torchaudio 2.9.1__cp310-cp310-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- torchaudio/.dylibs/libc++.1.0.dylib +0 -0
- torchaudio/__init__.py +204 -0
- torchaudio/_extension/__init__.py +61 -0
- torchaudio/_extension/utils.py +133 -0
- torchaudio/_internal/__init__.py +10 -0
- torchaudio/_internal/module_utils.py +171 -0
- torchaudio/_torchcodec.py +340 -0
- torchaudio/compliance/__init__.py +5 -0
- torchaudio/compliance/kaldi.py +813 -0
- torchaudio/datasets/__init__.py +47 -0
- torchaudio/datasets/cmuarctic.py +157 -0
- torchaudio/datasets/cmudict.py +186 -0
- torchaudio/datasets/commonvoice.py +86 -0
- torchaudio/datasets/dr_vctk.py +121 -0
- torchaudio/datasets/fluentcommands.py +108 -0
- torchaudio/datasets/gtzan.py +1118 -0
- torchaudio/datasets/iemocap.py +147 -0
- torchaudio/datasets/librilight_limited.py +111 -0
- torchaudio/datasets/librimix.py +133 -0
- torchaudio/datasets/librispeech.py +174 -0
- torchaudio/datasets/librispeech_biasing.py +189 -0
- torchaudio/datasets/libritts.py +168 -0
- torchaudio/datasets/ljspeech.py +107 -0
- torchaudio/datasets/musdb_hq.py +139 -0
- torchaudio/datasets/quesst14.py +136 -0
- torchaudio/datasets/snips.py +157 -0
- torchaudio/datasets/speechcommands.py +183 -0
- torchaudio/datasets/tedlium.py +218 -0
- torchaudio/datasets/utils.py +54 -0
- torchaudio/datasets/vctk.py +143 -0
- torchaudio/datasets/voxceleb1.py +309 -0
- torchaudio/datasets/yesno.py +89 -0
- torchaudio/functional/__init__.py +130 -0
- torchaudio/functional/_alignment.py +128 -0
- torchaudio/functional/filtering.py +1685 -0
- torchaudio/functional/functional.py +2505 -0
- torchaudio/lib/__init__.py +0 -0
- torchaudio/lib/_torchaudio.so +0 -0
- torchaudio/lib/libtorchaudio.so +0 -0
- torchaudio/models/__init__.py +85 -0
- torchaudio/models/_hdemucs.py +1008 -0
- torchaudio/models/conformer.py +293 -0
- torchaudio/models/conv_tasnet.py +330 -0
- torchaudio/models/decoder/__init__.py +64 -0
- torchaudio/models/decoder/_ctc_decoder.py +568 -0
- torchaudio/models/decoder/_cuda_ctc_decoder.py +187 -0
- torchaudio/models/deepspeech.py +84 -0
- torchaudio/models/emformer.py +884 -0
- torchaudio/models/rnnt.py +816 -0
- torchaudio/models/rnnt_decoder.py +339 -0
- torchaudio/models/squim/__init__.py +11 -0
- torchaudio/models/squim/objective.py +326 -0
- torchaudio/models/squim/subjective.py +150 -0
- torchaudio/models/tacotron2.py +1046 -0
- torchaudio/models/wav2letter.py +72 -0
- torchaudio/models/wav2vec2/__init__.py +45 -0
- torchaudio/models/wav2vec2/components.py +1167 -0
- torchaudio/models/wav2vec2/model.py +1579 -0
- torchaudio/models/wav2vec2/utils/__init__.py +7 -0
- torchaudio/models/wav2vec2/utils/import_fairseq.py +213 -0
- torchaudio/models/wav2vec2/utils/import_huggingface.py +134 -0
- torchaudio/models/wav2vec2/wavlm_attention.py +214 -0
- torchaudio/models/wavernn.py +409 -0
- torchaudio/pipelines/__init__.py +102 -0
- torchaudio/pipelines/_source_separation_pipeline.py +109 -0
- torchaudio/pipelines/_squim_pipeline.py +156 -0
- torchaudio/pipelines/_tts/__init__.py +16 -0
- torchaudio/pipelines/_tts/impl.py +385 -0
- torchaudio/pipelines/_tts/interface.py +255 -0
- torchaudio/pipelines/_tts/utils.py +230 -0
- torchaudio/pipelines/_wav2vec2/__init__.py +0 -0
- torchaudio/pipelines/_wav2vec2/aligner.py +87 -0
- torchaudio/pipelines/_wav2vec2/impl.py +1699 -0
- torchaudio/pipelines/_wav2vec2/utils.py +346 -0
