torchaudio 2.9.1__cp310-cp310-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (86) hide show
  1. torchaudio/.dylibs/libc++.1.0.dylib +0 -0
  2. torchaudio/__init__.py +204 -0
  3. torchaudio/_extension/__init__.py +61 -0
  4. torchaudio/_extension/utils.py +133 -0
  5. torchaudio/_internal/__init__.py +10 -0
  6. torchaudio/_internal/module_utils.py +171 -0
  7. torchaudio/_torchcodec.py +340 -0
  8. torchaudio/compliance/__init__.py +5 -0
  9. torchaudio/compliance/kaldi.py +813 -0
  10. torchaudio/datasets/__init__.py +47 -0
  11. torchaudio/datasets/cmuarctic.py +157 -0
  12. torchaudio/datasets/cmudict.py +186 -0
  13. torchaudio/datasets/commonvoice.py +86 -0
  14. torchaudio/datasets/dr_vctk.py +121 -0
  15. torchaudio/datasets/fluentcommands.py +108 -0
  16. torchaudio/datasets/gtzan.py +1118 -0
  17. torchaudio/datasets/iemocap.py +147 -0
  18. torchaudio/datasets/librilight_limited.py +111 -0
  19. torchaudio/datasets/librimix.py +133 -0
  20. torchaudio/datasets/librispeech.py +174 -0
  21. torchaudio/datasets/librispeech_biasing.py +189 -0
  22. torchaudio/datasets/libritts.py +168 -0
  23. torchaudio/datasets/ljspeech.py +107 -0
  24. torchaudio/datasets/musdb_hq.py +139 -0
  25. torchaudio/datasets/quesst14.py +136 -0
  26. torchaudio/datasets/snips.py +157 -0
  27. torchaudio/datasets/speechcommands.py +183 -0
  28. torchaudio/datasets/tedlium.py +218 -0
  29. torchaudio/datasets/utils.py +54 -0
  30. torchaudio/datasets/vctk.py +143 -0
  31. torchaudio/datasets/voxceleb1.py +309 -0
  32. torchaudio/datasets/yesno.py +89 -0
  33. torchaudio/functional/__init__.py +130 -0
  34. torchaudio/functional/_alignment.py +128 -0
  35. torchaudio/functional/filtering.py +1685 -0
  36. torchaudio/functional/functional.py +2505 -0
  37. torchaudio/lib/__init__.py +0 -0
  38. torchaudio/lib/_torchaudio.so +0 -0
  39. torchaudio/lib/libtorchaudio.so +0 -0
  40. torchaudio/models/__init__.py +85 -0
  41. torchaudio/models/_hdemucs.py +1008 -0
  42. torchaudio/models/conformer.py +293 -0
  43. torchaudio/models/conv_tasnet.py +330 -0
  44. torchaudio/models/decoder/__init__.py +64 -0
  45. torchaudio/models/decoder/_ctc_decoder.py +568 -0
  46. torchaudio/models/decoder/_cuda_ctc_decoder.py +187 -0
  47. torchaudio/models/deepspeech.py +84 -0
  48. torchaudio/models/emformer.py +884 -0
  49. torchaudio/models/rnnt.py +816 -0
  50. torchaudio/models/rnnt_decoder.py +339 -0
  51. torchaudio/models/squim/__init__.py +11 -0
  52. torchaudio/models/squim/objective.py +326 -0
  53. torchaudio/models/squim/subjective.py +150 -0
  54. torchaudio/models/tacotron2.py +1046 -0
  55. torchaudio/models/wav2letter.py +72 -0
  56. torchaudio/models/wav2vec2/__init__.py +45 -0
  57. torchaudio/models/wav2vec2/components.py +1167 -0
  58. torchaudio/models/wav2vec2/model.py +1579 -0
  59. torchaudio/models/wav2vec2/utils/__init__.py +7 -0
  60. torchaudio/models/wav2vec2/utils/import_fairseq.py +213 -0
  61. torchaudio/models/wav2vec2/utils/import_huggingface.py +134 -0
  62. torchaudio/models/wav2vec2/wavlm_attention.py +214 -0
  63. torchaudio/models/wavernn.py +409 -0
  64. torchaudio/pipelines/__init__.py +102 -0
  65. torchaudio/pipelines/_source_separation_pipeline.py +109 -0
  66. torchaudio/pipelines/_squim_pipeline.py +156 -0
  67. torchaudio/pipelines/_tts/__init__.py +16 -0
  68. torchaudio/pipelines/_tts/impl.py +385 -0
  69. torchaudio/pipelines/_tts/interface.py +255 -0
  70. torchaudio/pipelines/_tts/utils.py +230 -0
  71. torchaudio/pipelines/_wav2vec2/__init__.py +0 -0
  72. torchaudio/pipelines/_wav2vec2/aligner.py +87 -0
  73. torchaudio/pipelines/_wav2vec2/impl.py +1699 -0
  74. torchaudio/pipelines/_wav2vec2/utils.py +346 -0
  75. torchaudio/pipelines/rnnt_pipeline.py +380 -0
  76. torchaudio/transforms/__init__.py +78 -0
  77. torchaudio/transforms/_multi_channel.py +467 -0
  78. torchaudio/transforms/_transforms.py +2138 -0
  79. torchaudio/utils/__init__.py +4 -0
  80. torchaudio/utils/download.py +89 -0
  81. torchaudio/version.py +2 -0
  82. torchaudio-2.9.1.dist-info/METADATA +133 -0
  83. torchaudio-2.9.1.dist-info/RECORD +86 -0
  84. torchaudio-2.9.1.dist-info/WHEEL +5 -0
  85. torchaudio-2.9.1.dist-info/licenses/LICENSE +25 -0
  86. torchaudio-2.9.1.dist-info/top_level.txt +1 -0
@@ -0,0 +1,1046 @@
1
+ # *****************************************************************************
2
+ # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
3
+ #
4
+ # Redistribution and use in source and binary forms, with or without
5
+ # modification, are permitted provided that the following conditions are met:
6
+ # * Redistributions of source code must retain the above copyright
7
+ # notice, this list of conditions and the following disclaimer.
8
+ # * Redistributions in binary form must reproduce the above copyright
9
+ # notice, this list of conditions and the following disclaimer in the
10
+ # documentation and/or other materials provided with the distribution.
11
+ # * Neither the name of the NVIDIA CORPORATION nor the
12
+ # names of its contributors may be used to endorse or promote products
13
+ # derived from this software without specific prior written permission.
14
+ #
15
+ # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
16
+ # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
17
+ # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
18
+ # DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
19
+ # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20
+ # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21
+ # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22
+ # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23
+ # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24
+ # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25
+ #
26
+ # *****************************************************************************
27
+
28
+ import warnings
29
+ from typing import List, Optional, Tuple, Union
30
+
31
+ import torch
32
+ from torch import nn, Tensor
33
+ from torch.nn import functional as F
34
+
35
+
36
+ __all__ = [
37
+ "Tacotron2",
38
+ ]
39
+
40
+
41
+ def _get_linear_layer(in_dim: int, out_dim: int, bias: bool = True, w_init_gain: str = "linear") -> torch.nn.Linear:
42
+ r"""Linear layer with xavier uniform initialization.
