303
+
1304
+ def _get_sinc_resample_kernel(
1305
+ orig_freq: int,
1306
+ new_freq: int,
1307
+ gcd: int,
1308
+ lowpass_filter_width: int = 6,
1309
+ rolloff: float = 0.99,
1310
+ resampling_method: str = "sinc_interp_hann",
1311
+ beta: Optional[float] = None,
1312
+ device: torch.device = _CPU,
1313
+ dtype: Optional[torch.dtype] = None,
1314
+ ):
1315
+ if not (int(orig_freq) == orig_freq and int(new_freq) == new_freq):
1316
+ raise Exception(
1317
+ "Frequencies must be of integer type to ensure quality resampling computation. "
1318
+ "To work around this, manually convert both frequencies to integer values "
1319
+ "that maintain their resampling rate ratio before passing them into the function. "
1320
+ "Example: To downsample a 44100 hz waveform by a factor of 8, use "
1321
+ "`orig_freq=8` and `new_freq=1` instead of `orig_freq=44100` and `new_freq=5512.5`. "
1322
+ "For more information, please refer to https://github.com/pytorch/audio/issues/1487."
1323
+ )
1324
+
1325
+ if resampling_method in ["sinc_interpolation", "kaiser_window"]:
1326
+ method_map = {
1327
+ "sinc_interpolation": "sinc_interp_hann",
1328
+ "kaiser_window": "sinc_interp_kaiser",
1329
+ }
1330
+ warnings.warn(
1331
+ f'"{resampling_method}" resampling method name is being deprecated and replaced by '
1332
+ f'"{method_map[resampling_method]}" in the next release. '
1333
+ "The default behavior remains unchanged.",
1334
+ stacklevel=3,
1335
+ )
1336
+ elif resampling_method not in ["sinc_interp_hann", "sinc_interp_kaiser"]:
1337
+ raise ValueError("Invalid resampling method: {}".format(resampling_method))
1338
+
1339
+ orig_freq = int(orig_freq) // gcd
1340
+ new_freq = int(new_freq) // gcd
1341
+
1342
+ if lowpass_filter_width <= 0:
1343
+ raise ValueError("Low pass filter width should be positive.")
1344
+ base_freq = min(orig_freq, new_freq)
1345
+ # This will perform antialiasing filtering by removing the highest frequencies.
1346
+ # At first I thought I only needed this when downsampling, but when upsampling
1347
+ # you will get edge artifacts without this, as the edge is equivalent to zero padding,
1348
+ # which will add high freq artifacts.
1349
+ base_freq *= rolloff
1350
+
1351
+ # The key idea of the algorithm is that x(t) can be exactly reconstructed from x[i] (tensor)
1352
+ # using the sinc interpolation formula:
1353
+ # x(t) = sum_i x[i] sinc(pi * orig_freq * (i / orig_freq - t))
1354
+ # We can then sample the function x(t) with a different sample rate:
1355
+ # y[j] = x(j / new_freq)
1356
+ # or,
1357
+ # y[j] = sum_i x[i] sinc(pi * orig_freq * (i / orig_freq - j / new_freq))
1358
+
1359
+ # We see here that y[j] is the convolution of x[i] with a specific filter, for which
1360
+ # we take an FIR approximation, stopping when we see at least `lowpass_filter_width` zeros crossing.
1361
+ # But y[j+1] is going to have a different set of weights and so on, until y[j + new_freq].
1362
+ # Indeed:
1363
+ # y[j + new_freq] = sum_i x[i] sinc(pi * orig_freq * ((i / orig_freq - (j + new_freq) / new_freq))
1364
+ # = sum_i x[i] sinc(pi * orig_freq * ((i - orig_freq) / orig_freq - j / new_freq))
1365
+ # = sum_i x[i + orig_freq] sinc(pi * orig_freq * (i / orig_freq - j / new_freq))
1366
+ # so y[j+new_freq] uses the same filter as y[j], but on a shifted version of x by `orig_freq`.
1367
+ # This will explain the F.conv1d after, with a stride of orig_freq.
1368
+ width = math.ceil(lowpass_filter_width * orig_freq / base_freq)
1369
+ # If orig_freq is still big after GCD reduction, most filters will be very unbalanced, i.e.,
1370
+ # they will have a lot of almost zero values to the left or to the right...
1371
+ # There is probably a way to evaluate those filters more efficiently, but this is kept for
1372
+ # future work.
1373
+ idx_dtype = dtype if dtype is not None else torch.float64
1374
+
1375
+ idx = torch.arange(-width, width + orig_freq, dtype=idx_dtype, device=device)[None, None] / orig_freq
1376
+
1377
+ t = torch.arange(0, -new_freq, -1, dtype=dtype, device=device)[:, None, None] / new_freq + idx
1378
+ t *= base_freq
1379
+ t = t.clamp_(-lowpass_filter_width, lowpass_filter_width)
1380
+
1381
+ # we do not use built in torch windows here as we need to evaluate the window
1382
+ # at specific positions, not over a regular grid.
1383
+ if resampling_method == "sinc_interp_hann":
1384
+ window = torch.cos(t * math.pi / lowpass_filter_width / 2) ** 2
1385
+ else:
1386
+ # sinc_interp_kaiser
1387
+ if beta is None:
1388
+ beta = 14.769656459379492
1389
+ beta_tensor = torch.tensor(float(beta))
1390
+ window = torch.i0(beta_tensor * torch.sqrt(1 - (t / lowpass_filter_width) ** 2)) / torch.i0(beta_tensor)
1391
+
1392
+ t *= math.pi
1393
+
1394
+ scale = base_freq / orig_freq
1395
+ kernels = torch.where(t == 0, torch.tensor(1.0).to(t), t.sin() / t)
1396
+ kernels *= window * scale
1397
+
1398
+ if dtype is None:
1399
+ kernels = kernels.to(dtype=torch.float32)
1400
+
1401
+ return kernels, width
1402
+
1403
+
1404
+ def _apply_sinc_resample_kernel(
1405
+ waveform: Tensor,
1406
+ orig_freq: int,
1407
+ new_freq: int,
1408
+ gcd: int,
1409
+ kernel: Tensor,
1410
+ width: int,
1411
+ ):
1412
+ if not waveform.is_floating_point():
1413
+ raise TypeError(f"Expected floating point type for waveform tensor, but received {waveform.dtype}.")
1414
+
1415
+ orig_freq = int(orig_freq) // gcd
1416
+ new_freq = int(new_freq) // gcd
1417
+
1418
+ # pack batch
1419
+ shape = waveform.size()
1420
+ waveform = waveform.view(-1, shape[-1])
1421
+
1422
+ num_wavs, length = waveform.shape
1423
+ waveform = torch.nn.functional.pad(waveform, (width, width + orig_freq))
1424
+ resampled = torch.nn.functional.conv1d(waveform[:, None], kernel, stride=orig_freq)
1425
+ resampled = resampled.transpose(1, 2).reshape(num_wavs, -1)
1426
+ target_length = torch.ceil(torch.as_tensor(new_freq * length / orig_freq)).long()
1427
+ resampled = resampled[..., :target_length]
1428
+
1429
+ # unpack batch
1430
+ resampled = resampled.view(shape[:-1] + resampled.shape[-1:])
1431
+ return resampled
1432
+
1433
+
1434
+ def resample(
1435
+ waveform: Tensor,
1436
+ orig_freq: int,
1437
+ new_freq: int,
1438
+ lowpass_filter_width: int = 6,
1439
+ rolloff: float = 0.99,
1440
+ resampling_method: str = "sinc_interp_hann",
1441
+ beta: Optional[float] = None,
1442
+ ) -> Tensor:
1443
+ r"""Resamples the waveform at the new frequency using bandlimited interpolation. :cite:`RESAMPLE`.
1444
+
1445
+ .. devices:: CPU CUDA
1446
+
1447
+ .. properties:: Autograd TorchScript
1448
+
1449
+ Note:
1450
+ ``transforms.Resample`` precomputes and reuses the resampling kernel, so using it will result in
1451
+ more efficient computation if resampling multiple waveforms with the same resampling parameters.
