torchaudio 2.9.0__cp314-cp314-macosx_11_0_arm64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of torchaudio might be problematic. Click here for more details.
- torchaudio/.dylibs/libc++.1.0.dylib +0 -0
- torchaudio/__init__.py +204 -0
- torchaudio/_extension/__init__.py +61 -0
- torchaudio/_extension/utils.py +133 -0
- torchaudio/_internal/__init__.py +10 -0
- torchaudio/_internal/module_utils.py +171 -0
- torchaudio/_torchcodec.py +340 -0
- torchaudio/compliance/__init__.py +5 -0
- torchaudio/compliance/kaldi.py +813 -0
- torchaudio/datasets/__init__.py +47 -0
- torchaudio/datasets/cmuarctic.py +157 -0
- torchaudio/datasets/cmudict.py +186 -0
- torchaudio/datasets/commonvoice.py +86 -0
- torchaudio/datasets/dr_vctk.py +121 -0
- torchaudio/datasets/fluentcommands.py +108 -0
- torchaudio/datasets/gtzan.py +1118 -0
- torchaudio/datasets/iemocap.py +147 -0
- torchaudio/datasets/librilight_limited.py +111 -0
- torchaudio/datasets/librimix.py +133 -0
- torchaudio/datasets/librispeech.py +174 -0
- torchaudio/datasets/librispeech_biasing.py +189 -0
- torchaudio/datasets/libritts.py +168 -0
- torchaudio/datasets/ljspeech.py +107 -0
- torchaudio/datasets/musdb_hq.py +139 -0
- torchaudio/datasets/quesst14.py +136 -0
- torchaudio/datasets/snips.py +157 -0
- torchaudio/datasets/speechcommands.py +183 -0
- torchaudio/datasets/tedlium.py +218 -0
- torchaudio/datasets/utils.py +54 -0
- torchaudio/datasets/vctk.py +143 -0
- torchaudio/datasets/voxceleb1.py +309 -0
- torchaudio/datasets/yesno.py +89 -0
- torchaudio/functional/__init__.py +130 -0
- torchaudio/functional/_alignment.py +128 -0
- torchaudio/functional/filtering.py +1685 -0
- torchaudio/functional/functional.py +2505 -0
- torchaudio/lib/__init__.py +0 -0
- torchaudio/lib/_torchaudio.so +0 -0
- torchaudio/lib/libtorchaudio.so +0 -0
- torchaudio/models/__init__.py +85 -0
- torchaudio/models/_hdemucs.py +1008 -0
- torchaudio/models/conformer.py +293 -0
- torchaudio/models/conv_tasnet.py +330 -0
- torchaudio/models/decoder/__init__.py +64 -0
- torchaudio/models/decoder/_ctc_decoder.py +568 -0
- torchaudio/models/decoder/_cuda_ctc_decoder.py +187 -0
- torchaudio/models/deepspeech.py +84 -0
- torchaudio/models/emformer.py +884 -0
- torchaudio/models/rnnt.py +816 -0
- torchaudio/models/rnnt_decoder.py +339 -0
- torchaudio/models/squim/__init__.py +11 -0
- torchaudio/models/squim/objective.py +326 -0
- torchaudio/models/squim/subjective.py +150 -0
- torchaudio/models/tacotron2.py +1046 -0
- torchaudio/models/wav2letter.py +72 -0
- torchaudio/models/wav2vec2/__init__.py +45 -0
- torchaudio/models/wav2vec2/components.py +1167 -0
- torchaudio/models/wav2vec2/model.py +1579 -0
- torchaudio/models/wav2vec2/utils/__init__.py +7 -0
- torchaudio/models/wav2vec2/utils/import_fairseq.py +213 -0
- torchaudio/models/wav2vec2/utils/import_huggingface.py +134 -0
- torchaudio/models/wav2vec2/wavlm_attention.py +214 -0
- torchaudio/models/wavernn.py +409 -0
- torchaudio/pipelines/__init__.py +102 -0
- torchaudio/pipelines/_source_separation_pipeline.py +109 -0
- torchaudio/pipelines/_squim_pipeline.py +156 -0
- torchaudio/pipelines/_tts/__init__.py +16 -0
- torchaudio/pipelines/_tts/impl.py +385 -0
- torchaudio/pipelines/_tts/interface.py +255 -0
- torchaudio/pipelines/_tts/utils.py +230 -0
- torchaudio/pipelines/_wav2vec2/__init__.py +0 -0
- torchaudio/pipelines/_wav2vec2/aligner.py +87 -0
- torchaudio/pipelines/_wav2vec2/impl.py +1699 -0
- torchaudio/pipelines/_wav2vec2/utils.py +346 -0
- torchaudio/pipelines/rnnt_pipeline.py +380 -0
- torchaudio/transforms/__init__.py +78 -0
- torchaudio/transforms/_multi_channel.py +467 -0
- torchaudio/transforms/_transforms.py +2138 -0
- torchaudio/utils/__init__.py +4 -0
- torchaudio/utils/download.py +89 -0
- torchaudio/version.py +2 -0