43
+
44
+ Args:
45
+ in_dim (int): Size of each input sample.
46
+ out_dim (int): Size of each output sample.
47
+ bias (bool, optional): If set to ``False``, the layer will not learn an additive bias. (Default: ``True``)
48
+ w_init_gain (str, optional): Parameter passed to ``torch.nn.init.calculate_gain``
49
+ for setting the gain parameter of ``xavier_uniform_``. (Default: ``linear``)
50
+
51
+ Returns:
52
+ (torch.nn.Linear): The corresponding linear layer.
53
+ """
54
+ linear = torch.nn.Linear(in_dim, out_dim, bias=bias)
55
+ torch.nn.init.xavier_uniform_(linear.weight, gain=torch.nn.init.calculate_gain(w_init_gain))
56
+ return linear
57
+
58
+
59
+ def _get_conv1d_layer(
60
+ in_channels: int,
61
+ out_channels: int,
62
+ kernel_size: int = 1,
63
+ stride: int = 1,
64
+ padding: Optional[Union[str, int, Tuple[int]]] = None,
65
+ dilation: int = 1,
66
+ bias: bool = True,
67
+ w_init_gain: str = "linear",
68
+ ) -> torch.nn.Conv1d:
69
+ r"""1D convolution with xavier uniform initialization.
70
+
71
+ Args:
72
+ in_channels (int): Number of channels in the input image.
73
+ out_channels (int): Number of channels produced by the convolution.
74
+ kernel_size (int, optional): Number of channels in the input image. (Default: ``1``)
75
+ stride (int, optional): Number of channels in the input image. (Default: ``1``)
76
+ padding (str, int or tuple, optional): Padding added to both sides of the input.
77
+ (Default: dilation * (kernel_size - 1) / 2)
78
+ dilation (int, optional): Number of channels in the input image. (Default: ``1``)
79
+ w_init_gain (str, optional): Parameter passed to ``torch.nn.init.calculate_gain``
80
+ for setting the gain parameter of ``xavier_uniform_``. (Default: ``linear``)
81
+
82
+ Returns:
83
+ (torch.nn.Conv1d): The corresponding Conv1D layer.
84
+ """
85
+ if padding is None:
86
+ if kernel_size % 2 != 1:
87
+ raise ValueError("kernel_size must be odd")
88
+ padding = int(dilation * (kernel_size - 1) / 2)
89
+
90
+ conv1d = torch.nn.Conv1d(
91
+ in_channels,
92
+ out_channels,
93
+ kernel_size=kernel_size,
94
+ stride=stride,
95
+ padding=padding,
96
+ dilation=dilation,
97
+ bias=bias,
98
+ )
99
+
100
+ torch.nn.init.xavier_uniform_(conv1d.weight, gain=torch.nn.init.calculate_gain(w_init_gain))
101
+
102
+ return conv1d
103
+
104
+
105
+ def _get_mask_from_lengths(lengths: Tensor) -> Tensor:
106
+ r"""Returns a binary mask based on ``lengths``. The ``i``-th row and ``j``-th column of the mask
107
+ is ``1`` if ``j`` is smaller than ``i``-th element of ``lengths.
108
+
109
+ Args:
110
+ lengths (Tensor): The length of each element in the batch, with shape (n_batch, ).
111
+
112
+ Returns:
113
+ mask (Tensor): The binary mask, with shape (n_batch, max of ``lengths``).
114
+ """
115
+ max_len = torch.max(lengths).item()
116
+ ids = torch.arange(0, max_len, device=lengths.device, dtype=lengths.dtype)
117
+ mask = (ids < lengths.unsqueeze(1)).byte()
118
+ mask = torch.le(mask, 0)
119
+ return mask
120
+
121
+
122
+ class _LocationLayer(nn.Module):
123
+ r"""Location layer used in the Attention model.
124
+
125
+ Args:
126
+ attention_n_filter (int): Number of filters for attention model.
127
+ attention_kernel_size (int): Kernel size for attention model.
128
+ attention_hidden_dim (int): Dimension of attention hidden representation.
129
+ """
130
+
131
+ def __init__(
132
+ self,
133
+ attention_n_filter: int,
134
+ attention_kernel_size: int,
135
+ attention_hidden_dim: int,
136
+ ):
137
+ super().__init__()
138
+ padding = int((attention_kernel_size - 1) / 2)
139
+ self.location_conv = _get_conv1d_layer(
140
+ 2,
141
+ attention_n_filter,
142
+ kernel_size=attention_kernel_size,
143
+ padding=padding,
144
+ bias=False,
145
+ stride=1,
146
+ dilation=1,
147
+ )
148
+ self.location_dense = _get_linear_layer(
149
+ attention_n_filter, attention_hidden_dim, bias=False, w_init_gain="tanh"
150
+ )
151
+
152
+ def forward(self, attention_weights_cat: Tensor) -> Tensor:
153
+ r"""Location layer used in the Attention model.
154
+
155
+ Args:
156
+ attention_weights_cat (Tensor): Cumulative and previous attention weights
157
+ with shape (n_batch, 2, max of ``text_lengths``).
158
+
159
+ Returns:
160
+ processed_attention (Tensor): Cumulative and previous attention weights
161
+ with shape (n_batch, ``attention_hidden_dim``).
162
+ """
163
+ # (n_batch, attention_n_filter, text_lengths.max())
164
+ processed_attention = self.location_conv(attention_weights_cat)
165
+ processed_attention = processed_attention.transpose(1, 2)
166
+ # (n_batch, text_lengths.max(), attention_hidden_dim)
167
+ processed_attention = self.location_dense(processed_attention)
168
+ return processed_attention
169
+
170
+
171
+ class _Attention(nn.Module):
172
+ r"""Locally sensitive attention model.
173
+
174
+ Args:
175
+ attention_rnn_dim (int): Number of hidden units for RNN.
176
+ encoder_embedding_dim (int): Number of embedding dimensions in the Encoder.
177
+ attention_hidden_dim (int): Dimension of attention hidden representation.
178
+ attention_location_n_filter (int): Number of filters for Attention model.
179
+ attention_location_kernel_size (int): Kernel size for Attention model.
180
+ """
181
+
182
+ def __init__(
183
+ self,
184
+ attention_rnn_dim: int,
185
+ encoder_embedding_dim: int,
186
+ attention_hidden_dim: int,
187
+ attention_location_n_filter: int,
188
+ attention_location_kernel_size: int,
189
+ ) -> None:
190
+ super().__init__()
191
+ self.query_layer = _get_linear_layer(attention_rnn_dim, attention_hidden_dim, bias=False, w_init_gain="tanh")
192
+ self.memory_layer = _get_linear_layer(
193
+ encoder_embedding_dim, attention_hidden_dim, bias=False, w_init_gain="tanh"
194
+ )
195
+ self.v = _get_linear_layer(attention_hidden_dim, 1, bias=False)
196
+ self.location_layer = _LocationLayer(
197
+ attention_location_n_filter,
198
+ attention_location_kernel_size,
199
+ attention_hidden_dim,
200
+ )
201
+ self.score_mask_value = -float("inf")
202
+
203
+ def _get_alignment_energies(self, query: Tensor, processed_memory: Tensor, attention_weights_cat: Tensor) -> Tensor:
204
+ r"""Get the alignment vector.