1452
+
1453
+ Args:
1454
+ waveform (Tensor): The input signal of dimension `(..., time)`
1455
+ orig_freq (int): The original frequency of the signal
1456
+ new_freq (int): The desired frequency
1457
+ lowpass_filter_width (int, optional): Controls the sharpness of the filter, more == sharper
1458
+ but less efficient. (Default: ``6``)
1459
+ rolloff (float, optional): The roll-off frequency of the filter, as a fraction of the Nyquist.
1460
+ Lower values reduce anti-aliasing, but also reduce some of the highest frequencies. (Default: ``0.99``)
1461
+ resampling_method (str, optional): The resampling method to use.
1462
+ Options: [``"sinc_interp_hann"``, ``"sinc_interp_kaiser"``] (Default: ``"sinc_interp_hann"``)
1463
+ beta (float or None, optional): The shape parameter used for kaiser window.
1464
+
1465
+ Returns:
1466
+ Tensor: The waveform at the new frequency of dimension `(..., time).`
1467
+ """
1468
+
1469
+ if orig_freq <= 0.0 or new_freq <= 0.0:
1470
+ raise ValueError("Original frequency and desired frequecy should be positive")
1471
+
1472
+ if orig_freq == new_freq:
1473
+ return waveform
1474
+
1475
+ gcd = math.gcd(int(orig_freq), int(new_freq))
1476
+
1477
+ kernel, width = _get_sinc_resample_kernel(
1478
+ orig_freq,
1479
+ new_freq,
1480
+ gcd,
1481
+ lowpass_filter_width,
1482
+ rolloff,
1483
+ resampling_method,
1484
+ beta,
1485
+ waveform.device,
1486
+ waveform.dtype,
1487
+ )
1488
+ resampled = _apply_sinc_resample_kernel(waveform, orig_freq, new_freq, gcd, kernel, width)
1489
+ return resampled
1490
+
1491
+
1492
+ @torch.jit.unused
1493
+ def edit_distance(seq1: Sequence, seq2: Sequence) -> int:
1494
+ """
1495
+ Calculate the word level edit (Levenshtein) distance between two sequences.
1496
+
1497
+ .. devices:: CPU
1498
+
1499
+ The function computes an edit distance allowing deletion, insertion and
1500
+ substitution. The result is an integer.
1501
+
1502
+ For most applications, the two input sequences should be the same type. If
1503
+ two strings are given, the output is the edit distance between the two
1504
+ strings (character edit distance). If two lists of strings are given, the
1505
+ output is the edit distance between sentences (word edit distance). Users
1506
+ may want to normalize the output by the length of the reference sequence.
1507
+
1508
+ Args:
1509
+ seq1 (Sequence): the first sequence to compare.
1510
+ seq2 (Sequence): the second sequence to compare.
1511
+ Returns:
1512
+ int: The distance between the first and second sequences.
1513
+ """
1514
+ len_sent2 = len(seq2)
1515
+ dold = list(range(len_sent2 + 1))
1516
+ dnew = [0 for _ in range(len_sent2 + 1)]
1517
+
1518
+ for i in range(1, len(seq1) + 1):
1519
+ dnew[0] = i
1520
+ for j in range(1, len_sent2 + 1):
1521
+ if seq1[i - 1] == seq2[j - 1]:
1522
+ dnew[j] = dold[j - 1]
1523
+ else:
1524
+ substitution = dold[j - 1] + 1
1525
+ insertion = dnew[j - 1] + 1
1526
+ deletion = dold[j] + 1
1527
+ dnew[j] = min(substitution, insertion, deletion)
1528
+
1529
+ dnew, dold = dold, dnew
1530
+
1531
+ return int(dold[-1])
1532
+
1533
+
1534
+ def loudness(waveform: Tensor, sample_rate: int):
1535
+ r"""Measure audio loudness according to the ITU-R BS.1770-4 recommendation.
1536
+
1537
+ .. devices:: CPU CUDA
1538
+
1539
+ .. properties:: TorchScript
1540
+
1541
+ Args:
1542
+ waveform(torch.Tensor): audio waveform of dimension `(..., channels, time)`
1543
+ sample_rate (int): sampling rate of the waveform
1544
+
1545
+ Returns:
1546
+ Tensor: loudness estimates (LKFS)
1547
+
1548
+ Reference:
1549
+ - https://www.itu.int/rec/R-REC-BS.1770-4-201510-I/en
1550
+ """
1551
+
1552
+ if waveform.size(-2) > 5:
1553
+ raise ValueError("Only up to 5 channels are supported.")
1554
+
1555
+ gate_duration = 0.4
1556
+ overlap = 0.75
1557
+ gamma_abs = -70.0
1558
+ kweight_bias = -0.691
1559
+ gate_samples = int(round(gate_duration * sample_rate))
1560
+ step = int(round(gate_samples * (1 - overlap)))
1561
+
1562
+ # Apply K-weighting
1563
+ waveform = treble_biquad(waveform, sample_rate, 4.0, 1500.0, 1 / math.sqrt(2))
1564
+ waveform = highpass_biquad(waveform, sample_rate, 38.0, 0.5)
1565
+
1566
+ # Compute the energy for each block
1567
+ energy = torch.square(waveform).unfold(-1, gate_samples, step)
1568
+ energy = torch.mean(energy, dim=-1)
1569
+
1570
+ # Compute channel-weighted summation
1571
+ g = torch.tensor([1.0, 1.0, 1.0, 1.41, 1.41], dtype=waveform.dtype, device=waveform.device)
1572
+ g = g[: energy.size(-2)]
1573
+
1574
+ energy_weighted = torch.sum(g.unsqueeze(-1) * energy, dim=-2)
1575
+ loudness = -0.691 + 10 * torch.log10(energy_weighted)
1576
+
1577
+ # Apply absolute gating of the blocks
1578
+ gated_blocks = loudness > gamma_abs
1579
+ gated_blocks = gated_blocks.unsqueeze(-2)
1580
+
1581
+ energy_filtered = torch.sum(gated_blocks * energy, dim=-1) / torch.count_nonzero(gated_blocks, dim=-1)
1582
+ energy_weighted = torch.sum(g * energy_filtered, dim=-1)
1583
+ gamma_rel = kweight_bias + 10 * torch.log10(energy_weighted) - 10
1584
+
1585
+ # Apply relative gating of the blocks
1586
+ gated_blocks = torch.logical_and(gated_blocks.squeeze(-2), loudness > gamma_rel.unsqueeze(-1))
1587
+ gated_blocks = gated_blocks.unsqueeze(-2)
1588
+
1589
+ energy_filtered = torch.sum(gated_blocks * energy, dim=-1) / torch.count_nonzero(gated_blocks, dim=-1)
1590
+ energy_weighted = torch.sum(g * energy_filtered, dim=-1)
1591
+ LKFS = kweight_bias + 10 * torch.log10(energy_weighted)
1592
+ return LKFS
1593
+
1594
+
1595
+ def pitch_shift(
1596
+ waveform: Tensor,
1597
+ sample_rate: int,
1598
+ n_steps: int,
1599
+ bins_per_octave: int = 12,
1600
+ n_fft: int = 512,
1601
+ win_length: Optional[int] = None,
1602
+ hop_length: Optional[int] = None,
1603
+ window: Optional[Tensor] = None,
1604
+ ) -> Tensor:
1605
+ """
1606
+ Shift the pitch of a waveform by ``n_steps`` steps.
1607
+
1608
+ .. devices:: CPU CUDA
1609
+
1610
+ .. properties:: TorchScript
1611
+
1612
+ Args:
1613
+ waveform (Tensor): The input waveform of shape `(..., time)`.
1614
+ sample_rate (int): Sample rate of `waveform`.
1615
+ n_steps (int): The (fractional) steps to shift `waveform`.
1616
+ bins_per_octave (int, optional): The number of steps per octave (Default: ``12``).
1617
+ n_fft (int, optional): Size of FFT, creates ``n_fft // 2 + 1`` bins (Default: ``512``).
1618
+ win_length (int or None, optional): Window size. If None, then ``n_fft`` is used. (Default: ``None``).
1619
+ hop_length (int or None, optional): Length of hop between STFT windows. If None, then
1620
+ ``win_length // 4`` is used (Default: ``None``).
