torch-rechub 0.0.3__py3-none-any.whl → 0.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (64) hide show
  1. torch_rechub/__init__.py +14 -0
  2. torch_rechub/basic/activation.py +54 -54
  3. torch_rechub/basic/callback.py +33 -33
  4. torch_rechub/basic/features.py +87 -94
  5. torch_rechub/basic/initializers.py +92 -92
  6. torch_rechub/basic/layers.py +994 -720
  7. torch_rechub/basic/loss_func.py +223 -34
  8. torch_rechub/basic/metaoptimizer.py +76 -72
  9. torch_rechub/basic/metric.py +251 -250
  10. torch_rechub/models/generative/__init__.py +6 -0
  11. torch_rechub/models/generative/hllm.py +249 -0
  12. torch_rechub/models/generative/hstu.py +189 -0
  13. torch_rechub/models/matching/__init__.py +13 -11
  14. torch_rechub/models/matching/comirec.py +193 -188
  15. torch_rechub/models/matching/dssm.py +72 -66
  16. torch_rechub/models/matching/dssm_facebook.py +77 -79
  17. torch_rechub/models/matching/dssm_senet.py +28 -16
  18. torch_rechub/models/matching/gru4rec.py +85 -87
  19. torch_rechub/models/matching/mind.py +103 -101
  20. torch_rechub/models/matching/narm.py +82 -76
  21. torch_rechub/models/matching/sasrec.py +143 -140
  22. torch_rechub/models/matching/sine.py +148 -151
  23. torch_rechub/models/matching/stamp.py +81 -83
  24. torch_rechub/models/matching/youtube_dnn.py +75 -71
  25. torch_rechub/models/matching/youtube_sbc.py +98 -98
  26. torch_rechub/models/multi_task/__init__.py +7 -5
  27. torch_rechub/models/multi_task/aitm.py +83 -84
  28. torch_rechub/models/multi_task/esmm.py +56 -55
  29. torch_rechub/models/multi_task/mmoe.py +58 -58
  30. torch_rechub/models/multi_task/ple.py +116 -130
  31. torch_rechub/models/multi_task/shared_bottom.py +45 -45
  32. torch_rechub/models/ranking/__init__.py +14 -11
  33. torch_rechub/models/ranking/afm.py +65 -63
  34. torch_rechub/models/ranking/autoint.py +102 -0
  35. torch_rechub/models/ranking/bst.py +61 -63
  36. torch_rechub/models/ranking/dcn.py +38 -38
  37. torch_rechub/models/ranking/dcn_v2.py +59 -69
  38. torch_rechub/models/ranking/deepffm.py +131 -123
  39. torch_rechub/models/ranking/deepfm.py +43 -42
  40. torch_rechub/models/ranking/dien.py +191 -191
  41. torch_rechub/models/ranking/din.py +93 -91
  42. torch_rechub/models/ranking/edcn.py +101 -117
  43. torch_rechub/models/ranking/fibinet.py +42 -50
  44. torch_rechub/models/ranking/widedeep.py +41 -41
  45. torch_rechub/trainers/__init__.py +4 -3
  46. torch_rechub/trainers/ctr_trainer.py +288 -128
  47. torch_rechub/trainers/match_trainer.py +336 -170
  48. torch_rechub/trainers/matching.md +3 -0
  49. torch_rechub/trainers/mtl_trainer.py +356 -207
  50. torch_rechub/trainers/seq_trainer.py +427 -0
  51. torch_rechub/utils/data.py +492 -360
  52. torch_rechub/utils/hstu_utils.py +198 -0
  53. torch_rechub/utils/match.py +457 -274
  54. torch_rechub/utils/model_utils.py +233 -0
  55. torch_rechub/utils/mtl.py +136 -126
  56. torch_rechub/utils/onnx_export.py +220 -0
  57. torch_rechub/utils/visualization.py +271 -0
  58. torch_rechub-0.0.5.dist-info/METADATA +402 -0
  59. torch_rechub-0.0.5.dist-info/RECORD +64 -0
  60. {torch_rechub-0.0.3.dist-info → torch_rechub-0.0.5.dist-info}/WHEEL +1 -2
  61. {torch_rechub-0.0.3.dist-info → torch_rechub-0.0.5.dist-info/licenses}/LICENSE +21 -21
  62. torch_rechub-0.0.3.dist-info/METADATA +0 -177
  63. torch_rechub-0.0.3.dist-info/RECORD +0 -55
  64. torch_rechub-0.0.3.dist-info/top_level.txt +0 -1
@@ -1,34 +1,223 @@
1
- import torch
2
- import torch.functional as F
3
-
4
-
5
- class HingeLoss(torch.nn.Module):
6
- """Hinge Loss for pairwise learning.