205
+
206
+ Args:
207
+ query (Tensor): Decoder output with shape (n_batch, n_mels * n_frames_per_step).
208
+ processed_memory (Tensor): Processed Encoder outputs
209
+ with shape (n_batch, max of ``text_lengths``, attention_hidden_dim).
210
+ attention_weights_cat (Tensor): Cumulative and previous attention weights
211
+ with shape (n_batch, 2, max of ``text_lengths``).
212
+
213
+ Returns:
214
+ alignment (Tensor): attention weights, it is a tensor with shape (batch, max of ``text_lengths``).
215
+ """
216
+
217
+ processed_query = self.query_layer(query.unsqueeze(1))
218
+ processed_attention_weights = self.location_layer(attention_weights_cat)
219
+ energies = self.v(torch.tanh(processed_query + processed_attention_weights + processed_memory))
220
+
221
+ alignment = energies.squeeze(2)
222
+ return alignment
223
+
224
+ def forward(
225
+ self,
226
+ attention_hidden_state: Tensor,
227
+ memory: Tensor,
228
+ processed_memory: Tensor,
229
+ attention_weights_cat: Tensor,
230
+ mask: Tensor,
231
+ ) -> Tuple[Tensor, Tensor]:
232
+ r"""Pass the input through the Attention model.
233
+
234
+ Args:
235
+ attention_hidden_state (Tensor): Attention rnn last output with shape (n_batch, ``attention_rnn_dim``).
236
+ memory (Tensor): Encoder outputs with shape (n_batch, max of ``text_lengths``, ``encoder_embedding_dim``).
237
+ processed_memory (Tensor): Processed Encoder outputs
238
+ with shape (n_batch, max of ``text_lengths``, ``attention_hidden_dim``).
239
+ attention_weights_cat (Tensor): Previous and cumulative attention weights
240
+ with shape (n_batch, current_num_frames * 2, max of ``text_lengths``).
241
+ mask (Tensor): Binary mask for padded data with shape (n_batch, current_num_frames).
242
+
243
+ Returns:
244
+ attention_context (Tensor): Context vector with shape (n_batch, ``encoder_embedding_dim``).
245
+ attention_weights (Tensor): Attention weights with shape (n_batch, max of ``text_lengths``).
246
+ """
247
+ alignment = self._get_alignment_energies(attention_hidden_state, processed_memory, attention_weights_cat)
248
+
249
+ alignment = alignment.masked_fill(mask, self.score_mask_value)
250
+
251
+ attention_weights = F.softmax(alignment, dim=1)
252
+ attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
253
+ attention_context = attention_context.squeeze(1)
254
+
255
+ return attention_context, attention_weights
256
+
257
+
258
+ class _Prenet(nn.Module):
259
+ r"""Prenet Module. It is consists of ``len(output_size)`` linear layers.
260
+
261
+ Args:
262
+ in_dim (int): The size of each input sample.
263
+ output_sizes (list): The output dimension of each linear layers.
264
+ """
265
+
266
+ def __init__(self, in_dim: int, out_sizes: List[int]) -> None:
267
+ super().__init__()
268
+ in_sizes = [in_dim] + out_sizes[:-1]
269
+ self.layers = nn.ModuleList(
270
+ [_get_linear_layer(in_size, out_size, bias=False) for (in_size, out_size) in zip(in_sizes, out_sizes)]
271
+ )
272
+
273
+ def forward(self, x: Tensor) -> Tensor:
274
+ r"""Pass the input through Prenet.
275
+
276
+ Args:
277
+ x (Tensor): The input sequence to Prenet with shape (n_batch, in_dim).
278
+
279
+ Return:
280
+ x (Tensor): Tensor with shape (n_batch, sizes[-1])
281
+ """
282
+
283
+ for linear in self.layers:
284
+ x = F.dropout(F.relu(linear(x)), p=0.5, training=True)
285
+ return x
286
+
287
+
288
+ class _Postnet(nn.Module):
289
+ r"""Postnet Module.
290
+
291
+ Args:
292
+ n_mels (int): Number of mel bins.
293
+ postnet_embedding_dim (int): Postnet embedding dimension.
294
+ postnet_kernel_size (int): Postnet kernel size.
295
+ postnet_n_convolution (int): Number of postnet convolutions.
296
+ """
297
+
298
+ def __init__(
299
+ self,
300
+ n_mels: int,
301
+ postnet_embedding_dim: int,
302
+ postnet_kernel_size: int,
303
+ postnet_n_convolution: int,
304
+ ):
305
+ super().__init__()
306
+ self.convolutions = nn.ModuleList()
307
+
308
+ for i in range(postnet_n_convolution):
309
+ in_channels = n_mels if i == 0 else postnet_embedding_dim
310
+ out_channels = n_mels if i == (postnet_n_convolution - 1) else postnet_embedding_dim
311
+ init_gain = "linear" if i == (postnet_n_convolution - 1) else "tanh"
312
+ num_features = n_mels if i == (postnet_n_convolution - 1) else postnet_embedding_dim
313
+ self.convolutions.append(
314
+ nn.Sequential(
315
+ _get_conv1d_layer(
316
+ in_channels,
317
+ out_channels,
318
+ kernel_size=postnet_kernel_size,
319
+ stride=1,
320
+ padding=int((postnet_kernel_size - 1) / 2),
321
+ dilation=1,
322
+ w_init_gain=init_gain,
323
+ ),
324
+ nn.BatchNorm1d(num_features),
325
+ )
326
+ )
327
+
328
+ self.n_convs = len(self.convolutions)
329
+
330
+ def forward(self, x: Tensor) -> Tensor:
331
+ r"""Pass the input through Postnet.
332
+
333
+ Args:
334
+ x (Tensor): The input sequence with shape (n_batch, ``n_mels``, max of ``mel_specgram_lengths``).
335
+
336
+ Return:
337
+ x (Tensor): Tensor with shape (n_batch, ``n_mels``, max of ``mel_specgram_lengths``).
338
+ """
339
+
340
+ for i, conv in enumerate(self.convolutions):
341
+ if i < self.n_convs - 1:
342
+ x = F.dropout(torch.tanh(conv(x)), 0.5, training=self.training)
343
+ else:
344
+ x = F.dropout(conv(x), 0.5, training=self.training)
345
+
346
+ return x
347
+
348
+
349
+ class _Encoder(nn.Module):
350
+ r"""Encoder Module.
351
+
352
+ Args:
353
+ encoder_embedding_dim (int): Number of embedding dimensions in the encoder.
354
+ encoder_n_convolution (int): Number of convolution layers in the encoder.
355
+ encoder_kernel_size (int): The kernel size in the encoder.