1621
+ window (Tensor or None, optional): Window tensor that is applied/multiplied to each frame/window.
1622
+ If None, then ``torch.hann_window(win_length)`` is used (Default: ``None``).
1623
+
1624
+
1625
+ Returns:
1626
+ Tensor: The pitch-shifted audio waveform of shape `(..., time)`.
1627
+ """
1628
+ waveform_stretch = _stretch_waveform(
1629
+ waveform,
1630
+ n_steps,
1631
+ bins_per_octave,
1632
+ n_fft,
1633
+ win_length,
1634
+ hop_length,
1635
+ window,
1636
+ )
1637
+ rate = 2.0 ** (-float(n_steps) / bins_per_octave)
1638
+ waveform_shift = resample(waveform_stretch, int(sample_rate / rate), sample_rate)
1639
+
1640
+ return _fix_waveform_shape(waveform_shift, waveform.size())
1641
+
1642
+
1643
+ def _stretch_waveform(
1644
+ waveform: Tensor,
1645
+ n_steps: int,
1646
+ bins_per_octave: int = 12,
1647
+ n_fft: int = 512,
1648
+ win_length: Optional[int] = None,
1649
+ hop_length: Optional[int] = None,
1650
+ window: Optional[Tensor] = None,
1651
+ ) -> Tensor:
1652
+ """
1653
+ Pitch shift helper function to preprocess and stretch waveform before resampling step.
1654
+
1655
+ Args:
1656
+ See pitch_shift arg descriptions.
1657
+
1658
+ Returns:
1659
+ Tensor: The preprocessed waveform stretched prior to resampling.
1660
+ """
1661
+ if hop_length is None:
1662
+ hop_length = n_fft // 4
1663
+ if win_length is None:
1664
+ win_length = n_fft
1665
+ if window is None:
1666
+ window = torch.hann_window(window_length=win_length, device=waveform.device)
1667
+
1668
+ # pack batch
1669
+ shape = waveform.size()
1670
+ waveform = waveform.reshape(-1, shape[-1])
1671
+
1672
+ ori_len = shape[-1]
1673
+ rate = 2.0 ** (-float(n_steps) / bins_per_octave)
1674
+ spec_f = torch.stft(
1675
+ input=waveform,
1676
+ n_fft=n_fft,
1677
+ hop_length=hop_length,
1678
+ win_length=win_length,
1679
+ window=window,
1680
+ center=True,
1681
+ pad_mode="reflect",
1682
+ normalized=False,
1683
+ onesided=True,
1684
+ return_complex=True,
1685
+ )
1686
+ phase_advance = torch.linspace(0, math.pi * hop_length, spec_f.shape[-2], device=spec_f.device)[..., None]
1687
+ spec_stretch = phase_vocoder(spec_f, rate, phase_advance)
1688
+ len_stretch = int(round(ori_len / rate))
1689
+ waveform_stretch = torch.istft(
1690
+ spec_stretch, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, length=len_stretch
1691
+ )
1692
+ return waveform_stretch
1693
+
1694
+
1695
+ def _fix_waveform_shape(
1696
+ waveform_shift: Tensor,
1697
+ shape: List[int],
1698
+ ) -> Tensor:
1699
+ """
1700
+ PitchShift helper function to process after resampling step to fix the shape back.
1701
+
1702
+ Args:
1703
+ waveform_shift(Tensor): The waveform after stretch and resample
1704
+ shape (List[int]): The shape of initial waveform
1705
+
1706
+ Returns:
1707
+ Tensor: The pitch-shifted audio waveform of shape `(..., time)`.
1708
+ """
1709
+ ori_len = shape[-1]
1710
+ shift_len = waveform_shift.size()[-1]
1711
+ if shift_len > ori_len:
1712
+ waveform_shift = waveform_shift[..., :ori_len]
1713
+ else:
1714
+ waveform_shift = torch.nn.functional.pad(waveform_shift, [0, ori_len - shift_len])
1715
+
1716
+ # unpack batch
1717
+ waveform_shift = waveform_shift.view(shape[:-1] + waveform_shift.shape[-1:])
1718
+ return waveform_shift
1719
+
1720
+
1721
+ class RnntLoss(torch.autograd.Function):
1722
+ @staticmethod
1723
+ def forward(ctx, *args):
1724
+ output, saved = torch.ops.torchaudio.rnnt_loss_forward(*args)
1725
+ ctx.save_for_backward(saved)
1726
+ return output
1727
+
1728
+ @staticmethod
1729
+ def backward(ctx, dy):
1730
+ grad = ctx.saved_tensors[0]
1731
+ grad_out = dy.view((-1, 1, 1, 1))
1732
+ result = grad * grad_out
1733
+ return (result, None, None, None, None, None, None, None)
1734
+
1735
+
1736
+ def _rnnt_loss(
1737
+ logits: Tensor,
1738
+ targets: Tensor,
1739
+ logit_lengths: Tensor,
1740
+ target_lengths: Tensor,
1741
+ blank: int = -1,
1742
+ clamp: float = -1,
1743
+ reduction: str = "mean",
1744
+ fused_log_softmax: bool = True,
1745
+ ):
1746
+ """Compute the RNN Transducer loss from *Sequence Transduction with Recurrent Neural Networks*
1747
+ :cite:`graves2012sequence`.
1748
+
1749
+ .. devices:: CPU CUDA
1750
+
1751
+ .. properties:: Autograd TorchScript
1752
+
1753
+ The RNN Transducer loss extends the CTC loss by defining a distribution over output
1754
+ sequences of all lengths, and by jointly modelling both input-output and output-output
1755
+ dependencies.
1756
+
1757
+ Args:
1758
+ logits (Tensor): Tensor of dimension `(batch, max seq length, max target length + 1, class)`
1759
+ containing output from joiner
1760
+ targets (Tensor): Tensor of dimension `(batch, max target length)` containing targets with zero padded
1761
+ logit_lengths (Tensor): Tensor of dimension `(batch)` containing lengths of each sequence from encoder
1762
+ target_lengths (Tensor): Tensor of dimension `(batch)` containing lengths of targets for each sequence
1763
+ blank (int, optional): blank label (Default: ``-1``)
1764
+ clamp (float, optional): clamp for gradients (Default: ``-1``)
1765
+ reduction (string, optional): Specifies the reduction to apply to the output:
1766
+ ``"none"`` | ``"mean"`` | ``"sum"``. (Default: ``"mean"``)
1767
+ fused_log_softmax (bool): set to False if calling log_softmax outside of loss (Default: ``True``)
1768
+ Returns:
1769
+ Tensor: Loss with the reduction option applied. If ``reduction`` is ``"none"``, then size `(batch)`,
1770
+ otherwise scalar.
1771
+ """
1772
+ if reduction not in ["none", "mean", "sum"]:
1773
+ raise ValueError('reduction should be one of "none", "mean", or "sum"')
1774
+
1775
+ if blank < 0: # reinterpret blank index if blank < 0.
1776
+ blank = logits.shape[-1] + blank
1777
+
1778
+ costs = RnntLoss.apply(logits, targets, logit_lengths, target_lengths, blank, clamp, fused_log_softmax)
1779
+
1780
+ if reduction == "mean":
1781
+ return costs.mean()
1782
+ elif reduction == "sum":
1783
+ return costs.sum()
1784
+
1785
+ return costs
1786
+
1787
+
1788
+ def psd(
1789
+ specgram: Tensor,
1790
+ mask: Optional[Tensor] = None,
1791
+ normalize: bool = True,
1792
+ eps: float = 1e-10,
1793
+ ) -> Tensor:
1794
+ """Compute cross-channel power spectral density (PSD) matrix.
1795
+
1796
+ .. devices:: CPU CUDA
1797
+
1798
+ .. properties:: Autograd TorchScript
1799
+
1800
+ Args:
1801
+ specgram (torch.Tensor): Multi-channel complex-valued spectrum.
1802
+ Tensor with dimensions `(..., channel, freq, time)`.
1803
+ mask (torch.Tensor or None, optional): Time-Frequency mask for normalization.