7
- reference: https://github.com/ustcml/RecStudio/blob/main/recstudio/model/loss_func.py
8
-
9
- """
10
-
11
- def __init__(self, margin=2, num_items=None):
12
- super().__init__()
13
- self.margin = margin
14
- self.n_items = num_items
15
-
16
- def forward(self, pos_score, neg_score):
17
- loss = torch.maximum(torch.max(neg_score, dim=-1).values - pos_score + self.margin, torch.tensor([0]).type_as(pos_score))
18
- if self.n_items is not None:
19
- impostors = neg_score - pos_score.view(-1, 1) + self.margin > 0
20
- rank = torch.mean(impostors, -1) * self.n_items
21
- return torch.mean(loss * torch.log(rank + 1))
22
- else:
23
- return torch.mean(loss)
24
-
25
-
26
- class BPRLoss(torch.nn.Module):
27
-
28
- def __init__(self):
29
- super().__init__()
30
-
31
- def forward(self, pos_score, neg_score):
32
- loss = torch.mean(-(pos_score - neg_score).sigmoid().log(), dim=-1)
33
- return loss
34
- #loss = -torch.mean(F.logsigmoid(pos_score - torch.max(neg_score, dim=-1))) need v1.10
1
+ import torch
2
+ import torch.functional as F
3
+ import torch.nn as nn
4
+
5
+
6
+ class RegularizationLoss(nn.Module):
7
+ """Unified L1/L2 Regularization Loss for embedding and dense parameters.
8
+
9
+ Example:
10
+ >>> reg_loss_fn = RegularizationLoss(embedding_l2=1e-5, dense_l2=1e-5)
11
+ >>> # In model's forward or trainer
12
+ >>> reg_loss = reg_loss_fn(model)
13
+ >>> total_loss = task_loss + reg_loss
14
+ """
15
+
16
+ def __init__(self, embedding_l1=0.0, embedding_l2=0.0, dense_l1=0.0, dense_l2=0.0):
17
+ super(RegularizationLoss, self).__init__()
18
+ self.embedding_l1 = embedding_l1
19
+ self.embedding_l2 = embedding_l2
20
+ self.dense_l1 = dense_l1
21
+ self.dense_l2 = dense_l2
22
+
23
+ def forward(self, model):
24
+ reg_loss = 0.0
25
+
26
+ # Register normalization layers
27
+ norm_params = set()
28
+ for module in model.modules():
29
+ if isinstance(module, (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.LayerNorm, nn.GroupNorm, nn.InstanceNorm1d, nn.InstanceNorm2d, nn.InstanceNorm3d)):
30
+ for param in module.parameters():
31
+ norm_params.add(id(param))
32
+
33
+ # Register embedding layers
34
+ embedding_params = set()
35
+ for module in model.modules():
36
+ if isinstance(module, (nn.Embedding, nn.EmbeddingBag)):
37
+ for param in module.parameters():
38
+ embedding_params.add(id(param))
39
+
40
+ for param in model.parameters():
41
+ if param.requires_grad:
42
+ # Skip normalization layer parameters
43
+ if id(param) in norm_params:
44
+ continue
45
+
46
+ if id(param) in embedding_params:
47
+ if self.embedding_l1 > 0:
48
+ reg_loss += self.embedding_l1 * torch.sum(torch.abs(param))
49
+ if self.embedding_l2 > 0:
50
+ reg_loss += self.embedding_l2 * torch.sum(param**2)
51
+ else:
52
+ if self.dense_l1 > 0:
53
+ reg_loss += self.dense_l1 * torch.sum(torch.abs(param))
54
+ if self.dense_l2 > 0:
55
+ reg_loss += self.dense_l2 * torch.sum(param**2)
56
+
57
+ return reg_loss
58
+
59
+
60
+ class HingeLoss(torch.nn.Module):
61
+ """Hinge Loss for pairwise learning.