356
+
357
+ Examples
358
+ >>> encoder = _Encoder(3, 512, 5)
359
+ >>> input = torch.rand(10, 20, 30)
360
+ >>> output = encoder(input) # shape: (10, 30, 512)
361
+ """
362
+
363
+ def __init__(
364
+ self,
365
+ encoder_embedding_dim: int,
366
+ encoder_n_convolution: int,
367
+ encoder_kernel_size: int,
368
+ ) -> None:
369
+ super().__init__()
370
+
371
+ self.convolutions = nn.ModuleList()
372
+ for _ in range(encoder_n_convolution):
373
+ conv_layer = nn.Sequential(
374
+ _get_conv1d_layer(
375
+ encoder_embedding_dim,
376
+ encoder_embedding_dim,
377
+ kernel_size=encoder_kernel_size,
378
+ stride=1,
379
+ padding=int((encoder_kernel_size - 1) / 2),
380
+ dilation=1,
381
+ w_init_gain="relu",
382
+ ),
383
+ nn.BatchNorm1d(encoder_embedding_dim),
384
+ )
385
+ self.convolutions.append(conv_layer)
386
+
387
+ self.lstm = nn.LSTM(
388
+ encoder_embedding_dim,
389
+ int(encoder_embedding_dim / 2),
390
+ 1,
391
+ batch_first=True,
392
+ bidirectional=True,
393
+ )
394
+ self.lstm.flatten_parameters()
395
+
396
+ def forward(self, x: Tensor, input_lengths: Tensor) -> Tensor:
397
+ r"""Pass the input through the Encoder.
398
+
399
+ Args:
400
+ x (Tensor): The input sequences with shape (n_batch, encoder_embedding_dim, n_seq).
401
+ input_lengths (Tensor): The length of each input sequence with shape (n_batch, ).
402
+
403
+ Return:
404
+ x (Tensor): A tensor with shape (n_batch, n_seq, encoder_embedding_dim).
405
+ """
406
+
407
+ for conv in self.convolutions:
408
+ x = F.dropout(F.relu(conv(x)), 0.5, self.training)
409
+
410
+ x = x.transpose(1, 2)
411
+
412
+ input_lengths = input_lengths.cpu()
413
+ x = nn.utils.rnn.pack_padded_sequence(x, input_lengths, batch_first=True)
414
+
415
+ outputs, _ = self.lstm(x)
416
+ outputs, _ = nn.utils.rnn.pad_packed_sequence(outputs, batch_first=True)
417
+
418
+ return outputs
419
+
420
+
421
+ class _Decoder(nn.Module):
422
+ r"""Decoder with Attention model.
423
+
424
+ Args:
425
+ n_mels (int): number of mel bins
426
+ n_frames_per_step (int): number of frames processed per step, only 1 is supported
427
+ encoder_embedding_dim (int): the number of embedding dimensions in the encoder.
428
+ decoder_rnn_dim (int): number of units in decoder LSTM
429
+ decoder_max_step (int): maximum number of output mel spectrograms
430
+ decoder_dropout (float): dropout probability for decoder LSTM
431
+ decoder_early_stopping (bool): stop decoding when all samples are finished
432
+ attention_rnn_dim (int): number of units in attention LSTM
433
+ attention_hidden_dim (int): dimension of attention hidden representation
434
+ attention_location_n_filter (int): number of filters for attention model
435
+ attention_location_kernel_size (int): kernel size for attention model
436
+ attention_dropout (float): dropout probability for attention LSTM
437
+ prenet_dim (int): number of ReLU units in prenet layers
438
+ gate_threshold (float): probability threshold for stop token
439
+ """
440
+
441
+ def __init__(
442
+ self,
443
+ n_mels: int,
444
+ n_frames_per_step: int,
445
+ encoder_embedding_dim: int,
446
+ decoder_rnn_dim: int,
447
+ decoder_max_step: int,
448
+ decoder_dropout: float,
449
+ decoder_early_stopping: bool,
450
+ attention_rnn_dim: int,
451
+ attention_hidden_dim: int,
452
+ attention_location_n_filter: int,
453
+ attention_location_kernel_size: int,
454
+ attention_dropout: float,
455
+ prenet_dim: int,
456
+ gate_threshold: float,
457
+ ) -> None:
458
+
459
+ super().__init__()
460
+ self.n_mels = n_mels
461
+ self.n_frames_per_step = n_frames_per_step
462
+ self.encoder_embedding_dim = encoder_embedding_dim
463
+ self.attention_rnn_dim = attention_rnn_dim
464
+ self.decoder_rnn_dim = decoder_rnn_dim
465
+ self.prenet_dim = prenet_dim
466
+ self.decoder_max_step = decoder_max_step
467
+ self.gate_threshold = gate_threshold
468
+ self.attention_dropout = attention_dropout
469
+ self.decoder_dropout = decoder_dropout
470
+ self.decoder_early_stopping = decoder_early_stopping
471
+
472
+ self.prenet = _Prenet(n_mels * n_frames_per_step, [prenet_dim, prenet_dim])
473
+
474
+ self.attention_rnn = nn.LSTMCell(prenet_dim + encoder_embedding_dim, attention_rnn_dim)
475
+
476
+ self.attention_layer = _Attention(
477
+ attention_rnn_dim,
478
+ encoder_embedding_dim,
479
+ attention_hidden_dim,
480
+ attention_location_n_filter,
481
+ attention_location_kernel_size,
482
+ )
483
+
484
+ self.decoder_rnn = nn.LSTMCell(attention_rnn_dim + encoder_embedding_dim, decoder_rnn_dim, True)
485
+
486
+ self.linear_projection = _get_linear_layer(decoder_rnn_dim + encoder_embedding_dim, n_mels * n_frames_per_step)
487
+
488
+ self.gate_layer = _get_linear_layer(
489
+ decoder_rnn_dim + encoder_embedding_dim, 1, bias=True, w_init_gain="sigmoid"
490
+ )
491
+
492
+ def _get_initial_frame(self, memory: Tensor) -> Tensor:
493
+ r"""Gets all zeros frames to use as the first decoder input.
494
+
495
+ Args:
496
+ memory (Tensor): Encoder outputs with shape (n_batch, max of ``text_lengths``, ``encoder_embedding_dim``).
497
+
498
+ Returns:
499
+ decoder_input (Tensor): all zeros frames with shape
500
+ (n_batch, max of ``text_lengths``, ``n_mels * n_frames_per_step``).
501
+ """
502
+
503
+ n_batch = memory.size(0)
504
+ dtype = memory.dtype
505
+ device = memory.device
506
+ decoder_input = torch.zeros(n_batch, self.n_mels * self.n_frames_per_step, dtype=dtype, device=device)
507
+ return decoder_input
508
+
509
+ def _initialize_decoder_states(
510
+ self, memory: Tensor
511
+ ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]:
512
+ r"""Initializes attention rnn states, decoder rnn states, attention
513
+ weights, attention cumulative weights, attention context, stores memory
514
+ and stores processed memory.
515
+
516
+ Args:
517
+ memory (Tensor): Encoder outputs with shape (n_batch, max of ``text_lengths``, ``encoder_embedding_dim``).
518
+
519
+ Returns:
520
+ attention_hidden (Tensor): Hidden state of the attention LSTM with shape (n_batch, ``attention_rnn_dim``).
521
+ attention_cell (Tensor): Hidden state of the attention LSTM with shape (n_batch, ``attention_rnn_dim``).