- torchaudio/pipelines/rnnt_pipeline.py +380 -0
- torchaudio/transforms/__init__.py +78 -0
- torchaudio/transforms/_multi_channel.py +467 -0
- torchaudio/transforms/_transforms.py +2138 -0
- torchaudio/utils/__init__.py +4 -0
- torchaudio/utils/download.py +89 -0
- torchaudio/version.py +2 -0
- torchaudio-2.9.1.dist-info/METADATA +133 -0
- torchaudio-2.9.1.dist-info/RECORD +86 -0
- torchaudio-2.9.1.dist-info/WHEEL +5 -0
- torchaudio-2.9.1.dist-info/licenses/LICENSE +25 -0
- torchaudio-2.9.1.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,255 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
from typing import List, Optional, Tuple, Union
|
|
3
|
+
|
|
4
|
+
from torch import Tensor
|
|
5
|
+
from torchaudio.models import Tacotron2
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
class _TextProcessor(ABC):
|
|
9
|
+
@property
|
|
10
|
+
@abstractmethod
|
|
11
|
+
def tokens(self):
|
|
12
|
+
"""The tokens that the each value in the processed tensor represent.
|
|
13
|
+
|
|
14
|
+
:type: List[str]
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
@abstractmethod
|
|
18
|
+
def __call__(self, texts: Union[str, List[str]]) -> Tuple[Tensor, Tensor]:
|
|
19
|
+
"""Encode the given (batch of) texts into numerical tensors
|
|
20
|
+
|
|
21
|
+
Args:
|
|
22
|
+
text (str or list of str): The input texts.
|
|
23
|
+
|
|
24
|
+
Returns:
|
|
25
|
+
(Tensor, Tensor):
|
|
26
|
+
Tensor:
|
|
27
|
+
The encoded texts. Shape: `(batch, max length)`
|
|
28
|
+
Tensor:
|
|
29
|
+
The valid length of each sample in the batch. Shape: `(batch, )`.
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
class _Vocoder(ABC):
|
|
34
|
+
@property
|
|
35
|
+
@abstractmethod
|
|
36
|
+
def sample_rate(self):
|
|
37
|
+
"""The sample rate of the resulting waveform
|
|
38
|
+
|
|
39
|
+
:type: float
|
|
40
|
+
"""
|
|
41
|
+
|
|
42
|
+
@abstractmethod
|
|
43
|
+
def __call__(self, specgrams: Tensor, lengths: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]:
|
|
44
|
+
"""Generate waveform from the given input, such as spectrogram
|
|
45
|
+
|
|
46
|
+
Args:
|
|
47
|
+
specgrams (Tensor):
|
|
48
|
+
The input spectrogram. Shape: `(batch, frequency bins, time)`.
|
|
49
|
+
The expected shape depends on the implementation.
|
|
50
|
+
lengths (Tensor, or None, optional):
|
|
51
|
+
The valid length of each sample in the batch. Shape: `(batch, )`.
|
|
52
|
+
(Default: `None`)
|
|
53
|
+
|
|
54
|
+
Returns:
|
|
55
|
+
(Tensor, Optional[Tensor]):
|
|
56
|
+
Tensor:
|
|
57
|
+
The generated waveform. Shape: `(batch, max length)`
|
|
58
|
+
Tensor or None:
|
|
59
|
+
The valid length of each sample in the batch. Shape: `(batch, )`.
|
|
60
|
+
"""
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
class Tacotron2TTSBundle(ABC):
|
|
64
|
+
"""Data class that bundles associated information to use pretrained Tacotron2 and vocoder.
|
|
65
|
+
|
|
66
|
+
This class provides interfaces for instantiating the pretrained model along with
|
|
67
|
+
the information necessary to retrieve pretrained weights and additional data
|
|
68
|
+
to be used with the model.
|
|
69
|
+
|
|
70
|
+
Torchaudio library instantiates objects of this class, each of which represents
|
|
71
|
+
a different pretrained model. Client code should access pretrained models via these
|
|
72
|
+
instances.
|
|
73
|
+
|
|
74
|
+
Please see below for the usage and the available values.
