topologicpy 0.8.46__py3-none-any.whl → 0.8.48__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
topologicpy/ANN.py CHANGED
@@ -425,7 +425,7 @@ class ANN():
425
425
  path : str
426
426
  The path to the folder containing the necessary CSV and YML files.
427
427
  taskType : str , optional
428
- The type of evaluation task. This can be 'classification' or 'regression'. The default is 'classification'.
428
+ The type of evaluation task. This can be 'classification' or 'regression'. Default is 'classification'.
429
429
  description : str , optional
430
430
  The description of the dataset. In keeping with the scikit BUNCH class, this will be saved in the DESCR parameter.
431
431
 
@@ -520,7 +520,7 @@ class ANN():
520
520
  y : list
521
521
  The list of targets.
522
522
  testRatio : float , optional
523
- The ratio of the dataset to reserve as unseen data for testing. The default is 0.3
523
+ The ratio of the dataset to reserve as unseen data for testing. Default is 0.3
524
524
  randomState : int , optional
525
525
  The randomState parameter is used to ensure reproducibility of the results. When you set the randomState parameter to a specific integer value,
526
526
  it controls the shuffling of the data before splitting it into training and testing sets.
@@ -565,16 +565,16 @@ class ANN():
565
565
  Parameters
566
566
  ----------
567
567
  title : str , optional
568
- The desired title for the dataset. The default is "Untitled".
568
+ The desired title for the dataset. Default is "Untitled".
569
569
  taskType : str , optional
570
570
  The desired task type. This can be either 'classification' or 'regression' (case insensitive).
571
571
  Classification is a type of supervised learning where the model is trained to predict categorical labels (classes) from input data.
572
572
  Regression is a type of supervised learning where the model is trained to predict continuous numerical values from input data.
573
573
  testRatio : float , optional
574
- The split ratio between training and testing. The default is 0.3. This means that
574
+ The split ratio between training and testing. Default is 0.3. This means that
575
575
  70% of the data will be used for training/validation and 30% will be reserved for testing as unseen data.
576
576
  validationRatio : float , optional
577
- The split ratio between training and validation. The default is 0.2. This means that
577
+ The split ratio between training and validation. Default is 0.2. This means that
578
578
  80% of the validation data (left over after reserving test data) will be used for training and 20% will be used for validation.
579
579
  hiddenLayers : list , optional
580
580
  The number of hidden layers and the number of nodes in each layer.
@@ -582,30 +582,30 @@ class ANN():
582
582
  16 nodes in the second, and 4 nodes in the last layer, you specify [8,16,4].
583
583
  The default is [12,12,12]
584
584
  learningRate : float, optional
585
- The desired learning rate. The default is 0.001. See https://en.wikipedia.org/wiki/Learning_rate
585
+ The desired learning rate. Default is 0.001. See https://en.wikipedia.org/wiki/Learning_rate
586
586
  epochs : int , optional
587
- The desired number of epochs. The default is 10. See https://en.wikipedia.org/wiki/Neural_network_(machine_learning)
587
+ The desired number of epochs. Default is 10. See https://en.wikipedia.org/wiki/Neural_network_(machine_learning)
588
588
  batchSize : int , optional
589
589
  The desired number of samples that will be propagated through the network at one time before the model's internal parameters are updated. Instead of updating the model parameters after every single training sample
590
590
  (stochastic gradient descent) or after the entire training dataset (batch gradient descent), mini-batch gradient descent updates the model parameters after
591
- a specified number of samples, which is determined by batchSize. The default is 1.
591
+ a specified number of samples, which is determined by batchSize. Default is 1.
592
592
  patience : int , optional
593
593
  The desired number of epochs with no improvement in the validation loss after which training will be stopped if early stopping is enabled.
594
594
  earlyStopping : bool , optional
595
- If set to True, the training will stop if the validation loss does not improve after a certain number of epochs defined by patience. The default is True.
595
+ If set to True, the training will stop if the validation loss does not improve after a certain number of epochs defined by patience. Default is True.
596
596
  randomState : int , optional
597
597
  The randomState parameter is used to ensure reproducibility of the results. When you set the randomState parameter to a specific integer value,
598
598
  it controls the shuffling of the data before splitting it into training and testing sets.
599
599
  This means that every time you run your code with the same randomState value and the same dataset, you will get the same split of the data.
600
600
  The default is 42 which is just a randomly picked integer number. Specify None for random sampling.
601
601
  crossValidationType : str , optional
602
- The desired type of cross-validation. This can be one of 'holdout' or 'k-fold'. The default is 'holdout'
602
+ The desired type of cross-validation. This can be one of 'holdout' or 'k-fold'. Default is 'holdout'
603
603
  kFolds : int , optional
604
- The number of splits (folds) to use if K-Fold cross validation is selected. The default is 5.
604
+ The number of splits (folds) to use if K-Fold cross validation is selected. Default is 5.
605
605
  interval : int , optional
606
- The desired epoch interval at which to report and save metrics data. This must be less than the total number of epochs. The default is 1.
606
+ The desired epoch interval at which to report and save metrics data. This must be less than the total number of epochs. Default is 1.
607
607
  mantissa : int , optional
608
- The desired length of the mantissa. The default is 6.
608
+ The number of decimal places to round the result to. Default is 6.
609
609
 