522
+ decoder_hidden (Tensor): Hidden state of the decoder LSTM with shape (n_batch, ``decoder_rnn_dim``).
523
+ decoder_cell (Tensor): Hidden state of the decoder LSTM with shape (n_batch, ``decoder_rnn_dim``).
524
+ attention_weights (Tensor): Attention weights with shape (n_batch, max of ``text_lengths``).
525
+ attention_weights_cum (Tensor): Cumulated attention weights with shape (n_batch, max of ``text_lengths``).
526
+ attention_context (Tensor): Context vector with shape (n_batch, ``encoder_embedding_dim``).
527
+ processed_memory (Tensor): Processed encoder outputs
528
+ with shape (n_batch, max of ``text_lengths``, ``attention_hidden_dim``).
529
+ """
530
+ n_batch = memory.size(0)
531
+ max_time = memory.size(1)
532
+ dtype = memory.dtype
533
+ device = memory.device
534
+
535
+ attention_hidden = torch.zeros(n_batch, self.attention_rnn_dim, dtype=dtype, device=device)
536
+ attention_cell = torch.zeros(n_batch, self.attention_rnn_dim, dtype=dtype, device=device)
537
+
538
+ decoder_hidden = torch.zeros(n_batch, self.decoder_rnn_dim, dtype=dtype, device=device)
539
+ decoder_cell = torch.zeros(n_batch, self.decoder_rnn_dim, dtype=dtype, device=device)
540
+
541
+ attention_weights = torch.zeros(n_batch, max_time, dtype=dtype, device=device)
542
+ attention_weights_cum = torch.zeros(n_batch, max_time, dtype=dtype, device=device)
543
+ attention_context = torch.zeros(n_batch, self.encoder_embedding_dim, dtype=dtype, device=device)
544
+
545
+ processed_memory = self.attention_layer.memory_layer(memory)
546
+
547
+ return (
548
+ attention_hidden,
549
+ attention_cell,
550
+ decoder_hidden,
551
+ decoder_cell,
552
+ attention_weights,
553
+ attention_weights_cum,
554
+ attention_context,
555
+ processed_memory,
556
+ )
557
+
558
+ def _parse_decoder_inputs(self, decoder_inputs: Tensor) -> Tensor:
559
+ r"""Prepares decoder inputs.
560
+
561
+ Args:
562
+ decoder_inputs (Tensor): Inputs used for teacher-forced training, i.e. mel-specs,
563
+ with shape (n_batch, ``n_mels``, max of ``mel_specgram_lengths``)
564
+
565
+ Returns:
566
+ inputs (Tensor): Processed decoder inputs with shape (max of ``mel_specgram_lengths``, n_batch, ``n_mels``).
567
+ """
568
+ # (n_batch, n_mels, mel_specgram_lengths.max()) -> (n_batch, mel_specgram_lengths.max(), n_mels)
569
+ decoder_inputs = decoder_inputs.transpose(1, 2)
570
+ decoder_inputs = decoder_inputs.view(
571
+ decoder_inputs.size(0),
572
+ int(decoder_inputs.size(1) / self.n_frames_per_step),
573
+ -1,
574
+ )
575
+ # (n_batch, mel_specgram_lengths.max(), n_mels) -> (mel_specgram_lengths.max(), n_batch, n_mels)
576
+ decoder_inputs = decoder_inputs.transpose(0, 1)
577
+ return decoder_inputs
578
+
579
+ def _parse_decoder_outputs(
580
+ self, mel_specgram: Tensor, gate_outputs: Tensor, alignments: Tensor
581
+ ) -> Tuple[Tensor, Tensor, Tensor]:
582
+ r"""Prepares decoder outputs for output
583
+
584
+ Args:
585
+ mel_specgram (Tensor): mel spectrogram with shape (max of ``mel_specgram_lengths``, n_batch, ``n_mels``)
586
+ gate_outputs (Tensor): predicted stop token with shape (max of ``mel_specgram_lengths``, n_batch)
587
+ alignments (Tensor): sequence of attention weights from the decoder
588
+ with shape (max of ``mel_specgram_lengths``, n_batch, max of ``text_lengths``)
589
+
590
+ Returns:
591
+ mel_specgram (Tensor): mel spectrogram with shape (n_batch, ``n_mels``, max of ``mel_specgram_lengths``)
592
+ gate_outputs (Tensor): predicted stop token with shape (n_batch, max of ``mel_specgram_lengths``)
593
+ alignments (Tensor): sequence of attention weights from the decoder
594
+ with shape (n_batch, max of ``mel_specgram_lengths``, max of ``text_lengths``)
595
+ """
596
+ # (mel_specgram_lengths.max(), n_batch, text_lengths.max())
597
+ # -> (n_batch, mel_specgram_lengths.max(), text_lengths.max())
598
+ alignments = alignments.transpose(0, 1).contiguous()
599
+ # (mel_specgram_lengths.max(), n_batch) -> (n_batch, mel_specgram_lengths.max())
600
+ gate_outputs = gate_outputs.transpose(0, 1).contiguous()
601
+ # (mel_specgram_lengths.max(), n_batch, n_mels) -> (n_batch, mel_specgram_lengths.max(), n_mels)
602
+ mel_specgram = mel_specgram.transpose(0, 1).contiguous()
603
+ # decouple frames per step
604
+ shape = (mel_specgram.shape[0], -1, self.n_mels)
605
+ mel_specgram = mel_specgram.view(*shape)
606
+ # (n_batch, mel_specgram_lengths.max(), n_mels) -> (n_batch, n_mels, T_out)
607
+ mel_specgram = mel_specgram.transpose(1, 2)
608
+
609
+ return mel_specgram, gate_outputs, alignments
610
+
611
+ def decode(
612
+ self,
613
+ decoder_input: Tensor,
614
+ attention_hidden: Tensor,
615
+ attention_cell: Tensor,
616
+ decoder_hidden: Tensor,
617
+ decoder_cell: Tensor,
618
+ attention_weights: Tensor,
619
+ attention_weights_cum: Tensor,
620
+ attention_context: Tensor,
621
+ memory: Tensor,
622
+ processed_memory: Tensor,
623
+ mask: Tensor,
624
+ ) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor]:
625
+ r"""Decoder step using stored states, attention and memory
626
+
627
+ Args:
628
+ decoder_input (Tensor): Output of the Prenet with shape (n_batch, ``prenet_dim``).
629
+ attention_hidden (Tensor): Hidden state of the attention LSTM with shape (n_batch, ``attention_rnn_dim``).
630
+ attention_cell (Tensor): Hidden state of the attention LSTM with shape (n_batch, ``attention_rnn_dim``).
631
+ decoder_hidden (Tensor): Hidden state of the decoder LSTM with shape (n_batch, ``decoder_rnn_dim``).
632
+ decoder_cell (Tensor): Hidden state of the decoder LSTM with shape (n_batch, ``decoder_rnn_dim``).
633
+ attention_weights (Tensor): Attention weights with shape (n_batch, max of ``text_lengths``).
634
+ attention_weights_cum (Tensor): Cumulated attention weights with shape (n_batch, max of ``text_lengths``).