|
|
75
|
+
|
|
76
|
+
Example - Character-based TTS pipeline with Tacotron2 and WaveRNN
|
|
77
|
+
>>> import torchaudio
|
|
78
|
+
>>>
|
|
79
|
+
>>> text = "Hello, T T S !"
|
|
80
|
+
>>> bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_CHAR_LJSPEECH
|
|
81
|
+
>>>
|
|
82
|
+
>>> # Build processor, Tacotron2 and WaveRNN model
|
|
83
|
+
>>> processor = bundle.get_text_processor()
|
|
84
|
+
>>> tacotron2 = bundle.get_tacotron2()
|
|
85
|
+
Downloading:
|
|
86
|
+
100%|███████████████████████████████| 107M/107M [00:01<00:00, 87.9MB/s]
|
|
87
|
+
>>> vocoder = bundle.get_vocoder()
|
|
88
|
+
Downloading:
|
|
89
|
+
100%|███████████████████████████████| 16.7M/16.7M [00:00<00:00, 78.1MB/s]
|
|
90
|
+
>>>
|
|
91
|
+
>>> # Encode text
|
|
92
|
+
>>> input, lengths = processor(text)
|
|
93
|
+
>>>
|
|
94
|
+
>>> # Generate (mel-scale) spectrogram
|
|
95
|
+
>>> specgram, lengths, _ = tacotron2.infer(input, lengths)
|
|
96
|
+
>>>
|
|
97
|
+
>>> # Convert spectrogram to waveform
|
|
98
|
+
>>> waveforms, lengths = vocoder(specgram, lengths)
|
|
99
|
+
>>>
|
|
100
|
+
>>> torchaudio.save('hello-tts.wav', waveforms, vocoder.sample_rate)
|
|
101
|
+
|
|
102
|
+
Example - Phoneme-based TTS pipeline with Tacotron2 and WaveRNN
|
|
103
|
+
>>>
|
|
104
|
+
>>> # Note:
|
|
105
|
+
>>> # This bundle uses pre-trained DeepPhonemizer as
|
|
106
|
+
>>> # the text pre-processor.
|
|
107
|
+
>>> # Please install deep-phonemizer.
|
|
108
|
+
>>> # See https://github.com/as-ideas/DeepPhonemizer
|
|
109
|
+
>>> # The pretrained weight is automatically downloaded.
|
|
110
|
+
>>>
|
|
111
|
+
>>> import torchaudio
|
|
112
|
+
>>>
|
|
113
|
+
>>> text = "Hello, TTS!"
|
|
114
|
+
>>> bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH
|
|
115
|
+
>>>
|
|
116
|
+
>>> # Build processor, Tacotron2 and WaveRNN model
|
|
117
|
+
>>> processor = bundle.get_text_processor()
|
|
118
|
+
Downloading:
|
|
119
|
+
100%|███████████████████████████████| 63.6M/63.6M [00:04<00:00, 15.3MB/s]
|
|
120
|
+
>>> tacotron2 = bundle.get_tacotron2()
|
|
121
|
+
Downloading:
|
|
122
|
+
100%|███████████████████████████████| 107M/107M [00:01<00:00, 87.9MB/s]
|
|
123
|
+
>>> vocoder = bundle.get_vocoder()
|
|
124
|
+
Downloading:
|
|
125
|
+
100%|███████████████████████████████| 16.7M/16.7M [00:00<00:00, 78.1MB/s]
|
|
126
|
+
>>>
|
|
127
|
+
>>> # Encode text
|
|
128
|
+
>>> input, lengths = processor(text)
|
|
129
|
+
>>>
|
|
130
|
+
>>> # Generate (mel-scale) spectrogram
|
|
131
|
+
>>> specgram, lengths, _ = tacotron2.infer(input, lengths)
|
|
132
|
+
>>>
|
|
133
|
+
>>> # Convert spectrogram to waveform
|
|
134
|
+
>>> waveforms, lengths = vocoder(specgram, lengths)
|
|
135
|
+
>>>
|
|
136
|
+
>>> torchaudio.save('hello-tts.wav', waveforms, vocoder.sample_rate)
|
|
137
|
+
"""
|
|
138
|
+
|
|
139
|
+
# Using the inner class so that these interfaces are not directly exposed on
|
|
140
|
+
# `torchaudio.pipelines`, but still listed in documentation.
|
|
141
|
+
# The thing is, text processing and vocoder are generic and we do not know what kind of
|
|
142
|
+
# new text processing and vocoder will be added in the future, so we want to make these
|
|
143
|
+
# interfaces specific to this Tacotron2TTS pipeline.
|
|
144
|
+
|
|
145
|
+
class TextProcessor(_TextProcessor):
|
|
146
|
+
"""Interface of the text processing part of Tacotron2TTS pipeline
|
|
147
|
+
|
|
148
|
+
See :func:`torchaudio.pipelines.Tacotron2TTSBundle.get_text_processor` for the usage.