610
610
  Returns
611
611
  -------
@@ -931,18 +931,18 @@ class ANN():
931
931
  model : ANN Model
932
932
  The input model.
933
933
  width : int , optional
934
- The desired figure width in pixels. The default is 900.
934
+ The desired figure width in pixels. Default is 900.
935
935
  height : int , optional
936
- The desired figure height in pixels. The default is 900.
936
+ The desired figure height in pixels. Default is 900.
937
937
  template : str , optional
938
938
  The desired Plotly template to use for the scatter plot.
939
939
  This can be one of ['ggplot2', 'seaborn', 'simple_white', 'plotly',
940
940
  'plotly_white', 'plotly_dark', 'presentation', 'xgridoff',
941
- 'ygridoff', 'gridon', 'none']. The default is "plotly".
941
+ 'ygridoff', 'gridon', 'none']. Default is "plotly".
942
942
  colorScale : str , optional
943
- The desired type of plotly color scales to use (e.g. "viridis", "plasma"). The default is "viridis". For a full list of names, see https://plotly.com/python/builtin-colorscales/.
943
+ The desired type of plotly color scales to use (e.g. "viridis", "plasma"). Default is "viridis". For a full list of names, see https://plotly.com/python/builtin-colorscales/.
944
944
  colorSamples : int , optional
945
- The number of discrete color samples to use for displaying the data. The default is 10.
945
+ The number of discrete color samples to use for displaying the data. Default is 10.
946
946
 
947
947
  Returns
948
948
  -------
@@ -1063,7 +1063,7 @@ class ANN():
1063
1063
  path : str
1064
1064
  The file path at which to save the model.
1065
1065
  overwrite : bool, optional
1066
- If set to True, any existing file will be overwritten. Otherwise, it won't. The default is False.
1066
+ If set to True, any existing file will be overwritten. Otherwise, it won't. Default is False.
1067
1067
 
1068
1068
  Returns
1069
1069
  -------
topologicpy/BVH.py CHANGED
@@ -75,7 +75,7 @@ class BVH:
75
75
  topologies : list
76
76
  The list of topologies.
77
77
  silent : bool , optional
78
- If set to True, error and warning messages are suppressed. The default is False.
78
+ If set to True, error and warning messages are suppressed. Default is False.
79
79
 
80
80
  Returns
81
81
  -------
@@ -152,7 +152,7 @@ class BVH:
152
152
  topologies : list
153
153
  The list of topologies.
154
154
  silent : bool , optional
155
- If set to True, error and warning messages are suppressed. The default is False.
155
+ If set to True, error and warning messages are suppressed. Default is False.
156
156
 
157
157
  Returns
158
158
  -------
@@ -220,7 +220,7 @@ class BVH:
220
220
  topologies : list
221
221
  The list of topologies.
222
222
  silent : bool , optional
223
- If set to True, error and warning messages are suppressed. The default is False.
223
+ If set to True, error and warning messages are suppressed. Default is False.
224
224
 