635
+ attention_context (Tensor): Context vector with shape (n_batch, ``encoder_embedding_dim``).
636
+ memory (Tensor): Encoder output with shape (n_batch, max of ``text_lengths``, ``encoder_embedding_dim``).
637
+ processed_memory (Tensor): Processed Encoder outputs
638
+ with shape (n_batch, max of ``text_lengths``, ``attention_hidden_dim``).
639
+ mask (Tensor): Binary mask for padded data with shape (n_batch, current_num_frames).
640
+
641
+ Returns:
642
+ decoder_output: Predicted mel spectrogram for the current frame with shape (n_batch, ``n_mels``).
643
+ gate_prediction (Tensor): Prediction of the stop token with shape (n_batch, ``1``).
644
+ attention_hidden (Tensor): Hidden state of the attention LSTM with shape (n_batch, ``attention_rnn_dim``).
645
+ attention_cell (Tensor): Hidden state of the attention LSTM with shape (n_batch, ``attention_rnn_dim``).
646
+ decoder_hidden (Tensor): Hidden state of the decoder LSTM with shape (n_batch, ``decoder_rnn_dim``).
647
+ decoder_cell (Tensor): Hidden state of the decoder LSTM with shape (n_batch, ``decoder_rnn_dim``).
648
+ attention_weights (Tensor): Attention weights with shape (n_batch, max of ``text_lengths``).
649
+ attention_weights_cum (Tensor): Cumulated attention weights with shape (n_batch, max of ``text_lengths``).
650
+ attention_context (Tensor): Context vector with shape (n_batch, ``encoder_embedding_dim``).
651
+ """
652
+ cell_input = torch.cat((decoder_input, attention_context), -1)
653
+
654
+ attention_hidden, attention_cell = self.attention_rnn(cell_input, (attention_hidden, attention_cell))
655
+ attention_hidden = F.dropout(attention_hidden, self.attention_dropout, self.training)
656
+
657
+ attention_weights_cat = torch.cat((attention_weights.unsqueeze(1), attention_weights_cum.unsqueeze(1)), dim=1)
658
+ attention_context, attention_weights = self.attention_layer(
659
+ attention_hidden, memory, processed_memory, attention_weights_cat, mask
660
+ )
661
+
662
+ attention_weights_cum += attention_weights
663
+ decoder_input = torch.cat((attention_hidden, attention_context), -1)
664
+
665
+ decoder_hidden, decoder_cell = self.decoder_rnn(decoder_input, (decoder_hidden, decoder_cell))
666
+ decoder_hidden = F.dropout(decoder_hidden, self.decoder_dropout, self.training)
667
+
668
+ decoder_hidden_attention_context = torch.cat((decoder_hidden, attention_context), dim=1)
669
+ decoder_output = self.linear_projection(decoder_hidden_attention_context)
670
+
671
+ gate_prediction = self.gate_layer(decoder_hidden_attention_context)
672
+
673
+ return (
674
+ decoder_output,
675
+ gate_prediction,
676
+ attention_hidden,
677
+ attention_cell,
678
+ decoder_hidden,
679
+ decoder_cell,
680
+ attention_weights,
681
+ attention_weights_cum,
682
+ attention_context,
683
+ )
684
+
685
+ def forward(
686
+ self, memory: Tensor, mel_specgram_truth: Tensor, memory_lengths: Tensor
687
+ ) -> Tuple[Tensor, Tensor, Tensor]:
688
+ r"""Decoder forward pass for training.
689
+
690
+ Args:
691
+ memory (Tensor): Encoder outputs
692
+ with shape (n_batch, max of ``text_lengths``, ``encoder_embedding_dim``).
693
+ mel_specgram_truth (Tensor): Decoder ground-truth mel-specs for teacher forcing
694
+ with shape (n_batch, ``n_mels``, max of ``mel_specgram_lengths``).
695
+ memory_lengths (Tensor): Encoder output lengths for attention masking
696
+ (the same as ``text_lengths``) with shape (n_batch, ).
697
+
698
+ Returns:
699
+ mel_specgram (Tensor): Predicted mel spectrogram
700
+ with shape (n_batch, ``n_mels``, max of ``mel_specgram_lengths``).
701
+ gate_outputs (Tensor): Predicted stop token for each timestep
702
+ with shape (n_batch, max of ``mel_specgram_lengths``).
703
+ alignments (Tensor): Sequence of attention weights from the decoder
704
+ with shape (n_batch, max of ``mel_specgram_lengths``, max of ``text_lengths``).
705
+ """
706
+
707
+ decoder_input = self._get_initial_frame(memory).unsqueeze(0)
708
+ decoder_inputs = self._parse_decoder_inputs(mel_specgram_truth)
709
+ decoder_inputs = torch.cat((decoder_input, decoder_inputs), dim=0)
710
+ decoder_inputs = self.prenet(decoder_inputs)
711
+
712
+ mask = _get_mask_from_lengths(memory_lengths)
713
+ (
714
+ attention_hidden,
715
+ attention_cell,
716
+ decoder_hidden,
717
+ decoder_cell,
718
+ attention_weights,
719
+ attention_weights_cum,
720
+ attention_context,
721
+ processed_memory,
722
+ ) = self._initialize_decoder_states(memory)
723
+
724
+ mel_outputs, gate_outputs, alignments = [], [], []
725
+ while len(mel_outputs) < decoder_inputs.size(0) - 1:
726
+ decoder_input = decoder_inputs[len(mel_outputs)]
727
+ (
728
+ mel_output,
729
+ gate_output,
730
+ attention_hidden,
731
+ attention_cell,
732
+ decoder_hidden,
733
+ decoder_cell,
734
+ attention_weights,
735
+ attention_weights_cum,
736
+ attention_context,
737
+ ) = self.decode(
738
+ decoder_input,
739
+ attention_hidden,
740
+ attention_cell,
741
+ decoder_hidden,
742
+ decoder_cell,
743
+ attention_weights,
744
+ attention_weights_cum,
745
+ attention_context,
746
+ memory,
747
+ processed_memory,
748
+ mask,
749
+ )
750
+
751
+ mel_outputs += [mel_output.squeeze(1)]
752
+ gate_outputs += [gate_output.squeeze(1)]
753
+ alignments += [attention_weights]
754
+
755
+ mel_specgram, gate_outputs, alignments = self._parse_decoder_outputs(
756
+ torch.stack(mel_outputs), torch.stack(gate_outputs), torch.stack(alignments)
757
+ )
758
+
759
+ return mel_specgram, gate_outputs, alignments
760
+
761
+ def _get_go_frame(self, memory: Tensor) -> Tensor:
762
+ """Gets all zeros frames to use as the first decoder input
763
+
764
+ args:
765
+ memory (Tensor): Encoder outputs
766
+ with shape (n_batch, max of ``text_lengths``, ``encoder_embedding_dim``).
767
+
768
+ returns:
769
+ decoder_input (Tensor): All zeros frames with shape(n_batch, ``n_mels`` * ``n_frame_per_step``).
