torch-rechub 0.0.3__py3-none-any.whl → 0.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- torch_rechub/__init__.py +14 -0
- torch_rechub/basic/activation.py +54 -54
- torch_rechub/basic/callback.py +33 -33
- torch_rechub/basic/features.py +87 -94
- torch_rechub/basic/initializers.py +92 -92
- torch_rechub/basic/layers.py +994 -720
- torch_rechub/basic/loss_func.py +223 -34
- torch_rechub/basic/metaoptimizer.py +76 -72
- torch_rechub/basic/metric.py +251 -250
- torch_rechub/models/generative/__init__.py +6 -0
- torch_rechub/models/generative/hllm.py +249 -0
- torch_rechub/models/generative/hstu.py +189 -0
- torch_rechub/models/matching/__init__.py +13 -11
- torch_rechub/models/matching/comirec.py +193 -188
- torch_rechub/models/matching/dssm.py +72 -66
- torch_rechub/models/matching/dssm_facebook.py +77 -79
- torch_rechub/models/matching/dssm_senet.py +28 -16
- torch_rechub/models/matching/gru4rec.py +85 -87
- torch_rechub/models/matching/mind.py +103 -101
- torch_rechub/models/matching/narm.py +82 -76
- torch_rechub/models/matching/sasrec.py +143 -140
- torch_rechub/models/matching/sine.py +148 -151
- torch_rechub/models/matching/stamp.py +81 -83
- torch_rechub/models/matching/youtube_dnn.py +75 -71
- torch_rechub/models/matching/youtube_sbc.py +98 -98
- torch_rechub/models/multi_task/__init__.py +7 -5
- torch_rechub/models/multi_task/aitm.py +83 -84
- torch_rechub/models/multi_task/esmm.py +56 -55
- torch_rechub/models/multi_task/mmoe.py +58 -58
- torch_rechub/models/multi_task/ple.py +116 -130
- torch_rechub/models/multi_task/shared_bottom.py +45 -45
- torch_rechub/models/ranking/__init__.py +14 -11
- torch_rechub/models/ranking/afm.py +65 -63
- torch_rechub/models/ranking/autoint.py +102 -0
- torch_rechub/models/ranking/bst.py +61 -63
- torch_rechub/models/ranking/dcn.py +38 -38
- torch_rechub/models/ranking/dcn_v2.py +59 -69
- torch_rechub/models/ranking/deepffm.py +131 -123
- torch_rechub/models/ranking/deepfm.py +43 -42
- torch_rechub/models/ranking/dien.py +191 -191
- torch_rechub/models/ranking/din.py +93 -91
- torch_rechub/models/ranking/edcn.py +101 -117
- torch_rechub/models/ranking/fibinet.py +42 -50
- torch_rechub/models/ranking/widedeep.py +41 -41
- torch_rechub/trainers/__init__.py +4 -3
- torch_rechub/trainers/ctr_trainer.py +288 -128
- torch_rechub/trainers/match_trainer.py +336 -170
- torch_rechub/trainers/matching.md +3 -0
- torch_rechub/trainers/mtl_trainer.py +356 -207
- torch_rechub/trainers/seq_trainer.py +427 -0
- torch_rechub/utils/data.py +492 -360
- torch_rechub/utils/hstu_utils.py +198 -0
- torch_rechub/utils/match.py +457 -274
- torch_rechub/utils/model_utils.py +233 -0
- torch_rechub/utils/mtl.py +136 -126
- torch_rechub/utils/onnx_export.py +220 -0
- torch_rechub/utils/visualization.py +271 -0
- torch_rechub-0.0.5.dist-info/METADATA +402 -0
- torch_rechub-0.0.5.dist-info/RECORD +64 -0
- {torch_rechub-0.0.3.dist-info → torch_rechub-0.0.5.dist-info}/WHEEL +1 -2
- {torch_rechub-0.0.3.dist-info → torch_rechub-0.0.5.dist-info/licenses}/LICENSE +21 -21
- torch_rechub-0.0.3.dist-info/METADATA +0 -177
- torch_rechub-0.0.3.dist-info/RECORD +0 -55
- torch_rechub-0.0.3.dist-info/top_level.txt +0 -1
|
@@ -1,79 +1,77 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Date: create on 24/05/2022
|
|
3
|
-
References:
|
|
4
|
-
paper: (KDD'2020) Embedding-based Retrieval in Facebook Search
|
|
5
|
-
url: https://arxiv.org/abs/2006.11632
|
|
6
|
-
Authors: Mincai Lai, laimincai@shanghaitech.edu.cn
|
|
7
|
-
"""
|
|
8
|
-
|
|
9
|
-
import torch
|
|
10
|
-
import torch.nn.functional as F
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
self.
|
|
36
|
-
|
|
37
|
-
self.
|
|
38
|
-
self.
|
|
39
|
-
self.
|
|
40
|
-
self.