225
225
  Returns
226
226
  -------
@@ -261,9 +261,9 @@ class BVH:
261
261
  bvh : BVH Tree
262
262
  The input BVH Tree.
263
263
  tolerance : float , optional
264
- The desired tolerance. The default is 0.0001.
264
+ The desired tolerance. Default is 0.0001.
265
265
  silent : bool , optional
266
- If set to True, error and warning messages are suppressed. The default is False.
266
+ If set to True, error and warning messages are suppressed. Default is False.
267
267
 
268
268
  Returns
269
269
  -------
topologicpy/CSG.py CHANGED
@@ -50,13 +50,13 @@ class CSG():
50
50
  topology : topologic_core.Topology
51
51
  The input topology..
52
52
  matrix : list , optional
53
- The desired 4X4 transformation matrix to apply to the result before any further operations. The default is None.
53
+ The desired 4X4 transformation matrix to apply to the result before any further operations. Default is None.
54
54
  mantissa : int , optional
55
- The desired length of the mantissa. The default is 6.
55
+ The number of decimal places to round the result to. Default is 6.
56
56
  tolerance : float , optional
57
- The desired tolerance. The default is 0.0001.
57
+ The desired tolerance. Default is 0.0001.
58
58
  silent : bool , optional
59
- If set to True, error and warning messages are suppressed. The default is False.
59
+ If set to True, error and warning messages are suppressed. Default is False.
60
60
 
61
61
  Returns
62
62
  -------
@@ -115,13 +115,13 @@ class CSG():
115
115
  b : topologic_core.Vertex
116
116
  The second input vertex.
117
117
  matrix : list , optional
118
- The desired 4X4 transformation matrix to apply to the result before any further operations. The default is None.
118
+ The desired 4X4 transformation matrix to apply to the result before any further operations. Default is None.
119
119
  mantissa : int , optional
120
- The desired length of the mantissa. The default is 6.
120
+ The number of decimal places to round the result to. Default is 6.
121
121
  tolerance : float , optional
122
- The desired tolerance. The default is 0.0001.
122
+ The desired tolerance. Default is 0.0001.
123
123
  silent : bool , optional
124
- If set to True, error and warning messages are suppressed. The default is False.
124
+ If set to True, error and warning messages are suppressed. Default is False.
125
125
 
126
126
  Returns
127
127
  -------
@@ -179,11 +179,11 @@ class CSG():
179
179
  vertexB : topologic_core.Vertex
180
180
  The second input vertex.
181
181
  matrix : list , optional
182
- The desired 4X4 transformation matrix to apply to the result before any further operations. The default is None.
182
+ The desired 4X4 transformation matrix to apply to the result before any further operations. Default is None.
183
183
  tolerance : float , optional
184
- The desired tolerance. The default is 0.0001.
184
+ The desired tolerance. Default is 0.0001.
185
185
  silent : bool , optional
186
- If set to True, error and warning messages are suppressed. The default is False.
186
+ If set to True, error and warning messages are suppressed. Default is False.
187
187
 
188
188
  Returns
189
189
  -------
@@ -248,7 +248,7 @@ class CSG():
248
248
  graph : topologic_core.Graph
249
249
  The input graph.
250
250
  silent : bool , optional
251
- If set to True, error and warning messages are suppressed. The default is False.
251
+ If set to True, error and warning messages are suppressed. Default is False.
252
252
 
253
253
  Returns
254
254
  -------
@@ -350,15 +350,15 @@ class CSG():
350
350
  graph : topologic_core.Graph
351
351
  The input graph.
352
352
  xOffset : float , optional
353
- An additional x offset. The default is 0.
353
+ An additional x offset. Default is 0.
354
354
  yOffset : float , optional
355
- An additional y offset. The default is 0.
355
+ An additional y offset. Default is 0.
356
356
  zOffset : float , optional
357
- An additional z offset. The default is 0.
357
+ An additional z offset. Default is 0.
358
358
  scale : float , optional
359
- A desired scale to resize the placed topologies. The default is 1.
359
+ A desired scale to resize the placed topologies. Default is 1.
360
360
  silent : bool , optional
361
- If set to True, error and warning messages are suppressed. The default is False.
361
+ If set to True, error and warning messages are suppressed. Default is False.
362
362
 
363
363
  Returns
364
364
  -------