770
+ """
771
+
772
+ n_batch = memory.size(0)
773
+ dtype = memory.dtype
774
+ device = memory.device
775
+ decoder_input = torch.zeros(n_batch, self.n_mels * self.n_frames_per_step, dtype=dtype, device=device)
776
+ return decoder_input
777
+
778
+ @torch.jit.export
779
+ def infer(self, memory: Tensor, memory_lengths: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
780
+ """Decoder inference
781
+
782
+ Args:
783
+ memory (Tensor): Encoder outputs
784
+ with shape (n_batch, max of ``text_lengths``, ``encoder_embedding_dim``).
785
+ memory_lengths (Tensor): Encoder output lengths for attention masking
786
+ (the same as ``text_lengths``) with shape (n_batch, ).
787
+
788
+ Returns:
789
+ mel_specgram (Tensor): Predicted mel spectrogram
790
+ with shape (n_batch, ``n_mels``, max of ``mel_specgram_lengths``).
791
+ mel_specgram_lengths (Tensor): the length of the predicted mel spectrogram (n_batch, ))
792
+ gate_outputs (Tensor): Predicted stop token for each timestep
793
+ with shape (n_batch, max of ``mel_specgram_lengths``).
794
+ alignments (Tensor): Sequence of attention weights from the decoder
795
+ with shape (n_batch, max of ``mel_specgram_lengths``, max of ``text_lengths``).
796
+ """
797
+ batch_size, device = memory.size(0), memory.device
798
+
799
+ decoder_input = self._get_go_frame(memory)
800
+
801
+ mask = _get_mask_from_lengths(memory_lengths)
802
+ (
803
+ attention_hidden,
804
+ attention_cell,
805
+ decoder_hidden,
806
+ decoder_cell,
807
+ attention_weights,
808
+ attention_weights_cum,
809
+ attention_context,
810
+ processed_memory,
811
+ ) = self._initialize_decoder_states(memory)
812
+
813
+ mel_specgram_lengths = torch.zeros([batch_size], dtype=torch.int32, device=device)
814
+ finished = torch.zeros([batch_size], dtype=torch.bool, device=device)
815
+ mel_specgrams: List[Tensor] = []
816
+ gate_outputs: List[Tensor] = []
817
+ alignments: List[Tensor] = []
818
+ for _ in range(self.decoder_max_step):
819
+ decoder_input = self.prenet(decoder_input)
820
+ (
821
+ mel_specgram,
822
+ gate_output,
823
+ attention_hidden,
824
+ attention_cell,
825
+ decoder_hidden,
826
+ decoder_cell,
827
+ attention_weights,
828
+ attention_weights_cum,
829
+ attention_context,
830
+ ) = self.decode(
831
+ decoder_input,
832
+ attention_hidden,
833
+ attention_cell,
834
+ decoder_hidden,
835
+ decoder_cell,
836
+ attention_weights,
837
+ attention_weights_cum,
838
+ attention_context,
839
+ memory,
840
+ processed_memory,
841
+ mask,
842
+ )
843
+
844
+ mel_specgrams.append(mel_specgram.unsqueeze(0))
845
+ gate_outputs.append(gate_output.transpose(0, 1))
846
+ alignments.append(attention_weights)
847
+ mel_specgram_lengths[~finished] += 1
848
+
849
+ finished |= torch.sigmoid(gate_output.squeeze(1)) > self.gate_threshold
850
+ if self.decoder_early_stopping and torch.all(finished):
851
+ break
852
+
853
+ decoder_input = mel_specgram
854
+
855
+ if len(mel_specgrams) == self.decoder_max_step:
856
+ warnings.warn(
857
+ "Reached max decoder steps. The generated spectrogram might not cover " "the whole transcript."
858
+ )
859
+
860
+ mel_specgrams = torch.cat(mel_specgrams, dim=0)
861
+ gate_outputs = torch.cat(gate_outputs, dim=0)
862
+ alignments = torch.cat(alignments, dim=0)
863
+
864
+ mel_specgrams, gate_outputs, alignments = self._parse_decoder_outputs(mel_specgrams, gate_outputs, alignments)
865
+
866
+ return mel_specgrams, mel_specgram_lengths, gate_outputs, alignments
867
+
868
+
869
+ class Tacotron2(nn.Module):
870
+ r"""Tacotron2 model from *Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions*
871
+ :cite:`shen2018natural` based on the implementation from
872
+ `Nvidia Deep Learning Examples <https://github.com/NVIDIA/DeepLearningExamples/>`_.
873
+
874
+ See Also:
875
+ * :class:`torchaudio.pipelines.Tacotron2TTSBundle`: TTS pipeline with pretrained model.
876
+
877
+ Args:
878
+ mask_padding (bool, optional): Use mask padding (Default: ``False``).
879
+ n_mels (int, optional): Number of mel bins (Default: ``80``).
880
+ n_symbol (int, optional): Number of symbols for the input text (Default: ``148``).
881
+ n_frames_per_step (int, optional): Number of frames processed per step, only 1 is supported (Default: ``1``).
882
+ symbol_embedding_dim (int, optional): Input embedding dimension (Default: ``512``).
883
+ encoder_n_convolution (int, optional): Number of encoder convolutions (Default: ``3``).
884
+ encoder_kernel_size (int, optional): Encoder kernel size (Default: ``5``).
885
+ encoder_embedding_dim (int, optional): Encoder embedding dimension (Default: ``512``).
886
+ decoder_rnn_dim (int, optional): Number of units in decoder LSTM (Default: ``1024``).
887
+ decoder_max_step (int, optional): Maximum number of output mel spectrograms (Default: ``2000``).
888
+ decoder_dropout (float, optional): Dropout probability for decoder LSTM (Default: ``0.1``).
889
+ decoder_early_stopping (bool, optional): Continue decoding after all samples are finished (Default: ``True``).
890
+ attention_rnn_dim (int, optional): Number of units in attention LSTM (Default: ``1024``).
891
+ attention_hidden_dim (int, optional): Dimension of attention hidden representation (Default: ``128``).
892
+ attention_location_n_filter (int, optional): Number of filters for attention model (Default: ``32``).
893
+ attention_location_kernel_size (int, optional): Kernel size for attention model (Default: ``31``).
894
+ attention_dropout (float, optional): Dropout probability for attention LSTM (Default: ``0.1``).
895
+ prenet_dim (int, optional): Number of ReLU units in prenet layers (Default: ``256``).
896
+ postnet_n_convolution (int, optional): Number of postnet convolutions (Default: ``5``).
897
+ postnet_kernel_size (int, optional): Postnet kernel size (Default: ``5``).
898
+ postnet_embedding_dim (int, optional): Postnet embedding dimension (Default: ``512``).
899
+ gate_threshold (float, optional): Probability threshold for stop token (Default: ``0.5``).