62
+ reference: https://github.com/ustcml/RecStudio/blob/main/recstudio/model/loss_func.py
63
+
64
+ """
65
+
66
+ def __init__(self, margin=2, num_items=None):
67
+ super().__init__()
68
+ self.margin = margin
69
+ self.n_items = num_items
70
+
71
+ def forward(self, pos_score, neg_score):
72
+ loss = torch.maximum(torch.max(neg_score, dim=-1).values - pos_score + self.margin, torch.tensor([0]).type_as(pos_score))
73
+ if self.n_items is not None:
74
+ impostors = neg_score - pos_score.view(-1, 1) + self.margin > 0
75
+ rank = torch.mean(impostors, -1) * self.n_items
76
+ return torch.mean(loss * torch.log(rank + 1))
77
+ else:
78
+ return torch.mean(loss)
79
+
80
+
81
+ class BPRLoss(torch.nn.Module):
82
+
83
+ def __init__(self):
84
+ super().__init__()
85
+
86
+ def forward(self, pos_score, neg_score):
87
+ loss = torch.mean(-(pos_score - neg_score).sigmoid().log(), dim=-1)
88
+ return loss
89
+
90
+
91
+ class NCELoss(torch.nn.Module):
92
+ """Noise Contrastive Estimation (NCE) Loss for recommendation systems.
93
+
94
+ NCE Loss is more efficient than CrossEntropyLoss for large-scale recommendation
95
+ scenarios. It uses in-batch negatives to reduce computational complexity.
96
+
97
+ Reference:
98
+ - Noise-contrastive estimation: A new estimation principle for unnormalized
99
+ statistical models (Gutmann & Hyvärinen, 2010)
100
+ - HLLM: Hierarchical Large Language Model for Recommendation
101
+
102
+ Args:
103
+ temperature (float): Temperature parameter for scaling logits. Default: 1.0
104
+ ignore_index (int): Index to ignore in loss computation. Default: 0
105
+ reduction (str): Specifies the reduction to apply to the output.
106
+ Options: 'mean', 'sum', 'none'. Default: 'mean'
107
+
108
+ Example:
109
+ >>> nce_loss = NCELoss(temperature=0.1)
110
+ >>> logits = torch.randn(32, 1000) # (batch_size, vocab_size)
111
+ >>> targets = torch.randint(0, 1000, (32,))
112
+ >>> loss = nce_loss(logits, targets)
113
+ """
114
+
115
+ def __init__(self, temperature=1.0, ignore_index=0, reduction='mean'):
116
+ super().__init__()
117
+ self.temperature = temperature
118
+ self.ignore_index = ignore_index
119
+ self.reduction = reduction
120
+
121
+ def forward(self, logits, targets):
122
+ """Compute NCE loss.
123
+
124
+ Args:
125
+ logits (torch.Tensor): Model output logits of shape (batch_size, vocab_size)
126
+ targets (torch.Tensor): Target indices of shape (batch_size,)
127
+
128
+ Returns:
129
+ torch.Tensor: NCE loss value
130
+ """
131
+ # Scale logits by temperature
132
+ logits = logits / self.temperature
133
+
134
+ # Compute log softmax
135
+ log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
136
+
137
+ # Get log probability of target class
138
+ batch_size = targets.shape[0]
139
+ target_log_probs = log_probs[torch.arange(batch_size), targets]
140
+
141
+ # Create mask for ignore_index
142
+ mask = targets != self.ignore_index
143
+
144
+ # Compute loss
145
+ loss = -target_log_probs
146
+
147
+ # Apply mask
148
+ if mask.any():
149
+ loss = loss[mask]
150
+
151
+ # Apply reduction
152
+ if self.reduction == 'mean':
153
+ return loss.mean()
154
+ elif self.reduction == 'sum':
155
+ return loss.sum()
156
+ else: # 'none'
157
+ return loss
158
+
159
+
160
+ class InBatchNCELoss(torch.nn.Module):
161
+ """In-Batch NCE Loss with explicit negative sampling.
162
+
163
+ This loss function uses other samples in the batch as negative samples,
164
+ which is more efficient than sampling random negatives.
165
+
166
+ Args:
167
+ temperature (float): Temperature parameter for scaling logits. Default: 0.1
168
+ ignore_index (int): Index to ignore in loss computation. Default: 0
169
+ reduction (str): Specifies the reduction to apply to the output.