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
self.mode
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
user_embedding
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
neg_embedding = F.normalize(neg_embedding, p=2, dim=1)
|
|
79
|
-
return pos_embedding, neg_embedding
|
|
1
|
+
"""
|
|
2
|
+
Date: create on 24/05/2022
|
|
3
|
+
References:
|
|
4
|
+
paper: (KDD'2020) Embedding-based Retrieval in Facebook Search
|
|
5
|
+
url: https://arxiv.org/abs/2006.11632
|
|
6
|
+
Authors: Mincai Lai, laimincai@shanghaitech.edu.cn
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
import torch.nn.functional as F
|
|
11
|
+
|
|
12
|
+
from ...basic.layers import MLP, EmbeddingLayer
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
class FaceBookDSSM(torch.nn.Module):
|
|
16
|
+
"""Embedding-based Retrieval in Facebook Search
|
|
17
|
+
It's a DSSM match model trained by hinge loss on pair-wise samples.
|
|
18
|
+
|
|
19
|
+
Args:
|
|
20
|
+
user_features (list[Feature Class]): training by the user tower module.
|
|
21
|
+
pos_item_features (list[Feature Class]): negative sample features, training by the item tower module.
|
|
22
|
+
neg_item_features (list[Feature Class]): positive sample features, training by the item tower module.
|
|
23
|
+
temperature (float): temperature factor for similarity score, default to 1.0.
|
|
24
|
+
user_params (dict): the params of the User Tower module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}.
|
|
25
|
+
item_params (dict): the params of the Item Tower module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}.
|
|
26
|
+
"""
|
|
27
|
+
|
|
28
|
+
def __init__(self, user_features, pos_item_features, neg_item_features, user_params, item_params, temperature=1.0):
|
|
29
|
+
super().__init__()
|
|
30
|
+
self.user_features = user_features
|
|
31
|
+
self.pos_item_features = pos_item_features
|
|
32
|
+
self.neg_item_features = neg_item_features
|
|
33
|
+
self.temperature = temperature
|
|
34
|
+
self.user_dims = sum([fea.embed_dim for fea in user_features])
|
|
35
|
+
self.item_dims = sum([fea.embed_dim for fea in pos_item_features])
|
|
36
|
+
|
|
37
|
+
self.embedding = EmbeddingLayer(user_features + pos_item_features + neg_item_features)
|
|
38
|
+
self.user_mlp = MLP(self.user_dims, output_layer=False, **user_params)
|
|
39
|
+
self.item_mlp = MLP(self.item_dims, output_layer=False, **item_params)
|
|
40
|
+
self.mode = None
|
|
41
|
+
|
|
42
|
+
def forward(self, x):
|
|
43
|
+
user_embedding = self.user_tower(x)
|
|
44
|
+
pos_item_embedding, neg_item_embedding = self.item_tower(x)
|
|
45
|
+
if self.mode == "user":
|
|
46
|
+
return user_embedding
|
|
47
|
+
if self.mode == "item":
|
|
48
|
+
return pos_item_embedding
|
|
49
|
+
|
|
50
|
+
|
|
51
|
+
# calculate cosine score
|
|
52
|
+
pos_score = torch.mul(user_embedding, pos_item_embedding).sum(dim=1)
|
|
53
|
+
neg_score = torch.mul(user_embedding, neg_item_embedding).sum(dim=1)
|
|
54
|
+
|
|
55
|
+
return pos_score, neg_score
|
|
56
|
+
|
|
57
|
+
def user_tower(self, x):
|
|
58
|
+
if self.mode == "item":
|
|
59
|
+
return None
|
|
60
|
+
# [batch_size, num_features*deep_dims]
|
|
61
|
+
input_user = self.embedding(x, self.user_features, squeeze_dim=True)
|
|
62
|
+
# [batch_size, user_params["dims"][-1]]
|
|
63
|
+
user_embedding = self.user_mlp(input_user)
|
|
64
|
+
user_embedding = F.normalize(user_embedding, p=2, dim=1)
|
|
65
|
+
return user_embedding
|
|
66
|
+
|
|
67
|
+
def item_tower(self, x):
|
|
68
|
+
if self.mode == "user":
|
|
69
|
+
return None, None
|
|
70
|
+
input_item_pos = self.embedding(x, self.pos_item_features, squeeze_dim=True)
|
|
71
|
+
if self.mode == "item": # inference embedding mode, the zeros is just for placefolder
|
|
72
|
+
return self.item_mlp(input_item_pos), None
|
|
73
|
+
input_item_neg = self.embedding(x, self.neg_item_features, squeeze_dim=True)