- torchaudio-2.9.0.dist-info/LICENSE +25 -0
- torchaudio-2.9.0.dist-info/METADATA +122 -0
- torchaudio-2.9.0.dist-info/RECORD +86 -0
- torchaudio-2.9.0.dist-info/WHEEL +5 -0
- torchaudio-2.9.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,54 @@
|
|
|
1
|
+
import logging
|
|
2
|
+
import os
|
|
3
|
+
import tarfile
|
|
4
|
+
import zipfile
|
|
5
|
+
from typing import Any, List, Optional # noqa: F401
|
|
6
|
+
|
|
7
|
+
import torchaudio
|
|
8
|
+
|
|
9
|
+
_LG = logging.getLogger(__name__)
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def _extract_tar(from_path: str, to_path: Optional[str] = None, overwrite: bool = False) -> List[str]:
|
|
13
|
+
if to_path is None:
|
|
14
|
+
to_path = os.path.dirname(from_path)
|
|
15
|
+
with tarfile.open(from_path, "r") as tar:
|
|
16
|
+
files = []
|
|
17
|
+
for file_ in tar: # type: Any
|
|
18
|
+
file_path = os.path.join(to_path, file_.name)
|
|
19
|
+
if file_.isfile():
|
|
20
|
+
files.append(file_path)
|
|
21
|
+
if os.path.exists(file_path):
|
|
22
|
+
_LG.info("%s already extracted.", file_path)
|
|
23
|
+
if not overwrite:
|
|
24
|
+
continue
|
|
25
|
+
tar.extract(file_, to_path)
|
|
26
|
+
return files
|
|
27
|
+
|
|
28
|
+
|
|
29
|
+
def _extract_zip(from_path: str, to_path: Optional[str] = None, overwrite: bool = False) -> List[str]:
|
|
30
|
+
if to_path is None:
|
|
31
|
+
to_path = os.path.dirname(from_path)
|
|
32
|
+
|
|
33
|
+
with zipfile.ZipFile(from_path, "r") as zfile:
|
|
34
|
+
files = zfile.namelist()
|
|
35
|
+
for file_ in files:
|
|
36
|
+
file_path = os.path.join(to_path, file_)
|
|
37
|
+
if os.path.exists(file_path):
|
|
38
|
+
_LG.info("%s already extracted.", file_path)
|
|
39
|
+
if not overwrite:
|
|
40
|
+
continue
|
|
41
|
+
zfile.extract(file_, to_path)
|
|
42
|
+
return files
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
def _load_waveform(
|
|
46
|
+
root: str,
|
|
47
|
+
filename: str,
|
|
48
|
+
exp_sample_rate: int,
|
|
49
|
+
):
|
|
50
|
+
path = os.path.join(root, filename)
|
|
51
|
+
waveform, sample_rate = torchaudio.load(path)
|
|
52
|
+
if exp_sample_rate != sample_rate:
|
|
53
|
+
raise ValueError(f"sample rate should be {exp_sample_rate}, but got {sample_rate}")
|
|
54
|
+
return waveform
|
|
@@ -0,0 +1,143 @@
|
|
|
1
|
+
import os
|
|
2
|
+
from typing import Tuple
|
|
3
|
+
|
|
4
|
+
import torchaudio
|
|
5
|
+
from torch import Tensor
|
|
6
|
+
from torch.utils.data import Dataset
|
|
7
|
+
from torchaudio._internal import download_url_to_file
|
|
8
|
+
from torchaudio.datasets.utils import _extract_zip
|
|
9
|
+
|
|
10
|
+
URL = "https://datashare.is.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip"
|
|
11
|
+
_CHECKSUMS = {
|
|
12
|
+
"https://datashare.is.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip": "f96258be9fdc2cbff6559541aae7ea4f59df3fcaf5cf963aae5ca647357e359c" # noqa: E501
|
|
13
|
+
}
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
SampleType = Tuple[Tensor, int, str, str, str]
|
|
17
|
+
|
|
18
|
+
|
|
19
|
+
class VCTK_092(Dataset):
|
|
20
|
+
"""*VCTK 0.92* :cite:`yamagishi2019vctk` dataset
|
|
21
|
+
|
|
22
|
+
Args:
|
|
23
|
+
root (str): Root directory where the dataset's top level directory is found.
|
|
24
|
+
mic_id (str, optional): Microphone ID. Either ``"mic1"`` or ``"mic2"``. (default: ``"mic2"``)
|
|
25
|
+
download (bool, optional):
|
|
26
|
+
Whether to download the dataset if it is not found at root path. (default: ``False``).
|
|
27
|
+
url (str, optional): The URL to download the dataset from.
|
|
28
|
+
(default: ``"https://datashare.is.ed.ac.uk/bitstream/handle/10283/3443/VCTK-Corpus-0.92.zip"``)
|
|
29
|
+
audio_ext (str, optional): Custom audio extension if dataset is converted to non-default audio format.