170
+ Options: 'mean', 'sum', 'none'. Default: 'mean'
171
+
172
+ Example:
173
+ >>> loss_fn = InBatchNCELoss(temperature=0.1)
174
+ >>> embeddings = torch.randn(32, 256) # (batch_size, embedding_dim)
175
+ >>> item_embeddings = torch.randn(1000, 256) # (vocab_size, embedding_dim)
176
+ >>> targets = torch.randint(0, 1000, (32,))
177
+ >>> loss = loss_fn(embeddings, item_embeddings, targets)
178
+ """
179
+
180
+ def __init__(self, temperature=0.1, ignore_index=0, reduction='mean'):
181
+ super().__init__()
182
+ self.temperature = temperature
183
+ self.ignore_index = ignore_index
184
+ self.reduction = reduction
185
+
186
+ def forward(self, embeddings, item_embeddings, targets):
187
+ """Compute in-batch NCE loss.
188
+
189
+ Args:
190
+ embeddings (torch.Tensor): User/query embeddings of shape (batch_size, embedding_dim)
191
+ item_embeddings (torch.Tensor): Item embeddings of shape (vocab_size, embedding_dim)
192
+ targets (torch.Tensor): Target item indices of shape (batch_size,)
193
+
194
+ Returns:
195
+ torch.Tensor: In-batch NCE loss value
196
+ """
197
+ # Compute logits: (batch_size, vocab_size)
198
+ logits = torch.matmul(embeddings, item_embeddings.t()) / self.temperature
199
+
200
+ # Compute log softmax
201
+ log_probs = torch.nn.functional.log_softmax(logits, dim=-1)
202
+
203
+ # Get log probability of target class
204
+ batch_size = targets.shape[0]
205
+ target_log_probs = log_probs[torch.arange(batch_size), targets]
206
+
207
+ # Create mask for ignore_index
208
+ mask = targets != self.ignore_index
209
+
210
+ # Compute loss
211
+ loss = -target_log_probs
212
+
213
+ # Apply mask
214
+ if mask.any():
215
+ loss = loss[mask]
216
+
217
+ # Apply reduction
218
+ if self.reduction == 'mean':
219
+ return loss.mean()
220
+ elif self.reduction == 'sum':
221
+ return loss.sum()
222
+ else: # 'none'
223
+ return loss
@@ -1,72 +1,76 @@
1
- """The metaoptimizer module, it provides a class MetaBalance
2
- MetaBalance is used to scale the gradient and balance the gradient of each task
3
- Authors: Qida Dong, dongjidan@126.com
4
- """
5
- import torch
6
- from torch.optim.optimizer import Optimizer
7
-
8
-
9
- class MetaBalance(Optimizer):
10
- """MetaBalance Optimizer
11
- This method is used to scale the gradient and balance the gradient of each task
12
-
13
- Args:
14
- parameters (list): the parameters of model
15
- relax_factor (float, optional): the relax factor of gradient scaling (default: 0.7)
16
- beta (float, optional): the coefficient of moving average (default: 0.9)
17
- """
18
-
19
- def __init__(self, parameters, relax_factor=0.7, beta=0.9):
20
-
21
- if relax_factor < 0. or relax_factor >= 1.:
22
- raise ValueError(f'Invalid relax_factor: {relax_factor}, it should be 0. <= relax_factor < 1.')
23
- if beta < 0. or beta >= 1.:
24
- raise ValueError(f'Invalid beta: {beta}, it should be 0. <= beta < 1.')