|
|
74
|
+
pos_embedding, neg_embedding = self.item_mlp(input_item_pos), self.item_mlp(input_item_neg)
|
|
75
|
+
pos_embedding = F.normalize(pos_embedding, p=2, dim=1)
|
|
76
|
+
neg_embedding = F.normalize(neg_embedding, p=2, dim=1)
|
|
77
|
+
return pos_embedding, neg_embedding
|
|
@@ -1,14 +1,15 @@
|
|
|
1
1
|
"""
|
|
2
2
|
Date: create on 12/19/2024
|
|
3
|
-
References:
|
|
3
|
+
References:
|
|
4
4
|
url: https://zhuanlan.zhihu.com/p/358779957
|
|
5
5
|
Authors: @1985312383
|
|
6
6
|
"""
|
|
7
7
|
|
|
8
8
|
import torch
|
|
9
9
|
import torch.nn.functional as F
|
|
10
|
+
|
|
11
|
+
from ...basic.features import SequenceFeature, SparseFeature
|
|
10
12
|
from ...basic.layers import MLP, EmbeddingLayer, SENETLayer
|
|
11
|
-
from ...basic.features import SparseFeature, SequenceFeature
|
|
12
13
|
|
|
13
14
|
|
|
14
15
|
class DSSM(torch.nn.Module):
|
|
@@ -33,8 +34,8 @@ class DSSM(torch.nn.Module):
|
|
|
33
34
|
self.embedding = EmbeddingLayer(user_features + item_features)
|
|
34
35
|
self.user_mlp = MLP(self.user_dims, output_layer=False, **user_params)
|
|
35
36
|
self.item_mlp = MLP(self.item_dims, output_layer=False, **item_params)
|
|
36
|
-
self.user_num_features = len([fea.embed_dim for fea in self.user_features if isinstance(fea, SparseFeature) or isinstance(fea, SequenceFeature) and fea.shared_with
|
|
37
|
-
self.item_num_features = len([fea.embed_dim for fea in self.item_features if isinstance(fea, SparseFeature) or isinstance(fea, SequenceFeature) and fea.shared_with
|
|
37
|
+
self.user_num_features = len([fea.embed_dim for fea in self.user_features if isinstance(fea, SparseFeature) or isinstance(fea, SequenceFeature) and fea.shared_with is None])
|
|
38
|
+
self.item_num_features = len([fea.embed_dim for fea in self.item_features if isinstance(fea, SparseFeature) or isinstance(fea, SequenceFeature) and fea.shared_with is None])
|
|
38
39
|
self.user_senet = SENETLayer(self.user_num_features)
|
|
39
40
|
self.item_senet = SENETLayer(self.item_num_features)
|
|
40
41
|
self.mode = None
|
|
@@ -47,7 +48,8 @@ class DSSM(torch.nn.Module):
|
|
|
47
48
|
if self.mode == "item":
|
|
48
49
|
return item_embedding
|
|
49
50
|
|
|
50
|
-
|
|
51
|
+
|
|
52
|
+
# calculate cosine score
|
|
51
53
|
y = torch.mul(user_embedding, item_embedding).sum(dim=1)
|
|
52
54
|
y = y / self.temperature
|
|
53
55
|
return torch.sigmoid(y)
|
|
@@ -55,21 +57,31 @@ class DSSM(torch.nn.Module):
|
|
|
55
57
|
def user_tower(self, x):
|
|
56
58
|
if self.mode == "item":
|
|
57
59
|
return None
|
|
58
|
-
|
|
59
|
-
input_user =
|
|
60
|
-
|
|
61
|
-
input_user = input_user.view(input_user.size(0), -1)
|
|
62
|
-
|
|
60
|
+
# [batch_size, num_features * embed_dim]
|
|
61
|
+
input_user = self.embedding(x, self.user_features, squeeze_dim=True)
|
|
62
|
+
# [batch_size, num_features, embed_dim]
|
|
63
|
+
input_user = input_user.view(input_user.size(0), self.user_num_features, -1)
|
|
64
|
+
# [batch_size, num_features, embed_dim]
|
|
65
|
+
input_user = self.user_senet(input_user)
|
|
66
|
+
# [batch_size, num_features * embed_dim]
|
|
67
|
+
input_user = input_user.view(input_user.size(0), -1)
|
|
68
|
+
# [batch_size, user_params["dims"][-1]]
|
|
69
|
+
user_embedding = self.user_mlp(input_user)
|
|
63
70
|
user_embedding = F.normalize(user_embedding, p=2, dim=1) # L2 normalize
|
|
64
71
|
return user_embedding
|
|
65
72
|
|
|
66
73
|
def item_tower(self, x):
|
|
67
74
|
if self.mode == "user":
|
|
68
75
|
return None
|
|
69
|
-
|
|
70
|
-
input_item =
|
|
71
|
-
|
|
72
|
-
input_item = input_item.view(input_item.size(0), -1)
|
|
73
|
-
|
|
76
|
+
# [batch_size, num_features * embed_dim]
|
|
77
|
+
input_item = self.embedding(x, self.item_features, squeeze_dim=True)
|
|
78
|
+
# [batch_size, num_features, embed_dim]
|
|
79
|
+