|
|
149
|
+
"""
|
|
150
|
+
|
|
151
|
+
class Vocoder(_Vocoder):
|
|
152
|
+
"""Interface of the vocoder part of Tacotron2TTS pipeline
|
|
153
|
+
|
|
154
|
+
See :func:`torchaudio.pipelines.Tacotron2TTSBundle.get_vocoder` for the usage.
|
|
155
|
+
"""
|
|
156
|
+
|
|
157
|
+
@abstractmethod
|
|
158
|
+
def get_text_processor(self, *, dl_kwargs=None) -> TextProcessor:
|
|
159
|
+
"""Create a text processor
|
|
160
|
+
|
|
161
|
+
For character-based pipeline, this processor splits the input text by character.
|
|
162
|
+
For phoneme-based pipeline, this processor converts the input text (grapheme) to
|
|
163
|
+
phonemes.
|
|
164
|
+
|
|
165
|
+
If a pre-trained weight file is necessary,
|
|
166
|
+
:func:`torch.hub.download_url_to_file` is used to downloaded it.
|
|
167
|
+
|
|
168
|
+
Args:
|
|
169
|
+
dl_kwargs (dictionary of keyword arguments,):
|
|
170
|
+
Passed to :func:`torch.hub.download_url_to_file`.
|
|
171
|
+
|
|
172
|
+
Returns:
|
|
173
|
+
TextProcessor:
|
|
174
|
+
A callable which takes a string or a list of strings as input and
|
|
175
|
+
returns Tensor of encoded texts and Tensor of valid lengths.
|
|
176
|
+
The object also has ``tokens`` property, which allows to recover the
|
|
177
|
+
tokenized form.
|
|
178
|
+
|
|
179
|
+
Example - Character-based
|
|
180
|
+
>>> text = [
|
|
181
|
+
>>> "Hello World!",
|
|
182
|
+
>>> "Text-to-speech!",
|
|
183
|
+
>>> ]
|
|
184
|
+
>>> bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_CHAR_LJSPEECH
|
|
185
|
+
>>> processor = bundle.get_text_processor()
|
|
186
|
+
>>> input, lengths = processor(text)
|
|
187
|
+
>>>
|
|
188
|
+
>>> print(input)
|
|
189
|
+
tensor([[19, 16, 23, 23, 26, 11, 34, 26, 29, 23, 15, 2, 0, 0, 0],
|
|
190
|
+
[31, 16, 35, 31, 1, 31, 26, 1, 30, 27, 16, 16, 14, 19, 2]],
|
|
191
|
+
dtype=torch.int32)
|
|
192
|
+
>>>
|
|
193
|
+
>>> print(lengths)
|
|
194
|
+
tensor([12, 15], dtype=torch.int32)
|
|
195
|
+
>>>
|
|
196
|
+
>>> print([processor.tokens[i] for i in input[0, :lengths[0]]])
|
|
197
|
+
['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!']
|
|
198
|
+
>>> print([processor.tokens[i] for i in input[1, :lengths[1]]])
|
|
199
|
+
['t', 'e', 'x', 't', '-', 't', 'o', '-', 's', 'p', 'e', 'e', 'c', 'h', '!']