1804
+ Tensor with dimensions `(..., freq, time)`. (Default: ``None``)
1805
+ normalize (bool, optional): If ``True``, normalize the mask along the time dimension. (Default: ``True``)
1806
+ eps (float, optional): Value to add to the denominator in mask normalization. (Default: ``1e-15``)
1807
+
1808
+ Returns:
1809
+ torch.Tensor: The complex-valued PSD matrix of the input spectrum.
1810
+ Tensor with dimensions `(..., freq, channel, channel)`
1811
+ """
1812
+ specgram = specgram.transpose(-3, -2) # shape (freq, channel, time)
1813
+ # outer product:
1814
+ # (..., ch_1, time) x (..., ch_2, time) -> (..., time, ch_1, ch_2)
1815
+ psd = torch.einsum("...ct,...et->...tce", [specgram, specgram.conj()])
1816
+
1817
+ if mask is not None:
1818
+ if mask.shape[:-1] != specgram.shape[:-2] or mask.shape[-1] != specgram.shape[-1]:
1819
+ raise ValueError(
1820
+ "The dimensions of mask except the channel dimension should be the same as specgram."
1821
+ f"Found {mask.shape} for mask and {specgram.shape} for specgram."
1822
+ )
1823
+ # Normalized mask along time dimension:
1824
+ if normalize:
1825
+ mask = mask / (mask.sum(dim=-1, keepdim=True) + eps)
1826
+
1827
+ psd = psd * mask[..., None, None]
1828
+
1829
+ psd = psd.sum(dim=-3)
1830
+ return psd
1831
+
1832
+
1833
+ # Expose both deprecated wrapper as well as original because torchscript breaks on
1834
+ # wrapped functions.
1835
+ rnnt_loss = dropping_support(_rnnt_loss)
1836
+
1837
+
1838
+ def _compute_mat_trace(input: torch.Tensor, dim1: int = -1, dim2: int = -2) -> torch.Tensor:
1839
+ r"""Compute the trace of a Tensor along ``dim1`` and ``dim2`` dimensions.
1840
+
1841
+ Args:
1842
+ input (torch.Tensor): Tensor with dimensions `(..., channel, channel)`.
1843
+ dim1 (int, optional): The first dimension of the diagonal matrix.
1844
+ (Default: ``-1``)
1845
+ dim2 (int, optional): The second dimension of the diagonal matrix.
1846
+ (Default: ``-2``)
1847
+
1848
+ Returns:
1849
+ Tensor: The trace of the input Tensor.
1850
+ """
1851
+ if input.ndim < 2:
1852
+ raise ValueError("The dimension of the tensor must be at least 2.")
1853
+ if input.shape[dim1] != input.shape[dim2]:
1854
+ raise ValueError("The size of ``dim1`` and ``dim2`` must be the same.")
1855
+ input = torch.diagonal(input, 0, dim1=dim1, dim2=dim2)
1856
+ return input.sum(dim=-1)
1857
+
1858
+
1859
+ def _tik_reg(mat: torch.Tensor, reg: float = 1e-7, eps: float = 1e-8) -> torch.Tensor:
1860
+ """Perform Tikhonov regularization (only modifying real part).
1861
+
1862
+ Args:
1863
+ mat (torch.Tensor): Input matrix with dimensions `(..., channel, channel)`.
1864
+ reg (float, optional): Regularization factor. (Default: 1e-8)
1865
+ eps (float, optional): Value to avoid the correlation matrix is all-zero. (Default: ``1e-8``)
1866
+
1867
+ Returns:
1868
+ Tensor: Regularized matrix with dimensions `(..., channel, channel)`.
1869
+ """
1870
+ # Add eps
1871
+ C = mat.size(-1)
1872
+ eye = torch.eye(C, dtype=mat.dtype, device=mat.device)
1873
+ epsilon = _compute_mat_trace(mat).real[..., None, None] * reg
1874
+ # in case that correlation_matrix is all-zero
1875
+ epsilon = epsilon + eps
1876
+ mat = mat + epsilon * eye[..., :, :]
1877
+ return mat
1878
+
1879
+
1880
+ def _assert_psd_matrices(psd_s: torch.Tensor, psd_n: torch.Tensor) -> None:
1881
+ """Assertion checks of the PSD matrices of target speech and noise.
1882
+
1883
+ Args:
1884
+ psd_s (torch.Tensor): The complex-valued power spectral density (PSD) matrix of target speech.
1885
+ Tensor with dimensions `(..., freq, channel, channel)`.
1886
+ psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.
1887
+ Tensor with dimensions `(..., freq, channel, channel)`.
1888
+ """
1889
+ if psd_s.ndim < 3 or psd_n.ndim < 3:
1890
+ raise ValueError(
1891
+ "Expected at least 3D Tensor (..., freq, channel, channel) for psd_s and psd_n. "
1892
+ f"Found {psd_s.shape} for psd_s and {psd_n.shape} for psd_n."
1893
+ )
1894
+ if not (psd_s.is_complex() and psd_n.is_complex()):
1895
+ raise TypeError(
1896
+ "The type of psd_s and psd_n must be ``torch.cfloat`` or ``torch.cdouble``. "
1897
+ f"Found {psd_s.dtype} for psd_s and {psd_n.dtype} for psd_n."
1898
+ )
1899
+ if psd_s.shape != psd_n.shape:
1900
+ raise ValueError(
1901
+ f"The dimensions of psd_s and psd_n should be the same. Found {psd_s.shape} and {psd_n.shape}."
1902
+ )
1903
+ if psd_s.shape[-1] != psd_s.shape[-2]:
1904
+ raise ValueError(f"The last two dimensions of psd_s should be the same. Found {psd_s.shape}.")
1905
+
1906
+
1907
+ def mvdr_weights_souden(
1908
+ psd_s: Tensor,
1909
+ psd_n: Tensor,
1910
+ reference_channel: Union[int, Tensor],
1911
+ diagonal_loading: bool = True,
1912
+ diag_eps: float = 1e-7,
1913
+ eps: float = 1e-8,
1914
+ ) -> Tensor:
1915
+ r"""Compute the Minimum Variance Distortionless Response (*MVDR* :cite:`capon1969high`) beamforming weights
1916
+ by the method proposed by *Souden et, al.* :cite:`souden2009optimal`.
1917
+
1918
+ .. devices:: CPU CUDA
1919
+
1920
+ .. properties:: Autograd TorchScript
1921
+
1922
+ Given the power spectral density (PSD) matrix of target speech :math:`\bf{\Phi}_{\textbf{SS}}`,
1923
+ the PSD matrix of noise :math:`\bf{\Phi}_{\textbf{NN}}`, and a one-hot vector that represents the
1924
+ reference channel :math:`\bf{u}`, the method computes the MVDR beamforming weight martrix
1925
+ :math:`\textbf{w}_{\text{MVDR}}`. The formula is defined as:
1926
+
1927
+ .. math::
1928
+ \textbf{w}_{\text{MVDR}}(f) =
1929
+ \frac{{{\bf{\Phi}_{\textbf{NN}}^{-1}}(f){\bf{\Phi}_{\textbf{SS}}}}(f)}
1930
+ {\text{Trace}({{{\bf{\Phi}_{\textbf{NN}}^{-1}}(f) \bf{\Phi}_{\textbf{SS}}}(f))}}\bm{u}
1931
+
1932
+ Args:
1933
+ psd_s (torch.Tensor): The complex-valued power spectral density (PSD) matrix of target speech.
1934
+ Tensor with dimensions `(..., freq, channel, channel)`.
1935
+ psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.
1936
+ Tensor with dimensions `(..., freq, channel, channel)`.
1937
+ reference_channel (int or torch.Tensor): Specifies the reference channel.
1938
+ If the dtype is ``int``, it represents the reference channel index.
1939
+ If the dtype is ``torch.Tensor``, its shape is `(..., channel)`, where the ``channel`` dimension
1940
+ is one-hot.
1941
+ diagonal_loading (bool, optional): If ``True``, enables applying diagonal loading to ``psd_n``.
1942
+ (Default: ``True``)
1943
+ diag_eps (float, optional): The coefficient multiplied to the identity matrix for diagonal loading.