input_item = input_item.view(input_item.size(0), self.item_num_features, -1)
|
|
80
|
+
# [batch_size, num_features, embed_dim]
|
|
81
|
+
input_item = self.item_senet(input_item)
|
|
82
|
+
# [batch_size, num_features * embed_dim]
|
|
83
|
+
input_item = input_item.view(input_item.size(0), -1)
|
|
84
|
+
# [batch_size, item_params["dims"][-1]]
|
|
85
|
+
item_embedding = self.item_mlp(input_item)
|
|
74
86
|
item_embedding = F.normalize(item_embedding, p=2, dim=1)
|
|
75
|
-
return item_embedding
|
|
87
|
+
return item_embedding
|
|
@@ -1,87 +1,85 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Date: create on 03/06/2022
|
|
3
|
-
References:
|
|
4
|
-
paper: SESSION-BASED RECOMMENDATIONS WITH RECURRENT NEURAL NETWORKS
|
|
5
|
-
url: http://arxiv.org/abs/1511.06939
|
|
6
|
-
Authors: Kai Wang, 306178200@qq.com
|
|
7
|
-
"""
|
|
8
|
-
|
|
9
|
-
import torch
|
|
10
|
-
|
|
11
|
-
from
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
class GRU4Rec(torch.nn.Module):
|
|
17
|
-
"""The match model mentioned in `Deep Neural Networks for YouTube Recommendations` paper.
|
|
18
|
-
It's a DSSM match model trained by global softmax loss on list-wise samples.
|
|
19
|
-
Note in origin paper, it's without item dnn tower and train item embedding directly.
|
|
20
|
-
|
|
21
|
-
Args:
|
|
22
|
-
user_features (list[Feature Class]): training by the user tower module.
|
|
23
|
-
history_features (list[Feature Class]): training history
|
|
24
|
-
item_features (list[Feature Class]): training by the embedding table, it's the item id feature.
|
|
25
|
-
neg_item_feature (list[Feature Class]): training by the embedding table, it's the negative items id feature.
|
|
26
|
-
user_params (dict): the params of the User Tower module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}.
|
|
27
|
-
temperature (float): temperature factor for similarity score, default to 1.0.
|
|
28
|
-
"""
|
|
29
|
-
|
|
30
|
-
def __init__(self, user_features, history_features, item_features, neg_item_feature, user_params, temperature=1.0):
|
|
31
|
-
super().__init__()
|
|
32
|
-
self.user_features = user_features
|
|
33
|
-
self.item_features = item_features
|
|
34
|
-
self.history_features = history_features
|
|
35
|
-
self.neg_item_feature = neg_item_feature
|
|
36
|
-
self.temperature = temperature
|
|
37
|
-
self.user_dims = sum([fea.embed_dim for fea in user_features+history_features])
|
|
38
|
-
|
|
39
|
-
self.embedding = EmbeddingLayer(user_features + item_features + history_features)
|
|
40
|
-
self.gru = nn.GRU(input_size =
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
|
|
44
|
-
|
|
45
|
-
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
|
|
49
|
-
|
|
50
|
-
|
|
51
|
-
|
|
52
|
-
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
|
|
57
|
-
|
|
58
|
-
|
|
59
|
-
|
|
60
|
-
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
|
|
64
|
-
|
|
65
|
-
|
|
66
|
-
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
|
|
70
|
-
|
|
71
|
-
|
|
72
|
-
|
|
73
|
-
|
|
74
|
-
|
|
75
|
-
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
neg_embeddings = F.normalize(neg_embeddings, p=2, dim=-1) # L2 normalize
|
|
87
|
-
return torch.cat((pos_embedding, neg_embeddings), dim=1) #[batch_size, 1+n_neg_items, embed_dim]
|
|
1
|
+
"""
|
|
2
|
+
Date: create on 03/06/2022
|
|
3
|
+
References:
|
|
4
|
+
paper: SESSION-BASED RECOMMENDATIONS WITH RECURRENT NEURAL NETWORKS
|
|
5
|
+
url: http://arxiv.org/abs/1511.06939
|
|
6
|
+
Authors: Kai Wang, 306178200@qq.com
|
|
7
|
+
"""
|
|
8
|
+
|
|
9
|
+
import torch
|
|
10
|
+
import torch.nn.functional as F
|
|
11
|
+
from torch import nn
|
|
12
|
+
|
|
13
|
+
from ...basic.layers import MLP, EmbeddingLayer
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class GRU4Rec(torch.nn.Module):
|
|
17
|
+
"""The match model mentioned in `Deep Neural Networks for YouTube Recommendations` paper.
