torchaudio 2.9.0__cp314-cp314-macosx_11_0_arm64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of torchaudio might be problematic. Click here for more details.

Files changed (86) hide show
  1. torchaudio/.dylibs/libc++.1.0.dylib +0 -0
  2. torchaudio/__init__.py +204 -0
  3. torchaudio/_extension/__init__.py +61 -0
  4. torchaudio/_extension/utils.py +133 -0
  5. torchaudio/_internal/__init__.py +10 -0
  6. torchaudio/_internal/module_utils.py +171 -0
  7. torchaudio/_torchcodec.py +340 -0
  8. torchaudio/compliance/__init__.py +5 -0
  9. torchaudio/compliance/kaldi.py +813 -0
  10. torchaudio/datasets/__init__.py +47 -0
  11. torchaudio/datasets/cmuarctic.py +157 -0
  12. torchaudio/datasets/cmudict.py +186 -0
  13. torchaudio/datasets/commonvoice.py +86 -0
  14. torchaudio/datasets/dr_vctk.py +121 -0
  15. torchaudio/datasets/fluentcommands.py +108 -0
  16. torchaudio/datasets/gtzan.py +1118 -0
  17. torchaudio/datasets/iemocap.py +147 -0
  18. torchaudio/datasets/librilight_limited.py +111 -0
  19. torchaudio/datasets/librimix.py +133 -0
  20. torchaudio/datasets/librispeech.py +174 -0
  21. torchaudio/datasets/librispeech_biasing.py +189 -0
  22. torchaudio/datasets/libritts.py +168 -0
  23. torchaudio/datasets/ljspeech.py +107 -0
  24. torchaudio/datasets/musdb_hq.py +139 -0
  25. torchaudio/datasets/quesst14.py +136 -0
  26. torchaudio/datasets/snips.py +157 -0
  27. torchaudio/datasets/speechcommands.py +183 -0
  28. torchaudio/datasets/tedlium.py +218 -0
  29. torchaudio/datasets/utils.py +54 -0
  30. torchaudio/datasets/vctk.py +143 -0
  31. torchaudio/datasets/voxceleb1.py +309 -0
  32. torchaudio/datasets/yesno.py +89 -0
  33. torchaudio/functional/__init__.py +130 -0
  34. torchaudio/functional/_alignment.py +128 -0
  35. torchaudio/functional/filtering.py +1685 -0
  36. torchaudio/functional/functional.py +2505 -0
  37. torchaudio/lib/__init__.py +0 -0
  38. torchaudio/lib/_torchaudio.so +0 -0
  39. torchaudio/lib/libtorchaudio.so +0 -0
  40. torchaudio/models/__init__.py +85 -0
  41. torchaudio/models/_hdemucs.py +1008 -0
  42. torchaudio/models/conformer.py +293 -0
  43. torchaudio/models/conv_tasnet.py +330 -0
  44. torchaudio/models/decoder/__init__.py +64 -0
  45. torchaudio/models/decoder/_ctc_decoder.py +568 -0
  46. torchaudio/models/decoder/_cuda_ctc_decoder.py +187 -0
  47. torchaudio/models/deepspeech.py +84 -0
  48. torchaudio/models/emformer.py +884 -0
  49. torchaudio/models/rnnt.py +816 -0
  50. torchaudio/models/rnnt_decoder.py +339 -0
  51. torchaudio/models/squim/__init__.py +11 -0
  52. torchaudio/models/squim/objective.py +326 -0
  53. torchaudio/models/squim/subjective.py +150 -0
  54. torchaudio/models/tacotron2.py +1046 -0
  55. torchaudio/models/wav2letter.py +72 -0
  56. torchaudio/models/wav2vec2/__init__.py +45 -0
  57. torchaudio/models/wav2vec2/components.py +1167 -0
  58. torchaudio/models/wav2vec2/model.py +1579 -0
  59. torchaudio/models/wav2vec2/utils/__init__.py +7 -0
  60. torchaudio/models/wav2vec2/utils/import_fairseq.py +213 -0
  61. torchaudio/models/wav2vec2/utils/import_huggingface.py +134 -0
  62. torchaudio/models/wav2vec2/wavlm_attention.py +214 -0
  63. torchaudio/models/wavernn.py +409 -0
  64. torchaudio/pipelines/__init__.py +102 -0
  65. torchaudio/pipelines/_source_separation_pipeline.py +109 -0
  66. torchaudio/pipelines/_squim_pipeline.py +156 -0
  67. torchaudio/pipelines/_tts/__init__.py +16 -0
  68. torchaudio/pipelines/_tts/impl.py +385 -0
  69. torchaudio/pipelines/_tts/interface.py +255 -0
  70. torchaudio/pipelines/_tts/utils.py +230 -0
  71. torchaudio/pipelines/_wav2vec2/__init__.py +0 -0
  72. torchaudio/pipelines/_wav2vec2/aligner.py +87 -0
  73. torchaudio/pipelines/_wav2vec2/impl.py +1699 -0
  74. torchaudio/pipelines/_wav2vec2/utils.py +346 -0
  75. torchaudio/pipelines/rnnt_pipeline.py +380 -0
  76. torchaudio/transforms/__init__.py +78 -0
  77. torchaudio/transforms/_multi_channel.py +467 -0
  78. torchaudio/transforms/_transforms.py +2138 -0
  79. torchaudio/utils/__init__.py +4 -0
  80. torchaudio/utils/download.py +89 -0
  81. torchaudio/version.py +2 -0
  82. torchaudio-2.9.0.dist-info/LICENSE +25 -0
  83. torchaudio-2.9.0.dist-info/METADATA +122 -0
  84. torchaudio-2.9.0.dist-info/RECORD +86 -0
  85. torchaudio-2.9.0.dist-info/WHEEL +5 -0
  86. torchaudio-2.9.0.dist-info/top_level.txt +1 -0
@@ -0,0 +1,72 @@
1
+ from torch import nn, Tensor
2
+
3
+ __all__ = [
4
+ "Wav2Letter",
5
+ ]
6
+
7
+
8
+ class Wav2Letter(nn.Module):
9
+ r"""Wav2Letter model architecture from *Wav2Letter: an End-to-End ConvNet-based Speech
10
+ Recognition System* :cite:`collobert2016wav2letter`.