|
|
200
|
+
|
|
201
|
+
Example - Phoneme-based
|
|
202
|
+
>>> text = [
|
|
203
|
+
>>> "Hello, T T S !",
|
|
204
|
+
>>> "Text-to-speech!",
|
|
205
|
+
>>> ]
|
|
206
|
+
>>> bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH
|
|
207
|
+
>>> processor = bundle.get_text_processor()
|
|
208
|
+
Downloading:
|
|
209
|
+
100%|███████████████████████████████| 63.6M/63.6M [00:04<00:00, 15.3MB/s]
|
|
210
|
+
>>> input, lengths = processor(text)
|
|
211
|
+
>>>
|
|
212
|
+
>>> print(input)
|
|
213
|
+
tensor([[54, 20, 65, 69, 11, 92, 44, 65, 38, 2, 0, 0, 0, 0],
|
|
214
|
+
[81, 40, 64, 79, 81, 1, 81, 20, 1, 79, 77, 59, 37, 2]],
|
|
215
|
+
dtype=torch.int32)
|
|
216
|
+
>>>
|
|
217
|
+
>>> print(lengths)
|
|
218
|
+
tensor([10, 14], dtype=torch.int32)
|
|
219
|
+
>>>
|
|
220
|
+
>>> print([processor.tokens[i] for i in input[0]])
|
|
221
|
+
['HH', 'AH', 'L', 'OW', ' ', 'W', 'ER', 'L', 'D', '!', '_', '_', '_', '_']
|
|
222
|
+
>>> print([processor.tokens[i] for i in input[1]])
|
|
223
|
+
['T', 'EH', 'K', 'S', 'T', '-', 'T', 'AH', '-', 'S', 'P', 'IY', 'CH', '!']
|
|
224
|
+
"""
|
|
225
|
+
|
|
226
|
+
@abstractmethod
|
|
227
|
+
def get_vocoder(self, *, dl_kwargs=None) -> Vocoder:
|
|
228
|
+
"""Create a vocoder module, based off of either WaveRNN or GriffinLim.
|
|
229
|
+
|
|
230
|
+
If a pre-trained weight file is necessary,
|
|
231
|
+
:func:`torch.hub.load_state_dict_from_url` is used to downloaded it.
|
|
232
|
+
|
|
233
|
+
Args:
|
|
234
|
+
dl_kwargs (dictionary of keyword arguments):
|
|
235
|
+
Passed to :func:`torch.hub.load_state_dict_from_url`.
|
|
236
|
+
|
|
237
|
+
Returns:
|
|
238
|
+
Vocoder:
|
|
239
|
+
A vocoder module, which takes spectrogram Tensor and an optional
|
|
240
|
+
length Tensor, then returns resulting waveform Tensor and an optional
|
|
241
|
+
length Tensor.
|
|
242
|
+
"""
|
|
243
|
+
|
|
244
|
+
@abstractmethod
|
|
245
|
+
def get_tacotron2(self, *, dl_kwargs=None) -> Tacotron2:
|
|
246
|
+
"""Create a Tacotron2 model with pre-trained weight.
|
|
247
|
+
|
|
248
|
+
Args:
|
|
249
|
+
dl_kwargs (dictionary of keyword arguments):
|
|
250
|
+
Passed to :func:`torch.hub.load_state_dict_from_url`.
|
|
251
|
+
|
|
252
|
+
Returns:
|
|
253
|
+
Tacotron2:
|
|
254
|
+
The resulting model.
|
|
255
|
+
"""
|
|
@@ -0,0 +1,230 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import os
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
from torchaudio._internal import download_url_to_file, module_utils as _mod_utils
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def _get_chars():
|
|
9
|
+
return (
|
|
10
|
+
"_",
|
|
11
|
+
"-",
|
|
12
|
+
"!",
|
|
13
|
+
"'",
|
|
14
|
+
"(",
|
|
15
|
+
")",
|
|
16
|
+
",",
|
|
17
|
+
".",
|
|
18
|
+
":",
|
|
19
|
+
";",
|
|
20
|
+
"?",
|
|
21
|
+
" ",
|
|
22
