topologicpy 0.8.46__py3-none-any.whl → 0.8.48__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
topologicpy/PyG.py CHANGED
@@ -1631,7 +1631,7 @@ class PyG:
1631
1631
  dataset : CustomDataset
1632
1632
  The input dataset
1633
1633
  graphLabelHeader: str , optional
1634
- The key string under which the graph labels are stored. The default is "label".
1634
+ The key string under which the graph labels are stored. Default is "label".
1635
1635
 
1636
1636
  Returns
1637
1637
  -------
@@ -1659,9 +1659,9 @@ class PyG:
1659
1659
  split: list , optional
1660
1660
  The list of ratios. This list must be made out of three numbers adding to 1.
1661
1661
  shuffle: boolean , optional
1662
- If set to True, the subsets are created from random indices. Otherwise, they are split sequentially. The default is True.
1662
+ If set to True, the subsets are created from random indices. Otherwise, they are split sequentially. Default is True.
1663
1663
  randomState : int , optional
1664
- The random seed to use for reproducibility. The default is 42.
1664
+ The random seed to use for reproducibility. Default is 42.
1665
1665
 
1666
1666
  Returns
1667
1667
  -------
@@ -1706,17 +1706,17 @@ class PyG:
1706
1706
  Parameters
1707
1707
  ----------
1708
1708
  amsgrad : bool , optional.
1709
- amsgrad is an extension to the Adam version of gradient descent that attempts to improve the convergence properties of the algorithm, avoiding large abrupt changes in the learning rate for each input variable. The default is True.
1709
+ amsgrad is an extension to the Adam version of gradient descent that attempts to improve the convergence properties of the algorithm, avoiding large abrupt changes in the learning rate for each input variable. Default is True.
1710
1710
  betas : tuple , optional
1711
- Betas are used as for smoothing the path to the convergence also providing some momentum to cross a local minima or saddle point. The default is (0.9, 0.999).
1711
+ Betas are used as for smoothing the path to the convergence also providing some momentum to cross a local minima or saddle point. Default is (0.9, 0.999).
1712
1712
  eps : float . optional.
1713
- eps is a term added to the denominator to improve numerical stability. The default is 0.000001.
1713
+ eps is a term added to the denominator to improve numerical stability. Default is 0.000001.
1714
1714
  lr : float
1715
- The learning rate (lr) defines the adjustment in the weights of our network with respect to the loss gradient descent. The default is 0.001.
1715
+ The learning rate (lr) defines the adjustment in the weights of our network with respect to the loss gradient descent. Default is 0.001.
1716
1716
  maximize : float , optional
1717
- maximize the params based on the objective, instead of minimizing. The default is False.
1717
+ maximize the params based on the objective, instead of minimizing. Default is False.
1718
1718
  weightDecay : float , optional
1719
- weightDecay (L2 penalty) is a regularization technique applied to the weights of a neural network. The default is 0.0.
1719
+ weightDecay (L2 penalty) is a regularization technique applied to the weights of a neural network. Default is 0.0.
1720
1720
 