11
+
12
+ See Also:
13
+ * `Training example <https://github.com/pytorch/audio/tree/release/0.12/examples/pipeline_wav2letter>`__
14
+
15
+ Args:
16
+ num_classes (int, optional): Number of classes to be classified. (Default: ``40``)
17
+ input_type (str, optional): Wav2Letter can use as input: ``waveform``, ``power_spectrum``
18
+ or ``mfcc`` (Default: ``waveform``).
19
+ num_features (int, optional): Number of input features that the network will receive (Default: ``1``).
20
+ """
21
+
22
+ def __init__(self, num_classes: int = 40, input_type: str = "waveform", num_features: int = 1) -> None:
23
+ super().__init__()
24
+
25
+ acoustic_num_features = 250 if input_type == "waveform" else num_features
26
+ acoustic_model = nn.Sequential(
27
+ nn.Conv1d(in_channels=acoustic_num_features, out_channels=250, kernel_size=48, stride=2, padding=23),
28
+ nn.ReLU(inplace=True),
29
+ nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3),
30
+ nn.ReLU(inplace=True),
31
+ nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3),
32
+ nn.ReLU(inplace=True),
33
+ nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3),
34
+ nn.ReLU(inplace=True),
35
+ nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3),
36
+ nn.ReLU(inplace=True),
37
+ nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3),
38
+ nn.ReLU(inplace=True),
39
+ nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3),
40
+ nn.ReLU(inplace=True),
41
+ nn.Conv1d(in_channels=250, out_channels=250, kernel_size=7, stride=1, padding=3),
42
+ nn.ReLU(inplace=True),
43
+ nn.Conv1d(in_channels=250, out_channels=2000, kernel_size=32, stride=1, padding=16),
44
+ nn.ReLU(inplace=True),
45
+ nn.Conv1d(in_channels=2000, out_channels=2000, kernel_size=1, stride=1, padding=0),
46
+ nn.ReLU(inplace=True),
47
+ nn.Conv1d(in_channels=2000, out_channels=num_classes, kernel_size=1, stride=1, padding=0),
48
+ nn.ReLU(inplace=True),
49
+ )
50
+
51
+ if input_type == "waveform":
52
+ waveform_model = nn.Sequential(
53
+ nn.Conv1d(in_channels=num_features, out_channels=250, kernel_size=250, stride=160, padding=45),
54
+ nn.ReLU(inplace=True),
55
+ )
56
+ self.acoustic_model = nn.Sequential(waveform_model, acoustic_model)
57
+
58
+ if input_type in ["power_spectrum", "mfcc"]:
59
+ self.acoustic_model = acoustic_model
60
+
61
+ def forward(self, x: Tensor) -> Tensor:
62
+ r"""
63
+ Args:
64
+ x (torch.Tensor): Tensor of dimension (batch_size, num_features, input_length).
65
+
66
+ Returns:
67
+ Tensor: Predictor tensor of dimension (batch_size, number_of_classes, input_length).
68
+ """
69
+
70
+ x = self.acoustic_model(x)
71
+ x = nn.functional.log_softmax(x, dim=1)
72
+ return x
@@ -0,0 +1,45 @@
1
+ from . import utils
2
+ from .model import (
3
+ hubert_base,
4
+ hubert_large,
5
+ hubert_pretrain_base,
6
+ hubert_pretrain_large,
7
+ hubert_pretrain_model,
8
+ hubert_pretrain_xlarge,
9
+ hubert_xlarge,
10
+ HuBERTPretrainModel,
11
+ wav2vec2_base,
12
+ wav2vec2_large,
13
+ wav2vec2_large_lv60k,
14
+ wav2vec2_model,
15
+ wav2vec2_xlsr_1b,
16
+ wav2vec2_xlsr_2b,
17
+ wav2vec2_xlsr_300m,
18
+ Wav2Vec2Model,
19
+ wavlm_base,
20
+ wavlm_large,
21
+ wavlm_model,
22
+ )
23
+
24
+ __all__ = [
25
+ "Wav2Vec2Model",
26
+ "HuBERTPretrainModel",
27
+ "wavlm_model",
28
+ "wavlm_base",
29
+ "wavlm_large",
30
+ "wav2vec2_model",
31
+ "wav2vec2_base",
32
+ "wav2vec2_large",
33
+ "wav2vec2_large_lv60k",
34
+ "hubert_base",
35
+ "hubert_large",
36
+ "hubert_xlarge",
37
+ "hubert_pretrain_model",
38
+ "hubert_pretrain_base",
39
+ "hubert_pretrain_large",
40
+ "hubert_pretrain_xlarge",
41
+ "utils",
42
+ "wav2vec2_xlsr_300m",
43
+ "wav2vec2_xlsr_1b",
44
+ "wav2vec2_xlsr_2b",
45
+ ]