1944
+ It is only effective when ``diagonal_loading`` is set to ``True``. (Default: ``1e-7``)
1945
+ eps (float, optional): Value to add to the denominator in the beamforming weight formula.
1946
+ (Default: ``1e-8``)
1947
+
1948
+ Returns:
1949
+ torch.Tensor: The complex-valued MVDR beamforming weight matrix with dimensions `(..., freq, channel)`.
1950
+ """
1951
+ _assert_psd_matrices(psd_s, psd_n)
1952
+
1953
+ if diagonal_loading:
1954
+ psd_n = _tik_reg(psd_n, reg=diag_eps)
1955
+ numerator = torch.linalg.solve(psd_n, psd_s) # psd_n.inv() @ psd_s
1956
+ # ws: (..., C, C) / (...,) -> (..., C, C)
1957
+ ws = numerator / (_compute_mat_trace(numerator)[..., None, None] + eps)
1958
+ if torch.jit.isinstance(reference_channel, int):
1959
+ beamform_weights = ws[..., :, reference_channel]
1960
+ elif torch.jit.isinstance(reference_channel, Tensor):
1961
+ reference_channel = reference_channel.to(psd_n.dtype)
1962
+ # h: (..., F, C_1, C_2) x (..., C_2) -> (..., F, C_1)
1963
+ beamform_weights = torch.einsum("...c,...c->...", [ws, reference_channel[..., None, None, :]])
1964
+ else:
1965
+ raise TypeError(f'Expected "int" or "Tensor" for reference_channel. Found: {type(reference_channel)}.')
1966
+
1967
+ return beamform_weights
1968
+
1969
+
1970
+ def mvdr_weights_rtf(
1971
+ rtf: Tensor,
1972
+ psd_n: Tensor,
1973
+ reference_channel: Optional[Union[int, Tensor]] = None,
1974
+ diagonal_loading: bool = True,
1975
+ diag_eps: float = 1e-7,
1976
+ eps: float = 1e-8,
1977
+ ) -> Tensor:
1978
+ r"""Compute the Minimum Variance Distortionless Response (*MVDR* :cite:`capon1969high`) beamforming weights
1979
+ based on the relative transfer function (RTF) and power spectral density (PSD) matrix of noise.
1980
+
1981
+ .. devices:: CPU CUDA
1982
+
1983
+ .. properties:: Autograd TorchScript
1984
+
1985
+ Given the relative transfer function (RTF) matrix or the steering vector of target speech :math:`\bm{v}`,
1986
+ the PSD matrix of noise :math:`\bf{\Phi}_{\textbf{NN}}`, and a one-hot vector that represents the
1987
+ reference channel :math:`\bf{u}`, the method computes the MVDR beamforming weight martrix
1988
+ :math:`\textbf{w}_{\text{MVDR}}`. The formula is defined as:
1989
+
1990
+ .. math::
1991
+ \textbf{w}_{\text{MVDR}}(f) =
1992
+ \frac{{{\bf{\Phi}_{\textbf{NN}}^{-1}}(f){\bm{v}}(f)}}
1993
+ {{\bm{v}^{\mathsf{H}}}(f){\bf{\Phi}_{\textbf{NN}}^{-1}}(f){\bm{v}}(f)}
1994
+
1995
+ where :math:`(.)^{\mathsf{H}}` denotes the Hermitian Conjugate operation.
1996
+
1997
+ Args:
1998
+ rtf (torch.Tensor): The complex-valued RTF vector of target speech.
1999
+ Tensor with dimensions `(..., freq, channel)`.
2000
+ psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.
2001
+ Tensor with dimensions `(..., freq, channel, channel)`.
2002
+ reference_channel (int or torch.Tensor): Specifies the reference channel.
2003
+ If the dtype is ``int``, it represents the reference channel index.
2004
+ If the dtype is ``torch.Tensor``, its shape is `(..., channel)`, where the ``channel`` dimension
2005
+ is one-hot.
2006
+ diagonal_loading (bool, optional): If ``True``, enables applying diagonal loading to ``psd_n``.
2007
+ (Default: ``True``)
2008
+ diag_eps (float, optional): The coefficient multiplied to the identity matrix for diagonal loading.
2009
+ It is only effective when ``diagonal_loading`` is set to ``True``. (Default: ``1e-7``)
2010
+ eps (float, optional): Value to add to the denominator in the beamforming weight formula.
2011
+ (Default: ``1e-8``)
2012
+
2013
+ Returns:
2014
+ torch.Tensor: The complex-valued MVDR beamforming weight matrix with dimensions `(..., freq, channel)`.
2015
+ """
2016
+ if rtf.ndim < 2:
2017
+ raise ValueError(f"Expected at least 2D Tensor (..., freq, channel) for rtf. Found {rtf.shape}.")
2018
+ if psd_n.ndim < 3:
2019
+ raise ValueError(f"Expected at least 3D Tensor (..., freq, channel, channel) for psd_n. Found {psd_n.shape}.")
2020
+ if not (rtf.is_complex() and psd_n.is_complex()):
2021
+ raise TypeError(
2022
+ "The type of rtf and psd_n must be ``torch.cfloat`` or ``torch.cdouble``. "
2023
+ f"Found {rtf.dtype} for rtf and {psd_n.dtype} for psd_n."
2024
+ )
2025
+ if rtf.shape != psd_n.shape[:-1]:
2026
+ raise ValueError(
2027
+ "The dimensions of rtf and the dimensions withou the last dimension of psd_n should be the same. "
2028
+ f"Found {rtf.shape} for rtf and {psd_n.shape} for psd_n."
2029
+ )
2030
+ if psd_n.shape[-1] != psd_n.shape[-2]:
2031
+ raise ValueError(f"The last two dimensions of psd_n should be the same. Found {psd_n.shape}.")
2032
+
2033
+ if diagonal_loading:
2034
+ psd_n = _tik_reg(psd_n, reg=diag_eps)
2035
+ # numerator = psd_n.inv() @ stv
2036
+ numerator = torch.linalg.solve(psd_n, rtf.unsqueeze(-1)).squeeze(-1) # (..., freq, channel)
2037
+ # denominator = stv^H @ psd_n.inv() @ stv
2038
+ denominator = torch.einsum("...d,...d->...", [rtf.conj(), numerator])
2039
+ beamform_weights = numerator / (denominator.real.unsqueeze(-1) + eps)
2040
+ # normalize the numerator
2041
+ if reference_channel is not None:
2042
+ if torch.jit.isinstance(reference_channel, int):
2043
+ scale = rtf[..., reference_channel].conj()
2044
+ elif torch.jit.isinstance(reference_channel, Tensor):
2045
+ reference_channel = reference_channel.to(psd_n.dtype)
2046
+ scale = torch.einsum("...c,...c->...", [rtf.conj(), reference_channel[..., None, :]])
2047
+ else:
2048
+ raise TypeError(f'Expected "int" or "Tensor" for reference_channel. Found: {type(reference_channel)}.')
2049
+
2050
+ beamform_weights = beamform_weights * scale[..., None]
2051
+
2052
+ return beamform_weights
2053
+
2054
+
2055
+ def rtf_evd(psd_s: Tensor) -> Tensor:
2056
+ r"""Estimate the relative transfer function (RTF) or the steering vector by eigenvalue decomposition.
2057
+
2058
+ .. devices:: CPU CUDA
2059
+
2060
+ .. properties:: TorchScript
2061
+
2062
+ Args:
2063
+ psd_s (Tensor): The complex-valued power spectral density (PSD) matrix of target speech.
2064
+ Tensor of dimension `(..., freq, channel, channel)`
2065
+
2066
+ Returns:
2067
+ Tensor: The estimated complex-valued RTF of target speech.
2068
+ Tensor of dimension `(..., freq, channel)`
2069
+ """
2070
+ if not psd_s.is_complex():
2071
+ raise TypeError(f"The type of psd_s must be ``torch.cfloat`` or ``torch.cdouble``. Found {psd_s.dtype}.")
2072
+ if psd_s.shape[-1] != psd_s.shape[-2]:
2073
+ raise ValueError(f"The last two dimensions of psd_s should be the same. Found {psd_s.shape}.")