|
|
18
|
+
It's a DSSM match model trained by global softmax loss on list-wise samples.
|
|
19
|
+
Note in origin paper, it's without item dnn tower and train item embedding directly.
|
|
20
|
+
|
|
21
|
+
Args:
|
|
22
|
+
user_features (list[Feature Class]): training by the user tower module.
|
|
23
|
+
history_features (list[Feature Class]): training history
|
|
24
|
+
item_features (list[Feature Class]): training by the embedding table, it's the item id feature.
|
|
25
|
+
neg_item_feature (list[Feature Class]): training by the embedding table, it's the negative items id feature.
|
|
26
|
+
user_params (dict): the params of the User Tower module, keys include:`{"dims":list, "activation":str, "dropout":float, "output_layer":bool`}.
|
|
27
|
+
temperature (float): temperature factor for similarity score, default to 1.0.
|
|
28
|
+
"""
|
|
29
|
+
|
|
30
|
+
def __init__(self, user_features, history_features, item_features, neg_item_feature, user_params, temperature=1.0):
|
|
31
|
+
super().__init__()
|
|
32
|
+
self.user_features = user_features
|
|
33
|
+
self.item_features = item_features
|
|
34
|
+
self.history_features = history_features
|
|
35
|
+
self.neg_item_feature = neg_item_feature
|
|
36
|
+
self.temperature = temperature
|
|
37
|
+
self.user_dims = sum([fea.embed_dim for fea in user_features + history_features])
|
|
38
|
+
|
|
39
|
+
self.embedding = EmbeddingLayer(user_features + item_features + history_features)
|
|
40
|
+
self.gru = nn.GRU(input_size=history_features[0].embed_dim, hidden_size=history_features[0].embed_dim, num_layers=user_params.get('num_layers', 2), batch_first=True, bias=False)
|
|
41
|
+
self.user_mlp = MLP(self.user_dims, output_layer=False, **user_params)
|
|
42
|
+
self.mode = None
|
|
43
|
+
|
|
44
|
+
def forward(self, x):
|
|
45
|
+
user_embedding = self.user_tower(x)
|
|
46
|
+
item_embedding = self.item_tower(x)
|
|
47
|
+
if self.mode == "user":
|
|
48
|
+
return user_embedding
|
|
49
|
+
if self.mode == "item":
|
|
50
|
+
return item_embedding
|
|
51
|
+
|
|
52
|
+
y = torch.mul(user_embedding, item_embedding).sum(dim=1)
|
|
53
|
+
|
|
54
|
+
return y
|
|
55
|
+
|
|
56
|
+
def user_tower(self, x):
|
|
57
|
+
if self.mode == "item":
|
|
58
|
+
return None
|
|
59
|
+
# [batch_size, num_features*deep_dims]
|
|
60
|
+
input_user = self.embedding(x, self.user_features, squeeze_dim=True)
|
|
61
|
+
|
|
62
|
+
history_emb = self.embedding(x, self.history_features).squeeze(1)
|
|
63
|
+
_, history_emb = self.gru(history_emb)
|
|
64
|
+
history_emb = history_emb[-1]
|
|
65
|
+
|
|
66
|
+
input_user = torch.cat([input_user, history_emb], dim=-1)
|
|
67
|
+
|
|
68
|
+
user_embedding = self.user_mlp(input_user).unsqueeze(1) # [batch_size, 1, embed_dim]
|
|
69
|
+
user_embedding = F.normalize(user_embedding, p=2, dim=-1) # L2 normalize
|
|
70
|
+
if self.mode == "user":
|
|
71
|
+
# inference embedding mode -> [batch_size, embed_dim]
|
|
72
|
+
return user_embedding.squeeze(1)
|
|
73
|
+
return user_embedding
|
|
74
|
+
|
|
75
|
+
def item_tower(self, x):
|
|
76
|
+
if self.mode == "user":
|
|
77
|
+
return None
|
|
78
|
+
pos_embedding = self.embedding(x, self.item_features, squeeze_dim=False) # [batch_size, 1, embed_dim]