|
+
"a",
|
|
23
|
+
"b",
|
|
24
|
+
"c",
|
|
25
|
+
"d",
|
|
26
|
+
"e",
|
|
27
|
+
"f",
|
|
28
|
+
"g",
|
|
29
|
+
"h",
|
|
30
|
+
"i",
|
|
31
|
+
"j",
|
|
32
|
+
"k",
|
|
33
|
+
"l",
|
|
34
|
+
"m",
|
|
35
|
+
"n",
|
|
36
|
+
"o",
|
|
37
|
+
"p",
|
|
38
|
+
"q",
|
|
39
|
+
"r",
|
|
40
|
+
"s",
|
|
41
|
+
"t",
|
|
42
|
+
"u",
|
|
43
|
+
"v",
|
|
44
|
+
"w",
|
|
45
|
+
"x",
|
|
46
|
+
"y",
|
|
47
|
+
"z",
|
|
48
|
+
)
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
def _get_phones():
|
|
52
|
+
return (
|
|
53
|
+
"_",
|
|
54
|
+
"-",
|
|
55
|
+
"!",
|
|
56
|
+
"'",
|
|
57
|
+
"(",
|
|
58
|
+
")",
|
|
59
|
+
",",
|
|
60
|
+
".",
|
|
61
|
+
":",
|
|
62
|
+
";",
|
|
63
|
+
"?",
|
|
64
|
+
" ",
|
|
65
|
+
"AA",
|
|
66
|
+
"AA0",
|
|
67
|
+
"AA1",
|
|
68
|
+
"AA2",
|
|
69
|
+
"AE",
|
|
70
|
+
"AE0",
|
|
71
|
+
"AE1",
|
|
72
|
+
"AE2",
|
|
73
|
+
"AH",
|
|
74
|
+
"AH0",
|
|
75
|
+
"AH1",
|
|
76
|
+
"AH2",
|
|
77
|
+
"AO",
|
|
78
|
+
"AO0",
|
|
79
|
+
"AO1",
|
|
80
|
+
"AO2",
|
|
81
|
+
"AW",
|
|
82
|
+
"AW0",
|
|
83
|
+
"AW1",
|
|
84
|
+
"AW2",
|
|
85
|
+
"AY",
|
|
86
|
+
"AY0",
|
|
87
|
+
"AY1",
|
|
88
|
+
"AY2",
|
|
89
|
+
"B",
|
|
90
|
+
"CH",
|
|
91
|
+
"D",
|
|
92
|
+
"DH",
|
|
93
|
+
"EH",
|
|
94
|
+
"EH0",
|
|
95
|
+
"EH1",
|
|
96
|
+
"EH2",
|
|
97
|
+
"ER",
|
|
98
|
+
"ER0",
|
|
99
|
+
"ER1",
|
|
100
|
+
"ER2",
|
|
101
|
+
"EY",
|
|
102
|
+
"EY0",
|
|
103
|
+
"EY1",
|
|
104
|
+
"EY2",
|
|
105
|
+
"F",
|
|
106
|
+
"G",
|
|
107
|
+
"HH",
|
|
108
|
+
"IH",
|
|
109
|
+
"IH0",
|
|
110
|
+
"IH1",
|
|
111
|
+
"IH2",
|
|
112
|
+
"IY",
|
|
113
|
+
"IY0",
|
|
114
|
+
"IY1",
|
|
115
|
+
"IY2",
|
|
116
|
+
"JH",
|
|
117
|
+
"K",
|
|
118
|
+
"L",
|
|
119
|
+
"M",
|
|
120
|
+
"N",
|
|
121
|
+
"NG",
|
|
122
|
+
"OW",
|
|
123
|
+
"OW0",
|
|
124
|
+
"OW1",
|
|
125
|
+
"OW2",
|
|
126
|
+
"OY",
|
|
127
|
+
"OY0",
|
|
128
|
+
"OY1",
|
|
129
|
+
"OY2",
|
|
130
|
+
"P",
|
|
131
|
+
"R",
|
|
132
|
+
"S",
|
|
133
|
+
"SH",
|
|
134
|
+
"T",
|
|
135
|
+
"TH",
|
|
136
|
+
"UH",
|
|
137
|
+
"UH0",
|
|
138
|
+
"UH1",
|
|
139
|
+
"UH2",
|
|
140
|
+
"UW",
|
|
141
|
+
"UW0",
|
|
142
|
+
"UW1",
|
|
143
|
+
"UW2",
|
|
144
|
+
"V",
|
|
145
|
+
"W",
|
|
146
|
+
"Y",
|
|
147
|
+
"Z",
|
|
148
|
+
"ZH",
|
|
149
|
+
)
|
|
150
|
+
|
|
151
|
+
|
|
152
|
+
def _to_tensor(indices):
|
|
153
|
+
lengths = torch.tensor([len(i) for i in indices], dtype=torch.int32)
|
|
154
|
+
values = [torch.tensor(i) for i in indices]
|
|
155
|
+
values = torch.nn.utils.rnn.pad_sequence(values, batch_first=True)
|
|
156
|
+
return values, lengths
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
def _load_phonemizer(file, dl_kwargs):
|
|
160
|
+
if not _mod_utils.is_module_available("dp"):
|
|
161
|
+
raise RuntimeError("DeepPhonemizer is not installed. Please install it.")