2074
+ _, v = torch.linalg.eigh(psd_s) # v is sorted along with eigenvalues in ascending order
2075
+ rtf = v[..., -1] # choose the eigenvector with max eigenvalue
2076
+ return rtf
2077
+
2078
+
2079
+ def rtf_power(
2080
+ psd_s: Tensor,
2081
+ psd_n: Tensor,
2082
+ reference_channel: Union[int, Tensor],
2083
+ n_iter: int = 3,
2084
+ diagonal_loading: bool = True,
2085
+ diag_eps: float = 1e-7,
2086
+ ) -> Tensor:
2087
+ r"""Estimate the relative transfer function (RTF) or the steering vector by the power method.
2088
+
2089
+ .. devices:: CPU CUDA
2090
+
2091
+ .. properties:: Autograd TorchScript
2092
+
2093
+ Args:
2094
+ psd_s (torch.Tensor): The complex-valued power spectral density (PSD) matrix of target speech.
2095
+ Tensor with dimensions `(..., freq, channel, channel)`.
2096
+ psd_n (torch.Tensor): The complex-valued power spectral density (PSD) matrix of noise.
2097
+ Tensor with dimensions `(..., freq, channel, channel)`.
2098
+ reference_channel (int or torch.Tensor): Specifies the reference channel.
2099
+ If the dtype is ``int``, it represents the reference channel index.
2100
+ If the dtype is ``torch.Tensor``, its shape is `(..., channel)`, where the ``channel`` dimension
2101
+ is one-hot.
2102
+ diagonal_loading (bool, optional): If ``True``, enables applying diagonal loading to ``psd_n``.
2103
+ (Default: ``True``)
2104
+ diag_eps (float, optional): The coefficient multiplied to the identity matrix for diagonal loading.
2105
+ It is only effective when ``diagonal_loading`` is set to ``True``. (Default: ``1e-7``)
2106
+
2107
+ Returns:
2108
+ torch.Tensor: The estimated complex-valued RTF of target speech.
2109
+ Tensor of dimension `(..., freq, channel)`.
2110
+ """
2111
+ _assert_psd_matrices(psd_s, psd_n)
2112
+ if n_iter <= 0:
2113
+ raise ValueError("The number of iteration must be greater than 0.")
2114
+
2115
+ # Apply diagonal loading to psd_n to improve robustness.
2116
+ if diagonal_loading:
2117
+ psd_n = _tik_reg(psd_n, reg=diag_eps)
2118
+ # phi is regarded as the first iteration
2119
+ phi = torch.linalg.solve(psd_n, psd_s) # psd_n.inv() @ psd_s
2120
+ if torch.jit.isinstance(reference_channel, int):
2121
+ rtf = phi[..., reference_channel]
2122
+ elif torch.jit.isinstance(reference_channel, Tensor):
2123
+ reference_channel = reference_channel.to(psd_n.dtype)
2124
+ rtf = torch.einsum("...c,...c->...", [phi, reference_channel[..., None, None, :]])
2125
+ else:
2126
+ raise TypeError(f'Expected "int" or "Tensor" for reference_channel. Found: {type(reference_channel)}.')
2127
+ rtf = rtf.unsqueeze(-1) # (..., freq, channel, 1)
2128
+ if n_iter >= 2:
2129
+ # The number of iterations in the for loop is `n_iter - 2`
2130
+ # because the `phi` above and `torch.matmul(psd_s, rtf)` are regarded as
2131
+ # two iterations.
2132
+ for _ in range(n_iter - 2):
2133
+ rtf = torch.matmul(phi, rtf)
2134
+ rtf = torch.matmul(psd_s, rtf)
2135
+ else:
2136
+ # if there is only one iteration, the rtf is the psd_s[..., referenc_channel]
2137
+ # which is psd_n @ phi @ ref_channel
2138
+ rtf = torch.matmul(psd_n, rtf)
2139
+ return rtf.squeeze(-1)
2140
+
2141
+
2142
+ def apply_beamforming(beamform_weights: Tensor, specgram: Tensor) -> Tensor:
2143
+ r"""Apply the beamforming weight to the multi-channel noisy spectrum to obtain the single-channel enhanced spectrum.
2144
+
2145
+ .. devices:: CPU CUDA
2146
+
2147
+ .. properties:: Autograd TorchScript
2148
+
2149
+ .. math::
2150
+ \hat{\textbf{S}}(f) = \textbf{w}_{\text{bf}}(f)^{\mathsf{H}} \textbf{Y}(f)
2151
+
2152
+ where :math:`\textbf{w}_{\text{bf}}(f)` is the beamforming weight for the :math:`f`-th frequency bin,
2153
+ :math:`\textbf{Y}` is the multi-channel spectrum for the :math:`f`-th frequency bin.
2154
+
2155
+ Args:
2156
+ beamform_weights (Tensor): The complex-valued beamforming weight matrix.
2157
+ Tensor of dimension `(..., freq, channel)`
2158
+ specgram (Tensor): The multi-channel complex-valued noisy spectrum.
2159
+ Tensor of dimension `(..., channel, freq, time)`
2160
+
2161
+ Returns:
2162
+ Tensor: The single-channel complex-valued enhanced spectrum.
2163
+ Tensor of dimension `(..., freq, time)`
2164
+ """
2165
+ if beamform_weights.shape[:-2] != specgram.shape[:-3]:
2166
+ raise ValueError(
2167
+ "The dimensions except the last two dimensions of beamform_weights should be the same "
2168
+ "as the dimensions except the last three dimensions of specgram. "
2169
+ f"Found {beamform_weights.shape} for beamform_weights and {specgram.shape} for specgram."
2170
+ )
2171
+
2172
+ if not (beamform_weights.is_complex() and specgram.is_complex()):
2173
+ raise TypeError(
2174
+ "The type of beamform_weights and specgram must be ``torch.cfloat`` or ``torch.cdouble``. "
2175
+ f"Found {beamform_weights.dtype} for beamform_weights and {specgram.dtype} for specgram."
2176
+ )
2177
+
2178
+ # (..., freq, channel) x (..., channel, freq, time) -> (..., freq, time)
2179
+ specgram_enhanced = torch.einsum("...fc,...cft->...ft", [beamform_weights.conj(), specgram])
2180
+ return specgram_enhanced
2181
+
2182
+
2183
+ def _check_shape_compatible(x: torch.Tensor, y: torch.Tensor) -> None:
2184
+ if x.ndim != y.ndim:
2185
+ raise ValueError(f"The operands must be the same dimension (got {x.ndim} and {y.ndim}).")
2186
+
2187
+ for i in range(x.ndim - 1):
2188
+ xi = x.size(i)
2189
+ yi = y.size(i)
2190
+ if xi == yi or xi == 1 or yi == 1:
2191
+ continue
2192
+ raise ValueError(f"Leading dimensions of x and y are not broadcastable (got {x.shape} and {y.shape}).")
2193
+
2194
+
2195
+ def _check_convolve_mode(mode: str) -> None:
2196
+ valid_convolve_modes = ["full", "valid", "same"]
2197
+ if mode not in valid_convolve_modes:
2198
+ raise ValueError(f"Unrecognized mode value '{mode}'. Please specify one of {valid_convolve_modes}.")
2199
+
2200
+
2201
+ def _apply_convolve_mode(conv_result: torch.Tensor, x_length: int, y_length: int, mode: str) -> torch.Tensor:
2202
+ valid_convolve_modes = ["full", "valid", "same"]
2203
+ if mode == "full":
2204
+ return conv_result
2205
+ elif mode == "valid":
2206
+ target_length = max(x_length, y_length) - min(x_length, y_length) + 1
2207
+ start_idx = (conv_result.size(-1) - target_length) // 2
2208
+ return conv_result[..., start_idx : start_idx + target_length]
2209
+ elif mode == "same":
2210
+ start_idx = (conv_result.size(-1) - x_length) // 2
2211
+ return conv_result[..., start_idx : start_idx + x_length]
2212
+ else:
2213
+ raise ValueError(f"Unrecognized mode value '{mode}'. Please specify one of {valid_convolve_modes}.")