|
|
30
|
+
|
|
31
|
+
Note:
|
|
32
|
+
* All the speeches from speaker ``p315`` will be skipped due to the lack of the corresponding text files.
|
|
33
|
+
* All the speeches from ``p280`` will be skipped for ``mic_id="mic2"`` due to the lack of the audio files.
|
|
34
|
+
* Some of the speeches from speaker ``p362`` will be skipped due to the lack of the audio files.
|
|
35
|
+
* See Also: https://datashare.is.ed.ac.uk/handle/10283/3443
|
|
36
|
+
"""
|
|
37
|
+
|
|
38
|
+
def __init__(
|
|
39
|
+
self,
|
|
40
|
+
root: str,
|
|
41
|
+
mic_id: str = "mic2",
|
|
42
|
+
download: bool = False,
|
|
43
|
+
url: str = URL,
|
|
44
|
+
audio_ext=".flac",
|
|
45
|
+
):
|
|
46
|
+
if mic_id not in ["mic1", "mic2"]:
|
|
47
|
+
raise RuntimeError(f'`mic_id` has to be either "mic1" or "mic2". Found: {mic_id}')
|
|
48
|
+
|
|
49
|
+
archive = os.path.join(root, "VCTK-Corpus-0.92.zip")
|
|
50
|
+
|
|
51
|
+
self._path = os.path.join(root, "VCTK-Corpus-0.92")
|
|
52
|
+
self._txt_dir = os.path.join(self._path, "txt")
|
|
53
|
+
self._audio_dir = os.path.join(self._path, "wav48_silence_trimmed")
|
|
54
|
+
self._mic_id = mic_id
|
|
55
|
+
self._audio_ext = audio_ext
|
|
56
|
+
|
|
57
|
+
if download:
|
|
58
|
+
if not os.path.isdir(self._path):
|
|
59
|
+
if not os.path.isfile(archive):
|
|
60
|
+
checksum = _CHECKSUMS.get(url, None)
|
|
61
|
+
download_url_to_file(url, archive, hash_prefix=checksum)
|
|
62
|
+
_extract_zip(archive, self._path)
|
|
63
|
+
|
|
64
|
+
if not os.path.isdir(self._path):
|
|
65
|
+
raise RuntimeError("Dataset not found. Please use `download=True` to download it.")
|
|
66
|
+
|
|
67
|
+
# Extracting speaker IDs from the folder structure
|
|
68
|
+
self._speaker_ids = sorted(os.listdir(self._txt_dir))
|
|
69
|
+
self._sample_ids = []
|
|
70
|
+
|
|
71
|
+
"""
|
|
72
|
+
Due to some insufficient data complexity in the 0.92 version of this dataset,
|
|
73
|
+
we start traversing the audio folder structure in accordance with the text folder.
|
|
74
|
+
As some of the audio files are missing of either ``mic_1`` or ``mic_2`` but the
|
|
75
|
+
text is present for the same, we first check for the existence of the audio file
|
|
76
|
+
before adding it to the ``sample_ids`` list.
|
|
77
|
+
|
|
78
|
+
Once the ``audio_ids`` are loaded into memory we can quickly access the list for
|
|
79
|
+
different parameters required by the user.
|
|
80
|
+
"""
|
|
81
|
+
for speaker_id in self._speaker_ids:
|
|
82
|
+
if speaker_id == "p280" and mic_id == "mic2":
|
|
83
|
+
continue
|
|
84
|
+
utterance_dir = os.path.join(self._txt_dir, speaker_id)
|
|
85
|
+
for utterance_file in sorted(f for f in os.listdir(utterance_dir) if f.endswith(".txt")):
|
|
86
|
+
utterance_id = os.path.splitext(utterance_file)[0]
|
|
87
|
+
audio_path_mic = os.path.join(
|
|
88
|
+
self._audio_dir,
|
|
89
|
+
speaker_id,
|
|
90
|
+
f"{utterance_id}_{mic_id}{self._audio_ext}",
|
|
91
|
+
)
|
|
92
|
+
if speaker_id == "p362" and not os.path.isfile(audio_path_mic):
|
|
93
|
+
continue
|
|
94
|
+
self._sample_ids.append(utterance_id.split("_"))
|
|
95
|
+
|
|
96
|
+
def _load_text(self, file_path) -> str:
|
|
97
|
+
with open(file_path) as file_path:
|
|
98
|
+
return file_path.readlines()[0]
|
|
99
|
+
|
|
100
|
+
def _load_audio(self, file_path) -> Tuple[Tensor, int]:
|
|
101
|
+
return torchaudio.load(file_path)
|
|
102
|
+
|
|
103
|
+
def _load_sample(self, speaker_id: str, utterance_id: str, mic_id: str) -> SampleType:
|
|
104
|
+
transcript_path = os.path.join(self._txt_dir, speaker_id, f"{speaker_id}_{utterance_id}.txt")
|
|
105
|
+
audio_path = os.path.join(
|
|
106
|
+
self._audio_dir,
|
|
107
|
+
speaker_id,
|
|
108
|
+
f"{speaker_id}_{utterance_id}_{mic_id}{self._audio_ext}",
|
|
109
|
+
)
|
|
110
|
+
|
|
111
|
+
# Reading text
|
|
112
|
+
transcript = self._load_text(transcript_path)
|
|
113
|
+
|
|
114
|
+
# Reading FLAC
|
|
115
|
+
waveform, sample_rate = self._load_audio(audio_path)
|
|
116
|
+
|
|
117
|
+
return (waveform, sample_rate, transcript, speaker_id, utterance_id)
|
|
118
|
+
|
|
119
|
+
def __getitem__(self, n: int) -> SampleType:
|
|
120
|
+
"""Load the n-th sample from the dataset.