|
|
79
|
+
pos_embedding = F.normalize(pos_embedding, p=2, dim=-1) # L2 normalize
|
|
80
|
+
if self.mode == "item": # inference embedding mode
|
|
81
|
+
return pos_embedding.squeeze(1) # [batch_size, embed_dim]
|
|
82
|
+
neg_embeddings = self.embedding(x, self.neg_item_feature, squeeze_dim=False).squeeze(1) # [batch_size, n_neg_items, embed_dim]
|
|
83
|
+
neg_embeddings = F.normalize(neg_embeddings, p=2, dim=-1) # L2 normalize
|
|
84
|
+
# [batch_size, 1+n_neg_items, embed_dim]
|
|
85
|
+
return torch.cat((pos_embedding, neg_embeddings), dim=1)
|
|
@@ -1,101 +1,103 @@
|
|
|
1
|
-
"""
|
|
2
|
-
Date: create on 08/06/2022
|
|
3
|
-
References:
|
|
4
|
-
paper: Multi-Interest Network with Dynamic Routing
|
|
5
|
-
url: https://arxiv.org/pdf/1904.08030v1
|
|
6
|
-
code: https://github.com/ShiningCosmos/pytorch_ComiRec/blob/main/MIND.py
|
|
7
|
-
Authors: Kai Wang, 306178200@qq.com
|
|
8
|
-
"""
|
|
9
|
-
|
|
10
|
-
import torch
|
|
11
|
-
|
|
12
|
-
from
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
class MIND(torch.nn.Module):
|
|
18
|
-
"""The match model mentioned in `Multi-Interest Network with Dynamic Routing` paper.
|
|
19
|
-
It's a ComirecDR match model trained by global softmax loss on list-wise samples.
|
|
20
|
-
Note in origin paper, it's without item dnn tower and train item embedding directly.
|
|
21
|
-
|
|
22
|
-
Args:
|
|
23
|
-
user_features (list[Feature Class]): training by the user tower module.
|
|
24
|
-
history_features (list[Feature Class]): training history
|
|
25
|
-
item_features (list[Feature Class]): training by the embedding table, it's the item id feature.
|
|
26
|
-
neg_item_feature (list[Feature Class]): training by the embedding table, it's the negative items id feature.
|
|
27
|
-
max_length (int): max sequence length of input item sequence
|
|
28
|
-
temperature (float): temperature factor for similarity score, default to 1.0.
|
|
29
|
-
interest_num (int): interest num
|
|
30
|
-
"""
|
|
31
|
-
|
|
32
|
-
def __init__(self, user_features, history_features, item_features, neg_item_feature, max_length, temperature=1.0, interest_num=4):
|
|
33
|
-
super().__init__()
|
|
34
|
-
self.user_features = user_features
|
|
35
|
-
self.item_features = item_features
|
|
36
|
-
self.history_features = history_features
|
|
37
|
-
self.neg_item_feature = neg_item_feature
|
|
38
|
-
self.temperature = temperature
|
|
39
|
-
self.interest_num = interest_num
|
|
40
|
-
self.max_length = max_length
|
|
41
|
-
self.user_dims = sum([fea.embed_dim for fea in user_features+history_features])
|
|
42
|
-
|
|
43
|
-
self.embedding = EmbeddingLayer(user_features + item_features + history_features)
|
|
44
|
-
self.capsule = CapsuleNetwork(self.history_features[0].embed_dim,self.max_length,bilinear_type=0,interest_num=self.interest_num)
|
|
45
|
-
self.convert_user_weight = nn.Parameter(torch.rand(self.user_dims, self.history_features[0].embed_dim), requires_grad=True)
|
|
46
|
-
self.mode = None
|
|
47
|
-
|
|
48
|
-
def forward(self, x):
|
|
49
|
-
user_embedding = self.user_tower(x)
|
|
50
|
-
item_embedding = self.item_tower(x)
|
|
51
|
-
if self.mode == "user":