900
+ """
901
+
902
+ def __init__(
903
+ self,
904
+ mask_padding: bool = False,
905
+ n_mels: int = 80,
906
+ n_symbol: int = 148,
907
+ n_frames_per_step: int = 1,
908
+ symbol_embedding_dim: int = 512,
909
+ encoder_embedding_dim: int = 512,
910
+ encoder_n_convolution: int = 3,
911
+ encoder_kernel_size: int = 5,
912
+ decoder_rnn_dim: int = 1024,
913
+ decoder_max_step: int = 2000,
914
+ decoder_dropout: float = 0.1,
915
+ decoder_early_stopping: bool = True,
916
+ attention_rnn_dim: int = 1024,
917
+ attention_hidden_dim: int = 128,
918
+ attention_location_n_filter: int = 32,
919
+ attention_location_kernel_size: int = 31,
920
+ attention_dropout: float = 0.1,
921
+ prenet_dim: int = 256,
922
+ postnet_n_convolution: int = 5,
923
+ postnet_kernel_size: int = 5,
924
+ postnet_embedding_dim: int = 512,
925
+ gate_threshold: float = 0.5,
926
+ ) -> None:
927
+ super().__init__()
928
+
929
+ self.mask_padding = mask_padding
930
+ self.n_mels = n_mels
931
+ self.n_frames_per_step = n_frames_per_step
932
+ self.embedding = nn.Embedding(n_symbol, symbol_embedding_dim)
933
+ torch.nn.init.xavier_uniform_(self.embedding.weight)
934
+ self.encoder = _Encoder(encoder_embedding_dim, encoder_n_convolution, encoder_kernel_size)
935
+ self.decoder = _Decoder(
936
+ n_mels,
937
+ n_frames_per_step,
938
+ encoder_embedding_dim,
939
+ decoder_rnn_dim,
940
+ decoder_max_step,
941
+ decoder_dropout,
942
+ decoder_early_stopping,
943
+ attention_rnn_dim,
944
+ attention_hidden_dim,
945
+ attention_location_n_filter,
946
+ attention_location_kernel_size,
947
+ attention_dropout,
948
+ prenet_dim,
949
+ gate_threshold,
950
+ )
951
+ self.postnet = _Postnet(n_mels, postnet_embedding_dim, postnet_kernel_size, postnet_n_convolution)
952
+
953
+ def forward(
954
+ self,
955
+ tokens: Tensor,
956
+ token_lengths: Tensor,
957
+ mel_specgram: Tensor,
958
+ mel_specgram_lengths: Tensor,
959
+ ) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
960
+ r"""Pass the input through the Tacotron2 model. This is in teacher
961
+ forcing mode, which is generally used for training.
962
+
963
+ The input ``tokens`` should be padded with zeros to length max of ``token_lengths``.
964
+ The input ``mel_specgram`` should be padded with zeros to length max of ``mel_specgram_lengths``.
965
+
966
+ Args:
967
+ tokens (Tensor): The input tokens to Tacotron2 with shape `(n_batch, max of token_lengths)`.
968
+ token_lengths (Tensor): The valid length of each sample in ``tokens`` with shape `(n_batch, )`.
969
+ mel_specgram (Tensor): The target mel spectrogram
970
+ with shape `(n_batch, n_mels, max of mel_specgram_lengths)`.
971
+ mel_specgram_lengths (Tensor): The length of each mel spectrogram with shape `(n_batch, )`.
972
+
973
+ Returns:
974
+ [Tensor, Tensor, Tensor, Tensor]:
975
+ Tensor
976
+ Mel spectrogram before Postnet with shape `(n_batch, n_mels, max of mel_specgram_lengths)`.
977
+ Tensor
978
+ Mel spectrogram after Postnet with shape `(n_batch, n_mels, max of mel_specgram_lengths)`.
979
+ Tensor
980
+ The output for stop token at each time step with shape `(n_batch, max of mel_specgram_lengths)`.
981
+ Tensor
982
+ Sequence of attention weights from the decoder with
983
+ shape `(n_batch, max of mel_specgram_lengths, max of token_lengths)`.
984
+ """
985
+
986
+ embedded_inputs = self.embedding(tokens).transpose(1, 2)
987
+
988
+ encoder_outputs = self.encoder(embedded_inputs, token_lengths)
989
+ mel_specgram, gate_outputs, alignments = self.decoder(
990
+ encoder_outputs, mel_specgram, memory_lengths=token_lengths
991
+ )
992
+
993
+ mel_specgram_postnet = self.postnet(mel_specgram)
994
+ mel_specgram_postnet = mel_specgram + mel_specgram_postnet
995
+
996
+ if self.mask_padding:
997
+ mask = _get_mask_from_lengths(mel_specgram_lengths)
998
+ mask = mask.expand(self.n_mels, mask.size(0), mask.size(1))
999
+ mask = mask.permute(1, 0, 2)
1000
+
1001
+ mel_specgram.masked_fill_(mask, 0.0)
1002
+ mel_specgram_postnet.masked_fill_(mask, 0.0)
1003
+ gate_outputs.masked_fill_(mask[:, 0, :], 1e3)
1004
+
1005
+ return mel_specgram, mel_specgram_postnet, gate_outputs, alignments
1006
+
1007
+ @torch.jit.export
1008
+ def infer(self, tokens: Tensor, lengths: Optional[Tensor] = None) -> Tuple[Tensor, Tensor, Tensor]:
1009
+ r"""Using Tacotron2 for inference. The input is a batch of encoded
1010
+ sentences (``tokens``) and its corresponding lengths (``lengths``). The
1011
+ output is the generated mel spectrograms, its corresponding lengths, and
1012
+ the attention weights from the decoder.
1013
+
1014
+ The input `tokens` should be padded with zeros to length max of ``lengths``.
1015
+
1016
+ Args:
1017
+ tokens (Tensor): The input tokens to Tacotron2 with shape `(n_batch, max of lengths)`.
1018
+ lengths (Tensor or None, optional):
1019
+ The valid length of each sample in ``tokens`` with shape `(n_batch, )`.
1020
+ If ``None``, it is assumed that the all the tokens are valid. Default: ``None``
1021
+
1022
+ Returns:
1023
+ (Tensor, Tensor, Tensor):
1024
+ Tensor
1025
+ The predicted mel spectrogram with shape `(n_batch, n_mels, max of mel_specgram_lengths)`.
1026
+ Tensor
1027
+ The length of the predicted mel spectrogram with shape `(n_batch, )`.
1028
+ Tensor
1029
+ Sequence of attention weights from the decoder with shape
1030
+ `(n_batch, max of mel_specgram_lengths, max of lengths)`.
1031
+ """
1032
+ n_batch, max_length = tokens.shape
1033
+ if lengths is None:
1034
+ lengths = torch.tensor([max_length]).expand(n_batch).to(tokens.device, tokens.dtype)
1035
+
1036
+ assert lengths is not None # For TorchScript compiler
1037
+ embedded_inputs = self.embedding(tokens).transpose(1, 2)
1038
+ encoder_outputs = self.encoder(embedded_inputs, lengths)
1039
+ mel_specgram, mel_specgram_lengths, _, alignments = self.decoder.infer(encoder_outputs, lengths)
1040
+
1041
+ mel_outputs_postnet = self.postnet(mel_specgram)
1042
+ mel_outputs_postnet = mel_specgram + mel_outputs_postnet
1043
+
1044
+ alignments = alignments.unfold(1, n_batch, n_batch).transpose(0, 2)
1045
+
1046
+ return mel_outputs_postnet, mel_specgram_lengths, alignments