2214
+
2215
+
2216
+ def fftconvolve(x: torch.Tensor, y: torch.Tensor, mode: str = "full") -> torch.Tensor:
2217
+ r"""
2218
+ Convolves inputs along their last dimension using FFT. For inputs with large last dimensions, this function
2219
+ is generally much faster than :meth:`convolve`.
2220
+ Note that, in contrast to :meth:`torch.nn.functional.conv1d`, which actually applies the valid cross-correlation
2221
+ operator, this function applies the true `convolution`_ operator.
2222
+ Also note that this function can only output float tensors (int tensor inputs will be cast to float).
2223
+
2224
+ .. devices:: CPU CUDA
2225
+
2226
+ .. properties:: Autograd TorchScript
2227
+
2228
+ Args:
2229
+ x (torch.Tensor): First convolution operand, with shape `(..., N)`.
2230
+ y (torch.Tensor): Second convolution operand, with shape `(..., M)`
2231
+ (leading dimensions must be broadcast-able with those of ``x``).
2232
+ mode (str, optional): Must be one of ("full", "valid", "same").
2233
+
2234
+ * "full": Returns the full convolution result, with shape `(..., N + M - 1)`. (Default)
2235
+ * "valid": Returns the segment of the full convolution result corresponding to where
2236
+ the two inputs overlap completely, with shape `(..., max(N, M) - min(N, M) + 1)`.
2237
+ * "same": Returns the center segment of the full convolution result, with shape `(..., N)`.
2238
+
2239
+ Returns:
2240
+ torch.Tensor: Result of convolving ``x`` and ``y``, with shape `(..., L)`, where
2241
+ the leading dimensions match those of ``x`` and `L` is dictated by ``mode``.
2242
+
2243
+ .. _convolution:
2244
+ https://en.wikipedia.org/wiki/Convolution
2245
+ """
2246
+ _check_shape_compatible(x, y)
2247
+ _check_convolve_mode(mode)
2248
+
2249
+ n = x.size(-1) + y.size(-1) - 1
2250
+ fresult = torch.fft.rfft(x, n=n) * torch.fft.rfft(y, n=n)
2251
+ result = torch.fft.irfft(fresult, n=n)
2252
+ return _apply_convolve_mode(result, x.size(-1), y.size(-1), mode)
2253
+
2254
+
2255
+ def convolve(x: torch.Tensor, y: torch.Tensor, mode: str = "full") -> torch.Tensor:
2256
+ r"""
2257
+ Convolves inputs along their last dimension using the direct method.
2258
+ Note that, in contrast to :meth:`torch.nn.functional.conv1d`, which actually applies the valid cross-correlation
2259
+ operator, this function applies the true `convolution`_ operator.
2260
+
2261
+ .. devices:: CPU CUDA
2262
+
2263
+ .. properties:: Autograd TorchScript
2264
+
2265
+ Args:
2266
+ x (torch.Tensor): First convolution operand, with shape `(..., N)`.
2267
+ y (torch.Tensor): Second convolution operand, with shape `(..., M)`
2268
+ (leading dimensions must be broadcast-able with those of ``x``).
2269
+ mode (str, optional): Must be one of ("full", "valid", "same").
2270
+
2271
+ * "full": Returns the full convolution result, with shape `(..., N + M - 1)`. (Default)
2272
+ * "valid": Returns the segment of the full convolution result corresponding to where
2273
+ the two inputs overlap completely, with shape `(..., max(N, M) - min(N, M) + 1)`.
2274
+ * "same": Returns the center segment of the full convolution result, with shape `(..., N)`.
2275
+
2276
+ Returns:
2277
+ torch.Tensor: Result of convolving ``x`` and ``y``, with shape `(..., L)`, where
2278
+ the leading dimensions match those of ``x`` and `L` is dictated by ``mode``.
2279
+
2280
+ .. _convolution:
2281
+ https://en.wikipedia.org/wiki/Convolution
2282
+ """
2283
+ _check_shape_compatible(x, y)
2284
+ _check_convolve_mode(mode)
2285
+
2286
+ x_size, y_size = x.size(-1), y.size(-1)
2287
+
2288
+ if x.size(-1) < y.size(-1):
2289
+ x, y = y, x
2290
+
2291
+ if x.shape[:-1] != y.shape[:-1]:
2292
+ new_shape = [max(i, j) for i, j in zip(x.shape[:-1], y.shape[:-1])]
2293
+ x = x.broadcast_to(new_shape + [x.shape[-1]])
2294
+ y = y.broadcast_to(new_shape + [y.shape[-1]])
2295
+
2296
+ num_signals = torch.tensor(x.shape[:-1]).prod()
2297
+ reshaped_x = x.reshape((int(num_signals), x.size(-1)))
2298
+ reshaped_y = y.reshape((int(num_signals), y.size(-1)))
2299
+ output = torch.nn.functional.conv1d(
2300
+ input=reshaped_x,
2301
+ weight=reshaped_y.flip(-1).unsqueeze(1),
2302
+ stride=1,
2303
+ groups=reshaped_x.size(0),
2304
+ padding=reshaped_y.size(-1) - 1,
2305
+ )
2306
+ output_shape = x.shape[:-1] + (-1,)
2307
+ result = output.reshape(output_shape)
2308
+ return _apply_convolve_mode(result, x_size, y_size, mode)
2309
+
2310
+
2311
+ def add_noise(
2312
+ waveform: torch.Tensor, noise: torch.Tensor, snr: torch.Tensor, lengths: Optional[torch.Tensor] = None
2313
+ ) -> torch.Tensor:
2314
+ r"""Scales and adds noise to waveform per signal-to-noise ratio.
2315
+
2316
+ Specifically, for each pair of waveform vector :math:`x \in \mathbb{R}^L` and noise vector
2317
+ :math:`n \in \mathbb{R}^L`, the function computes output :math:`y` as
2318
+
2319
+ .. math::
2320
+ y = x + a n \, \text{,}
2321
+
2322
+ where
2323
+
2324
+ .. math::
2325
+ a = \sqrt{ \frac{ ||x||_{2}^{2} }{ ||n||_{2}^{2} } \cdot 10^{-\frac{\text{SNR}}{10}} } \, \text{,}
2326
+
2327
+ with :math:`\text{SNR}` being the desired signal-to-noise ratio between :math:`x` and :math:`n`, in dB.
2328
+
2329
+ Note that this function broadcasts singleton leading dimensions in its inputs in a manner that is
2330
+ consistent with the above formulae and PyTorch's broadcasting semantics.
2331
+
2332
+ .. devices:: CPU CUDA
2333
+
2334
+ .. properties:: Autograd TorchScript
2335
+
2336
+ Args:
2337
+ waveform (torch.Tensor): Input waveform, with shape `(..., L)`.
2338
+ noise (torch.Tensor): Noise, with shape `(..., L)` (same shape as ``waveform``).
2339
+ snr (torch.Tensor): Signal-to-noise ratios in dB, with shape `(...,)`.
2340
+ lengths (torch.Tensor or None, optional): Valid lengths of signals in ``waveform`` and ``noise``, with shape
2341
+ `(...,)` (leading dimensions must match those of ``waveform``). If ``None``, all elements in ``waveform``
2342
+ and ``noise`` are treated as valid. (Default: ``None``)
2343
+
2344
+ Returns:
2345
+ torch.Tensor: Result of scaling and adding ``noise`` to ``waveform``, with shape `(..., L)`
2346
+ (same shape as ``waveform``).
2347
+ """
2348
+
2349
+ if not (waveform.ndim - 1 == noise.ndim - 1 == snr.ndim and (lengths is None or lengths.ndim == snr.ndim)):
2350
+ raise ValueError("Input leading dimensions don't match.")
2351
+
2352
+ L = waveform.size(-1)
2353
+
2354
+ if L != noise.size(-1):
2355
+ raise ValueError(f"Length dimensions of waveform and noise don't match (got {L} and {noise.size(-1)}).")