|
|
121
|
+
|
|
122
|
+
Args:
|
|
123
|
+
n (int): The index of the sample to be loaded
|
|
124
|
+
|
|
125
|
+
Returns:
|
|
126
|
+
Tuple of the following items;
|
|
127
|
+
|
|
128
|
+
Tensor:
|
|
129
|
+
Waveform
|
|
130
|
+
int:
|
|
131
|
+
Sample rate
|
|
132
|
+
str:
|
|
133
|
+
Transcript
|
|
134
|
+
str:
|
|
135
|
+
Speaker ID
|
|
136
|
+
std:
|
|
137
|
+
Utterance ID
|
|
138
|
+
"""
|
|
139
|
+
speaker_id, utterance_id = self._sample_ids[n]
|
|
140
|
+
return self._load_sample(speaker_id, utterance_id, self._mic_id)
|
|
141
|
+
|
|
142
|
+
def __len__(self) -> int:
|
|
143
|
+
return len(self._sample_ids)
|
|
@@ -0,0 +1,309 @@
|
|
|
1
|
+
import os
|
|
2
|
+
from pathlib import Path
|
|
3
|
+
from typing import List, Tuple, Union
|
|
4
|
+
|
|
5
|
+
from torch import Tensor
|
|
6
|
+
from torch.utils.data import Dataset
|
|
7
|
+
from torchaudio._internal import download_url_to_file
|
|
8
|
+
from torchaudio.datasets.utils import _extract_zip, _load_waveform
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
SAMPLE_RATE = 16000
|
|
12
|
+
_ARCHIVE_CONFIGS = {
|
|
13
|
+
"dev": {
|
|
14
|
+
"archive_name": "vox1_dev_wav.zip",
|
|
15
|
+
"urls": [
|
|
16
|
+
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partaa",
|
|
17
|
+
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partab",
|
|
18
|
+
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partac",
|
|
19
|
+
"https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_dev_wav_partad",
|
|
20
|
+
],
|
|
21
|
+
"checksums": [
|
|
22
|
+
"21ec6ca843659ebc2fdbe04b530baa4f191ad4b0971912672d92c158f32226a0",
|
|
23
|
+
"311d21e0c8cbf33573a4fce6c80e5a279d80736274b381c394319fc557159a04",
|
|
24
|
+
"92b64465f2b2a3dc0e4196ae8dd6828cbe9ddd1f089419a11e4cbfe2e1750df0",
|
|
25
|
+
"00e6190c770b27f27d2a3dd26ee15596b17066b715ac111906861a7d09a211a5",
|
|
26
|
+
],
|
|
27
|
+
},
|
|
28
|
+
"test": {
|
|
29
|
+
"archive_name": "vox1_test_wav.zip",
|
|
30
|
+
"url": "https://thor.robots.ox.ac.uk/~vgg/data/voxceleb/vox1a/vox1_test_wav.zip",
|
|
31
|
+
"checksum": "8de57f347fe22b2c24526e9f444f689ecf5096fc2a92018cf420ff6b5b15eaea",
|
|
32
|
+
},
|
|
33
|
+
}
|
|
34
|
+
_IDEN_SPLIT_URL = "https://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/iden_split.txt"
|
|
35
|
+
_VERI_TEST_URL = "https://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/veri_test.txt"
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
def _download_extract_wavs(root: str):
|
|
39
|
+
for archive in ["dev", "test"]:
|
|
40
|
+
archive_name = _ARCHIVE_CONFIGS[archive]["archive_name"]
|
|
41
|
+
archive_path = os.path.join(root, archive_name)