1721
1721
  Returns
1722
1722
  -------
@@ -1747,29 +1747,29 @@ class PyG:
1747
1747
  The desired type of model. The options are:
1748
1748
  - "Classifier"
1749
1749
  - "Regressor"
1750
- The option is case insensitive. The default is "classifierholdout"
1750
+ The option is case insensitive. Default is "classifierholdout"
1751
1751
  optimizer : Optimizer
1752
1752
  The desired optimizer.
1753
1753
  cv_type : str , optional
1754
- The desired cross-validation method. This can be "Holdout" or "K-Fold". It is case-insensitive. The default is "Holdout".
1754
+ The desired cross-validation method. This can be "Holdout" or "K-Fold". It is case-insensitive. Default is "Holdout".
1755
1755
  split : list , optional
1756
- The desired split between training validation, and testing. [0.8, 0.1, 0.1] means that 80% of the data is used for training 10% of the data is used for validation, and 10% is used for testing. The default is [0.8, 0.1, 0.1].
1756
+ The desired split between training validation, and testing. [0.8, 0.1, 0.1] means that 80% of the data is used for training 10% of the data is used for validation, and 10% is used for testing. Default is [0.8, 0.1, 0.1].
1757
1757
  k_folds : int , optional
1758
- The desired number of k-folds. The default is 5.
1758
+ The desired number of k-folds. Default is 5.
1759
1759
  hl_widths : list , optional
1760
- The list of hidden layer widths. A list of [16, 32, 16] means that the model will have 3 hidden layers with number of neurons in each being 16, 32, 16 respectively from input to output. The default is [32].
1760
+ The list of hidden layer widths. A list of [16, 32, 16] means that the model will have 3 hidden layers with number of neurons in each being 16, 32, 16 respectively from input to output. Default is [32].
1761
1761
  conv_layer_type : str , optional
1762
- The desired type of the convolution layer. The options are "Classic", "GraphConv", "GINConv", "SAGEConv", "TAGConv", "DGN". It is case insensitive. The default is "SAGEConv".
1762
+ The desired type of the convolution layer. The options are "Classic", "GraphConv", "GINConv", "SAGEConv", "TAGConv", "DGN". It is case insensitive. Default is "SAGEConv".
1763
1763
  pooling : str , optional
1764
- The desired type of pooling. The options are "AvgPooling", "MaxPooling", or "SumPooling". It is case insensitive. The default is "AvgPooling".
1764
+ The desired type of pooling. The options are "AvgPooling", "MaxPooling", or "SumPooling". It is case insensitive. Default is "AvgPooling".
1765
1765
  batch_size : int , optional
1766
- The desired batch size. The default is 1.
1766
+ The desired batch size. Default is 1.
1767
1767
  epochs : int , optional
1768
- The desired number of epochs. The default is 1.
1768
+ The desired number of epochs. Default is 1.
1769
1769
  use_gpu : bool , optional
1770
- If set to True, the model will attempt to use the GPU. The default is False.
1770
+ If set to True, the model will attempt to use the GPU. Default is False.
1771
1771
  loss_function : str , optional
1772
- The desired loss function. The options are "Cross-Entropy" or "Negative Log Likelihood". It is case insensitive. The default is "Cross-Entropy".
1772
+ The desired loss function. The options are "Cross-Entropy" or "Negative Log Likelihood". It is case insensitive. Default is "Cross-Entropy".
1773
1773
  input_type : str
1774
1774
  selects the input_type of model such as graph, node or edge
1775
1775
  Returns
@@ -1911,7 +1911,7 @@ class PyG:
1911
1911
  path : str
1912
1912
  The file path at which to save the model.
1913
1913
  overwrite : bool, optional
1914
- If set to True, any existing file will be overwritten. Otherwise, it won't. The default is False.
1914
+ If set to True, any existing file will be overwritten. Otherwise, it won't. Default is False.
1915
1915
 
1916
1916
  Returns
1917
1917
  -------
@@ -2059,23 +2059,23 @@ class PyG:
2059
2059
  labels : list
2060
2060
  The labels to use for the data.
2061
2061
  width : int , optional
2062
- The desired width of the figure. The default is 950.
2062
+ The desired width of the figure. Default is 950.
2063
2063
  height : int , optional
2064
- The desired height of the figure. The default is 500.
2064
+ The desired height of the figure. Default is 500.
2065
2065
  title : str , optional
2066
- The chart title. The default is "Training and Testing Results".
2066
+ The chart title. Default is "Training and Testing Results".
2067
2067
  xTitle : str , optional
2068
- The X-axis title. The default is "Epochs".
2068
+ The X-axis title. Default is "Epochs".
2069
2069
  xSpacing : float , optional
2070
- The X-axis spacing. The default is 1.0.
2070
+ The X-axis spacing. Default is 1.0.
2071
2071
  yTitle : str , optional
2072
- The Y-axis title. The default is "Accuracy and Loss".
2072
+ The Y-axis title. Default is "Accuracy and Loss".
2073
2073
  ySpacing : float , optional
2074
- The Y-axis spacing. The default is 0.1.
2074
+ The Y-axis spacing. Default is 0.1.
2075
2075
  useMarkers : bool , optional
2076
- If set to True, markers will be displayed. The default is False.
2076
+ If set to True, markers will be displayed. Default is False.
2077
2077
  chartType : str , optional
2078
- The desired type of chart. The options are "Line", "Bar", or "Scatter". It is case insensitive. The default is "Line".
2078
+ The desired type of chart. The options are "Line", "Bar", or "Scatter". It is case insensitive. Default is "Line".
2079
2079
  backgroundColor : str , optional
2080
2080
  The desired background color. This can be any plotly color string and may be specified as:
2081
2081
  - A hex string (e.g. '#ff0000')
@@ -2093,15 +2093,15 @@ class PyG:
2093
2093
  - A named CSS color.
2094
2094
  The default is 'lightgray'.
2095
2095
  marginLeft : int , optional
2096
- The desired left margin in pixels. The default is 0.
2096
+ The desired left margin in pixels. Default is 0.
2097
2097
  marginRight : int , optional
2098
- The desired right margin in pixels. The default is 0.
2098
+ The desired right margin in pixels. Default is 0.
2099
2099
  marginTop : int , optional
2100
- The desired top margin in pixels. The default is 40.
2100
+ The desired top margin in pixels. Default is 40.
2101
2101
  marginBottom : int , optional
2102
- The desired bottom margin in pixels. The default is 0.
2102
+ The desired bottom margin in pixels. Default is 0.
2103
2103
  renderer : str , optional
2104
- The desired plotly renderer. The default is "notebook".
2104
+ The desired plotly renderer. Default is "notebook".
2105
2105
 