2356
+
2357
+ # compute scale
2358
+ if lengths is not None:
2359
+ mask = torch.arange(0, L, device=lengths.device).expand(waveform.shape) < lengths.unsqueeze(
2360
+ -1
2361
+ ) # (*, L) < (*, 1) = (*, L)
2362
+ masked_waveform = waveform * mask
2363
+ masked_noise = noise * mask
2364
+ else:
2365
+ masked_waveform = waveform
2366
+ masked_noise = noise
2367
+
2368
+ energy_signal = torch.linalg.vector_norm(masked_waveform, ord=2, dim=-1) ** 2 # (*,)
2369
+ energy_noise = torch.linalg.vector_norm(masked_noise, ord=2, dim=-1) ** 2 # (*,)
2370
+ original_snr_db = 10 * (torch.log10(energy_signal) - torch.log10(energy_noise))
2371
+ scale = 10 ** ((original_snr_db - snr) / 20.0) # (*,)
2372
+
2373
+ # scale noise
2374
+ scaled_noise = scale.unsqueeze(-1) * noise # (*, 1) * (*, L) = (*, L)
2375
+
2376
+ return waveform + scaled_noise # (*, L)
2377
+
2378
+
2379
+ def speed(
2380
+ waveform: torch.Tensor, orig_freq: int, factor: float, lengths: Optional[torch.Tensor] = None
2381
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
2382
+ r"""Adjusts waveform speed.
2383
+
2384
+ .. devices:: CPU CUDA
2385
+
2386
+ .. properties:: Autograd TorchScript
2387
+
2388
+ Args:
2389
+ waveform (torch.Tensor): Input signals, with shape `(..., time)`.
2390
+ orig_freq (int): Original frequency of the signals in ``waveform``.
2391
+ factor (float): Factor by which to adjust speed of input. Values greater than 1.0
2392
+ compress ``waveform`` in time, whereas values less than 1.0 stretch ``waveform`` in time.
2393
+ lengths (torch.Tensor or None, optional): Valid lengths of signals in ``waveform``, with shape `(...)`.
2394
+ If ``None``, all elements in ``waveform`` are treated as valid. (Default: ``None``)
2395
+
2396
+ Returns:
2397
+ (torch.Tensor, torch.Tensor or None):
2398
+ torch.Tensor
2399
+ Speed-adjusted waveform, with shape `(..., new_time).`
2400
+ torch.Tensor or None
2401
+ If ``lengths`` is not ``None``, valid lengths of signals in speed-adjusted waveform,
2402
+ with shape `(...)`; otherwise, ``None``.
2403
+ """
2404
+
2405
+ source_sample_rate = int(factor * orig_freq)
2406
+ target_sample_rate = int(orig_freq)
2407
+
2408
+ gcd = math.gcd(source_sample_rate, target_sample_rate)
2409
+ source_sample_rate = source_sample_rate // gcd
2410
+ target_sample_rate = target_sample_rate // gcd
2411
+
2412
+ if lengths is None:
2413
+ out_lengths = None
2414
+ else:
2415
+ out_lengths = torch.ceil(lengths * target_sample_rate / source_sample_rate).to(lengths.dtype)
2416
+
2417
+ return resample(waveform, source_sample_rate, target_sample_rate), out_lengths
2418
+
2419
+
2420
+ def preemphasis(waveform, coeff: float = 0.97) -> torch.Tensor:
2421
+ r"""Pre-emphasizes a waveform along its last dimension, i.e.
2422
+ for each signal :math:`x` in ``waveform``, computes
2423
+ output :math:`y` as
2424
+
2425
+ .. math::
2426
+ y[i] = x[i] - \text{coeff} \cdot x[i - 1]
2427
+
2428
+ .. devices:: CPU CUDA
2429
+
2430
+ .. properties:: Autograd TorchScript
2431
+
2432
+ Args:
2433
+ waveform (torch.Tensor): Waveform, with shape `(..., N)`.
2434
+ coeff (float, optional): Pre-emphasis coefficient. Typically between 0.0 and 1.0.
2435
+ (Default: 0.97)
2436
+
2437
+ Returns:
2438
+ torch.Tensor: Pre-emphasized waveform, with shape `(..., N)`.
2439
+ """
2440
+ waveform = waveform.clone()
2441
+ waveform[..., 1:] -= coeff * waveform[..., :-1]
2442
+ return waveform
2443
+
2444
+
2445
+ def deemphasis(waveform, coeff: float = 0.97) -> torch.Tensor:
2446
+ r"""De-emphasizes a waveform along its last dimension.
2447
+ Inverse of :meth:`preemphasis`. Concretely, for each signal
2448
+ :math:`x` in ``waveform``, computes output :math:`y` as
2449
+
2450
+ .. math::
2451
+ y[i] = x[i] + \text{coeff} \cdot y[i - 1]
2452
+
2453
+ .. devices:: CPU CUDA
2454
+
2455
+ .. properties:: Autograd TorchScript
2456
+
2457
+ Args:
2458
+ waveform (torch.Tensor): Waveform, with shape `(..., N)`.
2459
+ coeff (float, optional): De-emphasis coefficient. Typically between 0.0 and 1.0.
2460
+ (Default: 0.97)
2461
+
2462
+ Returns:
2463
+ torch.Tensor: De-emphasized waveform, with shape `(..., N)`.
2464
+ """
2465
+ a_coeffs = torch.tensor([1.0, -coeff], dtype=waveform.dtype, device=waveform.device)
2466
+ b_coeffs = torch.tensor([1.0, 0.0], dtype=waveform.dtype, device=waveform.device)
2467
+ return torchaudio.functional.filtering.lfilter(waveform, a_coeffs=a_coeffs, b_coeffs=b_coeffs)
2468
+
2469
+
2470
+ def frechet_distance(mu_x, sigma_x, mu_y, sigma_y):
2471
+ r"""Computes the Fréchet distance between two multivariate normal distributions :cite:`dowson1982frechet`.
2472
+
2473
+ Concretely, for multivariate Gaussians :math:`X(\mu_X, \Sigma_X)`
2474
+ and :math:`Y(\mu_Y, \Sigma_Y)`, the function computes and returns :math:`F` as
2475
+
2476
+ .. math::
2477
+ F(X, Y) = || \mu_X - \mu_Y ||_2^2
2478
+ + \text{Tr}\left( \Sigma_X + \Sigma_Y - 2 \sqrt{\Sigma_X \Sigma_Y} \right)
2479
+
2480
+ Args:
2481
+ mu_x (torch.Tensor): mean :math:`\mu_X` of multivariate Gaussian :math:`X`, with shape `(N,)`.
2482
+ sigma_x (torch.Tensor): covariance matrix :math:`\Sigma_X` of :math:`X`, with shape `(N, N)`.
2483
+ mu_y (torch.Tensor): mean :math:`\mu_Y` of multivariate Gaussian :math:`Y`, with shape `(N,)`.
2484
+ sigma_y (torch.Tensor): covariance matrix :math:`\Sigma_Y` of :math:`Y`, with shape `(N, N)`.
2485
+
2486
+ Returns:
2487
+ torch.Tensor: the Fréchet distance between :math:`X` and :math:`Y`.
2488
+ """
2489
+ if len(mu_x.size()) != 1:
2490
+ raise ValueError(f"Input mu_x must be one-dimensional; got dimension {len(mu_x.size())}.")
2491
+ if len(sigma_x.size()) != 2:
2492
+ raise ValueError(f"Input sigma_x must be two-dimensional; got dimension {len(sigma_x.size())}.")
2493
+ if sigma_x.size(0) != sigma_x.size(1) != mu_x.size(0):
2494
+ raise ValueError("Each of sigma_x's dimensions must match mu_x's size.")
2495
+ if mu_x.size() != mu_y.size():
2496
+ raise ValueError(f"Inputs mu_x and mu_y must have the same shape; got {mu_x.size()} and {mu_y.size()}.")
2497
+ if sigma_x.size() != sigma_y.size():
2498
+ raise ValueError(
2499
+ f"Inputs sigma_x and sigma_y must have the same shape; got {sigma_x.size()} and {sigma_y.size()}."
2500
+ )
2501
+
2502
+ a = (mu_x - mu_y).square().sum()
2503
+ b = sigma_x.trace() + sigma_y.trace()
2504
+ c = torch.linalg.eigvals(sigma_x @ sigma_y).sqrt().real.sum()
2505
+ return a + b - 2 * c