25
- rel_beta_dict = {'relax_factor': relax_factor, 'beta': beta}
26
- super(MetaBalance, self).__init__(parameters, rel_beta_dict)
27
-
28
- @torch.no_grad()
29
- def step(self, losses):
30
- """_summary_
31
- Args:
32
- losses (_type_): _description_
33
-
34
- Raises:
35
- RuntimeError: _description_
36
- """
37
-
38
- for idx, loss in enumerate(losses):
39
- loss.backward(retain_graph=True)
40
- for group in self.param_groups:
41
- for gp in group['params']:
42
- if gp.grad is None:
43
- # print('breaking')
44
- break
45
- if gp.grad.is_sparse:
46
- raise RuntimeError('MetaBalance does not support sparse gradients')
47
- # store the result of moving average
48
- state = self.state[gp]
49
- if len(state) == 0:
50
- for i in range(len(losses)):
51
- if i == 0:
52
- gp.norms = [0]
53
- else:
54
- gp.norms.append(0)
55
- # calculate the moving average
56
- beta = group['beta']
57
- gp.norms[idx] = gp.norms[idx] * beta + (1 - beta) * torch.norm(gp.grad)
58
- # scale the auxiliary gradient
59
- relax_factor = group['relax_factor']
60
- gp.grad = gp.grad * gp.norms[0] / (gp.norms[idx] + 1e-5) * relax_factor + gp.grad * (1. - relax_factor)
61
- # store the gradient of each auxiliary task in state
62
- if idx == 0:
63
- state['sum_gradient'] = torch.zeros_like(gp.data)
64
- state['sum_gradient'] += gp.grad
65
- else:
66
- state['sum_gradient'] += gp.grad
67
-
68
- if gp.grad is not None:
69
- gp.grad.detach_()
70
- gp.grad.zero_()
71
- if idx == len(losses) - 1:
72
- gp.grad = state['sum_gradient']
1
+ """The metaoptimizer module, it provides a class MetaBalance
2
+ MetaBalance is used to scale the gradient and balance the gradient of each task
3
+ Authors: Qida Dong, dongjidan@126.com
4
+ """
5
+ import torch
6
+ from torch.optim.optimizer import Optimizer
7
+
8
+
9
+ class MetaBalance(Optimizer):
10
+ """MetaBalance Optimizer
11
+ This method is used to scale the gradient and balance the gradient of each task
12
+
13
+ Args:
14
+ parameters (list): the parameters of model
15
+ relax_factor (float, optional): the relax factor of gradient scaling (default: 0.7)
16
+ beta (float, optional): the coefficient of moving average (default: 0.9)
17
+ """
18
+
19
+ def __init__(self, parameters, relax_factor=0.7, beta=0.9):
20
+
21
+ if relax_factor < 0. or relax_factor >= 1.:
22
+ raise ValueError(f'Invalid relax_factor: {relax_factor}, it should be 0. <= relax_factor < 1.')
23
+ if beta < 0. or beta >= 1.:
24
+ raise ValueError(f'Invalid beta: {beta}, it should be 0. <= beta < 1.')
25
+ rel_beta_dict = {'relax_factor': relax_factor, 'beta': beta}
26
+ super(MetaBalance, self).__init__(parameters, rel_beta_dict)
27
+
28
+ @torch.no_grad()
29
+ def step(self, losses):
30
+ """_summary_
31
+ Args:
32
+ losses (_type_): _description_
33
+
34
+ Raises:
35
+ RuntimeError: _description_
36
+ """
37
+
38
+ for idx, loss in enumerate(losses):
39
+ loss.backward(retain_graph=True)
40
+ for group in self.param_groups:
41
+ for gp in group['params']:
42
+ if gp.grad is None:
43
+ # print('breaking')
44
+ break
45
+ if gp.grad.is_sparse:
46
+ raise RuntimeError('MetaBalance does not support sparse gradients')
47
+ # store the result of moving average
48
+ state = self.state[gp]
49
+ if len(state) == 0:
50
+ for i in range(len(losses)):
51
+ if i == 0:
52
+ gp.norms = [0]
53
+ else:
54
+ gp.norms.append(0)
55
+
56
+
57
+ # calculate the moving average
58
+ beta = group['beta']
59
+ gp.norms[idx] = gp.norms[idx] * beta + \
60
+ (1 - beta) * torch.norm(gp.grad)
61
+ # scale the auxiliary gradient
62
+ relax_factor = group['relax_factor']
63
+ gp.grad = gp.grad * \
64
+ gp.norms[0] / (gp.norms[idx] + 1e-5) * relax_factor + gp.grad * (1. - relax_factor)
65
+ # store the gradient of each auxiliary task in state
66
+ if idx == 0:
67
+ state['sum_gradient'] = torch.zeros_like(gp.data)
68
+ state['sum_gradient'] += gp.grad
69
+ else:
70
+ state['sum_gradient'] += gp.grad
71
+
72
+ if gp.grad is not None:
73
+ gp.grad.detach_()
74
+ gp.grad.zero_()
75
+ if idx == len(losses) - 1:
76
+ gp.grad = state['sum_gradient']