|
|
52
|
-
return user_embedding
|
|
53
|
-
if self.mode == "item":
|
|
54
|
-
return item_embedding
|
|
55
|
-
|
|
56
|
-
pos_item_embedding = item_embedding[:,0
|
|
57
|
-
dot_res = torch.bmm(user_embedding, pos_item_embedding.squeeze(1).unsqueeze(-1))
|
|
58
|
-
k_index = torch.argmax(dot_res, dim=1)
|
|
59
|
-
best_interest_emb = torch.rand(user_embedding.shape[0], user_embedding.shape[2]).to(user_embedding.device)
|
|
60
|
-
for k in range(user_embedding.shape[0]):
|
|
61
|
-
best_interest_emb[k, :] = user_embedding[k, k_index[k], :]
|
|
62
|
-
best_interest_emb = best_interest_emb.unsqueeze(1)
|
|
63
|
-
|
|
64
|
-
y = torch.mul(best_interest_emb, item_embedding).sum(dim=1)
|
|
65
|
-
return y
|
|
66
|
-
|
|
67
|
-
def user_tower(self, x):
|
|
68
|
-
if self.mode == "item":
|
|
69
|
-
return None
|
|
70
|
-
input_user = self.embedding(x, self.user_features, squeeze_dim=True).unsqueeze(1) #[batch_size, num_features*deep_dims]
|
|
71
|
-
input_user = input_user.expand([input_user.shape[0], self.interest_num, input_user.shape[-1]])
|
|
72
|
-
|
|
73
|
-
history_emb = self.embedding(x, self.history_features).squeeze(1)
|
|
74
|
-
mask = self.gen_mask(x)
|
|
75
|
-
multi_interest_emb = self.capsule(history_emb,mask)
|
|
76
|
-
|
|
77
|
-
input_user = torch.cat([input_user,multi_interest_emb],dim=-1)
|
|
78
|
-
|
|
79
|
-
# user_embedding = self.user_mlp(input_user).unsqueeze(1)
|
|
80
|
-
|
|
81
|
-
user_embedding =
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
|
|
87
|
-
|
|
88
|
-
|
|
89
|
-
|
|
90
|
-
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
|
|
94
|
-
|
|
95
|
-
neg_embeddings =
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
101
|
-
|
|
1
|
+
"""
|
|
2
|
+
Date: create on 08/06/2022
|
|
3
|
+
References:
|
|
4
|
+
paper: Multi-Interest Network with Dynamic Routing
|
|
5
|
+
url: https://arxiv.org/pdf/1904.08030v1
|
|
6
|
+
code: https://github.com/ShiningCosmos/pytorch_ComiRec/blob/main/MIND.py
|
|
7
|
+
Authors: Kai Wang, 306178200@qq.com
|
|
8
|
+
"""
|
|
9
|
+
|
|
10
|
+
import torch
|
|
11
|
+
import torch.nn.functional as F
|
|
12
|
+
from torch import nn
|
|
13
|
+
|
|
14
|
+
from ...basic.layers import MLP, CapsuleNetwork, EmbeddingLayer, MultiInterestSA
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class MIND(torch.nn.Module):
|
|
18
|
+
"""The match model mentioned in `Multi-Interest Network with Dynamic Routing` paper.
|
|
19
|
+
It's a ComirecDR match model trained by global softmax loss on list-wise samples.
|
|
20
|
+
Note in origin paper, it's without item dnn tower and train item embedding directly.
|
|
21
|
+
|
|
22
|
+
Args:
|
|
23
|
+
user_features (list[Feature Class]): training by the user tower module.
|
|
24
|
+
history_features (list[Feature Class]): training history
|
|
25
|
+
item_features (list[Feature Class]): training by the embedding table, it's the item id feature.
|
|
26
|
+
neg_item_feature (list[Feature Class]): training by the embedding table, it's the negative items id feature.
|
|
27
|
+
max_length (int): max sequence length of input item sequence
|
|
28
|
+
temperature (float): temperature factor for similarity score, default to 1.0.