2106
2106
  Returns
2107
2107
  -------
@@ -2167,7 +2167,7 @@ class PyG:
2167
2167
  predicted : list
2168
2168
  The input list of predicts labels.
2169
2169
  normalized : bool , optional
2170
- If set to True, the returned data will be normalized (proportion of 1). Otherwise, actual numbers are returned. The default is False.
2170
+ If set to True, the returned data will be normalized (proportion of 1). Otherwise, actual numbers are returned. Default is False.
2171
2171
 
2172
2172
  Returns
2173
2173
  -------
@@ -2220,7 +2220,7 @@ class PyG:
2220
2220
  model : Model
2221
2221
  The input trained model.
2222
2222
  nodeATTRKey : str , optional
2223
- The key used for node attributes. The default is "feat".
2223
+ The key used for node attributes. Default is "feat".
2224
2224
 
2225
2225
  Returns
2226
2226
  -------
@@ -2253,7 +2253,7 @@ class PyG:
2253
2253
  model : Model
2254
2254
  The input trained model.
2255
2255
  nodeATTRKey : str , optional
2256
- The key used for node attributes. The default is "feat".
2256
+ The key used for node attributes. Default is "feat".
2257
2257
 
2258
2258
  Returns
2259
2259
  -------
@@ -2295,7 +2295,7 @@ class PyG:
2295
2295
  predicted : list
2296
2296
  The input list of predicted values.
2297
2297
  mantissa : int , optional
2298
- The desired length of the mantissa. The default is 6.
2298
+ The number of decimal places to round the result to. Default is 6.
2299
2299
 
2300
2300
  Returns
2301
2301
  -------
@@ -2335,7 +2335,7 @@ class PyG:
2335
2335
  predicted : list
2336
2336
  The input list of predicted values.
2337
2337
  mantissa : int , optional
2338
- The desired length of the mantissa. The default is 6.
2338
+ The number of decimal places to round the result to. Default is 6.
2339
2339
 
2340
2340
  Returns
2341
2341
  -------
@@ -2365,7 +2365,7 @@ class PyG:
2365
2365
  predicted : list
2366
2366
  The input list of predicted values.
2367
2367
  mantissa : int , optional
2368
- The desired length of the mantissa. The default is 6.
2368
+ The number of decimal places to round the result to. Default is 6.
2369
2369
 
2370
2370
  Returns
2371
2371
  -------
@@ -142,13 +142,13 @@ class ShapeGrammar:
142
142
  output : topologic_core.Topology
143
143
  The output topology of the rule.
144
144
  title : str , optional
145
- The title of the rule. The default is "Untitled Rule"
145
+ The title of the rule. Default is "Untitled Rule"
146
146
  description : str, optional
147
- The description of the rule. The default is "".
147
+ The description of the rule. Default is "".
148
148
  operation : dict , optional
149
- The desired rule operation. See Rule Operations. If set to None, the replacement rule is applied. The default is None.
149
+ The desired rule operation. See Rule Operations. If set to None, the replacement rule is applied. Default is None.
150
150
  matrix : list
151
- The 4x4 transformation matrix that tranforms the output topology to the input topology. If set to None, no transformation is applied. The default is None.
151
+ The 4x4 transformation matrix that tranforms the output topology to the input topology. If set to None, no transformation is applied. Default is None.
152
152
  silent : bool, optional
153
153
  If set to True, error and warning messages are suppressed. Default is False.
154
154
 
@@ -203,7 +203,7 @@ class ShapeGrammar:
203
203
  topology : topologic_core.Topology
204
204
  The input topology
205
205
  keys : list , optional
206
- The list of dictionary keys to semantically match the rules. The default is None which means dictionaries are not considered.
206
+ The list of dictionary keys to semantically match the rules. Default is None which means dictionaries are not considered.
207
207
  silent : bool, optional
208
208
  If set to True, error and warning messages are suppressed. Default is False.
209
209
 
@@ -250,9 +250,9 @@ class ShapeGrammar:
250
250
  topology : topologic_core.Topology
251
251
  The input topology
252
252
  rule : dict , optional
253
- The desired rule to apply. The default is None.
253
+ The desired rule to apply. Default is None.
254
254
  matrix : list
255
- The 4x4 transformation matrix that tranforms the output topology to the input topology. If set to None, no transformation is applied. The default is None.
255
+ The 4x4 transformation matrix that tranforms the output topology to the input topology. If set to None, no transformation is applied. Default is None.
256
256
  mantissa : int, optional
257
257
  Decimal precision. Default is 6.
258
258
  tolerance : float, optional