|
|
42
|
+
# The zip file of dev data is splited to 4 chunks.
|
|
43
|
+
# Download and combine them into one file before extraction.
|
|
44
|
+
if archive == "dev":
|
|
45
|
+
urls = _ARCHIVE_CONFIGS[archive]["urls"]
|
|
46
|
+
checksums = _ARCHIVE_CONFIGS[archive]["checksums"]
|
|
47
|
+
with open(archive_path, "wb") as f:
|
|
48
|
+
for url, checksum in zip(urls, checksums):
|
|
49
|
+
file_path = os.path.join(root, os.path.basename(url))
|
|
50
|
+
download_url_to_file(url, file_path, hash_prefix=checksum)
|
|
51
|
+
with open(file_path, "rb") as f_split:
|
|
52
|
+
f.write(f_split.read())
|
|
53
|
+
else:
|
|
54
|
+
url = _ARCHIVE_CONFIGS[archive]["url"]
|
|
55
|
+
checksum = _ARCHIVE_CONFIGS[archive]["checksum"]
|
|
56
|
+
download_url_to_file(url, archive_path, hash_prefix=checksum)
|
|
57
|
+
_extract_zip(archive_path)
|
|
58
|
+
|
|
59
|
+
|
|
60
|
+
def _get_flist(root: str, file_path: str, subset: str) -> List[str]:
|
|
61
|
+
f_list = []
|
|
62
|
+
if subset == "train":
|
|
63
|
+
index = 1
|
|
64
|
+
elif subset == "dev":
|
|
65
|
+
index = 2
|
|
66
|
+
else:
|
|
67
|
+
index = 3
|
|
68
|
+
with open(file_path, "r") as f:
|
|
69
|
+
for line in f:
|
|
70
|
+
id, path = line.split()
|
|
71
|
+
if int(id) == index:
|
|
72
|
+
f_list.append(path)
|
|
73
|
+
return sorted(f_list)
|
|
74
|
+
|
|
75
|
+
|
|
76
|
+
def _get_paired_flist(root: str, veri_test_path: str):
|
|
77
|
+
f_list = []
|
|
78
|
+
with open(veri_test_path, "r") as f:
|
|
79
|
+
for line in f:
|
|
80
|
+
label, path1, path2 = line.split()
|
|
81
|
+
f_list.append((label, path1, path2))
|
|
82
|
+
return f_list
|
|
83
|
+
|
|
84
|
+
|
|
85
|
+
def _get_file_id(file_path: str, _ext_audio: str):
|
|
86
|
+
speaker_id, youtube_id, utterance_id = file_path.split("/")[-3:]
|
|
87
|
+
utterance_id = utterance_id.replace(_ext_audio, "")
|
|
88
|
+
file_id = "-".join([speaker_id, youtube_id, utterance_id])
|
|
89
|
+
return file_id
|
|
90
|
+
|
|
91
|
+
|
|
92
|
+
class VoxCeleb1(Dataset):
|
|
93
|
+
"""*VoxCeleb1* :cite:`nagrani2017voxceleb` dataset.
|
|
94
|
+
|
|
95
|
+
Args:
|
|
96
|
+
root (str or Path): Path to the directory where the dataset is found or downloaded.
|
|
97
|
+
download (bool, optional):
|
|
98
|
+
Whether to download the dataset if it is not found at root path. (Default: ``False``).
|
|
99
|
+
"""
|
|
100
|
+
|
|
101
|
+
_ext_audio = ".wav"
|
|
102
|
+
|
|
103
|
+
def __init__(self, root: Union[str, Path], download: bool = False) -> None:
|
|
104
|
+
# Get string representation of 'root' in case Path object is passed
|
|
105
|
+
root = os.fspath(root)
|
|
106
|
+
self._path = os.path.join(root, "wav")
|
|
107
|
+
if not os.path.isdir(self._path):
|
|
108
|
+
if not download:
|
|
109
|
+
raise RuntimeError(
|
|
110
|
+
f"Dataset not found at {self._path}. Please set `download=True` to download the dataset."
|
|
111
|
+
)
|
|
112
|
+
_download_extract_wavs(root)
|
|
113
|
+
|
|
114
|
+
def get_metadata(self, n: int):
|
|
115
|
+
raise NotImplementedError
|
|
116
|
+
|
|
117
|
+
def __getitem__(self, n: int):
|
|
118
|
+
raise NotImplementedError
|
|
119
|
+
|
|
120
|
+
def __len__(self) -> int:
|
|
121
|
+
raise NotImplementedError
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
class VoxCeleb1Identification(VoxCeleb1):
|
|
125
|
+
"""*VoxCeleb1* :cite:`nagrani2017voxceleb` dataset for speaker identification task.
|
|
126
|
+
|
|
127
|
+
Each data sample contains the waveform, sample rate, speaker id, and the file id.
|
|
128
|
+
|
|
129
|
+
Args:
|
|
130
|
+
root (str or Path): Path to the directory where the dataset is found or downloaded.
|
|
131
|
+
subset (str, optional): Subset of the dataset to use. Options: ["train", "dev", "test"]. (Default: ``"train"``)
|
|
132
|
+
meta_url (str, optional): The url of meta file that contains the list of subset labels and file paths.
|
|
133
|
+
The format of each row is ``subset file_path". For example: ``1 id10006/nLEBBc9oIFs/00003.wav``.