|
|
29
|
+
interest_num (int): interest num
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
def __init__(self, user_features, history_features, item_features, neg_item_feature, max_length, temperature=1.0, interest_num=4):
|
|
33
|
+
super().__init__()
|
|
34
|
+
self.user_features = user_features
|
|
35
|
+
self.item_features = item_features
|
|
36
|
+
self.history_features = history_features
|
|
37
|
+
self.neg_item_feature = neg_item_feature
|
|
38
|
+
self.temperature = temperature
|
|
39
|
+
self.interest_num = interest_num
|
|
40
|
+
self.max_length = max_length
|
|
41
|
+
self.user_dims = sum([fea.embed_dim for fea in user_features + history_features])
|
|
42
|
+
|
|
43
|
+
self.embedding = EmbeddingLayer(user_features + item_features + history_features)
|
|
44
|
+
self.capsule = CapsuleNetwork(self.history_features[0].embed_dim, self.max_length, bilinear_type=0, interest_num=self.interest_num)
|
|
45
|
+
self.convert_user_weight = nn.Parameter(torch.rand(self.user_dims, self.history_features[0].embed_dim), requires_grad=True)
|
|
46
|
+
self.mode = None
|
|
47
|
+
|
|
48
|
+
def forward(self, x):
|
|
49
|
+
user_embedding = self.user_tower(x)
|
|
50
|
+
item_embedding = self.item_tower(x)
|
|
51
|
+
if self.mode == "user":
|
|
52
|
+
return user_embedding
|
|
53
|
+
if self.mode == "item":
|
|
54
|
+
return item_embedding
|
|
55
|
+
|
|
56
|
+
pos_item_embedding = item_embedding[:, 0, :]
|
|
57
|
+
dot_res = torch.bmm(user_embedding, pos_item_embedding.squeeze(1).unsqueeze(-1))
|
|
58
|
+
k_index = torch.argmax(dot_res, dim=1)
|
|
59
|
+
best_interest_emb = torch.rand(user_embedding.shape[0], user_embedding.shape[2]).to(user_embedding.device)
|
|
60
|
+
for k in range(user_embedding.shape[0]):
|
|
61
|
+
best_interest_emb[k, :] = user_embedding[k, k_index[k], :]
|
|
62
|
+
best_interest_emb = best_interest_emb.unsqueeze(1)
|
|
63
|
+
|
|
64
|
+
y = torch.mul(best_interest_emb, item_embedding).sum(dim=1)
|
|
65
|
+
return y
|
|
66
|
+
|
|
67
|
+
def user_tower(self, x):
|
|
68
|
+
if self.mode == "item":
|
|
69
|
+
return None
|
|
70
|
+
input_user = self.embedding(x, self.user_features, squeeze_dim=True).unsqueeze(1) # [batch_size, num_features*deep_dims]
|
|
71
|
+
input_user = input_user.expand([input_user.shape[0], self.interest_num, input_user.shape[-1]])
|
|
72
|
+
|
|
73
|
+
history_emb = self.embedding(x, self.history_features).squeeze(1)
|
|
74
|
+
mask = self.gen_mask(x)
|
|
75
|
+
multi_interest_emb = self.capsule(history_emb, mask)
|
|
76
|
+
|
|
77
|
+
input_user = torch.cat([input_user, multi_interest_emb], dim=-1)
|
|
78
|
+
|
|
79
|
+
# user_embedding = self.user_mlp(input_user).unsqueeze(1)
|
|
80
|
+
# #[batch_size, interest_num, embed_dim]
|
|
81
|
+
user_embedding = torch.matmul(input_user, self.convert_user_weight)
|
|
82
|
+
user_embedding = F.normalize(user_embedding, p=2, dim=-1) # L2 normalize
|
|
83
|
+
if self.mode == "user":
|
|
84
|
+
# inference embedding mode -> [batch_size, interest_num, embed_dim]
|
|
85
|
+
return user_embedding
|
|
86
|
+
return user_embedding
|
|
87
|
+
|
|
88
|
+
def item_tower(self, x):
|
|
89
|
+
if self.mode == "user":
|
|
90
|
+
return None
|
|
91
|
+
pos_embedding = self.embedding(x, self.item_features, squeeze_dim=False) # [batch_size, 1, embed_dim]
|
|
92
|
+
pos_embedding = F.normalize(pos_embedding, p=2, dim=-1) # L2 normalize
|
|
93
|
+
if self.mode == "item": # inference embedding mode
|
|
94
|
+
return pos_embedding.squeeze(1) # [batch_size, embed_dim]
|
|
95
|
+
neg_embeddings = self.embedding(x, self.neg_item_feature, squeeze_dim=False).squeeze(1) # [batch_size, n_neg_items, embed_dim]
|
|
96
|
+
neg_embeddings = F.normalize(neg_embeddings, p=2, dim=-1) # L2 normalize
|
|
97
|
+
# [batch_size, 1+n_neg_items, embed_dim]
|
|
98
|
+
return torch.cat((pos_embedding, neg_embeddings), dim=1)
|
|
99
|
+
|
|
100
|
+
def gen_mask(self, x):
|
|
101
|
+
his_list = x[self.history_features[0].name]
|
|
102
|
+
mask = (his_list > 0).long()
|
|
103
|
+
return mask
|