|
|
162
|
+
|
|
163
|
+
from dp.phonemizer import Phonemizer
|
|
164
|
+
from dp.preprocessing.text import LanguageTokenizer, Preprocessor, SequenceTokenizer
|
|
165
|
+
|
|
166
|
+
# By default, dp issues DEBUG level log.
|
|
167
|
+
logger = logging.getLogger("dp")
|
|
168
|
+
orig_level = logger.level
|
|
169
|
+
logger.setLevel(logging.INFO)
|
|
170
|
+
try:
|
|
171
|
+
url = f"https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/{file}"
|
|
172
|
+
directory = os.path.join(torch.hub.get_dir(), "checkpoints")
|
|
173
|
+
os.makedirs(directory, exist_ok=True)
|
|
174
|
+
path = os.path.join(directory, file)
|
|
175
|
+
if not os.path.exists(path):
|
|
176
|
+
dl_kwargs = {} if dl_kwargs is None else dl_kwargs
|
|
177
|
+
download_url_to_file(url, path, **dl_kwargs)
|
|
178
|
+
with torch.serialization.safe_globals([Preprocessor, LanguageTokenizer, SequenceTokenizer]):
|
|
179
|
+
return Phonemizer.from_checkpoint(path)
|
|
180
|
+
finally:
|
|
181
|
+
logger.setLevel(orig_level)
|
|
182
|
+
|
|
183
|
+
|
|
184
|
+
def _unnormalize_waveform(waveform: torch.Tensor, bits: int) -> torch.Tensor:
|
|
185
|
+
r"""Transform waveform [-1, 1] to label [0, 2 ** bits - 1]"""
|
|
186
|
+
waveform = torch.clamp(waveform, -1, 1)
|
|
187
|
+
waveform = (waveform + 1.0) * (2**bits - 1) / 2
|
|
188
|
+
return torch.clamp(waveform, 0, 2**bits - 1).int()
|
|
189
|
+
|
|
190
|
+
|
|
191
|
+
def _get_taco_params(n_symbols):
|
|
192
|
+
return {
|
|
193
|
+
"mask_padding": False,
|
|
194
|
+
"n_mels": 80,
|
|
195
|
+
"n_frames_per_step": 1,
|
|
196
|
+
"symbol_embedding_dim": 512,
|
|
197
|
+
"encoder_embedding_dim": 512,
|
|
198
|
+
"encoder_n_convolution": 3,
|
|
199
|
+
"encoder_kernel_size": 5,
|
|
200
|
+
"decoder_rnn_dim": 1024,
|
|
201
|
+
"decoder_max_step": 2000,
|
|
202
|
+
"decoder_dropout": 0.1,
|
|
203
|
+
"decoder_early_stopping": True,
|
|
204
|
+
"attention_rnn_dim": 1024,
|
|
205
|
+
"attention_hidden_dim": 128,
|
|
206
|
+
"attention_location_n_filter": 32,
|
|
207
|
+
"attention_location_kernel_size": 31,
|
|
208
|
+
"attention_dropout": 0.1,
|
|
209
|
+
"prenet_dim": 256,
|
|
210
|
+
"postnet_n_convolution": 5,
|
|
211
|
+
"postnet_kernel_size": 5,
|
|
212
|
+
"postnet_embedding_dim": 512,
|
|
213
|
+
"gate_threshold": 0.5,
|
|
214
|
+
"n_symbol": n_symbols,
|
|
215
|
+
}
|
|
216
|
+
|
|
217
|
+
|
|
218
|
+
def _get_wrnn_params():
|
|
219
|
+
return {
|
|
220
|
+
"upsample_scales": [5, 5, 11],
|
|
221
|
+
"n_classes": 2**8, # n_bits = 8
|
|
222
|
+
"hop_length": 275,
|
|
223
|
+
"n_res_block": 10,
|
|
224
|
+
"n_rnn": 512,
|
|
225
|
+
"n_fc": 512,
|
|
226
|
+
"kernel_size": 5,
|
|
227
|
+
"n_freq": 80,
|
|
228
|
+
"n_hidden": 128,
|
|
229
|
+
"n_output": 128,
|
|
230
|
+
}
|
|
File without changes
|
|
@@ -0,0 +1,87 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
from typing import Dict, List
|
|
3
|
+
|
|
4
|
+
import torch
|
|
5
|
+
import torchaudio.functional as F
|
|
6
|
+
from torch import Tensor
|
|
7
|
+
from torchaudio.functional import TokenSpan
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
class ITokenizer(ABC):
|
|
11
|
+
@abstractmethod
|
|
12
|
+
def __call__(self, transcript: List[str]) -> List[List[str]]:
|
|
13
|
+
"""Tokenize the given transcript (list of word)
|
|
14
|
+
|
|
15
|
+
.. note::
|
|
16
|
+
|
|
17
|
+
The toranscript must be normalized.