|
|
134
|
+
``1``, ``2``, ``3`` mean ``train``, ``dev``, and ``test`` subest, respectively.
|
|
135
|
+
(Default: ``"https://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/iden_split.txt"``)
|
|
136
|
+
download (bool, optional):
|
|
137
|
+
Whether to download the dataset if it is not found at root path. (Default: ``False``).
|
|
138
|
+
|
|
139
|
+
Note:
|
|
140
|
+
The file structure of `VoxCeleb1Identification` dataset is as follows:
|
|
141
|
+
|
|
142
|
+
└─ root/
|
|
143
|
+
|
|
144
|
+
└─ wav/
|
|
145
|
+
|
|
146
|
+
└─ speaker_id folders
|
|
147
|
+
|
|
148
|
+
Users who pre-downloaded the ``"vox1_dev_wav.zip"`` and ``"vox1_test_wav.zip"`` files need to move
|
|
149
|
+
the extracted files into the same ``root`` directory.
|
|
150
|
+
"""
|
|
151
|
+
|
|
152
|
+
def __init__(
|
|
153
|
+
self, root: Union[str, Path], subset: str = "train", meta_url: str = _IDEN_SPLIT_URL, download: bool = False
|
|
154
|
+
) -> None:
|
|
155
|
+
super().__init__(root, download)
|
|
156
|
+
if subset not in ["train", "dev", "test"]:
|
|
157
|
+
raise ValueError("`subset` must be one of ['train', 'dev', 'test']")
|
|
158
|
+
# download the iden_split.txt to get the train, dev, test lists.
|
|
159
|
+
meta_list_path = os.path.join(root, os.path.basename(meta_url))
|
|
160
|
+
if not os.path.exists(meta_list_path):
|
|
161
|
+
download_url_to_file(meta_url, meta_list_path)
|
|
162
|
+
self._flist = _get_flist(self._path, meta_list_path, subset)
|
|
163
|
+
|
|
164
|
+
def get_metadata(self, n: int) -> Tuple[str, int, int, str]:
|
|
165
|
+
"""Get metadata for the n-th sample from the dataset. Returns filepath instead of waveform,
|
|
166
|
+
but otherwise returns the same fields as :py:func:`__getitem__`.
|
|
167
|
+
|
|
168
|
+
Args:
|
|
169
|
+
n (int): The index of the sample
|
|
170
|
+
|
|
171
|
+
Returns:
|
|
172
|
+
Tuple of the following items;
|
|
173
|
+
|
|
174
|
+
str:
|
|
175
|
+
Path to audio
|
|
176
|
+
int:
|
|
177
|
+
Sample rate
|
|
178
|
+
int:
|
|
179
|
+
Speaker ID
|
|
180
|
+
str:
|
|
181
|
+
File ID
|
|
182
|
+
"""
|
|
183
|
+
file_path = self._flist[n]
|
|
184
|
+
file_id = _get_file_id(file_path, self._ext_audio)
|
|
185
|
+
speaker_id = file_id.split("-")[0]
|
|
186
|
+
speaker_id = int(speaker_id[3:])
|
|
187
|
+
return file_path, SAMPLE_RATE, speaker_id, file_id
|
|
188
|
+
|
|
189
|
+
def __getitem__(self, n: int) -> Tuple[Tensor, int, int, str]:
|
|
190
|
+
"""Load the n-th sample from the dataset.
|
|
191
|
+
|
|
192
|
+
Args:
|
|
193
|
+
n (int): The index of the sample to be loaded
|
|
194
|
+
|
|
195
|
+
Returns:
|
|
196
|
+
Tuple of the following items;
|
|
197
|
+
|
|
198
|
+
Tensor:
|
|
199
|
+
Waveform
|
|
200
|
+
int:
|
|
201
|
+
Sample rate
|
|
202
|
+
int:
|
|
203
|
+
Speaker ID
|
|
204
|
+
str:
|
|
205
|
+
File ID
|
|
206
|
+
"""
|
|
207
|
+
metadata = self.get_metadata(n)
|
|
208
|
+
waveform = _load_waveform(self._path, metadata[0], metadata[1])
|
|
209
|
+
return (waveform,) + metadata[1:]
|
|
210
|
+
|
|
211
|
+
def __len__(self) -> int:
|
|
212
|
+
return len(self._flist)
|
|
213
|
+
|
|
214
|
+
|
|
215
|
+
class VoxCeleb1Verification(VoxCeleb1):
|
|
216
|
+
"""*VoxCeleb1* :cite:`nagrani2017voxceleb` dataset for speaker verification task.
|
|
217
|
+
|
|
218
|
+
Each data sample contains a pair of waveforms, sample rate, the label indicating if they are
|
|
219
|
+
from the same speaker, and the file ids.
|
|
220
|
+
|
|
221
|
+
Args:
|
|
222
|
+
root (str or Path): Path to the directory where the dataset is found or downloaded.