|
|
18
|
+
|
|
19
|
+
Args:
|
|
20
|
+
transcript (list of str): Transcript (list of word).
|
|
21
|
+
|
|
22
|
+
Returns:
|
|
23
|
+
(list of int): List of token sequences
|
|
24
|
+
"""
|
|
25
|
+
|
|
26
|
+
|
|
27
|
+
class Tokenizer(ITokenizer):
|
|
28
|
+
def __init__(self, dictionary: Dict[str, int]):
|
|
29
|
+
self.dictionary = dictionary
|
|
30
|
+
|
|
31
|
+
def __call__(self, transcript: List[str]) -> List[List[int]]:
|
|
32
|
+
return [[self.dictionary[c] for c in word] for word in transcript]
|
|
33
|
+
|
|
34
|
+
|
|
35
|
+
def _align_emission_and_tokens(emission: Tensor, tokens: List[int], blank: int = 0):
|
|
36
|
+
device = emission.device
|
|
37
|
+
emission = emission.unsqueeze(0)
|
|
38
|
+
targets = torch.tensor([tokens], dtype=torch.int32, device=device)
|
|
39
|
+
|
|
40
|
+
aligned_tokens, scores = F.forced_align(emission, targets, blank=blank)
|
|
41
|
+
|
|
42
|
+
scores = scores.exp() # convert back to probability
|
|
43
|
+
aligned_tokens, scores = aligned_tokens[0], scores[0] # remove batch dimension
|
|
44
|
+
return aligned_tokens, scores
|
|
45
|
+
|
|
46
|
+
|
|
47
|
+
class IAligner(ABC):
|
|
48
|
+
@abstractmethod
|
|
49
|
+
def __call__(self, emission: Tensor, tokens: List[List[int]]) -> List[List[TokenSpan]]:
|
|
50
|
+
"""Generate list of time-stamped token sequences
|
|
51
|
+
|
|
52
|
+
Args:
|
|
53
|
+
emission (Tensor): Sequence of token probability distributions in log-domain.
|
|
54
|
+
Shape: `(time, tokens)`.
|
|
55
|
+
tokens (list of integer sequence): Tokenized transcript.
|
|
56
|
+
Output from :py:class:`torchaudio.pipelines.Wav2Vec2FABundle.Tokenizer`.
|
|
57
|
+
|
|
58
|
+
Returns:
|
|
59
|
+
(list of TokenSpan sequence): Tokens with time stamps and scores.
|
|
60
|
+
"""
|
|
61
|
+
|
|
62
|
+
|
|
63
|
+
def _unflatten(list_, lengths):
|
|
64
|
+
assert len(list_) == sum(lengths)
|
|
65
|
+
i = 0
|
|
66
|
+
ret = []
|
|
67
|
+
for l in lengths:
|
|
68
|
+
ret.append(list_[i : i + l])
|
|
69
|
+
i += l
|
|
70
|
+
return ret
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def _flatten(nested_list):
|
|
74
|
+
return [item for list_ in nested_list for item in list_]
|
|
75
|
+
|
|
76
|
+
|
|
77
|
+
class Aligner(IAligner):
|
|
78
|
+
def __init__(self, blank):
|
|
79
|
+
self.blank = blank
|
|
80
|
+
|
|
81
|
+
def __call__(self, emission: Tensor, tokens: List[List[int]]) -> List[List[TokenSpan]]:
|
|
82
|
+
if emission.ndim != 2:
|
|
83
|
+
raise ValueError(f"The input emission must be 2D. Found: {emission.shape}")
|
|
84
|
+
|
|
85
|
+
aligned_tokens, scores = _align_emission_and_tokens(emission, _flatten(tokens), self.blank)
|
|
86
|
+
spans = F.merge_tokens(aligned_tokens, scores)
|
|
87
|
+
return _unflatten(spans, [len(ts) for ts in tokens])
|