|
|
223
|
+
meta_url (str, optional): The url of meta file that contains a list of utterance pairs
|
|
224
|
+
and the corresponding labels. The format of each row is ``label file_path1 file_path2".
|
|
225
|
+
For example: ``1 id10270/x6uYqmx31kE/00001.wav id10270/8jEAjG6SegY/00008.wav``.
|
|
226
|
+
``1`` means the two utterances are from the same speaker, ``0`` means not.
|
|
227
|
+
(Default: ``"https://www.robots.ox.ac.uk/~vgg/data/voxceleb/meta/veri_test.txt"``)
|
|
228
|
+
download (bool, optional):
|
|
229
|
+
Whether to download the dataset if it is not found at root path. (Default: ``False``).
|
|
230
|
+
|
|
231
|
+
Note:
|
|
232
|
+
The file structure of `VoxCeleb1Verification` dataset is as follows:
|
|
233
|
+
|
|
234
|
+
└─ root/
|
|
235
|
+
|
|
236
|
+
└─ wav/
|
|
237
|
+
|
|
238
|
+
└─ speaker_id folders
|
|
239
|
+
|
|
240
|
+
Users who pre-downloaded the ``"vox1_dev_wav.zip"`` and ``"vox1_test_wav.zip"`` files need to move
|
|
241
|
+
the extracted files into the same ``root`` directory.
|
|
242
|
+
"""
|
|
243
|
+
|
|
244
|
+
def __init__(self, root: Union[str, Path], meta_url: str = _VERI_TEST_URL, download: bool = False) -> None:
|
|
245
|
+
super().__init__(root, download)
|
|
246
|
+
# download the veri_test.txt to get the list of training pairs and labels.
|
|
247
|
+
meta_list_path = os.path.join(root, os.path.basename(meta_url))
|
|
248
|
+
if not os.path.exists(meta_list_path):
|
|
249
|
+
download_url_to_file(meta_url, meta_list_path)
|
|
250
|
+
self._flist = _get_paired_flist(self._path, meta_list_path)
|
|
251
|
+
|
|
252
|
+
def get_metadata(self, n: int) -> Tuple[str, str, int, int, str, str]:
|
|
253
|
+
"""Get metadata for the n-th sample from the dataset. Returns filepaths instead of waveforms,
|
|
254
|
+
but otherwise returns the same fields as :py:func:`__getitem__`.
|
|
255
|
+
|
|
256
|
+
Args:
|
|
257
|
+
n (int): The index of the sample
|
|
258
|
+
|
|
259
|
+
Returns:
|
|
260
|
+
Tuple of the following items;
|
|
261
|
+
|
|
262
|
+
str:
|
|
263
|
+
Path to audio file of speaker 1
|
|
264
|
+
str:
|
|
265
|
+
Path to audio file of speaker 2
|
|
266
|
+
int:
|
|
267
|
+
Sample rate
|
|
268
|
+
int:
|
|
269
|
+
Label
|
|
270
|
+
str:
|
|
271
|
+
File ID of speaker 1
|
|
272
|
+
str:
|
|
273
|
+
File ID of speaker 2
|
|
274
|
+
"""
|
|
275
|
+
label, file_path_spk1, file_path_spk2 = self._flist[n]
|
|
276
|
+
label = int(label)
|
|
277
|
+
file_id_spk1 = _get_file_id(file_path_spk1, self._ext_audio)
|
|
278
|
+
file_id_spk2 = _get_file_id(file_path_spk2, self._ext_audio)
|
|
279
|
+
return file_path_spk1, file_path_spk2, SAMPLE_RATE, label, file_id_spk1, file_id_spk2
|
|
280
|
+
|
|
281
|
+
def __getitem__(self, n: int) -> Tuple[Tensor, Tensor, int, int, str, str]:
|
|
282
|
+
"""Load the n-th sample from the dataset.
|
|
283
|
+
|
|
284
|
+
Args:
|
|
285
|
+
n (int): The index of the sample to be loaded.
|
|
286
|
+
|
|
287
|
+
Returns:
|
|
288
|
+
Tuple of the following items;
|
|
289
|
+
|
|
290
|
+
Tensor:
|
|
291
|
+
Waveform of speaker 1
|
|
292
|
+
Tensor:
|
|
293
|
+
Waveform of speaker 2
|
|
294
|
+
int:
|
|
295
|
+
Sample rate
|
|
296
|
+
int:
|
|
297
|
+
Label
|
|
298
|
+
str:
|
|
299
|
+
File ID of speaker 1
|
|
300
|
+
str:
|
|
301
|
+
File ID of speaker 2
|
|
302
|
+
"""
|
|
303
|
+
metadata = self.get_metadata(n)
|
|
304
|
+
waveform_spk1 = _load_waveform(self._path, metadata[0], metadata[2])
|
|
305
|
+
waveform_spk2 = _load_waveform(self._path, metadata[1], metadata[2])
|
|
306
|
+
return (waveform_spk1, waveform_spk2) + metadata[2:]
|
|
307
|
+
|
|
308
|
+
def __len__(self) -> int:
|
|
309
|
+
return len(self._flist)
|
|
@@ -0,0 +1,89 @@
|
|
|
1
|
+
import os
|
|
2
|
+
from pathlib import Path
|
|
3
|
+
from typing import List, Tuple, Union
|
|
4
|
+
|
|
5
|
+
import torchaudio
|
|
6
|
+
from torch import Tensor
|
|
7
|
+
from torch.utils.data import Dataset
|
|
8
|
+
from torchaudio._internal import download_url_to_file
|
|
9
|
+
from torchaudio.datasets.utils import _extract_tar
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
_RELEASE_CONFIGS = {
|
|
13
|
+
"release1": {
|
|
14
|
+
"folder_in_archive": "waves_yesno",
|
|
15
|
+
"url": "http://www.openslr.org/resources/1/waves_yesno.tar.gz",
|
|
16
|
+
"checksum": "c3f49e0cca421f96b75b41640749167b52118f232498667ca7a5f9416aef8e73",
|
|
17
|
+
}
|
|
18
|
+
}
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
class YESNO(Dataset):
|
|
22
|
+
"""*YesNo* :cite:`YesNo` dataset.
|
|
23
|
+
|
|
24
|
+
Args:
|
|
25
|
+
root (str or Path): Path to the directory where the dataset is found or downloaded.
|
|
26
|
+
url (str, optional): The URL to download the dataset from.
|
|
27
|
+
(default: ``"http://www.openslr.org/resources/1/waves_yesno.tar.gz"``)
|
|
28
|
+
folder_in_archive (str, optional):
|
|
29
|
+
The top-level directory of the dataset. (default: ``"waves_yesno"``)
|
|
30
|
+
download (bool, optional):
|
|
31
|
+
Whether to download the dataset if it is not found at root path. (default: ``False``).
|
|
32
|
+
"""
|
|
33
|
+
|
|
34
|
+
def __init__(
|
|
35
|
+
self,
|
|
36
|
+
root: Union[str, Path],
|
|
37
|
+
url: str = _RELEASE_CONFIGS["release1"]["url"],
|
|
38
|
+
folder_in_archive: str = _RELEASE_CONFIGS["release1"]["folder_in_archive"],
|
|
39
|
+
download: bool = False,
|
|
40
|
+
) -> None:
|
|
41
|
+
|
|
42
|
+
self._parse_filesystem(root, url, folder_in_archive, download)
|
|
43
|
+
|
|
44
|
+
def _parse_filesystem(self, root: str, url: str, folder_in_archive: str, download: bool) -> None:
|
|
45
|
+
root = Path(root)
|
|
46
|
+
archive = os.path.basename(url)
|
|
47
|
+
archive = root / archive
|
|
48
|
+
|
|
49
|
+
self._path = root / folder_in_archive
|
|
50
|
+
if download:
|
|
51
|
+
if not os.path.isdir(self._path):
|
|
52
|
+
if not os.path.isfile(archive):
|
|
53
|
+
checksum = _RELEASE_CONFIGS["release1"]["checksum"]
|
|
54
|
+
download_url_to_file(url, archive, hash_prefix=checksum)
|
|
55
|
+
_extract_tar(archive)
|
|
56
|
+
|
|
57
|
+
if not os.path.isdir(self._path):
|
|
58
|
+
raise RuntimeError("Dataset not found. Please use `download=True` to download it.")
|
|
59
|
+
|
|
60
|
+
self._walker = sorted(str(p.stem) for p in Path(self._path).glob("*.wav"))
|
|
61
|
+
|
|
62
|
+
def _load_item(self, fileid: str, path: str):
|
|
63
|
+
labels = [int(c) for c in fileid.split("_")]
|
|
64
|
+
file_audio = os.path.join(path, fileid + ".wav")
|
|
65
|
+
waveform, sample_rate = torchaudio.load(file_audio)
|
|
66
|
+
return waveform, sample_rate, labels
|
|
67
|
+
|
|
68
|
+
def __getitem__(self, n: int) -> Tuple[Tensor, int, List[int]]:
|
|
69
|
+
"""Load the n-th sample from the dataset.
|
|
70
|
+
|
|
71
|
+
Args:
|
|
72
|
+
n (int): The index of the sample to be loaded
|
|
73
|
+
|
|
74
|
+
Returns:
|
|
75
|
+
Tuple of the following items;
|
|
76
|
+
|
|
77
|
+
Tensor:
|
|
78
|
+
Waveform
|
|
79
|
+
int:
|
|
80
|
+
Sample rate
|
|
81
|
+
List[int]:
|
|
82
|
+
labels
|
|
83
|
+
"""
|
|
84
|
+
fileid = self._walker[n]
|
|
85
|
+
item = self._load_item(fileid, self._path)
|
|
86
|
+
return item
|
|
87
|
+
|
|
88
|
+
def __len__(self) -> int:
|
|
89
|
+
return len(self._walker)
|